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Abstract. We revisit the fragment-based docking and design of single-stranded RNA aptamers (ssR-
NAs), consisting of k nucleotides, onto a rigid protein. Individual fragments, representing nucleotides,
are docked onto the protein surface using a force field, and some among the resulting n poses are pieced
together to form a conformation compatible with the input ssRNA sequence. Relaxing the sequence
compatibility constraint, a similar methodology can be used to design ssRNAs that preferentially bind
a protein of interest, possibly targeting a pocket. However, a brute-force enumeration of clash-free con-
formations quickly becomes prohibitive due to their superexponential combinatorial explosion (Θ(nk)
conformations), hindering the potential of fragment-based methods.
We leverage the elegant color-coding technique, introduced by Alon, Yuster and Zwick to solve the
associated problems exactly in time and space linear on n the number of poses, and in time only
exponential on k the number of nucleotides. The dynamic programming algorithm at the core of our
method is surprisingly simple, and can be extended to produce suboptimal candidates, or to perform
stochastic sampling of candidates within a Boltzmann distribution. This sampling procedure can be
adapted into a statistically-consistent estimator for virtually any feature of interest.
The versatility and practicality of the color coding framework, demonstrated by a successful reanalysis
and redesign of documented ssRNA/protein complexes, could be key to the development of future
hybrid discrete/continuous methods in structural bioinformatics.

Keywords: Fragment-based docking · RNA design · RNA-protein interaction · Parameterized com-
plexity algorithms
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Fig. 1: General workflow: Starting from a graph of docked fragments, for which pairwise connectivity has
been assessed by an external tool, our method considers various – random or deterministic – colorings from
which solutions to various hard computational problems can be obtained.

1 Introduction

Fragment-based Design is a powerful strategy, used both in academia and pharmaceutical industry to de-
velop potent compounds from fragment. Five drugs designed with this approach were approved by the
FDA [3,19,14,15], one of which as recently as 2021 [18]. Fragments are usually small compounds with low
molecular weight, having about 20 heavy atoms and having low molecular weight compounds [11,16]. The
principle of this strategy is to dock a library fragments on a receptor and to select those specifically binding
the target. One or several initial poses are then extended to form a complete chemical compound.

While this strategy is generally applied to chemical compounds for the design, fragment-based approach
has been utilized to predict complexes formed by ssRNAs of known sequence with RNA-RBP (RNA-Binding
Protein) [8,5,10]. To predict the interaction between RNA-RBP complexes, fragments libraries must embrace
a large diversity of RNA fragments containing for instance chemical modifications for the design. Such a
diversity is also crucial towards a fragment-based design of therapeutic molecules, most of which require a
good affinity towards the target to achieve the desired activity (e.g. antagonist, agonist).

For instance, a recent approach [7] initially performs a sampling of mononucleotides with Multiple Copy
Simultaneously Search (MCSS). From a library of mononucleotides, the principle of MCSS is to dock ran-
domly copies of each nucleotide to obtain a set of fragment poses docked on the target with known orienta-
tion and position. However, the assembly of consecutive nucleotides into an optimal oligonucleotide, either
of known (ssRNA docking) or unknown (ssRNA design) sequence, cannot reasonably be performed through
brute force enumeration due to punishing combinatorics. Indeed, the success of the fragment-based approach
hinges critically on a sufficient density of poses which, in turn, greatly impacts the number of candidate
positions/sequences. The problem is made even worse by a consideration of modified nucleotides, increasing
the basis of an exponential growth.

In this work, we revisit the fragment-based docking and design through the prism of color coding, an
algorithmic technique introduced by Alon, Yuster and Zwick [2] that allows to capture a necessary notion
of ssRNA self avoidance. In Section 2, we show how to utilize color coding to obtain exact or probabilistic
algorithms for fragment-based docking through energy minimization. In Section 3, we extend the framework
to provide statistically consistent estimates for virtually any feature of interest. Section 4 describes how to
avoid complex clashes, and perform design by relaxing the requirement of being compatible with a given
nucleotide sequence. Section 5 illustrates the proposed algorithms in the context of 4 RNA binding proteins,
and Section 6 discusses some limitations of the approach, and future extensions.

2 Color coding for free-energy minimization

Let us start by making two of our assumptions explicit: First, our docking is assumed to be rigid on the protein
level, so that ssRNA fragments (nucleotides or k-mers) can be individually docked onto the protein without
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overly losing precision; Second, the ssRNA/protein system can be assumed to be at the thermodynamic
equilibrium so that minimizing the free-energy coincides with maximizing the probability of observing the
joint configuration.

Graph modeling. Under these two assumptions, the fragment-based docking and screening of ssRNAs onto
a protein can both be reformulated as graph problems. Indeed, let us denote as fragment f as a nucleotide
r(f) associated with a reference 3D conformation. A fragment pose, or pose x, represents a fragment
docked onto the protein surface, and is defined by the 3D position of its atoms relative to the protein. An
ordered pair of poses is said to be compatible if its spatial positioning avoids unresolvable geometric clashes,
and enables the sequential connection of the two fragments into a longer RNA. Compatibility is an oriented
relation (associated with the polarity of RNA), whose assessment is a problem in its own right, and is the
object of specialized tools such as MolPy [4] or Nuclear (to be released) to deal with short ssRNAs.

Through a systematic (constrained) docking of fragments onto the surface of the target protein, followed
by a pairwise assessment of the compatibility of resulting fragment poses, one obtains a poses compatibility
graph. It is defined as a directed graph, i.e. a pair G = (V,E) where V is a set of fragment poses, and any
directed edge (v, v′) ∈ E implies the compatibility of v and v′. In the following, we denote by n := |V | the
number of poses in the graph. At first approximation, the paths in a compatibility graph correspond to a
discrete set of joint ssRNA/protein conformations, which will be called complexes in the following.

However, paths induced by the compatibility graphs may not always correspond to good candidates. For
instance, any path that uses the same pose v ∈ V twice will induce a hard clash in the ssRNA. Soft
clashes may also occur between poses that are not necessarily identical, but not directly consecutive. We
initially focus on enforcing an avoidance of hard clashes, and define a complex x as a (self-avoiding) path
in G, i.e. a sequence x := (v1, . . . , vk) of distinct vertices from G such that (vi, vi+1) ∈ E,∀i ∈ [1, k − 1]. As
will be discussed later, this property already leads to challenging computational problems.

Problem statement and complexity. Next, we associate a notion of free-energy ∆G(x) to any complex
x = (v1, . . . , vk), defined as:

∆G(x) =

k∑
i=1

E(vi) +

k−1∑
i=1

E′(vi, vi+1)

where E : V → R ∪ {+∞} and E′ : V × V → R ∪ {+∞} are terms which capture the contributions of
individual and pairwise-adjacent fragments respectively. Assuming thermodynamic equilibrium, the most
stable/probably complex, for a given nucleotides sequence of length k, is the one having Minimum Free-
Energy while compatible with the sequence. The computation of such a complex can be restated as follows:

MFEdock problem.
Input: Pose compatibility graph G = (V,E); Energy function ∆G; Residue sequence r = r1.r2 . . . rk.
Output: Hard clash-free complex x? = (v?1 , v

?
2 , . . . , v

?
k) minimizing free-energy

x? = argmin
x=(v1,...,vk)

such that vi 6=vj ,∀i6=j ← self avoidance
and r(vi)=ri,∀i ← compatibility with nuc. sequence

∆G(x)

For general input graphs, trivial sequences (homopolymer, k := |V |) and simplye energy function, MFE-
dock generalizes the problem of deciding the existence of a Hamiltonian path, implying NP-hardness.

Color coding to the rescue. Fortunately, the MFEdock problem is easily amenable to probabilistic, or even
exact, resolution using the color coding technique introduced by Alon, Yuster and Zwick [2]. This elegant
technique initially addressed the problem of finding sparse motifs in graphs. It has been utilized in the
context Bioinformatics for searching [6,17] and counting [1] occurrences of motifs in biological networks.

The key idea of color coding is to associate a coloring κ : V → [1, k] to the input graph G = (V,E), and
to replace the (hard) search for a path (or motif) of length k (k-path) with the (easier) search of a colorful
path, using each of the k colors exactly once. Colorful paths can be found and counted in time linear on
n := |V | and |E|, and only exponential on k. Clearly, any colorful path is also a k-path as it uses distinct
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vertices. However, for a given coloring κ, some existing k-path x in G may not be colorful in a random
uniform coloring, an event with probability P(p not colorful) = 1− k!

kk
.

To improve the odds of finding a k-path, the method then iterates the search for colorful paths within
a set of α random uniformly-distributed colorings of G. Assuming independent uniformly-drawn colorings
κ1, . . . , κα the probability of hitting a k-path after α random colorings is exactly

P(p colorful for some coloring | α) = 1−
(

1− k!

kk

)α
. (1)

Meanwhile, the expected number of random colorings needed before finding x (i.e. x colorful w.r.t at least
one of the colorings) is given by kk/k! ∈ O(

√
k ek) using Stirling formula.

Impressively, this probabilistic algorithm can be turned into an efficient, deterministic and exact, al-
gorithm using the derandomization technique. Indeed, one can construct a family of colorings which is
guaranteed to represent every k-path in G, while having cardinality polynomial in n and |E|. For instance,
Naor et al [13] propose an explicit construct for a family of ekkO(log k) log n colorings that cover all possible
occurrences of k-paths. Iterating the search for colorful path over the family yields an exact algorithm in
overall time O((2e)kkO(log k)(n+ |E|) log n), using O(2kn) memory.

Our method. Our pragmatic solution for MFEdock borrows heavily from the color coding framework with
two peculiarities, guiding our design principles:

1. Instead of searching/counting occurrences of a k-path, we want to find the path minimizing the free-
energy (optimization vs search);

2. Memory consumption should be limited, ideally strictly linear in n, in order to support fine-grained
sampling of the poses (i.e. high values of n, very low value for k).

To address those goals, we further constrain the search to identify well-colored paths, k-paths that are
not only colorful but also feature the colors [1, k] in ascending order. The MFE among well-colored paths in
a coloring κ can be computed recursively using the following trivial dynamic programming scheme:

mfeκ = min
v∈V

such that r(v)=r1

mfeκ[v, 1] (2)

mfeκ[v,m] =


E(v) if m = k

min
(v,v′)∈E such that

κ(v′)=m+1
and r(v′)=rm+1

E(v) + E′(v, v′) + mfeκ[v′,m+ 1] otherwise. (3)

Following the computation of all mfeκ[v,m] in O(k(n+ |E|)) time and O(kn) space, the MFE/well-colored
complex can then be reconstructed using a standard backtrack reconstructs the (well-colored) optimal com-
plex, in O(n+ |E|) time. Derandomization can then be adapted to capture well-colored paths and, applying
the DP algorithm to a well-chosen family of colorings, we get:

Theorem 1. MFEdock can be solved exactly in O(kk+O(log k)(n+ |E|)) time and O(kn) space.

An elementary proof of this result can be found in Supplementary Section A. Meanwhile, the probability of
finding the absolute MFE complex x? for a random coloring κ now reduces to 1/kk, so the probability of
finding x? after considering α random uniform colorings becomes

P(p well colored for some coloring | α) = 1−
(

1− 1

kk

)α
. (4)

This equation can be inverted to target a given probability (1− ε) of finding the optimal path x?. We find
that setting α = dlog ε/ log(1− k−k)e ∈ O(| log ε| kk) is sufficient to guarantee such a property, from which
we conclude:

Proposition 1. MFEdock can be solved with probability 1− ε in O(nkk+1| log ε|) time and O(k n) space.

Practically, due to both the intricacies of implementing derandomization, and the empirical robustness of
predictions, we implement and benchmark this probabilistic version in the rest of this work.
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3 Equilibrium statistics

While clearly an important – computational challenging – problem, docking through energy minimization
is hindered by its single focus on the MFE conformation. Indeed, at the thermodynamic equilibrium, the
probability of a complex x inducing a nucleotide sequence r, is expected to follow a Boltzmann distribution:

P(X = x | r) =
e−β.∆G(x)

Zr
where Zr :=

∑
x′ self avoiding

and comp. with r

e−β.∆G(x′)

and µ is proportional to the temperature. Since the number of valid complexes typically grows (at least)
exponentially with k, the probability of the MFE complex will in fact remain abysmally small in larger
systems.

Features in the Boltzmann distribution. This motivates a computation of equilibrium statistics, i.e. ex-
pected statistical properties of the system within the Boltzmann distribution. Such properties are measured
by a set of real-valued feature functions {f1, f2, . . .}, each mapping a valid complex to some numerical
value in R. Features can represent any relevant quantity (free-energy, %occupancy of druggable pocket. . . ),
provided that they can be effectively computed from a fully-specified complex. The expectation of a
feature f is defined as:

E(f(X) | r) =
∑

x self avoiding
and comp. with r

f(x)P(X = x | r) (5)

can be interpreted as a collective variables.Probabilities can also be computed as expectations of (0/1)-valued
features. Higher moments of the distributions can be computed from the expectations of f, f2, f3 . . . giving
access to finer characteristics of the distribution, such as its variance/stddev, skewness, kurtosis. . . or even
correlations between multiple features.

Our estimator. Complexity-wise, computing the partition function is provably harder than the optimization
problem addressed in Section 2. Indeed, setting the temperature β to a sufficiently-low value allows to
determine the existence of a solution reaching a certain energy level, thereby solving the NP-hard decision
version of the problem. Worse, derandomization cannot be easily adapted to compute partition functions or
expectations. Indeed, the families of coloring produced in the context of optimization do not guarantee a
uniform representation for all complexes, introducing a possible bias in the subsequent estimates.

To work around those hurdles, we adopt an approach that estimates the expectation based on a sequence
of random colorings κ1, κ2 . . . Namely, we introduce the color-restricted expectation of a feature f given
a coloring κ as:

E(f(X) | r, κ) =
∑

x self avoid.,
comp. with r
well col. by κ

f(x)P(x | r, κ) =
∑

x self avoid.,
comp. with r
well col. by κ

f(x)
e−β∆G(x)

Zr,κ
where Zr,κ :=

∑
x′ self avoid.,
comp. with r
well col. by κ

e−β∆G(x′).

It can be estimated, first using DP to compute the (coloring-restricted) partition function:

Zκ =
∑
v∈V

such that r(v)=r1

Zκ[v, 1] (6)

Zκ[v,m] =


e−βE(v) if m = k∑
(v,v′)∈E such that

κ(v′)=m+1
and r(v′)=rm+1

e−βE(v) × e−βE
′(v,v′) ×Zκ[v′,m+ 1] otherwise.

(7)

A stochastic backtrack then consists in choosing, starting from Zk, a term from the corresponding right-hand
side with probability proportional to its contribution to left-hand side Zκ, keeping track of the sequence of
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vertices and recursing until the m = k condition is met. The returned random complex is then Boltzmann
distributed, and the average value of f on a set of generated complexes represents an unbiased estimator for
E(f(X) | r, κ). Our estimator takes a collection of random uniformly-distributed colorings, and returns:

f̂(κ1, κ2 . . . κM ) =

∑M
i=1Zr,κi × E(f(X) | r, κi)∑M

j=1Zr,κj
(8)

Theorem 2. The estimator f̂ is consistent. Let K1, . . . ,KM denote random uniform colorings, we have:

lim
M→+∞

E
(
f̂(K1,K2, . . . ,KM )

)
= E(f(X) | r)

4 Extensions

4.1 Avoiding soft clashes

As mentioned in Section 2, soft clashes occur when poses are overly close, leading to a severe unstability
of the complex. Soft clashes involving consecutive positions are avoided while building the poses compati-
bility graph, but non-consecutive poses may overlap. To restrict conformation spaces to (fully) clash-free
complexes, avoiding both hard and soft clashes, we introduce two distinct solutions: i) a generation of
suboptimal solutions to the MFEdock problem; and ii) a rejection-based sampling to compute equilibrium
statistics within fully clash-free complexes.

Listing all suboptimal complexes. Since clash-free complexes represent a strict subset of the search space
of MFEdock, the clash-free MFE complex can be found as a suboptimal solution. In other words, there
exists an energy tolerance ∆Max such that the fully clash-free MFE x� can be found within ∆ kcal.mol-1

of the hard clash-free MFE x?. To recover x�, we adapt the Waterman/Byers algorithm [20], which starts
by computing the DP matrix in Equation (3), and uses the following backtrack:

suboptκ(∆)→
⋃

v∈V s.t.
r(v)=r1

suboptκ(v, 1;∆′) [if ∆′ := ∆− (mfeκ[v, 1]−mfeκ) ≥ 0] (9)

suboptκ(v,m;∆)→


{v} if m = k⋃

(v,v′)∈E s.t.
κ(v′)=m+1

and r(v′)=rm+1

{v} ⊗ suboptκ(v′,m+ 1;∆′)

[if ∆′:=∆−(E(v)+E′(v,v′)+mfeκ[v′,m+1]−mfeκ[v,m])≥0]
otherwise. (10)

We then call the backtrack function suboptκ(δ) over increasing values of ∆, until at least one fully clash
free is reported, and returns the fully clash-free complex having min free-energy. Since the modified backtrack
is correct, it produces the exhaustive list of hard clash free complexes within ∆ kcal.mol-1 of x?. It follows
that, anytime this list of suboptimal complexes includes a fully clash-free complex, it also contains the fully
clash-free MFE x�. Of course, the complexity of the approach grows exponentially with (∆G(x�)−∆G(x?)).
Still, the efficiency of the algorithm still practically allows the consideration of large values of ∆, as shown
in Section 5.1 and beyond.

Soft-clash aware statistics. In the context of estimating feature distribution, the consideration of complexes
featuring soft clashes may bias the underlying statistics. Stochastic backtrack can be used to estimate the
prevalence of soft clashes, and their potential to impact estimates. If they are frequent, and thus likely to
bias estimated, then the estimator can be modified using a simple rejection strategy.

Namely, it can be shown that using the partition function/stochastic backtrack described in Equation 7,
and rejecting those featuring soft clashes, generates a statistical sample of fully clash-free complexes. Indeed,
coupling the stochastic backtrack with a rejection of soft clashing complexes, induces an emission probability
of 0 for soft-clashing complexes, and p(x) for a clash-free complex x such that:

p(x) =
P(X = x | κ, r)∑

x′ w/o soft clashes P(X = x′ | κ, r)
=
e−β ∆G(x)

Zclash free
κ,r

where Zclash free
κ,r :=

∑
x′ w/o soft clashes

e−β ∆G(x′)
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so, for a given coloring κ, E(f(X) | r, κ, clash free) can be estimated through the fully clash-free subsample.
Meanwhile, the value of frequency of Zclash free

κ,r can directly be estimated from the frequency of soft

clash-free complexes, which converges to Zclash free
κ,r /Zκ,r, noting that the colored partition function Zκ,r is

known. A consistent estimator for fully clash free complexes can then be computed as:

f̃(κ1, κ2 . . . κM ) =

∑M
i=1Zclash free

r,κi × E(f(X) | r, κi, clash free)∑M
j=1Zclash free

r,κj

(11)

4.2 Rational ssRNA design as a relaxation of docking

Rational design in the context of a fragment-based docking usually requires two properties to be fulfilled by
the designed RNA aptamer: Positive design requires the ligand to have good affinity, or low interaction free-
energy, towards the target protein or targeted pocket; Negative design forces the ligand to be specifically
binding to a given region of the protein. Interestingly, both criteria are somewhat addressed by a simple
relaxation of the MFEdock problem, simply disregarding the input ssRNA sequence in the sums of all
algorithms without added complexity. Indeed, computing the MFE complex within a search space including
both conformations and ssRNA sequences yields a sequence of poses x? = (x1, x2, . . . , xk) associated with a
sequence of nucleotides r? := r(x1).r(x2) · · · r(xk) such that:

1. No alternative sequence has higher affinity than r? towards the protein (positive design);
2. The binding site induced on the protein surface by x? is the most likely target for r? (negative design).

Admittedly, this approach does not enable targeting of a specific site or pocket, since the location of best
complex is induced by the MFE criterion. Still, by generating suboptimals and only retaining the first
occurrence of each sequence, our algorithms can produce a diversity of sequences that are both stable, and
specifically target various sites.

5 Case studies

We implemented our algorithms for MFEdock (optimization; subopts; +/- sequence constraints) and sta-
tistical estimators into the ColorDocking software, a collection of Python scripts freely downloadable at
https://gitlab.inria.fr/amibio/colordocking. Datasets and further information to reproduce experi-
ments are also available. All experiments were performed on a PBS cluster with a Linux kernel. The used
node has 92GB of memory, and each calculation was done on a single CPU.

Dataset. Four complexes were selected to test our method. Among them, three complexes represent the three
prominent features of RNA-Binding Protein (RBP): RNA Recognition Motifs (RRM; 2XNR), Zinc fingers
(5ELH) and KH2 domains (5WWX). These 3 specific structures were selected due to their low resolution (less
than 2.0Å). Finally, these structures interact with ssRNAs whose short length make them good candidates
for a rational design of therapeutic inhibitors. We also selected 1CVJ, despite its resolution being greater
than 2.0 Å, since it features a longer ssRNA and was used by Chauvot de Beauchene et al [5].

To provide a realistic setting for docking, proteins were prepared and minimised using the CHARMM27
force field in the absence of the ssRNA ligand and solvent. The resulting structures deviate from the bound
models by less than 1.0 Å RMSD (between 0.78 and 1.0 Å; 0.48 Å for 1CVJ). As a result, the protein surface
at the RNA binding site may be altered and in a more specific way at some specific position of the RNA
chain. Therefore, we cannot expect to find solutions that fit the experimental structure of the bound RNA
at high accuracy.

5.1 Optimization for docking

Robustness analysis. For each case study, we used the Multi-Copy Simultaneous Search (MCSS) [12] method
to generate distributions of about 10.000 fragment poses composed of Adenine (A), Cytosine (C), Guanine
(G) and Uracil (U). Only first 2.000 fragment poses of each nucleotide were used for this study. From these,
a python package called NUCLEotide AssembleR (NUCLEAR) (to be released) was used to cluster similar

https://gitlab.inria.fr/amibio/colordocking
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PDB ID Length k Tolerance ε ∆Max Step Target Sequence α

2XNR 3nts 0.01 50 1 UCU 122
5ELH 3nts 0.01 50 1 UUA 122

5WWX 3nts 0.01 50 1 AGA 122
1CVJ 5nts 0.01 50 1 AAAAA 14 388

(a) Parameter values used over the various experiments.

(b) 2XNR (c) 5ELH (d) 5WWX (e) 1CVJ

Fig. 2: Reproducibility of fully clash-free suboptimal structures. Parameters (a) and distributions of Free-
energy scores (y-axis) over 10 runs (x-axis) for each RBP (b-e). The same fully clash-free MFE was obtained
for all independent runs.

poses with a threshold of 0.5 Å, and to build a connectivity matrix using a 6 Å cutoff for the O3’-C5’
distance. The other parameters of NUCLEAR were left to their default values.

A directed graph was then generated and fed as input to an implementation of our suboptimal color coding
algorithm, using parameters described in Subfigure 2a. In all case studies, we set the tolerance ε = 0.01,
i.e. the hard clash-free MFE complex was predicted with probability of p = 99%. Fully clash-free MFE
candidates were produced, setting an initial tolerance ∆ := 0, by: i) Generating ∆ suboptimal complexes;
ii) Discard those featuring soft clashes; iii) If any are left, return them, otherwise increase ∆ by 1, stopping
when ∆ exceeds a value ∆max (set to 50 kcal.mol−1).

Figure 2 summarizes the energy distribution of fully clash-free complexes, obtained over 10 independent
runs of each case study. Two observations stand out: First, for a given complex, the fully clash-free MFE
complex was always found across independent runs, indicating that the filtering of soft clashing complexes
does not majorly impact reliability; Second, as expected, sub-optimal solutions can be observed to vary
across independent runs. Indeed, the value of ∆ needed to generate a clash-free complex may vary across
random executions, leading to the production of different number of sub-optimal complexes. However, the
bulk of the distributions remains largely consistent across runs, and fairly concentrated.

Docking. To illustrate the docking, we considered two different distributions, generated by MCSS for nu-
cleotide fragment types as described in Chevrollier’s PhD thesis [4]. Their main difference resides in the
patch applied on the C5’ extremity: ’010’ fragments have a O5’-PO2- group, while the ’310’ fragments have
a O5’-CH3PO3’ group. For each case study, we restricted the docking to nucleotides occurring in the target
sequence, producing 2000 fragment poses per nucleotide. The connection matrix was built as described in
the previous paragraph, except that the O3’-C5’ distance cutoff was set to 4.5 Å. Other parameters were set
as per Table 2a, except for ∆Max which was set to 30 with a increment step 30.

To compare the solutions with the native complex, a Root-Mean-Square Deviation (RMSD) was calculated
based on 16 equivalent atoms present in the pyrimidines and purines [4]. Results show that the best model
(lowest RMSD) sometimes correspond to the best scores: this is the case for 2XNR (-45.2 kcal.mol-1 for
’010’ and -46.8 kcal.mol-1 for ’310’) and 5WWX (-54.4 kcal.mol-1 for ’310’ and -63.6 kcal.mol-1 for ’310’).
Nevertheless, for 1CVJ, the best RMSD complex has a score of -100.14 kcal.mol-1, 12 kcal.mol-1 higher than
the MFE complex (-112.65 kcal.mol-1). Furthermore, we can see that the MFE and best RMSD do not fit
completely with the experimental structure, where some positions deviate.

These discrepancies can be explained by the preprocessing of the protein, a minimization having been
applied without the RNA ligand. A comparison between the bound and minimized structure show a deviation
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(a) 2XNR - Patch 010 (b) 2XNR - Patch 310

(c) Overlay Top 1 with native struc-
ture (gray)

(d) 1CVJ - Patch 010 (e) 1CVJ - Patch 310

(f) Overlay Top 1 with native struc-
ture

Fig. 3: Distributions of free-energy/scores and RMSDs against native complex for two poses distributions
(010/green: a and d; 310/orange: b and e). Subfigures (c), (f) represent geometric superimposition of MFE
structures for ’010’ (green) and ’310’ (orange) against native complex (gray).

for some binding site, creating a loss of native interactions with the RNA [7]. The bias introduced by the
minimisation has an influence on the quality of the sampling, with a variation of the number of native-like
poses (within 2 Å of experimental structure). Indeed, an analysis of the ’010’ and ’310’ distributions showed
there are no or few native-like poses for some positions. Therefore, some native or near native solutions are
simply absent from the initial pose set, motivating the consideration of more dense sampling in the future.

5.2 Equilibrium statistics identify highly probable poses and sequence profiles

A design of specific high-affinity molecules can be driven by information on the structure/sequence ensem-
ble, obtained using estimators introduced in Section 3. We studied two sets of features that: i) identify of
highly-probable poses; and ii) characterize the sequence profile induced by low energy complexes. The first
corresponds to a set of binary feature functions {fv}v∈V , each returning 1 if the complex uses v and 0
otherwise, so that the expectation coincides with the probability of v. Similar features allows to identify the
nucleotide frequency at each position in the design setting.

We considered 1CVJ, and built a connection matrix with NUCLEAR based on the ’310’ distribution
of poses, restricted to free-energies below -18.74 kcal.mol-1 (6262 poses left; 32% A/41%G/15%C/12%U).
A clustering of poses (0.5 Å cutoff) was performed, and nucleotides were connected based using a O3’-C5’
distance cutoff of 4.0Å. We considered a 5-mers, with 1% tolerance (expected distance to true mean). The
pseudo-temp. β was set to -1.

Highly probable poses. Figure 4a shows the 20 most probable pose. We can see that two poses (A and B) have
probability greater than 10%. The 18 others poses have around 5% probability. Interestingly, the locations of
A and B are virtually indistinguishable on the protein surface (Figure 4c) and both correspond to mutually-
exclusive Adenines. A complex thus has 24% probability to pass through this area. This observation is not
trivial, and stems from a delicate trade-off between the energies of poses and the combinatorics of complexes.
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(a) Probability of poses (Top 20) (b) Free-energy versus proba (Top 20) (c) 1CVJ positioning (Top 10)

Fig. 4: Statistical study of highly probable poses. (a) shows the top 20 probabilities of the poses where path
most often pass (b) shows scores of the top 20 according to their probability (c) shows the position of the
center of mass of the top 10 highly probable nodes.

In particular, A and B are each twice more probable than the other poses in the top 20, despite having
similar free-energies contributions (Figure 4b). This again shows that non-trivial insight can be provided by
equilibrium statistics.

Sequence profile. At each position of the 5-mer, we estimated the probability look what is the nucleotide
the most probable. The resulting sequence profile (Supp. Figure 1) reveals a predominance of Guanine or
Adenine at each position. This is unsurprising as those nucleotides are dominant in the filtered poses set
(42% G, 31% A). More generally, we observe a correlation between the number of poses for a nucleotide and
its probability. However, the probabilities of C (15% poses) and U (12% poses) show an interesting trend,
with C being more probable than U for the first 2 positions of the 5-mer (+4% and +3.7%) and then being
increasingly dominated for the 3 remaining positions (-1.4%, -7.7% and -5.3%). This confirms the capacity
of the estimator to reveal non-trivial cooperative effects.

5.3 Design

For the design, 2000 poses were generated for each nucleotide, clustered at 0.5Å RMSD, to get the connectivity
matrix. A max O3’-C5’ distance was set to either 4 or 5Å. All others parameters are described in Figure 5a.

Runtime. Design is a fundamental asset of the fragment-based approach. We designed oligonucleotides of
lengths ranging from 4 to 7 with varying parameters, as shown in Figure 5a. Two times were measured:
the time to get the absolute first MFE (MFE), and time needed to get the suboptimal complex (Subopts)
for a given ∆Max, the maximum energy between the worst desired suboptimal complex and the MFE. In
this case study, for each coloring, a suboptimal complex was generated for increasing values of ∆, using
increment of 1 kcal.mol-1. For the MFE time, the number of poses and the O3’-C5’ distance impact the
computational time. This observation is expected because both parameters impact the number of connectable
fragments. Nevertheless, the time needed to find the MFE remains reasonable: 29.5 hours to design a 7-mer
from 8000 poses using a 4 Å O3’-C5’ cutoff (5.1010 complexes), and 61 hours using a 5 Å O3’-C5’ cutoff
(3.1014 complexes), this despite an unoptimized proof-of-concept implementation in Python. The suboptimal
runtime is also highly dependent on the value of ∆Max, having in theory exponential impacton the worst-case
complexity. This impact is confirmed empirically, nevertheless allowing the design of fully clash-free 6 mers.

Diversity of solutions. Suboptimals aim to generate set of diverse nucleotide sequence. In this example, the
4 nucleotides (A,C,G,U) were used to design oligonucleotides. From 8000 poses and a O3’-C5’ distance equal
to 4Å, the number of unique sequences is 42 for a 5-mer, and 35 for a 6-mer out of 175 produced suboptimal
solutions. The same sequences can be generated (e.g. ACUGG), but the poses may differ by a few positions
or more. However, between two complexes inducing the same sequences, the conformation with the best
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Time (min.)
k #Poses ∆Max α MFE Subopts O3’-C5’ (Å)

5 8 000 10 14 388 5.60 59.85 4
6 8 000 10 214 856 95.48 893.90 4
7 8 000 – 214 856 1 774,75 – 4

5 8 000 10 14 388 12.38 128.38 5
6 8 000 10 214 856 189.37 2581.40 5
7 8 000 – 214 856 3 656,61 – 5

5 8 000 20 14 388 5.87 128.12 4
6 8 000 20 214 856 93.25 2159.62 4

(a) Runtime analysis 1CVJ (b) GAGGG (-117.37 kcal.mol -1) (c) GUCGG (-102.85 kcal.mol -1)

Fig. 5: Runtime analysis and 3D representation of binding pockets for two designed 5-mers inspired by
statistical estimates of the sequence space.

free energy will in theory be preferred. Nevertheless, this will allow the user to check the different possible
conformations with the associated score, and potentially to consider chemical optimizations, or chose the
ones targeting a desire site. For instance, the 42 unique 5-mers generated by the method differed on average
by 9.5 Å RMSD (10.5 Å avg RMSD for the 35 unique 6-mers). Finally, it was possible to select a collection
of 15 5-mers having at least 5 Å pairwise RMSD between their MFE complexes (7 for 6-mers). We even
found four 5-mers (and 6-mers) having pairwise RMSD greater that 10 Å, demonstrating the capacity of our
method to produce sequence targeting diverse regions.

Example of a design based on feature estimation. One strategy for design can be to exploit the results of
a statistical study (see Section 5.2) to design a 5-mer MFE. From the sequence profile, we searched a 5-
mer whose sequence is composed of either a Guanine or Adenine at each position. As seen in Figure 5,
the MFE sequence found with this strategy is GAGGG (Figure 5b). It is interesting to note that this MFE
corresponds to the same sequence and conformation as obtained using a blind strategy (i.e. w/o sequence
constraint). The energy score is equal to -117.37 kcal.mol -1. Another MFE was designed from the highly
probable poses, featuring a Uracil at a position where the frequency of this fragment is equal to 7% (Figure
5c). The associated free-energy is -102.85 kcal.mol -1. These results show that statistical properties can
be exploited to suggest different designs, and compare their conformations and energies. For instance, the
GAGGG conformation shown in Figure 5b would have better overall affinity than the GUCGG conformation
shown in Figure 5c. But interaction areas are not really the same, and our method provides key information
on the preferred interactions between a sub-region and a particular nucleotide (or family of nucleotides).

6 Conclusions and perspectives

We have introduced a new algorithmic framework, based on color coding, to solve natural problems arising
in the context of fragment-based ssRNA docking and design on the surface of a rigid protein. We have
illustrated their utility in the context of four RNA binding proteins, showing that color coding provides a
versatile toolkit for the study and design of ssRNAs.

A key asset of our exact algorithm resides in its linear complexity on the number of pairwise connected
poses, only being exponential on the length k of the ssRNA. As such, it can be seen as a parameterized
complexity algorithm, showing that the MFEdock problem is Fixed Parameter Tractable (FPT) for the
ssRNA length k. On a practical level, much larger sets of poses/connections could be supported, allowing to
explore the impact of various sampling depth/density of poses on the quality of predictions. Our algorithmic
method is not restricted to individually docked nucleotides, and could accommodate other fragment libraries,
e.g. trinucleotides utilized by Chauvot de Beauchène et al [5].

Another open left open is the existence of exact/efficient treatment for soft clashes, which could greatly
benefit from being revisited in an exact algorithmic setting. However the relevant graph problem would then
need to capture generalized notions of incompatibility (beyond self-incompatibility/avoidance), and would
require solving some optimization problem over bounded independent sets. Lastly, the number β of stochastic
backtracks is currently based on pessimistic estimates (stddev ≈ range/2), and could be refined to account
for the tight energy distributions of poses (e.g. 16 kcal.mol-1 range vs 2.2 stddev in design studies).
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