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Abstract

We study a symmetric-information war of attrition in which the players’ payoffs
depend on exogenous market conditions that evolve according to a homogeneous linear
diffusion. Using that a Markov strategy can be represented as a stopping region along
with an intensity measure of stopping, we fully characterize mixed-strategy Markov-
perfect equilibria through a variational system for the players’ value functions. When
players are asymmetric, in any such equilibrium each player randomizes at a discrete
set of thresholds for market conditions. As a result, players may alternatively find
themselves in a position of strength or weakness on the equilibrium path. Delayed
concessions occur because a player currently in a position of weakness can hope for
market conditions to reverse in his favor. In the standard duopoly model of exit under
uncertainty, the firms’ stock prices and their return volatilities comove negatively over
the attrition region and exhibit patterns documented by technical analysis.
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1 Introduction

The war of attrition (WoA) is a workhorse model of situations in which each player has

to decide when to concede and forfeit a prize to his opponent. Examples include animal

conflict (Maynard Smith (1974)), public good provision (Bliss and Nalebuff (1984)), exit

from a declining industry (Ghemawat and Nalebuff (1985), Fudenberg and Tirole (1986)),

labor strikes (Kennan and Wilson (1989)), macroeconomic stabilizations (Alesina and Drazen

(1991), Drazen and Grilli (1993)), competing standards (Bulow and Klemperer (1999)),

bargaining (Abreu and Gul (2000)), investment under learning externalities (Décamps and

Mariotti (2004)), and boycotts (Egorov and Harstad (2017)). A growing literature attempts

to test the predictions of these models and to estimate the welfare cost of delayed concessions

(Hendricks and Porter (1996), Ghemawat (1997), Padovano and Venturi (2001), Geraghty

and Wiseman (2008), Wang (2009), Takahashi (2015)).

Because attrition generates costs for all players, a natural question is why it may occur

in the first place.1 Under complete information, if a player believes that his opponent is

stubborn, so that she will never concede, then he is better off avoiding conflict altogether by

conceding immediately. If his opponent correctly anticipates this, then she in turn has every

reason to be stubborn. Hence, attrition can occur in equilibrium only if players do not know

each other’s intentions, that is, if each player believes that his opponent concedes in a random

manner. A common alternative explanation for attrition is asymmetric information, which

arises when some player does not know how strong—how powerful, patient, enduring, or

committed—his opponent is. Yet, this explanation is debatable, because conflicts in practice

can last for a considerable amount of time despite large observable differences in strength

between the parties involved.2 Besides, even when information is asymmetric, immediate

concession can occur in equilibrium if players have different distributions of waiting costs

(Martinelli and Escorza (2007), Myatt (2024)).

This paper argues that delayed concessions in the WoA may be caused by unpredictable

changes in the environment rather than by players’ asymmetric information about each

others’ characteristics. Our approach is motivated by the simple observation that uncertainty

is a pervasive feature of the WoAs that are deemed to take place in practice. For instance,

firms fighting to be the last to exit from a declining industry may still be uncertain about

the future evolution of demand (Dixit and Pindyck (1994)). Similarly, political groups

1Fearon (1995) raises this general point in the context of wars: given that wars are costly for all the
parties involved, how can one rationalize the fact that they nonetheless recur and persist?

2Wars, labor strikes, and boycotts are obvious cases in point, as well as, to some extent, conflicts over
macroeconomic stabilizations (Labán and Sturzenegger (1994)).
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fighting about how to share the tax increase necessary to stabilize the economy may face

random fluctuations in the interest rate as well as random shifts in the level of aid or foreign

intervention (Alesina and Drazen (1991)). The new mechanism we emphasize is that, under

these circumstances, a player currently finding himself in a position of weakness vis-à-vis his

opponent may want to delay concession simply because he hopes for events to turn again

in his favor. The challenge is to show that this simple mechanism can cause delays over

and above those due to the mere presence of uncertainty, even though changes in market

conditions do not a priori favor either player—so that being in a position of strength or

weakness is not a built-in feature of players’ preferences, but rather an endogenous feature

of equilibrium play. In so doing, we identify a new class of mixed-strategy equilibria that

have robust and novel testable implications.

To this end, we study a general two-player symmetric-information WoA in which players’

payoffs depend on an exogenous state variable, hereafter generically referred to as market

conditions. Both players continuously observe the evolution of market conditions, which

follow a homogeneous linear diffusion. Based on this information, each player then decides

whether to remain in the market or to irreversibly exit. There is a second-mover advantage

in the sense that, if and when a player exits, his payoff is lower than the payoff he would

have obtained if his opponent had exited under the same market conditions. Players may

be asymmetric, allowing us for instance to capture observable differences in waiting costs.

In our running example, two firms face uncertainty about future demand. A WoA arises

because each firm would like to liquidate its assets if demand were to deteriorate enough,

but would meanwhile individually fare better as a monopolist than as a duopolist. Firms

may be asymmetric in that one firm’s assets may have a higher liquidation value than its

opponent’s, so that it is a priori more willing to exit the market.

Special cases of our running example have been studied in the literature, with a natural

focus on Markov-perfect equilibria (MPEs) in which firms’ exit decisions at any point in

time only depend on current market conditions (Maskin and Tirole (2001)). Murto (2004)

characterizes pure-strategy MPEs in which each firm exits with probability 1 over some

region of the state space. In the case of symmetric firms, Steg (2015) and Georgiadis, Kim,

and Kwon (2022) construct a symmetric mixed-strategy MPE in which both firms exit at a

stochastic rate over an interval of market conditions. Attrition in this MPE is maximal, in

that each firm obtains the stand-alone value it would obtain if its opponent were stubborn.

Importantly, Georgiadis, Kim, and Kwon (2022) show that no such MPE exists as soon as

there is the slightest asymmetry between the firms.
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As we argue in this paper, however, this negative result does not imply that attrition

cannot occur in equilibrium when players are asymmetric. The reason is that the set of

mixed Markov strategies is not exhausted by strategies defined by stochastic exit rates. The

latter, for instance, do not allow one to capture the behavior of a player who would wish

to exit the market, with positive but finite intensity, each time the market conditions hit a

single point of the state space.3 Yet, this behavior naturally emerges as the limit of mixed

Markov strategies with stochastic exit rates defined over a sequence of intervals degenerating

to that point, or, given appropriate normalizations, of mixed Markov strategies defined over

discretized state spaces and time grids with increasingly finer mesh.

Our first contribution is thus to provide a full characterization of mixed Markov strategies,

which we model as randomized stopping times. Our first main result, Theorem 1, states that

a randomized stopping time is Markovian if and only if it can be represented by a pair (µ, S),

where S is a subset of the state space over which the player exits with probability 1 and µ

is a measure over the complement of S representing the player’s exit intensity at states at

which he randomizes. Special cases of this representation include pure strategies, in which

the intensity measure µ is degenerate, mixed strategies with a stochastic exit rate, in which µ

is absolutely continuous with respect to Lebesgue measure, and mixed strategies in which µ

is discrete, capturing the behavior of a player who exits the market with finite intensity each

time the market conditions hit a countable set of states. More generally, one can conceive

strategies in which the intensity measure µ has an arbitrary component that is singular with

respect to Lebesgue measure.

Our second main result, Theorem 2, states that, if players are asymmetric, then all

mixed-strategy MPEs involve strategies with discrete intensity measures, whose supports

form two intertwined sequences of randomization thresholds, one for each player. At any

such threshold, the corresponding player is indifferent between remaining in the market and

exiting. This implies that the state space is endogenously partitioned into intervals that

can all be reached on the equilibrium path, and over which each player is alternatively

in a position of strength or weakness depending on how far current market conditions are

from one of his randomization thresholds. The reason why a player currently in a position

of weakness has an incentive to wait and to randomize at specific thresholds for market

conditions is that he can hope for a reversal of situation in his favor—that is, for market

conditions to transit to a neighboring interval of the state space over which he will be again

3Importantly, exiting with finite intensity at a point should be distinguished from exiting with positive
probability each time the market conditions hit that point: given the infinite oscillations of Brownian motion,
the latter is indistinguishable from exiting with probability 1 at that point.
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in a position of strength. As a result, the balance of power between the players randomly

fluctuates as market conditions vary over time. This new finding contrasts with the outcomes

of pure-strategy MPEs, in which one of the players always remains in a position of strength

until his opponent eventually exits. It also contrasts, when players are symmetric, with the

outcome of the regular mixed-strategy MPE in which the players exit at a stochastic rate

over an interval of the state space.

Finally, our third main result, Theorem 3, characterizes these singular mixed-strategy

MPEs by a pair of variational systems for the players’ equilibrium value functions. These

variational systems are linked by the intensity with which each player exits at each of his

randomization thresholds. At any such point, the other player’s equilibrium value function

reaches a peak and exhibits a kink whose size is proportional to the intensity with which the

randomizing player exits the market; this kink reflects that exit by the latter is unpredictable

given the current market conditions. Importantly, this characterization also applies to the

case of symmetric players.

Admittedly, these results do not contribute to solving the multiplicity problem that

plagues WoA models (Riley (1980), Hendricks, Weiss, and Wilson (1988)): if anything,

we exhibit new equilibria that have been disregarded in the literature, both in the cases of

symmetric and asymmetric players. However, the key point is that the mixed-strategy MPEs

that survive when players are asymmetric share a common structure, and lead to qualitatively

similar testable implications. In that sense, we provide a robust characterization of MPEs

in which attrition takes place in the WoA under uncertainty.

We illustrate these findings in our running example by providing sufficient conditions

under which there exists an MPE in which one firm randomizes at a single point while the

other firm plays a pure strategy. This MPE exists when firms have the same liquidation values

and is robust to some asymmetry in the firms’ liquidation values, as long as it is not too large.

In equilibrium, the firm with the lowest liquidation value randomizes between remaining in

the market and exiting at the exit threshold for market conditions that would be optimal

if its opponent were stubborn. By contrast, the firm with the highest liquidation value

exits with probability 1 if market conditions fall below a lower threshold, the value of which

is determined precisely so as to meet its opponent’s indifference condition. The intensity

with which the firm with the lowest liquidation value exits the market at its randomization

threshold in turn makes it optimal for its opponent to exit at its lower threshold. This

illustrates the general point that incentives in singular mixed-strategy MPEs are nonlocal

due to their alternating structure.
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In this MPE, the total value of the randomizing firm goes down to its liquidation value

at its randomization threshold, while the total value of its opponent simultaneously reaches

the peak of its total value function. A similar pattern more generally emerges in any MPE

with multiple randomization thresholds. Novel asset-pricing implications ensue when these

firms are publicly traded on a frictionless financial market.

First, along any path of the diffusion process modeling the evolution of market conditions,

the firms’ stock prices and the volatilities of their returns fluctuate randomly over the

attrition region, moving in opposite directions as long as no firm exits the market. These

negative comovements of the firms’ stock prices and of the volatilities of their returns stand

in sharp contrast with the predictions of the regular mixed-strategy MPE that arises when

firms have identical liquidation values, in which firms’ stock prices stay constant and equal

to their liquidation value over the attrition region—a very strong prediction that is unlikely

to be validated empirically.

Second, when the stock price of a firm reaches a peak of its total value function, two

events may occur. Either its opponent does not exit the market, causing the firm’s stock

price to bounce downward. Or its opponent exits the market, causing the firm’s stock price

to jump upwards to its monopoly value. Because exit by the opponent is unpredictable,

these downward bounces exactly compensate for this upward jump. As a result, rational

investors have no means to arbitrage away the profits associated to these downward bounces

by short-selling the firm’s stock at its peak without incurring the risk of a sudden upward

jump in its price. We argue that this pattern is consistent with what technical analysts

describe as a resistance level in stock prices, for which our analysis provides an illustration

in a setting where stock prices are only driven by fundamentals. Needless to say, we do

not claim that the patterns documented by technical analysis can only be rationalized by

our model, as many other rational or behavioral factors may be at play. Still, our model

seems to capture reasonably well the intuitive idea that resistance levels in stock prices can

be discontinuously broken by unpredictable changes in the environment above investors’

expectations—in this instance, the exit of a competitor.

Our findings pave the way to many other applications. For instance, WoA models of

macroeconomic stabilizations typically do not account for exogenous random changes in

the environment. Our analysis suggests that such changes may considerably delay the

needed reforms even if the parties involved—say, workers and capitalists—are well aware of

each other’s waiting costs. The singular mixed-strategy MPEs that we construct, in which

concession by one player is stochastic and tied to the hitting of critical levels of the exogenous
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state variable, may also help explain why actual stabilizations need not follow significant

observable changes in the macroeconomic environment (Alesina and Drazen (1991)).

Related Literature This paper belongs to the large literature on the continuous-time

WoA, starting with the seminal contribution of Maynard Smith (1974) on animal conflict.

Ghemawat and Nalebuff (1985) study a WoA between duopolists that must decide when

to exit from a declining industry. Hendricks, Weiss, and Wilson (1988) offer an exhaustive

characterization of pure- and mixed-strategy equilibria in the symmetric-information WoA

when players have potentially asymmetric payoffs that are deterministic functions of time.

Riley (1980), Bliss and Nalebuff (1984), and Fudenberg and Tirole (1986) extend the analysis

to asymmetric-information settings where, for instance, a player is uncertain about his

opponent’s waiting cost. Myatt (2024) studies the impact of players’ perceived strengths on

equilibrium concession times when there is an exogenous deadline. Décamps and Mariotti

(2004) study an investment game that has the structure of a WoA because a firm’s investment

generates a public signal about the return of a common-value project.

These papers except the last one focus on deterministic settings. By contrast, starting

with Lambrecht (2001) and Murto (2004), a small literature examines the case where players

in a WoA have symmetric information but are uncertain about their future payoffs, which

are driven by a diffusion process. Lambrecht (2001) analyzes how the order in which firms

go bankrupt in an industry is influenced by aggregate factors and firm-specific factors such

as their financial structure. Murto (2004) studies a stochastic version of Ghemawat and

Nalebuff (1985)’s exit model, and shows that the firm with the lowest liquidation value may

end up exiting the market first in equilibrium, despite being a priori more enduring than

its opponent. These papers allow for asymmetries between players but restrict attention

to pure-strategy MPEs, as in Fine and Li (1989)’s discrete-time model of exit from a

stochastically declining industry. By contrast, Steg (2015) characterizes the regular mixed-

strategy MPE of the symmetric game. Kwon and Palczewski (2022) extend this construction

to a WoA with asymmetric information and a continuum of types; they show that the

symmetric-equilibrium pure strategy, seen as a randomized strategy using each player’s

type as a randomization device, has an absolutely continuous intensity that depends on

the exogenous diffusion process and on an endogenous belief process.

Closest to the present paper in this literature is Georgiadis, Kim, and Kwon (2022).

In a setting that extends Murto (2004), they show that, as soon as firms have different

liquidation values, there exists no mixed-strategy MPE in which firms exit the market at a

stochastic rate, that is, according to absolutely continuous intensity measures. This shows
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that the regular mixed-strategy MPE characterized by Steg (2015) is not robust to even

small asymmetries between firms. They conclude that, when firms are asymmetric, only

pure-strategy MPEs exist, and, therefore, that attrition cannot actually take place on the

equilibrium path. Our analysis shows that this conclusion is unwarranted once the possibility

for firms to exit the market according to Markovian randomized stopping times with singular

intensity measures is accounted for.

Gieczewski (2024) studies a symmetric-information WoA that has the structure of a

supermodular game because changes in the underlying state variable affect the players’

waiting costs in opposite ways. He shows that there exists a unique pure-strategy MPE in

which one player exits when the state hits a lower threshold from above, while his opponent

exits when the state hits an upper threshold from below. In the intermediate region, each

player is willing to wait because he hopes that the state will hit his opponent’s exit threshold

first. Our model differs in that, although players may be asymmetric, changes in market

conditions affect them in similar ways. As a result, market conditions do not per se determine

whether a player is in a position of strength or weakness; instead, this is endogenously

determined in equilibrium.

We have borrowed from Touzi and Vieille (2002) our concept of a randomized stopping

time, which they use to show that any continuous-time zero-sum Dynkin game admits a value.

Singular mixed strategies have been emphasized in the recent literature on dynamic games of

incomplete information where, in equilibrium, an informed player uses a randomized stopping

time to control the belief process of an uninformed player using a pure strategy (Daley and

Green (2012), Kolb (2019), De Angelis, Ekström, and Glover (2022)). The resulting singular

cumulative distribution function is related to the local time of the uninformed player’s belief

process at some critical threshold and, at this threshold, can generate a kink in the value

function of the uninformed player (Kolb (2019)).

In our WoA model, the players have symmetric information, and randomized stopping

times with singular cumulative distribution functions play a different role. Specifically, in

equilibrium, each player randomizes at some critical thresholds at which he is indifferent

between exiting and remaining in the market. The intensity with which he exits at each of

these thresholds makes his opponent willing to remain in the market in intervals of states

around these thresholds and indifferent between exiting and remaining in the market at the

ends of such intervals. This gives rise to the alternating structure of singular mixed-strategy

MPEs. The resulting singular cumulative distribution function is related to the local times

of the exogenous diffusion process of market conditions at these critical thresholds; such local

7



times, in our running example, play a key role in the dynamics of firms’ stock prices. Finally,

the fact that the cumulative distribution function of any Markovian randomized stopping

time can be represented via an integral of such local-time processes is precisely what enables

us to obtain a full characterization of mixed-strategy MPEs. This representation result is of

independent interest and may prove useful for the study of general stochastic timing games

in which the state variable is driven by a Brownian motion.

Keller, Rady, and Cripps (2005) study a strategic experimentation model with two-armed

bandits where the risky arm might distributes lump-sum payoffs according to a Poisson

process. They show that the unique symmetric MPE, in which, over some range of the

belief space, each player devotes an interior amount of resource to experimentation, is

Pareto-dominated over this range by asymmetric MPEs in which players take turns in

experimenting and playing the safe action. This alternating structure of asymmetric MPEs,

as well as the idea that the latter may lead to Pareto improvements over the symmetric one,

is reminiscent of that which arises in the singular mixed-strategy MPEs of our model. Keller

and Rady (2010) generalize this insight to a situation in which a single success on the risky

arm does not fully reveal its type. They show that this generates an encouragement effect

and that players may alternatively find themselves in a position of strength or weakness.

Despite these similarities with our results, the strategic interaction between the players

is entirely different as the experimentation model does not involve irreversible decisions.

Another difference is that our analysis is cast in a Brownian rather than in a Poisson setup.

The paper is organized as follows. Section 2 describes the model. Section 3 defines our

strategy and equilibrium concepts and provides preliminary properties of MPEs. Section 4

heuristically shows how to construct a mixed-strategy MPE involving a singular intensity

measure for one player. Section 5 states our main characterization results. The main

Appendix provides the proofs of Theorems 1–3. The Online Supplement collects detailed

proofs of technical lemmas and claims used in the derivation of these theorems.

2 The Model

2.1 A General Model of the WoA under Uncertainty

Two players, 1 and 2, face uncertainty about future market conditions. In what follows,

i (he) refers to an arbitrary player and j (she) to his opponent. Time is continuous and

indexed by t ≥ 0. The evolution of market conditions is modeled as a one-dimensional

time-homogeneous diffusion process X ≡ (Xt)t≥0 defined over the canonical space (Ω,F ,Px)
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of continuous trajectories with X0 = x under Px, which is solution in law to the SDE

dXt = b(Xt) dt + σ(Xt) dWt, t ≥ 0, (1)

driven by some Brownian motion W ≡ (Wt)t≥0. The state space for X is I ≡ (α, β), with

−∞ ≤ α < β ≤ ∞, and the functions b and σ are continuous, with σ > 0 over I. We assume

that α and β are inaccessible (natural) endpoints for the diffusion. Therefore, X is regular

over I and the SDE (1) admits a weak solution that is unique in law.

Each player observes the evolution of market conditions, and decides at each instant

whether to hold fast or to irreversibly concede to his opponent. Denoting by τ 1 and τ 2 the

random times at the players choose to concede, every player i’s expected payoff is4

J i(x, τ 1, τ 2) = Ex

[
1{τ i≤τ j} e−rτ

i

Ri(Xτ i) + 1{τ i>τ j} e−rτ
j

Gi(Xτ j)
]
, (2)

where r > 0 is the players’ common discount rate. The payoff functions Ri and Gi in (2)

satisfy Gi ≥ Ri, with Gi(x) > Ri(x) for all x above some threshold αi ∈ [α, β). Therefore, if

τ i ≤ τ j, then player i obtains a payoff Ri(Xτ i), whereas, if τ j < τ i and Xτ j > αi, then player

i obtains a payoff Gi(Xτ j) strictly higher than the payoff Ri(Xτ j) he would have obtained

by conceding at τ j. The functions b, σ, Ri, and Gi are common knowledge.

2.2 Assumptions

We now detail our assumptions on the payoff functions Ri and Gi and emphasize useful

properties of the stand-alone exit problem

VRi(x) ≡ sup
τ∈T

Ex [e−rτRi(Xτ )] (3)

faced by player i when player j is stubborn, that is, plays τ j = ∞; here T is the set of all

stopping times of the usual augmentation (Ft)t≥0 of the natural filtration generated by X.

Discount Factors The infinitesimal generator of X is defined by Lu ≡ bu′ + 1
2
σ2u′′ for

all u ∈ C2(I). Because σ > 0 over I, the ODE Lu − ru = 0 admits a two-dimensional

vector space of solutions in C2(I), spanned by two positive fundamental solutions ψ and φ,

respectively increasing and decreasing, and uniquely defined up to a linear transformation.

Because the boundaries α and β of I are natural,

lim
x→α+

ψ(x) = 0, lim
x→β−

ψ(x) =∞, lim
x→α+

φ(x) =∞, lim
x→β−

φ(x) = 0. (4)

4By convention, we let f(Xτ ) ≡ 0 over {τ =∞} for any Borel function f and any random time τ .
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Letting τy ≡ inf {t ≥ 0 : Xt = y} be the hitting time by X of y ∈ I from X0 = x, we then

obtain the following formula for the expected discount factor associated to x and τy:

Ex [e−rτy ] =

{
ψ(x)
ψ(y)

if x ≤ y
φ(x)
φ(y)

if x > y
. (5)

Assumptions on the Payoff Functions For each i = 1, 2, Ri is C2 over I and satisfies

A1 For each x ∈ I, Ex [supt≥0 e−rt|Ri(Xt)|] <∞.

A2 For each x ∈ I, limt→∞ e−rtRi(Xt) = 0 Px-a.s.

A3 For some xi0 ∈ I, LRi − rRi < 0 over (α, xi0) and LRi − rRi > 0 over (xi0, β).

A1 guarantees that the family (e−rτRi(Xτ ))τ∈T is uniformly integrable. A1–A2 imply

lim
x→α+

Ri(x)

φ(x)
= lim

x→β−

Ri(x)

ψ(x)
= 0. (6)

A3 states that the gains from holding fast increase only as long as market conditions remain

in (xi0, β). As a result, the optimal stopping region {x ∈ I : VRi(x) = Ri(x)} for the

stand-alone problem (3) is of the form (α, xRi ] for some threshold xRi < xi0, and

VRi(x) =

{
Ri(x) if x ≤ xRi

φ(x)
φ(xRi )

Ri(xRi) if x > xRi

. (7)

The smooth-fit property applies at xRi , that is, Ri′(xRi) =
φ′(xRi )

φ(xRi )
Ri(xRi) (Dayanik and

Karatzas (2003, Corollary 7.1)). It follows from standard optimal stopping theory that

(e−rtVRi(Xt))t≥0 is a supermartingale and that LVRi−rVRi ≤ 0 over I \{xRi}. The following

lemma is standard (Décamps, Gensbittel, and Mariotti (2024)).

Lemma 1 VRi > 0 over I and Ri > 0 over (α, xRi ].

For each i = 1, 2, Gi is C1 and piecewise C2 over I and satisfies

A4 For each x ∈ I, Ex [supt≥0 e−rtGi(Xt)] <∞.

A5 For each x ∈ I, limt→∞ e−rtGi(Xt) = 0 Px-a.s.

A6 Gi ≥ VRi over I and Gi(x) > VRi(x) if and only if x > αi for some αi < xRi .

A7 LGi − rGi ≤ 0 everywhere Gi′′ is defined.

It should be noted that A7 together with Gi ≥ Ri implies the first statement in A6. A7
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implies that player i prefers to obtain the payoff Gi(Xt) sooner than later, as is the case

when Gi is itself the value function of an optimal stopping problem. From A6 and Lemma

1, we have Gi > 0 over I; hence A4 guarantees that the family (e−rτGi(Xτ ))τ∈T is uniformly

integrable. A4–A5 imply

lim
x→α+

Gi(x)

φ(x)
= lim

x→β−

Gi(x)

ψ(x)
= 0. (8)

2.3 A Running Example: Exit in Duopoly

Two firms are initially present on the market. As long as they both remain in the market,

each firm earns a flow duopoly profit Xt, where X follows a geometric Brownian motion

with drift b < r and volatility σ over I ≡ (0,∞). If firm i exits the market at τ i ≤ τ j,

then its assets are liquidated for a value li > 0. If firm j exits the market at τ j < τ i, then

firm i thereafter earns a flow monopoly profit mXt for m > 1 until it eventually decides to

liquidate its assets. Given (τ 1, τ 2), the total value of every firm i is thus

F i(x, τ 1, τ 2) ≡ Ex

[∫ τ1∧τ2

0

e−rtXt dt+ 1{τ i≤τ j} e−rτ
i

li + 1{τ i>τ j} e−rτjV i
m(Xτ j)

]
,

where V i
m(x) ≡ supτ∈T Ex

[∫ τ
0

e−rtmXt dt+ e−rτ li
]

is firm i’s monopoly value. Letting

E(x) ≡ x
r−b , R

i ≡ li − E, and Gi ≡ V i
m − E, we obtain that J i(·, τ 1, τ 2) ≡ F i(·, τ 1, τ 2) − E

satisfies (2). From standard computations (Dixit and Pindyck (1994)), xRi = ρ−

ρ−−1
(r − b)li

for ρ− ≡ 1
2
− b

σ2 −
√(

1
2
− b

σ2

)2
+ 2r

σ2 , αi =
xRi

m
, and Gi = Ri over (α, αi]. That A1–A7 are

satisfied can be checked along the lines of Décamps, Gensbittel, and Mariotti (2024).

3 Mixed Strategies and Equilibrium Concept

In this section, we first recall the definition and basic properties of randomized stopping

times. Imposing a Markov restriction leads to our first main result, which is a representation

theorem for Markovian randomized stopping times. We then define the concept of Markov-

perfect equilibrium and give some important properties of best replies.

3.1 Randomized Stopping Times

One classical definition of a randomized stopping time consists, following Aumann (1964),

in enlarging the probability space; this compensates for the absence of a natural measurable

structure over the space of stopping times. For every player i = 1, 2, the corresponding

enlarged probability space is (Ωi,F i) ≡ (Ω× [0, 1],F ⊗B([0, 1])), endowed with the product
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probability Pi
x ≡ Px⊗Leb, where B([0, 1]) is the Borel σ-field over the sampling space [0, 1]

and Leb is Lebesgue measure. Hence the following definition (Touzi and Vieille (2002)).

Definition 1 A randomized stopping time for player i = 1, 2 is an F ⊗B([0, 1])-measurable

function γi : Ωi → R+ such that, for Leb-a.e. ui ∈ [0, 1], γi(·, ui) ∈ T . The process

Γi ≡ (Γit)t≥0 defined by

Γit(ω) ≡
∫

[0,1]

1{γi(ω,ui)≤t} dui, (ω, t) ∈ Ω× R+, (9)

is the conditional cumulative distribution function (ccdf) of the randomized stopping time γi.

The process Λi ≡ (Λi
t)t≥0 defined by Λi

t ≡ 1− Γit is the conditional survival function (csf) of

the randomized stopping time γi.

Notice that the ccdf process Γi defined by (9) takes values in [0, 1] and has nondecreasing

and right-continuous trajectories. The following representation result is useful.

Lemma 2 The ccdf process Γi is (Ft)t≥0-adapted and, for all x ∈ I and t ≥ 0,

Γit = Pi
x [γi ≤ t |Ft] Px-a.s. (10)

By convention, we let Γi0− ≡ 0. This allows us in what follows to interpret integrals of

the form
∫

[0,τ)
· dΓit in the Stieltjes sense for any ccdf Γi.

If the players use randomized stopping times γ1 and γ2, then their expected payoffs are

defined over the product probability space Ω×[0, 1]×[0, 1] with canonical element (ω, u1, u2),

endowed with the product probability Px ≡ Px ⊗ Leb⊗ Leb. Specifically,

J i(x, γ1, γ2) ≡ Ex

[
1{γi≤γj} e−rγ

i

Ri(Xγi) + 1{γi>γj} e−rγ
j

Gi(Xγj)
]
, (11)

where γ1 ≡ γ1(ω, u1) and γ2 ≡ γ2(ω, u2), reflecting that players 1 and 2 use the independent

randomization devices u1 and u2, respectively.

In line with Touzi and Vieille (2002) and Riedel and Steg (2017), the following lemma

shows that we may equivalently work with the family of ccdf processes Γi.

Lemma 3 If the players use randomized stopping times with ccdfs Γ1 and Γ2, then their

expected payoffs write as

J i(x,Γ1,Γ2) = Ex

[∫
[0,∞)

e−rtRi(Xt)Λ
j
t− dΓit +

∫
[0,∞)

e−rtGi(Xt)Λ
i
t dΓjt

]
. (12)

Moreover, any nondecreasing, right-continuous, Ft-adapted, [0, 1]-valued process Γi is the ccdf

of the randomized stopping time γ̂i defined by

γ̂i(ui) ≡ inf {t ≥ 0 : Γit > ui}. (13)
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3.2 Markovian Randomized Stopping Times

Our goal in this paper is to characterize equilibria in which players concede according to

mixed Markov strategies that only depend on current market conditions. Notice that such

strategies have to be defined for any initial market conditions x ∈ I. The following definition

is standard (Revuz and Yor (1999, Chapter I, §3)).

Definition 2 Let Y ≡ (Yt)t≥0 be the coordinate process over the canonical space Ω, defined

by Yt(ω) ≡ ωt for all ω ∈ Ω and t ≥ 0. Then, for each t ≥ 0, the shift operator θt : Ω → Ω

is defined by Ys ◦ θt ≡ Ys+t for all s ≥ 0.

In words, the effect of θt on a trajectory ω is to forget the part of the trajectory prior to

time t and to shift back the remaining part by t units of time. We are now ready to define

our notion of a Markovian randomized stopping time.

Definition 3 A randomized stopping time for player i = 1, 2 with csf Λi : Ω × R+ → [0, 1]

is Markovian if, for all x ∈ I, τ ∈ T , and s ≥ 0,

Λi
τ+s = Λi

τ (Λ
i
s ◦ θτ ) over {τ <∞} Px-a.s. (14)

Definition 3 can be interpreted as follows. According to Definition 1 and Lemma 2, Λi
τ+s

is the probability that player i concedes after time τ + s conditionally on Fτ+s. The Markov

restriction then states that, conditionally on player i not conceding by τ , the probability that

he holds fast for at least s additional units of time should not depend on the trajectory of X

prior to time τ . This probability is thus given by Λi
s ◦ θτ , that is, the probability induced by

the randomized strategy applied to the shifted trajectory. Formula (14) then follows from

the standard formula for conditional probabilities.

Processes satisfying (14) are known as multiplicative functionals of the Markov process

X (Blumenthal and Getoor (1968)). Combining a result by Sharpe (1971) with the classical

representation result of additive functionals of regular diffusions (Borodin and Salminen

(2002, Part I, Chapter II, Section 4, §23)), we obtain the following representation result.

Theorem 1 For each i = 1, 2, Λi : Ω × R+ → [0, 1] is the csf of a Markovian randomized

stopping time for player i if and only if there exists a closed set Si ⊂ I and a Radon measure5

µi over I \ Si such that, for all x ∈ I and t ≥ 0,

Λi
t = 1{t<τSi} e−

∫
I\Si L

y
t µ

i(dy) Px-a.s., (15)

5Recall that a Radon measure over an open set U ⊂ R is a nonnegative Borel measure that is locally
finite in the sense that every point of U has a neighborhood having finite measure.

13



where Lyt ≡ limε↓0
1
2ε

∫ t
0

1(y−ε,y+ε)(Xs)σ
2(Xs) ds is the local time of X at (y, t), and τSi ≡

inf {t ≥ 0 : Xt ∈ Si} is the hitting time by X of Si. In particular, the mapping t 7→ Λi
t is

continuous over [0, τSi) Px-a.s.

Theorem 1 allows us to interchangeably refer to a Markov strategy as a pair (µi, Si), a

ccdf Γi, or a csf Λi. The interpretation of (15) is that player i concedes with probability 1

over Si and with finite intensity over suppµi. Three special cases are worth mentioning.

The Pure Stopping Case If µi ≡ 0, then the Markov strategy (0, Si) is just the standard

stopping time τSi .

The Absolutely Continuous Case If µi ≡ gi ·Leb is absolutely continuous, then, from

the occupation time formula (Revuz and Yor (1999, Chapter VI, §1, Corollary 1.6)),

Λi
t = 1{t<τSi} e−

∫
I L

y
t g

i(y) dy = 1{t<τSi} e−
∫ t
0 g

i(Xs)σ2(Xs) ds. (16)

Outside Si, this amounts for player i to concede with intensity λi(Xt) ≡ gi(Xt)σ
2(Xt), that

is, during a short time interval of length dt, with probability λi(Xt) dt.

The Singular Case If µi ≡ aiδxi , where ai > 0 and δxi is the Dirac mass at xi ∈ I \ S,

then the corresponding csf writes as

Λi
t = 1{t<τSi} e−a

iLxi

t . (17)

In particular, the mapping t 7→ Λi
t(ω) is singular over [0, τSi(ω)) for Px-a.e. ω ∈ Ω such that

X crosses xi; that is, its derivative is zero for Leb-a.e. t ∈ [0, τSi(ω)), though Λi
t decreases

each time X crosses xi. Heuristically, (17) means that, when Xt = xi, player i concedes with

instantaneous probability aidLx
i

t . Thus ai truly represents an intensity of exit; this should

not be confused with a positive probability of exit at xi, which would, because X Pxi-a.s.

crosses xi infinitely often in any interval [t, t + dt], be undistinguishable from exiting the

market with probability 1 at xi.

Whereas strategies such as (17) have not been considered in the WoA literature, they

naturally emerge as limits of more familiar ones:

(i) Discretizing the state space and the time dimension, suppose that player i concedes

with positive probability only when the current state is xi. Then, using the appropriate

normalization—which consists, for a time period of duration dt, to concede at xi with

a probability of order
√

dt (Feller (1968, Chapter III, §5, Theorem 1))—the limit of

such Markov strategies when the mesh of the discretization goes to 0 corresponds to a

distribution with hazard rate proportional to the local time of the diffusion at xi.

14



(ii) Consider the Markov strategy that, outside Si, consists in conceding with intensity

λiε(Xt) ≡ ai

2ε
σ2(Xt) 1(xi−ε,xi+ε) for ai > 0 and some small ε > 0. By (16), the

corresponding csf writes as Λi
ε,t = 1{t<τSi} e−

∫ t
0 λ

i
ε(Xs) ds. Then, by definition of the

local time, for each t ≥ 0, Λi
ε,t converges Px-a.s. to Λi

t in (17) as ε goes to 0.

The second example suggests that the space of Markov strategies allowed for by Theorem

1 is, in a topological sense, a natural completion of the space of Markov strategies with

absolutely continuous intensity measures. This is indeed the case, provided an adequate

weak topology is defined over the space of intensity measures, though a formal proof of this

fact is beyond the scope of this paper.

An important property of a Markov strategy, such as (17), associated to a singular

intensity measure with an atom at xi, is that the total probability of conceding before time

dt starting from xi is itself of order
√

dt,6 whereas the same quantity is of order dt for a

Markov strategy, such as (16), associated to an absolutely continuous intensity measure. As

we will explain in Section 4.3, this generates a kink in player j’ equilibrium value function.

3.3 Markov-Perfect Equilibrium and Properties of Best Replies

We are now ready to define our equilibrium concept and to provide some basic properties of

best replies. Our first result is standard and reflects the fact that a player, given the behavior

of his opponent, cannot improve his payoff by merely randomizing over pure strategies, that

is, over standard stopping times.

Lemma 4 For each x ∈ I and for any pair of randomized stopping times with ccdfs (Γ1,Γ2),

J i(x,Γi,Γj) ≤ supτ i∈T J
i(x, τ i,Γj).

This motivates the following definition.

Definition 4 A Markov-perfect equilibrium (MPE) is a profile ((µ1, S1), (µ2, S2)) of Markov

strategies such that, for all x ∈ I and i = 1, 2,

J i(x, (µi, Si), (µj, Sj)) = J̄ i(x, (µj, Sj)) ≡ sup
τ i∈T

J i(x, τ i, (µj, Sj)).

That is, for each i = 1, 2, (µi, Si) is a perfect best reply (pbr) for player i to (µj, Sj), and

J̄ i(·, (µj, Sj)) is player i’s best-reply value function (brvf) to (µj, Sj).

When no confusion can arise as to the strategy of player j, we write J̄ i instead of

J̄ i(·, (µj, Sj)). The next proposition provides useful general properties of pbrs and brvfs.

6This follows from the properties of the local time, see Peskir (2019, Lemma 15).
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Proposition 1 If (µi, Si) is a pbr to (µj, Sj) with associated brvf J̄ i, then VRi ≤ J̄ i ≤ Gi.

Furthermore,

(i) S1 ∩ S2 ∩ (αi, β) = ∅;

(ii) Si ⊂ Ci ≡ {x ∈ I : J̄ i(x) = Ri(x)};

(iii) suppµi \ Sj ⊂ Ci and suppµi ∩ Sj ⊂ Di ≡ {x ∈ I : J̄ i(x) = Gi(x)};

(iv) Si ∪ (suppµi \ Sj) ⊂ (α, xRi ];

(v) (0, Si) is also a pbr to (µj, Sj); more generally, (µ̃i, Si) is a pbr to (µj, Sj) for any µ̃i

such that supp µ̃i ⊂ Ci ∪ Sj.

Property (i) intuitively states that player i should never concede when market conditions

are such that player j concedes with probability 1 and player i’s payoff from conceding is

strictly less than the payoff from letting player j concede, that is, x ∈ Sj and Gi(x) > VRi(x).

Property (ii) simply expresses the fact that player i’s brvf coincides with Ri over the portion

Si of the state space over which he concedes with probability 1. Property (iii) states that

player i’s payoff is Ri when he concedes with positive intensity outside of player j’s stopping

region Sj. Property (iv) reflects that player i should never concede when market conditions

are above the optimal threshold xRi for his stand-alone exit problem; intuitively, this is

because waiting for X to drop down to xRi before conceding is player i’s optimal strategy

even in the worst-case scenario in which player j is stubborn, that is, (µj, Sj) = (0, ∅).
Finally, property (v) states that, when conceding with positive intensity outside of Si, player

i should be indifferent between holding fast and conceding.

Remark Murto (2004) requires in his definition of an MPE that (α, αi] ⊂ Si for i = 1, 2.

The rationale is that, because Gi = VRi = Ri over (α, αi], holding fast over (α, αi) is weakly

dominated for player i by conceding with probability 1 over this interval. For instance, being

stubborn is a best reply for player i over (α, αi) only if player j concedes with probability

1 over this interval, except perhaps over a set of Lebesgue measure 0. This behavior is not

per se inconsistent with an MPE, but, as pointed out by Ghemawat and Nalebuff (1985)

in a deterministic context, it is not consistent with trembling-hand perfection in the spirit

of Selten (1975). Hereafter, we do not systematically impose this refinement, especially in

Section 5 where this allows us to simplify notation; however, we indicate which MPEs can

be modified so as to satisfy it.

We close this section with an important global regularity result.
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Proposition 2 If ((µ1, S1), (µ2, S2)) is an MPE, then, for each i = 1, 2, player i’s brvf J̄ i

is continuous over I.

4 Derivation and Implications of A Singular Mixed-

Strategy MPE

We first recall within our general framework two standard MPEs, respectively in pure

and mixed strategies, that have been emphasized in the literature. We next describe a

novel type of MPE involving a singular strategy for one player. Our heuristic derivation

leads to a variational system that fully characterizes this candidate MPE. We provide

sufficient conditions for the existence of a solution to this variational system in the context

of our running example described in Section 2.3. We finally compare the resulting singular

mixed-strategy MPE with the two standard MPEs and discuss its asset-pricing implications.

4.1 A Pure-Strategy MPE

We say that player 1 is as least as enduring as player 2 if α1 ≤ α2 and xR1 ≤ xR2 ; intuitively,

player 1 is at least as willing to hold fast as player 2. Suppose then that player 1 threatens

to hold fast maximally by conceding only at τ 1 = inf {t ≥ 0 : Xt ≤ α1}. Then, because

α1 ≤ α2, we have G2(Xτ1) = R2(Xτ1) by definition of α2. In light of (2)–(3), this implies

that, for all x ∈ I and τ 2 ∈ T , J2(x, τ 1, τ 2) = Ex

[
e−rτ

1∧τ2R2(Xτ1∧τ2)
]
≤ VR2(x). Thus a

pbr for player 2 to τ 1 is to concede at τ 2 = inf {t ≥ 0 : Xt ≤ xR2}. As for player 1, if player

2 concedes at τ 2, then, for each x ∈ I, Ex

[
e−rτ

2
G1(Xτ2)

]
≥ R1(x). For x ≤ xR2 , this follows

from the fact that G1(x) ≥ R1(x) by A6, with a strict inequality if x > α1. For x > xR2 , this

follows from A6 again along with the fact that the process (e−rtVR1(Xt))t≥0 is a martingale

up to τxR1 , the hitting time by X of xR1 , which is no less than τ 2 because xR1 ≤ xR2 by

assumption. Thus a pbr for player 1 to τ 2 is to concede at τ 1. Hence the following standard

result (Murto (2004), Georgiadis, Kim, and Kwon (2022)).

Proposition 3 If player 1 is at least as enduring as player 2, then ((0, (α, α1]), (0,

(α, xR2 ])) is a pure-strategy MPE that satisfies Murto (2004)’s refinement.

In the case of a small asymmetry between the players, ((0, (α, xR1 ]), (0, ∅)) is also an MPE

in which the more enduring player 1 follows his stand-alone optimal strategy because the

less enduring player 2 is stubborn (Georgiadis, Kim, and Kwon (2022)). However, this MPE

does not satisfy Murto (2004)’s refinement, because, for x ∈ (α1, α2), player 2’s strategy is
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no longer a best response when player 1 does not concede with probability 1 in any small

enough neighborhood of x. Interestingly, Murto (2004) shows that, when we allow player 1’s

stopping set S1 to exhibit a gap, there may exist an MPE satisfying his refinement in which,

when x > xR1 , player 1 exits first when X reaches xR1 .

4.2 A Regular Mixed-Strategy MPE in the Symmetric Case

The following result is standard (Steg (2015), Georgiadis, Kim, and Kwon (2022)).

Proposition 4 If the players are as enduring as each other, then the strategy profile ((λ1(x)

σ−2(x) · Leb, (α, α∗]), (λ2(x)σ−2(x) · Leb, (α, α∗])) defined, for each i = 1, 2, by

λi(x) ≡ rRj(x)− LRj(x)

Gj(x)−Rj(x)
1{α∗<x≤x∗} (18)

for α∗ ≡ α1 = α2 and x∗ ≡ xR1 = xR2 , is a mixed-strategy MPE.

In this MPE, each player exits the market with an intensity measure over (α∗, x∗] that

makes his opponent indifferent between holding fast and conceding; for instance, in our

running example, each firm obtains its liquidation value over (α∗, x∗]. Each player’s

equilibrium value function coincides with the value function of his stand-alone exit problem.

Thus, in expectation, all rents are dissipated in equilibrium.

4.3 A Singular Mixed-Strategy MPE

When there is no uncertainty about future payoffs, the WoA admits mixed-strategy equilibria

in which players’ strategies are described by absolutely continuous distributions over some

interval of exit times (Hendricks, Weiss, and Wilson (1988)). However, under Brownian

uncertainty, when xR1 6= xR2 , there exists no mixed-strategy MPE in which the players

concede with absolutely continuous intensities (Georgiadis, Kim, and Kwon (2022)). For all

that, it is incorrect to conclude that only pure-strategy MPEs exist in this case. This section

argues for this claim by describing an MPE involving a singular strategy for one player. For

the sake of simplicity, the analysis in this section remains heuristic; a full justification of our

arguments is provided in Section 5.

As in Section 4.1, let us suppose that player 1 is at least as enduring as player 2, so that

players may be asymmetric or symmetric, and consider the following equation in x:

R1(xR1) =
φ(xR1)

φ(x)
G1(x). (19)

Lemma S.5 in the Online Supplement shows that (19) admits a unique solution x2 ∈
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(α1, xR1). The threshold x2 is such that, if player 2 threatens to concede only at τ 2 = inf {t ≥
0 : Xt ≤ x2}, then, at xR1 , player 1 is indifferent between conceding and obtaining R1(xR1)

immediately and waiting for player 2 to concede at τ 2 and obtaining G1(x2) only then. Our

goal is to construct an MPE ((a1δxR1 , (α, α
1]), (0, (α, x2])) in which player 1 concedes with

intensity a1 at xR1 and player 2 concedes with probability 1 at τ 2.

4.3.1 Necessary Conditions

To this end, we first suppose that such an MPE exists, and we derive necessary conditions

for the brvfs J̄1 and J̄2. Notice that J̄1 ≥ R1 and J̄2 ≥ R2, because every player i can

guarantee himself Ri by conceding immediately.

Player 1 Player 1, whose strategy involves randomization at xR1 , should be indifferent at

xR1 between conceding and holding fast until τ 2. This implies that his brfv J̄1 must be C2 over

(x2, β), with J̄1(xR1) = R1(xR1) (value matching). Because J̄1 ≥ R1, it follows in turn that

J̄1′(xR1) = R1′(xR1) as well (smooth pasting). Moreover, by standard dynamic-programming

arguments, LJ̄1 − rJ̄1 = 0 over (x2, β). Thus

J̄1(x) =
φ(x)

φ(xR1)
R1(xR1), x ∈ (x2, β). (20)

In particular, J̄1 = VR1 over [xR1 , β): player 1 does not benefit from the presence of player

2 over [xR1 , β). By contrast, J̄1 > VR1 over [x2, xR1) because player 1 can hope for player 2

to concede at x2 before he himself concedes at xR1 .

Player 2 Player 2 plays a pure strategy and hopes for player 1 to concede at xR1 . We

guess that J̄2 is C2 over (x2, β)\{xR1}, with J̄2(x2) = R2(x2) (value-matching) and J̄2′(x2) =

R2′(x2) (smooth pasting), and that LJ̄2 − rJ̄2 = 0 over that region. There remains to

characterize the behavior of J̄2 at xR1 . Because player 1 randomizes between holding fast

and conceding at xR1 , we expect that G2(xR1) > J̄2(xR1) > R2(xR1). This implies that

J̄2 is not differentiable at xR1 . Indeed, by the properties of the local time, starting from

xR1 , player 1 concedes during a short time interval of length dt with probability ExR1 [Γdt] =

a1c
√

dt+ o(
√

dt), where Γdt = 1− e−a
1L

x
R1

dt and c is a positive constant. If player 1 concedes,

then player 2 benefits from the follower payoff G2(xR1), whereas if player 1 holds fast, then

player 2 achieves the value J̄2(Xdt). Thus

J̄2(xR1) = a1c
√

dtG2(xR1) + (1− a1c
√

dt) ExR1 [e−rdtJ̄2(Xdt)] + o(
√

dt). (21)

Now, suppose, by way of contradiction, that J2 is C2 in a neighborhood of xR1 . Then, from
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Itô’s formula, we have

ExR1 [e−rdtJ̄2(Xdt)] = J̄2(xR1) + (LJ̄2 − rJ̄2)(xR1) dt+ o(dt). (22)

Plugging (22) into (21) yields a1c[G2(xR1) − J̄2(xR1)]
√
dt + o(

√
dt) = 0, a contradiction as

G2(xR1) > J̄2(xR1) and a1 and c are positive constants. This is an indication that J̄2 is not

differentiable at xR1 , so let us denote by ∆J̄2′(xR1) ≡ J̄2′+(xR1)−J̄2′−(xR1) the corresponding

derivative jump. From the Itô–Tanaka–Meyer formula, which generalizes Itô’s formula to

functions, such as J̄2, that can be written as the difference of two convex functions (Revuz

and Yor (1999, Chapter VI, §1, Theorem 1.5)), we have

ExR1 [e−rdtJ̄2(Xdt)] = J̄2(xR1) + ExR1

[∫ dt

0

e−rs(LJ̄2 − rJ̄2)(Xs) ds

+

∫ dt

0

e−rsJ̄2′−(Xs)σ(Xs) dWs +
1

2
∆J̄2′(xR1)L

xR1

dt

]
= J̄2(xR1) +

1

2
∆J̄2′(xR1)c

√
dt+ o(

√
dt), (23)

where the second equality follows from the fact that LJ̄2− rJ̄2 = 0 over (x2, β) \ {xR1} and

from the properties of local time. Plugging (23) into (21) yields

a1[G2(xR1)− J̄2(xR1)] +
1

2
∆J̄2′(xR1) = 0.

From this and G2(xR1) > J̄2(xR1), we obtain ∆J̄2′(xR1) < 0; intuitively, player 2 gets

increasingly optimistic as X approaches xR1 , but is disappointed if X crosses xR1 but player

1 holds fast at xR1 .

The Variational System Our discussion so far leads to the following variational system:

find a constant a1 > 0, and two functions w1 ∈ C0(I)∩C2(I \ {x2}) and w2 ∈ C0(I)∩C2(I \
{x2, xR1}) such that

w1 ≥ R1 over I, (24)

Lw1 − rw1 = 0 over (x2, β), (25)

w1 = G1 over (α, x2], (26)

w1(xR1) = R1(xR1), (27)

w1(β−) = 0, (28)

w2 ≥ R2 over I, (29)

Lw2 − rw2 = 0 over (x2, β) \ {xR1}, (30)

w2 = R2 over (α, x2], (31)
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w2′(x2) = R2′(x2), (32)

a1[G2(xR1)− w2(xR1)] +
1

2
∆w2′(xR1) = 0, (33)

w2(β−) = 0. (34)

4.3.2 Sufficient Conditions

Our main characterization result, Theorem 3, implies that, if (a1, J̄1, J̄2) is a solution to

the variational system (24)–(34), then J̄1 is the brfv to (0, (α, x2]) and J̄2 is the brfv to

(a1δxR1 , (α, α
1]), so that ((a1δxR1 , (α, α

1]), (0, (α, x2]) is indeed an MPE strategy profile. As

for J̄1, we have already seen that (24)–(25) and (27) pin down a unique solution, given by

(20), which satisfies J̄1(x2) = G1(x2) by definition of x2. As for J̄2, the analysis is a bit

more delicate due to the presence of the derivative jump ∆J̄2′(xR1) at xR1 , which, by (33),

is itself determined by the intensity a1 with which player 1 exits at xR1 . The following

result provides sufficient conditions for the existence of a singular mixed-strategy MPE in

our running example.

Proposition 5 In the running example, if the firms’ liquidation values l1 ≤ l2 are close

enough to each other, and if m is sufficiently large and b > 0, then there exists a mixed-

strategy MPE ((a1δxR1 , (α, α
1]), (0, (α, x2]) in which the more enduring firm 1 randomizes

between holding fast and conceding at xR1 while the less enduring firm 2 exits with probability

1 as soon as market conditions fall below x2 < xR1.7 This MPE satisfies Murto (2004)’s

refinement.

Remark It should be noted that the above analysis is wholly conducted in terms of

thresholds for the state variable. This suggests that similar arguments would apply to a

model in which the only observable difference in players’ characteristics is that they have

unequal discount factors.

4.3.3 Comparisons with the Standard MPEs

The MPE constructed in Proposition 5 differs from the pure-strategy MPE of Proposition 3

in that, for x ≥ xR1 , the more enduring firm 1 does not benefit from the presence of firm 2

as J̄1 = VR1 over [xR1 , β), whereas J̄2 > VR2 over [xR1 , β). The reason is that firm 2 adopts

a tougher stance by threatening to exit the market only at x2 < xR1 ≤ xR2 , which makes

firm 1 indifferent between holding fast and conceding at xR1 . In our singular mixed-strategy

7Numerical simulations suggest that, when firms’ liquidation values l1 ≤ l2 are close enough to each other,
the variational system (24)–(34) admits a solution whatever the parameter values of the model if b > 0, and,
if b < 0, as long as m ∈ [1, C] for some constant C that increases with σ.
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Figure 1: The total values of never exiting the market in a duopoly and in a monopoly
(in black), firm 1’s total value (in blue), and firm 2’s total value (in red) in the singular
mixed-strategy MPE of Proposition 5.

MPE, max S1 ∨max S2 = x2 < xR1 ≤ xR2 , whereas max S1 ∨max S2 ∈ {xR1 , xR2} in any

pure-strategy MPE. Thus mixing by firm 1 delays the time at which some firm must exit the

market. This leads to a richer dynamics, whereby firms can alternatively find themselves in a

position of strength or weakness depending on the random fluctuations of market conditions.

As illustrated on Figure 1, firm 1 is in a position of strength when X is close to x2 and in

a position of weakness when X is close to xR1 , whereas the reverse holds for firm 2. The

general results of Section 5 confirm that such alternation in the balance of power is a robust

feature of singular mixed-strategy MPEs, reflecting that a player in a position of weakness

can hope for a reversal of market conditions in its favor. It should be noted that whether

a player is currently in a position of strength or weakness is an endogenous feature of the

equilibrium under consideration.

In the limiting case of symmetric firms, in which l1 = l2 ≡ l, α1 = α2 ≡ α∗, and

xR1 = xR2 ≡ x∗, one may also compare our singular mixed-strategy MPE with the regular

mixed-strategy MPE of Proposition 4. In the latter, over (α∗, x∗], the probability of any firm

exiting the market during a short time interval of length dt is of order dt; moreover, the two

firms’ total values are constant and equal to their common liquidation value l. Thus attrition

leads to a complete dissipation of rents. By contrast, in our singular mixed-strategy MPE, the

probability that firm 1, starting at xR1 = x∗, exits the market during a short time interval of

length dt is now of order
√

dt. It also follows from Figure 1 that our singular mixed-strategy
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MPE Pareto-dominates the regular mixed-strategy MPE for any initial market condition

x > α∗ and that the firms’ total values are not monotonic in market conditions.

When firms are asymmetric, with l1 < l2, a regular mixed-strategy MPE does not exist

(Georgiadis, Kim, and Kwon (2022)) and another benchmark is the pure-strategy MPE

characterized by Murto (2004). Because firm 1 does not exit the market with probability 1

at xR1 , firm 2’s total value at xR1 , F 2(xR1), must be less than its monopoly value V 2
m(xR1).

Because firm 1’s total value coincides with his stand-alone total value over [xR1 ,∞), for any

initial market condition x > xR1 , our singular mixed-strategy MPE is Pareto dominated by

any pure-strategy MPE in which player 1 exits the market at xR1 , reflecting that wasteful

attrition can take place on the equilibrium path.

Finally, it should be noted that, whereas the regular mixed-strategy MPE of Proposition

4 has no counterpart when there is even the slightest degree of asymmetry in the firms’

liquidation values, our singular mixed-strategy MPE also exists in the case of symmetric

liquidation values and is robust to asymmetry.

4.3.4 Asset-Pricing Implications

We now draw the asset-pricing implications of our singular mixed-strategy MPE.

Assets and Investors Suppose that both firms are all-equity firms whose stocks are

traded on a frictionless financial market. At any time t, each firm’s stock distributes a payout

flow Xt if neither firm has conceded, and a 0 or mXt payout flow otherwise, depending on

whether or not the firm has exited the market. Shareholders are risk-neutral and observe

market conditions and firms’ exit decisions. Thus their information set at any time t is

F̂t ≡ Ft ∨ σ(1{γ1≤s}, 0 ≤ s ≤ t). (35)

Notice that (35) reflects that, as τx2 is (Ft)t≥0-adapted, the information that firm 2 has

conceded by time t is already included in F̂t.

Stock Prices Because shareholders are risk-neutral, the firms’ stock prices up to the first

time τ c ≡ γ1 ∧ τx2 at which one of them concedes are given, for each t ≥ 0, by

V 1,τc

t ≡ F 1(Xt∧τc),

V 2,τc

t ≡ F 2(Xt∧τc) + [V 2
m(xR1)− F 2(xR1)]1{t∧τx2≥γ1},

where the second term in the definition of V 2,τc

t reflects that firm 1 concedes over {τx2 > γ1},
so that firm 2’s market value jumps upwards to its monopoly value at γ1; there is no analogous
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term in the definition of V 1,τc

t as F 1(x2) = V 1
m(x2). Applying Itô’s formula to F 1 and the

Itô–Tanaka–Meyer formula to F 2 yields

V 1,τc

t = F1(x) +

∫ t∧τc

0

[rF 1(Xs)−Xs] ds+

∫ t∧τc

0

σXsF
1′(Xs) dWs, (36)

V 2,τc

t = F2(x) +

∫ t∧τc

0

[rF 2(Xs)−Xs] ds+

∫ t∧τc

0

σXsF
2′−(Xs) dWs

+ [V 2
m(xR1)− F 2(xR1)](1{t∧τx2≥γ1} − a

1L
xR1

t∧τc). (37)

The Martingale Property The absence of arbitrage opportunities requires that each

firm i’s discounted cum-dividend stock-price process (e−rt∧τ
c
V i,τc

t +
∫ t∧τc

0
e−rsXs ds)t≥0 be a

martingale with respect to the shareholders’ filtration (F̂t)t≥0. For firm 1, this readily follows

from (36). The analysis of firm 1’s stock price is then the same as in the corporate-finance

models of Merton (1974), Leland (1994), and Goldstein, Ju, and Leland (2001), except that

it is not stopped with probability 1 at τxR1 . In particular, firm 1’s stock price is not a

function of its current payout level. For firm 2, the martingale property is more subtle. At

first sight, the presence of the local-time term L
xR1

t∧τc in (37) seems to create an arbitrage

opportunity that consists to sell firm 2’s stock each time Xt = xR1 at price F 2(xR1) and

then to repurchase firm 2’s stock at price F 2(Xt+dt) < F 2(xR1) at t+ dt; to a naive investor,

this strategy seems to yield a gain of order dL
xR1

t each time Xt = xR1 .8 However, this does

not account for the possibility that firm 1 may exit when Xt = xR1 , causing firm 2’s stock

price to jump upwards to V 2
m(xR1). Once this risk is taken into account, the expected gain

of this strategy is exactly zero, reflecting that the term 1{t∧τx2≥γ1} − a1L
xR1

t∧τc in (37) is an

(F̂t)t≥0-martingale.

Comovements of Stock Prices and their Volatilities A takeaway from Figure 1 is

that, as long as no firm exits the market, firms’ stock prices comove negatively in bad times,

when Xt ∈ (x2, x2), while they comove positively in good times, when Xt > x2. The general

results of Section 5 confirm that this is a robust feature of singular mixed-strategy MPEs in

our running example. Figure 2 illustrates sample paths of stock prices before any firm exits

the market.

As predicted by (37), each time Xt = xR1 without firm 1 exiting the market, firm 2’s stock

price is continuously reflected downward. Moreover, as Lemma S.8 in the Online Supplement

8This strategy is in the spirit of Karatzas and Shreve (1998, Appendix B) and Jarrow and Protter (2005,
Theorem 4.3), who show that a singular term in the dynamics of a cum-dividend stock prices leads to
arbitrage opportunities. Of course, this is not the case for an ex-dividend stock-price process, as in dynamic
security-design models (DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin, and Rochet (2007)) or cash-
management models (Bolton, Chen, and Wang (2011), Décamps, Mariotti, Rochet, and Villeneuve (2011)).
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Figure 2: Sample paths of firm 1’s stock price (in blue) and firm 2’s stock price (in red)
before any firm exits the market. The selected parameter values are l1 = 0.97, l2 = 1,
m = 2, µ = 0.15, r = 0.8, and σ = 0.3.

shows, (37) predicts that the volatility
∣∣∣σXtF 2′−(Xt)

F 2(Xt)

∣∣∣ of firm 2’s stock returns peaks when firm

2’s stock price approaches the reflecting boundary F 2(xR1), and drops to zero when firm

2’s stock price approaches its liquidation value l2. (As long as Xt > xR1 , the volatility

of firm 2’s stock returns also drops to zero when firm 2’s stock price approaches F 2(x2).)

Similarly, (36) predicts that the volatility
∣∣∣σXtF 1′(Xt)

F 1(Xt)

∣∣∣ of firm 1’s stock returns peaks when

firm 1’s stock price approaches its monopoly value V 1
m(x2), and drops to zero when firm 1’s

stock price approaches its liquidation value l1. Thus the volatilities of firms’ stock returns

comove negatively as long as no firm exits the market and the market conditions remain in

the attrition region (x2, x2). Again, this is a robust feature of singular mixed-strategy MPEs

in our running example.

A Rationale for Resistance and Support Levels Technical analysts claim that they

can predict financial price movements using limited information sets, including past prices

(Edwards, Magee, and Bassetti (2013)). Faced with a chart such as Figure 2, a technical

analyst unaware of the fundamental relationship between market conditions and stock prices

would interpret F 2(xR1) as a predictable resistance level for firm 2’s stock price, at which

upward trends tend to be reversed. Similarly, he may interpret l1 and F 2(x2) as predictable

support levels for firm 1’s and firm 2’s stock prices. Our analysis provides a rationale for

these well-documented stylized facts while maintaining the assumption that stock prices are
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only driven by fundamentals.9

A breakup of the resistance level F 2(xR1) for firm 2 can in turn occur in two cases. (1)

In good times, when a large improvement in market conditions leads firm 2’s stock price to

break, in a continuous way, the resistance level F 2(xR1). This happens at times t1, t2, and

t3 in Figure 2. These events are preceded and followed by episodes of positive comovements

of stock prices, reflecting that market conditions have left the attrition region (x2, x2). (2)

In bad times, if firm 1 concedes at xR1 , causing an upward jump in firm 2’s stock price from

F 2(xR1) to its monopoly value V 2
m(xR1). This second case is in line with the observation often

made in technical analysis that, when prices rise above their resistance levels, they tend to do

so decisively. In contrast with continuous breakups, such a discontinuous breakup is preceded

by an episode of negative comovements of stock prices. A breakdown of the support level

F 2(x2) can only happen in a continuous way, and only after firm 2’s stock price has reached

its resistance level F 2(xR1). This happens at times t4, t5, and t6 in Figure 2.

Technical analysts often explain decisive breakups of resistance levels by unpredictable

changes in earnings, management, or competition above investors’ expectations. This is

exactly what happens in our model. Where we differ from technical analysis is that the

downward bounces in firm 2’s stock price at the resistance level F 2(xR1) are no more

predictable from past prices than the upward jump in firm 2’s stock price that occurs when

firm 1 exits the market at xR1 , and thus cannot be arbitraged away by rational investors.

5 Main Results

We first provide a necessary condition for mixed-strategy MPEs, establishing that any such

MPE is either singular and exhibits an alternating threshold structure, or—and only if xR1 =

xR2—is regular, involving absolutely continuous intensity measures. We then characterize

singular MPEs by a variational system satisfied by the players’ value functions. The proofs

of our main results make use of an additional regularity assumption.

A8 The functions b, σ, and Ri′′ are locally Lipschitz.

5.1 The Alternating Structure of Singular Mixed-Strategy MPEs

By convention, we let max ∅ ≡ α and, for any MPE ((µ1, S1), (µ2, S2)), we let si ≡ max Si.

9The interpretation of l1 and F 2(x2) as support levels for firms 1 and 2, respectively, is a little less
clear-cut than that of F 2(xR1) as a resistance level for firm 2. Indeed, the volatilities of firm 1’s and firm
2’s stock prices drop to zero at xR1 and x2, respectively, making it less likely to detect a trend reversal at l1

and F 2(x2) than at F 2(xR1), where the volatility of firm 2’s stock price reaches a peak, see Figure 2.
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The following result then holds.

Theorem 2 For any mixed-strategy MPE ((µ1, S1), (µ2, S2)),

(i) if xR1 6= xR2 , then the restrictions of the intensity measures µ1 and µ2 to (s1 ∨ s2, β)

are purely atomic;

(ii) if xR1 = xR2 , either the restrictions of the intensity measures µ1 and µ2 to (s1 ∨ s2, β)

are purely atomic, or they are absolutely continuous, with densities characterized by

(18) with α∗ replaced by α1 ∨ α2.

Theorem 2 first confirms the basic insight of Georgiadis, Kim, and Kwon (2022), according

to which there exists no mixed-strategy MPE with absolutely continuous intensity measures

when xR1 6= xR2 . Thus, if a mixed-strategy MPE exists at all in this case, it must feature

intensity measures that are singular with respect to Lebesgue measure. The key information

provided by Theorem 2 is that these measures must be discrete.

The proof can be sketched as follows.

Let us consider a mixed-strategy MPE ((µ1, S1), (µ2, S2)), supposing one exists. First,

Proposition 1(iv) implies max suppµi ∩ (s1 ∨ s2, β) ≤ xRi for every player i; we show that

this must in fact be an equality for the largest maximum of the supports. Next, Proposition

1(v) and dynamic-programming arguments imply that, for each i = 1, 2, LJ̄ i − rJ̄ i = 0

over any interval (q, q′) where player j does not concede; it also follows from Proposition 1

that J̄ i ≥ VRi and that J̄ i(qi) = Ri(qi) for all qi ∈ suppµi. Fixing such an interval (q, q′),

and assuming that q, q′ ∈ suppµj, we deduce from this that there must exist a single point

qi ∈ (q, q′) ∩ suppµi at which player i is indifferent between conceding or holding fast. The

reason why such a point qi must exist is that, otherwise, player j would expect, starting

from any initial market condition x ∈ (q, q′), to obtain either Rj(q) or Rj(q′) when leaving

this interval. However, because LRj − rRj < 0 over (q, q′) as q′ ≤ xRj < xj0, player j would

be strictly better off conceding and obtaining Rj(x) at x, a contradiction. It follows that J̄ i

coincides with the solution to Lu − ru = 0 that is tangent to Ri at qi. This, together with

LRi − rRi < 0, implies that qi is unique. As a result, the set of accumulation points of the

supports of µ1 and µ2 in (s1 ∨ s2, β) must coincide.

Consider first the asymmetric case xR1 6= xR2 , and, to fix ideas, assume that q1
1 = xR1

and q1
1 ≥ q2

1 for qi1 ≡ max suppµi. We verify that it is not optimal for player 2 to concede at

q1
1. Therefore, q1

1 must be an isolated point of suppµ1 and q1
1 > q2

1. Iterating this argument

and using the preceding remarks, we show that, for each i = 1, 2, and for any two consecutive
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points qin > qin+1 > s1∨s2 in the support of µi, there must exist a single point qjn ∈ (qin+1, q
i
n)

in the support of µj at which player j is indifferent between conceding or holding fast.

We thus obtain two decreasing sequences of randomization thresholds (q1
n)N

1

n=1 and (q2
n)N

2

n=1,

with either N1 = N2 = ∞ or 0 ≤ N1 − N2 ≤ 1, which are intertwined in the sense that

q1
1 > q2

1 > q1
2 > q2

2 > . . . as long as these thresholds are defined. We also show that if

N1 = N2 = ∞, any such intertwined sequences must converge to α. These two sequences

characterize the restrictions of µ1 and µ2 to (s1 ∨ s2, β). As a result, when xR1 6= xR2 , any

mixed-strategy MPE must fall into one of three categories, which are delineated in Corollary

1 below.

In the symmetric case xR1 = xR2 , analogous arguments show that the common set of

accumulation points of the supports of µ1 and µ2 is either empty or equal to (s1 ∨ s2, xR1 ].

In the latter case, analytic arguments imply that the measures µi are absolutely continuous,

with densities characterized by (18) for α∗ ≡ s1 ∨ s2.

Corollary 1 Let ((µ1, S1), (µ2, S2)) be a singular mixed-strategy MPE. Then, for every

player i, suppµi ∩ (s1 ∨ s2, β) = {qin : n = 1, . . . , N i} for intertwined decreasing sequences of

randomization thresholds (q1
n)N

1

n=1 and (q2
n)N

2

n=1 satisfying, with no loss of generality, q1
1 > q2

1.

Moreover, q1
1 = xR1 and one of the following three conditions holds:

1. N1 = N2 ≡ N ∈ N \ {0} and q1
N > q2

N > s1 > s2;

2. N1 = N2 + 1 ≡ N ∈ N \ {0} and q2
N−1 > q1

N > s2 > s1, with q2
0 ≡ β by convention;

3. N1 = N2 =∞ and limn→∞ q
1
n = limn→∞ q

2
n = s1 = s2 = α, so that S1 = S2 = ∅.

In an MPE of type 1, player 1 exits the market with probability 1 at s1, and player

2 has the lowest randomization threshold. In an MPE of type 2, player 1 has the lowest

randomization threshold, and player 2 exits the market with probability 1 at s2—the example

of Section 4.3 is a case in point, with N1 = 1 and N2 = 0. In an MPE of type 3, neither

player exits the market with probability 1 at any point of the state space, and players keep

randomizing all the way down to α. It should be noted that an MPE of type 3 can exist

only if α1 = α2 = α; indeed, every player i such that αi > α would not be willing to delay

exiting the market over (α, αi) if his opponent were to do the same.

The upshot from Theorem 2 and Corollary 1 is that, when players have different stand-

alone optimal exit thresholds, alternation is a robust feature of singular mixed-strategy

MPEs. In the attrition region, players randomize between conceding and holding fast at

isolated thresholds. Thus, generalizing the MPE constructed in Proposition 5, players can
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alternatively find themselves in a position of strength or weakness; the difference is that both

players may now randomize, leading to a richer set of equilibrium outcomes. In an MPE of

type 1 and type 2, this process may persist until one player eventually reaches his stopping

region and exits the market with probability 1. By contrast, in an MPE of type 3, exit must

take place at a randomization threshold.

Corollary 1 fully characterizes equilibrium outcomes for an MPE of type 3, because any

market condition in I can be reached with positive probability from any initial market

conditions x ∈ I. The same holds true for MPEs of types 1 and 2, provided x > xR1 ,

with q1
1 > q2

1 by convention. Indeed, for any such MPE ((µ1, S1), (µ2, S2)) and for each

x > xR1 , there exists an outcome-equivalent MPE ((µ̃1, S̃1), (µ̃2, S̃2)) such that supp µ̃i =

suppµi∩(s1∨s2, β) for every player i and S̃1 = (α, s1) and S̃2 = ∅ (for an MPE of type 1), or

S̃1 = ∅ and S̃2 = (α, s2) (for an MPE of type 2). By contrast, Corollary 1 does not pin down

equilibrium outcomes of MPEs of types 1 and 2 for lower initial market conditions. Indeed,

as in Murto (2004), it is possible to construct MPEs in which the stopping regions S1 and

S2 exhibit gaps; moreover, these gaps may themselves include randomization thresholds.

5.2 The Characterization Result

Our final theorem provides a necessary and sufficient condition for the existence of an MPE

of type 2. Analogous results hold for MPEs of types 1 and 3; their statements and proofs

proceed along similar lines, and are omitted for the sake of brevity.

Theorem 3 Let N ∈ N \ {0} and let be given

� two finite sequences (q1
n)Nn=1 and (q2

n)N−1
n=0 of numbers in I, with q2

0 ≡ β by convention,

and a number s2 ∈ I such that q1
1 = xR1 > q2

1 > q1
2 > . . . > q1

N−1 > q2
N−1 > q1

N > s2;

� two finite sequences (an)Nn=1 and (bn)N−1
n=0 of positive real numbers.

Then the strategy profile ((µ1, S1), (µ2, S2)) ≡ ((
∑N

n=1 anδq1n , ∅), (
∑N−1

n=1 bnδq2n , (α, s
2]))), with∑0

n=1 ≡ 0 by convention, is an MPE of type 2 if and only if s2 > α2 and there exists two

functions w1 ∈ C0(I)∩ C2(I \ ({q2
n : 1 ≤ n ≤ N − 1} ∪ {s2})) and w2 ∈ C0(I)∩ C2(I \ ({q1

n :

1 ≤ n ≤ N} ∪ {s2})) that satisfy the variational system

w1 ≥ R1 over I, (38)

Lw1 − rw1 = 0 over (s2, β) \ {q2
n : 1 ≤ n ≤ N − 1}, (39)

w1 = G1 over (α, s2], (40)
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w1(q1
n) = R1(q1

n), 1 ≤ n ≤ N, (41)

bn[G1(q2
n)− w1(q2

n)] +
1

2
∆w1′(q2

n) = 0, 1 ≤ n ≤ N − 1, (42)

w1(β−) = 0, (43)

w2 ≥ R2 over I, (44)

Lw2 − rw2 = 0 over (s2, β) \ {q1
n : 1 ≤ n ≤ N}, (45)

w2 = R2 over (α, s2], (46)

w2(q2
n) = R2(q2

n), 1 ≤ n ≤ N − 1, (47)

w2′(s2) = R2′(s2), (48)

an[G2(q1
n)− w2(q1

n)] +
1

2
∆w2′(q1

n) = 0, i = 1 ≤ n ≤ N, (49)

w2(β−) = 0. (50)

Moreover, whenever α1 ≤ α2, ((
∑N

n=1 anδq1n , (α, α
1], (
∑N−1

n=1 bnδq2n , (α, s
2]))) is an outcome-

equivalent MPE that satisfies Murto (2004)’s refinement.

The proof of Theorem 3 is based on the properties obtained in the proof of Theorem

2, together with classical methods employed in verification theorems for optimal-stopping

and stopping-game theory. In particular, conditions (42) and (49) are obtained by applying

the Itô–Tanaka–Meyer formula. A key insight from this characterization is that incentives

are nonlocal: for instance, when N ≥ 2, player 2 randomizes at the threshold q2
n, 1 ≤ n ≤

N−1, with appropriate intensity bn, to make player 1 willing to randomize at the thresholds

q1
n+1 and q1

n, and vice versa. This contrasts with the regular mixed-strategy equilibrium in

the symmetric case xR1 = xR2 , in which, at any point of the attrition region, each player

randomizes so as to make his opponent indifferent between holding fast and conceding at

the very same point.

The ultimate justification for Proposition 5 follows from applying Theorem 3 for N = 1,

which yields the variational system (24)–(34). In our running example, MPEs of type 2 with

N > 1 have similar implications as the MPE of Proposition 5. In particular, in the attrition

region, the firms’ stock prices and the volatilities of their returns comove negatively. The

difference is that firms’ stock prices now exhibit several resistance levels—F 1(q2
n), 1 ≤ n ≤

N − 1, for firm 1, and F 2(q1
n), 1 ≤ n ≤ N , for firm 2—resulting in a richer price dynamics.

MPEs of types 1 and 3 have similar robust implications.

Importantly, the variational characterization in Theorem 3 and the analogous results for

MPEs of types 1 and 3 hold for both symmetric and asymmetric players. Thus our results

provide a characterization of mixed-strategy MPE outcomes in the WoA under uncertainty
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that are robust to even the slightest degree of heterogeneity between players.

6 Concluding Remarks

This paper has offered a complete study of mixed-strategy MPE outcomes in the symmetric-

information WoA when the players’ payoffs are driven by a homogenous linear diffusion. Our

contribution is threefold.

First, we have provided a characterization result for Markov strategies in terms of an

intensity measure over the state space together with a subset of the state space over which

the player concedes with probability 1. This covers the standard cases of pure strategies

and of mixed strategies in which intensity measures are absolutely continuous over the state

space. In addition, this representation allows for mixed Markov strategies with singular

intensity measures, a possibility that has been disregarded in the literature.

Second, we have argued that, far from being artificial or exotic, such singular strategies

are key to the identification of robust mixed-strategy MPE outcomes, both in the cases

of symmetric and asymmetric players. We have provided a variational characterization of

singular mixed-strategy MPEs and we have shown that they are characterized by intertwined

sequences of randomization thresholds for the players. As a result, each player on the

equilibrium path can alternately be in a position of strength or weakness, reflecting that a

weak player can hope for a reversal of situation, a novel insight in the literature.

Third, we have seen that, in the standard model of exit in a duopoly, this characterization

leads to new testable asset-pricing implications when firms are publicly traded. Namely, the

firms’ stock prices and the volatilities of their returns comove negatively over the attrition

region and exhibit patterns documented by technical analysis. This contrasts with the

predictions of the standard regular mixed-strategy MPE that only exists when firms are

symmetric, in which firms’ stock prices are perfectly aligned and are constant and equal to

their common liquidation value over the attrition region.

Taken together, our results show that mixed-strategy MPEs that are robust to even slight

asymmetries between players’ payoffs share a common structure, and lead to qualitatively

similar empirical implications. This yields rich and robust predictions for the WoA under

uncertainty—something that is precluded by focusing on pure-strategy MPEs, or regular

mixed-strategy MPEs of symmetric games, whose implications are too stark to fruitfully

lend themselves to applied analysis. Our hope is that these insights may pave new avenues

for empirical work.
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Appendix

Notation A property is satisfied a.s. if, for each x ∈ I, it is satisfied for Px-a.e. ω ∈ Ω.

Proof of Theorem 1: (Necessity) We hereafter omit the index i for the sake of

clarity. If Λ is the csf of a Markovian randomized stopping time, then, for all t, s ≥ 0,

Λt+s = Λt(Λs ◦ θt) a.s. In particular, applying this property at t = s = 0 yields Λ0 = (Λ0)2

and, hence, Λ0 ∈ {0, 1} a.s. In the terminology of Blumenthal and Getoor (1968, Definition

III.1.1), Λ is a right-continuous multiplicative functional of X adapted to (Ft)t≥0. The

set EΛ ≡ {x ∈ I : Px [Λ0 = 1] = 1} is called the set of permanent points for Λ. Using

Blumenthal’s 0–1 law (Blumenthal and Getoor (1968, Proposition I.5.17)) and the fact that

Λ0 ∈ {0, 1} a.s., we have I \ EΛ = {x ∈ I : Px [Λ0 = 0] = 1}. The stopping time

τ ≡ inf {t > 0 : Λt = 0} ∈ T is called the lifetime of Λ. The proof consists of three steps.

Step 1 In order to apply the main result of Sharpe (1971), we need to check that Λ is

an exact multiplicative functional in the sense of Blumenthal and Getoor (1968, Definition

III.4.13). According to Blumenthal and Getoor (1968, Proposition III.5.9) it is sufficient to

prove that, for all x ∈ I \ EΛ and t > 0,

lim
u↓0

Ex [Λt−u ◦ θu] = 0. (A.1)

To this end, we first claim that, for any such x and t, and for each u ∈ (0, t), we have

1{t−u≥τx◦θu}(Λt−u ◦ θu) = 0 Px-a.s. Indeed, if t − u ≥ τx ◦ θu(ω) for some ω ∈ Ω, then the

trajectory θu(ω) crosses x over the interval [0, t − u]. Because, by (14), Λτx◦θu(ω)(θu(ω)) =

Λτx◦θu(ω)(θu(ω))Λ0(θτx◦θu(ω)(θu(ω))) = 0 Px-a.s. as x ∈ I\EΛ, this implies that Λt−u(θu(ω)) =

0 as the mapping s 7→ Λs(θu(ω)) is nonincreasing and nonnegative. The claim follows. This

implies in particular that, for u < t
2
,

Ex [Λt−u ◦ θu] ≤ Px [t− u < τx ◦ θu] = Ex [PXu [t− u < τx]] ≤ Ex

[
PXu

[
t

2
< τx

]]
.

The mapping y 7→ Py [ t
2
< τx] is bounded and limy→x Py [ t

2
< τx] = 0 as X is a regular

diffusion. Hence (A.1) follows by bounded convergence along with the fact that limu↓0Xu = x

Px-a.s. Exactness of Λ implies that EΛ is open and thus that I\EΛ is closed, see Blumenthal

and Getoor (1968, page 126, last paragraph) together with the fact that the fine topology

over I associated to X coincides with the usual topology, see Blumenthal and Getoor (1968,

Definition II.4.1 and Exercise II.4.16).

Step 2 We are now in a position to apply Sharpe (1971, Theorem 7.1, Formula (7.1)),

which expresses Λt as the product of three factors.
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1. The first factor is equal to 1 because X has continuous trajectories, so that the terms

F (Xs−, Xs) vanish as F = 0 over the diagonal of I, see Sharpe (1971, Theorem 5.1 and proof

of Theorem 7.1).

2. The second factor can be written as 1{t<τB}, where τB is the hitting time by X of

a Borel subset B of I; this is because the lifetime of X is infinite and X has continuous

trajectories. In turn, because X is a diffusion process and σ > 0 over I, this term is a.s.

equal to 1{t<τS}, where S is the closure of B.

3. The third factor is of the form e−
∫ t
0 f(Xs) dAs , where f : I → R+ is Borel-measurable and

A is a continuous additive functional of X (Revuz and Yor (1999, Chapter X, §1, Definition

1.1)) such that the mapping x 7→ Ex [
∫∞

0
e−t dAt] is bounded.

Thus, for each t ≥ 0, we have the representation

Λt = 1{t<τS} e−
∫ t
0 f(Xs) dAs a.s. (A.2)

Moreover, the integral
∫ t

0
f(Xs) dAs is Px-a.s. finite for all t < τS except maybe for x in an

M -polar set, where M is the multiplicative functional defined by Mt ≡ 1{t<τS} for all t ≥ 0

(Blumenthal and Getoor (1968, II.2.18 and III.1.4)). According to Sharpe (1971, Definition,

page 29), B ⊂ I is an M -polar set if there exists a nearly Borel subset (Blumenthal and

Getoor (1968, Definition I.10.21)) C ⊃ B of I such that the hitting time by X of C is a.s.

greater than or equal to the lifetime of M , that is, τS. Hence, because the trajectories of X

are continuous and S is closed, an M -polar set must be a subset of S, and it follows that∫ t
0
f(Xs) dAs is Px-a.s. finite for all t < τS and x ∈ I \ S. Finally, observe that we can with

no loss of generality assume that f = 0 over S, as replacing f by f1I\S does not alter the

right-hand side of (A.2).

Step 3 Using the classical representation result for additive functionals of X (Borodin

and Salminen (2002, Part I, Chapter I, Section 4, §23)), there exists a Radon measure ν over

I \ S such that At =
∫
I\S L

y
t ν(dy) a.s. Therefore, for each t < τS,

Ãt ≡
∫ t

0

f(Xs) dAs =

∫ t

0

∫
I\S

f(Xs) dLys ν(dy) =

∫
I\S

Lyt f(y) ν(dy) a.s.

We claim that µ ≡ f · ν is a Radon measure, which concludes the first part of the proof.

To this end, we only need to prove that µ is locally finite. Indeed, if it were not so, then

there would exist x ∈ I \ S such that
∫

[x−ε,x+ε]
f(y) ν(dy) = ∞ for all ε > 0 such that

[x − ε, x + ε] ⊂ I \ S. For each t > 0, Lxt (ω) > 0 for all ω in a set of Px-probability 1.

Therefore, as the local time of X is a.s. jointly continuous (Revuz and Yor (1999, Chapter

VI, §1, Theorem 1.7)), we have that, for any such ω, there exists ε(ω) > 0 such that
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[x− ε(ω), x+ ε(ω)] ⊂ I \S and Lyt (ω) > 0 for all y ∈ [x− ε(ω), x+ ε(ω)]. This implies that,

if 0 < t < τS(ω), then

Ãt(ω) =

∫
I\S

Lyt (ω)f(y) ν(dy) ≥ min
y∈[x−ε(ω),x+ε(ω)]

Lyt (ω)

∫
[x−ε(ω),x+ε(ω)]

f(y) ν(dx),

which is infinite by assumption. Because Px [τS > 0] = 1 as x ∈ I \ S, this contradicts the

fact that, for each t < τS, Ãt =
∫ t

0
f(Xs) dAs is Px-a.s. finite. The claim follows.

(Sufficiency) Reciprocally, if S is a closed subset of I and µ is a Radon measure over

I \ S, then the process defined by Λt = 1{t<τS} e−
∫
I\S L

y
t µ(dy) is well-defined and, as the

local time of X is a strong additive functional of X (Revuz and Yor (1999, Chapter X,

§1, Proposition 1.2)), is a right-continuous multiplicative functional that satisfies (14). In

particular, Γ ≡ 1 − Λ satisfies the assumptions of Lemma 3 and thus is the ccdf of a

randomized stopping time. Hence the result. �

Proof of Theorem 2: Let s ≡ s1 ∨ s2 and Ei ≡ suppµi ∩ (s, β) for i = 1, 2. Ei is a

relatively closed subset of (s, β) that can be written as a disjoint union Ei = Ai ∪Ki, where

Ai is the set of accumulation points of Ei in (s, β), which is relatively closed in (s, β), and

Ki is the (countable) set of isolated points of Ei. Observe that Ei ⊂ (s, xRi ] by Proposition

1(iv) as Ei ∩ Sj = ∅. If E1 = E2 = ∅, there is nothing to prove and the MPE under

consideration is outcome-equivalent to a pure-strategy MPE. Let us otherwise denote by J̄ i

player i’s equilibrium value function. The proof then consists of four steps and repeatedly

uses assertions (i)–(iii) of Lemma A.1 below.

Lemma A.1 Let u be a C2 function defined over an open interval (a, b) ⊂ I and such that

Lu− ru = 0 over (a, b). Then, the following holds:

(i) if b = β, u(β−) = 0, u(a+) = Ri(a), and u ≥ VRi over (a, β), then a = xRi ;

(ii) if u ≥ VRi over (a, b), then {x ∈ (a, b) : u(x) = Ri(x)} contains at most one point;

(iii) if b ≤ xRi , u(b−) = Ri(b), and either a > α and u(a+) = Ri(a) or a = α and

u(a+) = 0, then u < Ri over (a, b);

(iv) if α < a ≤ xRi , u ≥ Ri over (a, b), u(a) = Ri(a), and u′(a+) > Ri′(a), then, for every

sufficiently small ε > 0, the function fε solution to Lf − rf = 0 over (a− ε, a+ ε) with

fε(a− ε) = Ri(a− ε) and fε(a+ ε) = u(a+ ε) satisfies fε(a) > u(a).

Step 1 We first claim that every connected component (a, b) of (s, β) \ Ei such that (a)
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a > s or a = s = si or a = s = α, and (b) b ≤ xRi , contains exactly one point of Ej.

Suppose first, by way of contradiction, that Ej ∩ (a, b) = ∅. By Proposition 1(v),

the strategy (0, Si) is a pbr to the strategy (µj, Sj). Therefore, τSi is a solution to the

optimal-stopping problem J̄ i(x) = supτ i∈T J
i(x, τ i, (µj, Sj)). Letting τ be the first exit time

of X from (a, b), we have τSi ≥ τ Px-a.s. for all x ∈ (a, b). We deduce from this that the

brvf J̄ i satisfies, for each x ∈ (a, b),

J̄ i(x) = J i(x, (0, Si), (µj, Sj)) = Ex [e−rτ J̄ i(Xτ )], (A.3)

where the last inequality follows from the strong Markov property (S.7). As Ej ∩ (a, b) = ∅,
it then follows from standard arguments that J̄ i is C2 and LJ̄ i − rJ̄ i = 0 over (a, b). Now,

consider the conditions in the claim. First, if a > s, then a ∈ suppµi by definition of a

connected component of (s, β) \ Ei, and thus J̄ i(a) = Ri(a) by Proposition 1(iii); the same

reasoning shows that J̄ i(b) = Ri(b). Next, if a = s = si, then J̄ i(a) = Ri(a) by Proposition

1(iii). Finally, if a = s = α, then τ coincides with the hitting time of b, and thus (A.3) and

(4)–(5) together imply, letting x go to α+, that J̄ i(a+) = 0. Thanks to LJ̄ i − rJ̄ i = 0 over

(a, b) and b ≤ xRi , we are thus in a position to apply Lemma A.1(iii); we obtain J̄ i < Ri over

(a, b), a contradiction as J̄ i ≥ VRi over I. Therefore, Ej ∩ (a, b) 6= ∅. Finally, using again

standard arguments, it must be that LJ̄ j − rJ̄ j = 0 over (a, b). Because J̄ j ≥ VRj , Lemma

A.1(ii) implies that Ej ∩ (a, b) contains exactly one point. The claim follows. It should be

noted that the same arguments show that every interval (a, b) ⊂ (s, β) such that (a) a > s or

a = s = si or a = s = α, (b) b ≤ xRi , and (c) J̄ i(a+) = Ri(a+) and J̄ i(b) = Ri(b) contains

at least one point of Ej.

Step 2 We next claim that A1 = A2.

Let x ∈ Ai. Suppose first, by way of contradiction, that x /∈ Ej. Then there exists ε > 0

such that (x− ε, x+ ε)∩Ej = ∅, where ε can be chosen sufficiently small so that x− ε > s.

As x is an accumulation point of Ei and Ei is relatively closed in (s, β), one of the two

following conditions must hold:

(i) (x− ε, x+ ε) includes a connected component (a, b) of (s, β) \Ei such that a > s and

b ≤ xRi ;

(ii) Ei includes a nondegenerate interval I0 ⊂ (x− ε, x+ ε) that contains x.

In case (i), the connected component (a, b) must contain one point of Ej by Step 1, a

contradiction. In case (ii), notice that I0 ∩ Sj = ∅ by definition of s, Ei, and Ej. Thus,

by Proposition 1(ii), it must be that J̄ i = Ri over I0. On the other hand, because (0, Si)
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is also a pbr to (µj, Sj) and Ej ∩ I0 = ∅, we obtain as in Step 1 that J̄ i must be C2 and

satisfy LJ̄ i − rJ̄ i = 0 over the interior of I0. But then LRi − rRi = 0 over a nondegenerate

interval, a contradiction by A3. We conclude that x ∈ Ej and in turn that Ai ⊂ Ej. Let us

now prove that Ai ⊂ Aj. If x ∈ Ai belongs to the relative closure of Ai \ {x} in (s, β), then

x ∈ Aj as Ai \ {x} ⊂ Ej. If not, then x must be the limit of a sequence of points (xn)n≥1

in Ki, which we can assume to be strictly monotone. By Step 1, for every sufficiently large

n, the interval formed by two consecutive elements xn and xn+1 of this sequence contains

exactly one point yn of Ej, and thus x = limn→∞ yn ∈ Aj as it is an accumulation point

of Ej. We conclude that Ai ⊂ Aj and in turn that Ai = Aj by exchanging the role of the

players. The claim follows.

Step 3 We then claim that, if A1 = A2 = ∅ and K1 ∪ K2 6= ∅, then the measures µ1

and µ2 are discrete or degenerate, with at least a nondegenerate one, and their supports are

described by one of the cases in Corollary 1.

By assumption, µ1 and µ2 are discrete measures and their supports have no accumulation

points in (s, xRi ]. Therefore, either their supports are finite, or they are infinite, with s as a

unique accumulation point. In both cases, for each i = 1, 2, Ei = Ki ≡ {qin : 1 ≤ n ≤ N i}
for some decreasing sequence (qin)N

i

n=1 in (s, xRi ], with N i finite or infinite, and possibly equal

to 0 for some i, in which case µi is degenerate. We now establish three key properties of the

sequences (qin)N
i

n=1, i = 1, 2, which together imply the claim.

First, it must be that qi1 = xRi for some i. Indeed, suppose that Ki 6= ∅ and maxEj ≤ qi1,

where max ∅ = α. We first have J̄ i(qi1) = Ri(qi1) by Proposition 1(ii)–(iii) as qi1 > s ≥ sj.

Next, because Ej ∩ (qi1, β) = ∅, we can use similar arguments as in Step 1 to show that J̄ i is

C2 and satisfies LJ̄ i − rJ̄ i = 0 over (qi1, β). As a result, J̄ i = Aφ+Bψ over this interval for

some constants A and B. From this, it follows in turn that J̄ i(β−) = 0. Indeed, by Lemma

1 and Proposition 1, we have 0 ≤ J̄ i ≤ Gi, which, together with (8), implies B = 0. That

J̄ i(β−) = 0 follows then from (4). Finally, J i ≥ VRi by Proposition 1. Thus J̄ i satisfies all

the conditions of Lemma A.1(i), from which we conclude that qi1 = xRi .

Next, it must be that the sequences (qin)N
i

n=1, i = 1, 2, are intertwined. Indeed, Step

1 implies that, if at least one of these sequence has at least two elements, then, between

two consecutive elements of each sequence, there must be exactly one element of the other

sequence. Similarly, if 1 ≤ N i < ∞ and s = si or s = α, then s < qiN i and there must

be one element of Kj in (s, qiN i). These properties have two main implications. (a) First,

the sequences (qin)N
i

n=1, i = 1, 2, have no common element. Indeed, suppose, by way of

contradiction, that q1 = q2 = q for two components of these two sequences. We distinguish
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two cases. If at least one of the sets K1 and K2 is not a singleton, then, because K1 and

K2 have s as their only possible accumulation point, there exists some i = 1, 2 for which

the distance infq′∈Ki\{q} |q′ − q| > 0 is minimized, with infq′∈∅ |q′ − q| ≡ ∞ for all q ∈ I by

convention. Let this minimal distance be reached at q′. But then, as argued above, there

must exist q′′ ∈ Kj in between q and q′, so that |q′′ − q| < |q′ − q|, in contradiction with the

definition of q′. If both K1 and K2 are singletons, then it must be that K1 = K2 = {xR1} =

{xR2} by the first property above. Applying Step 1 to the connected component (si, xRi) of

(s, β) \Ei for a player i such that s = si, we obtain that (si, xRi) contains exactly one point

of Ej, a contradiction. (b) Second, and as a result, if max Sj ∪ Ej < qi1, then either N i is

finite and N j ∈ {N i − 1, N i}, or N i = N j =∞.

Finally, if N1 = N2 = ∞, the sequences (qin)n≥1, i = 1, 2, must converge to α, so that

s = α and S1 = S2 = ∅. This is a consequence of the following general lemma.

Lemma A.2 Let ((µ1, S1), (µ2, S2)) be a mixed-strategy MPE for which there exists two

intertwined decreasing sequences (χ1
n)n≥1 and (χ2

n)n≥1 in suppµ1∩(s, β) and suppµ2∩(s, β),

respectively, such that, for each i = 1, 2, suppµi ∩ (infn≥1 χ
i
n, χ

i
1] = {χin : n ≥ 1}. Then

these two sequences converge to α. Similarly, there are no intertwined increasing sequences

(χ1
n)n≥1 and (χ2

n)n≥1 in suppµ1 ∩ (s, β) and suppµ2 ∩ (s, β), respectively, such that, for each

i = 1, 2, suppµi ∩ [χi0, supn≥1 χ
i
n) = {χin : n ≥ 1}.

The claim follows.

Step 4 We finally claim that, if A ≡ A1 = A2 6= ∅, then xR1 = xR2 ≡ xR, A = (s, xR],

s = α1 ∨ α2, and, for each i = 1, 2, the restriction of µi to (s, xR] is absolutely continuous

with density σ−2λi, where λi is given by (18) with s instead of α∗.

We first show that xR1 = xR2 ≡ xR, A = (s, xR], and s = α1 ∨ α2. The argument is

fourfold.

We first claim that A ⊂ (s, xR1 ∧ xR2 ] is an interval. Indeed, suppose, by way of

contradiction, that this is not so. Then there exists an interval (a, b) ⊂ (s, β) \ A such

that a > s and a, b ∈ A. Because (a, b) cannot be a connected component of both (s, β)\Ei,

i = 1, 2, by Step 1, it must be that Ki ∩ (a, b) 6= ∅ for some i. Fix some χi1 ∈ Ki ∩ (a, b).

Then J̄ i(a) = Ri(a) and J̄ i(χi1) = Ri(χi1) by Proposition 1(ii)–(iii) as a > s ≥ sj, so that

Kj ∩ (a, χi1) 6= ∅ by the final remark of Step 1. Because χi1 ∈ (a, b) is not an accumulation

point of Ej, we have χi1 > χj1 ≡ sup Kj ∩ (a, χi1) ∈ Kj. Applying this argument recursively,

we obtain two infinite intertwined decreasing sequences (χ1
n)n≥1 and (χ2

n)n≥1 in K1 ∩ (a, b)

and K2∩ (a, b), respectively. Because these sequences are bounded below by a > s and (a, b)
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is a connected component of (s, β) \ A, they both converge to a. Moreover, arguing as in

Step 3, it is easy to check that suppµ1 ∩ (infn≥1 χ
1
n, χ

1
1] = {χ1

n : n ≥ 1}, and similarly for

player 2. Thus, by Lemma A.2, it must be the case that a = α, a contradiction as a > s.

The claim follows. As A is relatively closed in (s, β), sup A = max A ∈ A.

We next claim that max A = xR1 = xR2 . Indeed, suppose first, by way of contradiction,

that max A < xR1 ∧ xR2 . Arguing as in Step 3, we obtain that xRi ∈ Ki for some i =

1, 2. Hence J̄ i(max A) = Ri(max A) and J̄ i(xRi) = Ri(xRi) by Proposition 1(ii)–(iii) as

max A > s ≥ sj, so that Kj ∩ (max A, xR1 ∧ xR2 ] 6= ∅ by the final remark of Step 1 along

with the fact that Kj ⊂ (s, xRj ]. We can then repeat the above argument, leading again

to a contradiction. We conclude that max A = xR1 ∧ xR2 = xRj for some j = 1, 2, so that

max Ei ≥ xRj . Now, J̄ i(xRj) = Ri(xRj) by Proposition 1(ii)–(iii) as xRj > s ≥ sj. Because

Ej ∩ (xRj , β) = ∅, we can use similar arguments as in Step 1 to show that J̄ i is C2 and

satisfies LJ̄ i − rJ̄ i = 0 over (xRj , β). Finally, we can use similar arguments as in Step 3

to show that J̄ i(β−) = 0. As J̄ i ≥ VRi by Proposition 1, J̄ i satisfies all the conditions of

Lemma A.1(i), from which we conclude that xRj = xRi ≡ xR. The claim follows.

We then claim that inf A = s. Indeed, suppose, by way of contradiction, that inf A > s.

Because (s, inf A) cannot be a connected component of both (s, β) \Ei, i = 1, 2, by Step 1,

it must be that Ki∩ (s, inf A) 6= ∅ for some i. Fixing some χi1 ∈ Ki∩ (s, inf A), we can then

mirror the above argument to obtain two infinite intertwined increasing sequences (χ1
n)n≥1

and (χ2
n)n≥1 in K1 and K2, respectively, converging to inf A, and such that for i = 1, 2,

suppµi ∩ [χi1, supn≥1 χ
i
n) = {χin : n ≥ 1}, a contradiction by Lemma A.2. We conclude that

inf A = s and thus that A = (s, xR]. The claim follows.

We finally claim that s = α1 ∨ α2. Notice first that s ≥ α1 ∨ α2 by Lemma S.4(ii) in the

Online Supplement. Now, suppose, by way of contradiction that s > α1 ∨ α2 and s ∈ Si.
Then, by Proposition 1(i), s 6∈ Sj, so that J̄ j(s) = Gj(s). But J̄ j(s+) = Rj(s) < Gj(s) as

(s, xRj ] ⊂ suppµj and s > αj, a contradiction as J̄ j is continuous by Proposition 2. The

claim follows.

We have thus shown that, if A 6= ∅, then A = (s, xR], with s = α1 ∨ α2 and xR =

xR1 = xR2 . By Proposition 1(iii), it follows that, for each i = 1, 2, J̄ i = Ri over (s, xR].

Therefore, by Lemma 3, Proposition 1(v), and the strong Markov property, we have, letting

Γjt ≡ 1− e
−

∫
(s,xR] L

y
t µ

j(dy)
,

J̄ i(x) = f i(x, µj) ≡ Ex

[∫
[0,τs)

e−rtGi(Xt) dΓjt + e−rτsRi(s)(1− Γjτs)

]
= Ri(x) (A.4)

for all x ∈ (s, xR]. Notice that the right-hand side of (A.4) does not depend on µj, so
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that neither does f i(x, µj) in equilibrium for all x ∈ (s, xR]. Defining then the measure

µ̄j ≡ σ−2λj · Leb over (αi, β), where λj(x) ≡ rRi(x)−LRi(x)
Gi(x)−Ri(x)

1{αi<x≤xR}, it can be verified

as in Steg (2015) and Georgiadis, Kim, and Kwon (2022) that, as in Proposition 4, the

pair (((α, α2], µ̄1), ((α, α1], µ̄2)) is an MPE with equilibrium value functions (VR1 , VR2). In

particular, Proposition 1 implies that player j’s strategy makes player i indifferent between

holding fast and conceding over (αi, xRi ], which, together with the Markov property, implies

that µ̄j is solution to (A.4).

To conclude, we show that µj = µ̄j|B((s,β)), that is, (A.4) has a unique solution over the

Borel σ-field B((s, β)). The strong Markov property implies that, for each x ∈ (s, xR] and

for every stopping time τ < τs,

f i(x, µj) = Ex

[∫
[0,τ)

e−rtGi(Xt) dΓjt + e−rτf i(Xτ , µ
j)

]
= Ex

[∫
[0,τ)

e−rtGi(Xt) dΓjt + e−rτRi(Xτ )

]
.

Because f i(x, µ̄j) = f i(x, µj) = Ri(x) and similarly for f i(x, µ̄j), it follows that

Ex

[∫
[0,τ)

e−rtGi(Xt) d(Γjt − Γ̄jt)

]
= 0,

where Γ̄jt ≡ 1 − e
−

∫
(s,xR] L

y
t µ̄

j(dy)
. Because this equality holds for any stopping time τ < τs,

the process u 7→Mu ≡
∫

[0,u]
e−rtGi(Xt) d(Γjt − Γ̄jt) is a martingale over [0, τs) (Revuz and Yor

(1999, Chapter II, §3, Proposition 3.5)). Therefore, being a continuous process of bounded

variation, it is indistinguishable from 0 over [0, τs). As Gi > VRi > 0 by Lemma 1, it follows

that the process u 7→ Γju − Γ̄ju =
∫

[0,u]
ert

Gi(Xt)
dMt is indistinguishable from 0 over [0, τs),

so that the processes u 7→
∫

(s,xRi ]
Lyu µ

j(dy) and u 7→
∫

(s,xRi ]
Lyu µ̄

j(dy) are indistinguishable

from each other over [0, τs). In turn, these two processes can be seen as additive functionals

of the diffusion X over (s, β), where s is modified into a killing boundary. This implies that

µj = µ̄j, because both the measure associated to an additive functional of a diffusion and

the killing measure of a diffusion are unique (Borodin and Salminen (2002, Part I, Chapter

II, Section 1, §4, and Section 4, §23)). Hence the result. �

Proof of Theorem 3: (Necessity) Let ((µ1, S1), (µ2, S2)) ≡ ((
∑N

n=1 anδq1n , ∅),
(
∑N−1

n=1 bnδq2n , (α, s
2]))) be an MPE of type 2, and consider the brvf J̄2 to (µ1, S1). Our

goal is to show that J̄2 satisfies the variational system (44)–(50).

We start with some simple observations. First, J̄2 ∈ C0(I) by Proposition 2, as requested.

Second, we know from Proposition 1 that J̄2 ≥ VR2 over I and from (3) that VR2 ≥ R2 over

I. Hence J̄2 satisfies (44). Third, J̄2 = R2 over S2 = (α, s2] by Proposition 1(ii). Hence
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J̄2 satisfies (46). Fourth, suppµ2 = {q2
n : 1 ≤ n ≤ N − 1} ⊂ {x ∈ I : J̄2(x) = R2(x)}

by Proposition 1(iii). Hence J̄2 satisfies (47). Fifth, as in Steps 1 and 3 of the proof

of Theorem 2, it can be verified that LJ̄2 − rJ̄2 = 0 over (q1
1, β) and (s2, q1

N), and that

J̄2 = T 2
q2n

over (q1
n+1, q

1
n) for 1 ≤ n ≤ N − 1, where T 2

q is the solution to Lu − ru = 0

that is tangent to R2 at q. Hence J̄2 satisfies (45). Sixth, as in Step 3 of the proof of

Theorem 2, the fact that LJ̄2 − rJ̄2 = 0 over (q1
1, β) implies that J̄2 = Aφ + Bψ over

this interval for some constants A,B, and the fact that 0 ≤ J̄2 ≤ G2 together with (8)

implies that B = 0 and thus J̄2(β−) = 0. Hence J̄2 satisfies (50). Seventh, and as a

result, J̄2 ∈ C2(I \ ({q1
n : 1 ≤ n ≤ N} ∪ {s2})) and |J̄2′−(x)| ∨ |J̄2′+(x)| < ∞ for all

x ∈ {q1
n : 1 ≤ n ≤ N} ∪ {s2}, as requested.

Let us now check that J̄2 satisfies (48). Because J̄2 ≥ R2, with equality at s2, it must

be that J̄2′+(s2) ≥ R2′(s2). Suppose, by way of contradiction, that this inequality is strict.

Consider the stopping time τε ≡ inf{t ≥ 0 : Xt /∈ (s2 − ε, s2 + ε)}, where ε > 0 is such

that α < s2 − ε < s2 + ε < q1
N . Define fε(x) ≡ Ex [e−rτε J̄2(Xτε)] for x ∈ (s2 − ε, s2 + ε).

Recalling that τS2 is a best reply to (µ1, S1) by Proposition 1(v) and invoking the strong

Markov property, we obtain that fε(x) is the payoff of player 2 against (µ1, S1) when using

the non-Markovian stopping time τε+ τS2 ◦θτε that consists in holding fast up to τε and then

conceding the first time X hits S2 in the continuation game. By construction, Lfε− rfε = 0

over (s2 − ε, s2 + ε). Applying Lemma A.1(iv) with i = 2, a = s2, b = q1
N , and u = J̄2, we

deduce that fε(s
2) > J̄2(s2) for ε sufficiently small, a contradiction as (µ2, S2) is a pbr to

(µ1, S1). Hence J̄2 satisfies (48).

Let us finally check that J̄2 satisfies (49). The following lemma provides two expressions

for J̄2 that result from the Markov property and the Itô–Tanaka–Meyer formula.

Lemma A.3 Let ((µ1, S1), (µ2, S2)) ≡ ((
∑N

n=1 anδq1n , ∅), (
∑N−1

n=1 bnδq2n , (α, s
2])) be an MPE

of type 2. Then, for all x ∈ I and τ ∈ T ,

J̄2(x) = Ex

[
N∑
n=1

∫
[0,τ∧τS2 )

e−rtG2(q1
n)Λ1

tan dL
q1n
t

+ 1{τS2<τ} e−rτS2R2(XτS2 )Λ1
τS2

+ 1{τS2≥τ} e−rτ J̄2(Xτ )Λ
1
τ

]
(A.5)

J̄2(x) = Ex

[
N∑
n=1

∫
[0,τ∧τS2 )

e−rt
[
J̄2(q1

n)an −
1

2
∆J̄2′(q1

n)

]
Λ1
t dL

q1n
t

+ 1{τS2<τ} e−rτS2R2(XτS2 )Λ1
τS2

+ 1{τS2≥τ} e−rτ J̄2(Xτ )Λ
1
τ

]
. (A.6)
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An immediate implication of (A.5)–(A.6) is that, for each τ ∈ T ,

Ex

[
N∑
n=1

∫
[0,τ)

1{τS2>t} e−rtG2(q1
n)Λ1

tan dL
q1n
t

]

= Ex

[
N∑
n=1

∫
[0,τ)

1{τS2>t} e−rt
[
J̄2(q1

n)an −
1

2
∆J̄2′(q1

n)

]
Λ1
t dL

q1n
t

]
.

Equivalently, for each τ ∈ T , Ex [Mτ ] = Ex [M0] = 0, where

Mt ≡
N∑
n=1

∫
[0,t)

1{τS2>s} e−rs
{
an[G2(q1

n)− J̄2(q1
n)] +

1

2
∆J̄2′(q1

n)

}
Λ1
s dLq

1
n
s (A.7)

for all t ≥ 0. It follows that the process (Mt)t≥0 is a martingale (Revuz and Yor (1999,

Chapter II, §3, Proposition 3.5)). Because it is a continuous process of bounded variation,

it must then be that, for each τ ∈ T , Mτ = M0 = 0 Px-a.s. Now, suppose, by way of

contradiction, that an[G2(q1
n) − J̄2(q1

n)] + 1
2

∆J̄2′(q1
n) 6= 0 for some n such that 1 ≤ n ≤ N .

Let x ≡ q1
n and τε ≡ inf {t ≥ 0 : Xt /∈ (q1

n − ε, q1
n + ε)}, where ε > 0 is such that q1

n+1 <

q1
n − ε < q1

n + ε < q1
n−1, with q1

0 ≡ β and q1
N+1 ≡ s2 by convention. From the properties of

local time, we have that, for each t > 0, L
q1n
t > 0 Pq1n

-a.s. (see, for instance, Revuz and Yor

(1999, Chapter VI, §2, Proof of Proposition 2.5)). It then follows from (A.7) that Mτε 6= 0

Pq1n
-a.s., a contradiction. Hence J̄2 satisfies (49). This completes the proof that J̄2 satisfies

the variational system (44)–(50). The proof that J̄1 satisfies the variational system (38)–(43)

is similar, and is omitted for the sake of brevity.

(Sufficiency) That the variational system (38)–(50) characterizes players’ value functions

in MPEs of type 2 is an immediate consequence of the following verification lemma.

Lemma A.4 Let w1 and w2 be solutions to the systems (38)–(43) and (44)–(50), respectively,

for some N ∈ N \ {0}, four sequences (q1
n)Nn=1, (q2

n)N−1
n=0 , (an)Nn=1, (bn)N−1

n=0 , and a number s2

as in the statement of Theorem 3. Then, for each i = 1, 2,

wi(x) ≥ sup
τ∈T

J i(x, τ, (µj, Sj)), (A.8)

wi(x) = J i(x, (µ1, S1), (µ2, S2)), (A.9)

where ((µ1, S1), (µ2, S2)) ≡ ((
∑N

n=1 anδq1n , ∅), (
∑N−1

n=1 bnδq2n , (α, s
2])).

(Refinement) On the one hand, we have α1 ≤ α2 ≤ s2, where the second inequality

follows from Lemma S.4(ii) in the Online Supplement, and thus it can be easily checked

that, for each x ∈ I, J1(x, (µ1, (α, α1]), (µ2, S2)) = J1(x, (µ1, ∅), (µ2, S2)) = J̄1(x), which

implies that (µ1, (α, α1]) is a pbr to (µ2, S2). On the other hand, using (11) along with the
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fact that G2 = R2 over (α, α1] as α1 ≤ α2, it is easily checked that, for all x ∈ I and τ 2 ∈ T ,

J2(x, (µ1, (α, α1]), τ 2) = J2(x, (µ1, ∅), τ 2 ∧ τ(α,α1]) ≤ J̄2(x) and J2(x, (µ1, (α, α1]), (µ2, S2)) =

J2(x, (µ1, ∅), (µ2, S2)) = J̄2(x), which implies that (µ2, S2) is a pbr to (µ1, (α, α1]). Hence

the result. �
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S.1 Preliminaries

S.1.1 The Fundamental Filtration

We start with some definitions (Revuz and Yor (1999, Chapter I, §4)). The process X is

defined over the canonical space (Ω,F) of continuous trajectories, and Pµ denotes the law

of the process X given an initial distribution µ ∈ ∆(I), where ∆(I) is the space of Borel

probability measures over I. We denote by (F0
t )t≥0 the natural filtration (σ(Xs; s ≤ t))t≥0

generated by X, and we let F0
∞ ≡ σ(

⋃
t≥0F0

t ). For each µ ∈ ∆(I), we denote by Fµ∞ the

completion of F0
∞ with respect to Pµ, and, for each t ≥ 0, we let Fµt be the augmentation

of F0
t by the Pµ-null, Fµ∞-measurable sets. The usual augmented filtration (Ft)t≥0 is then

defined by Ft ≡
⋂
µ∈∆(I)F

µ
t for all t ≥ 0. Because the process X is a Feller process in the

sense of Revuz and Yor (1999, Chapter III, §2, Definition 2.5) and a standard process in

the sense of Blumenthal and Getoor (1968, Chapter I, Definition 9.2), the filtration (Ft)t≥0

is actually right-continuous. As usual in this literature, we say that a property of the

trajectories ω ∈ Ω is satisfied almost surely if it is satisfied Pµ-almost surely for all µ ∈ I
or, equivalently, Px-almost surely for all x ∈ I.

S.1.2 A Useful Change of Variables

Dayanik and Karatzas (2003) introduced an elegant change of variables that we use in several

proofs. Specifically, for each x ∈ I, define ζ(x) ≡ φ(x)
ψ(x)

, which is strictly decreasing in x and

maps I onto (0,∞). Then, for any function g : I → R, define the function ĝ by

ĝ(y) ≡ g

ψ
◦ ζ−1(y), y ∈ (0,∞). (S.1)

Observe that φ̂(y) = y and ψ̂(y) = 1 for all y ∈ (0,∞). A direct computation shows that, if

g ∈ C2(I), then

ĝ′′(ζ(x)) =
2φ(x)3

[%σ(x)p′(x)]2
(Lg − rg)(x), x ∈ I, (S.2)

where p is the scale function of the diffusion X, which is uniquely defined up to an affine

transformation by

p(x) ≡
∫ x

c

exp

(
−
∫ y

c

2µ(z)

σ2(z)
dz

)
dy, x ∈ I, (S.3)

for some fixed c ∈ I (Karatzas and Shreve (1998, Chapter 5, Section 5, §B)), and

% ≡ ψ′(x)φ(x)− ψ(x)φ′(x)

p′(x)
> 0, (S.4)
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the ratio of the Wronskian of ψ and φ and of the derivative of the scale function, is a constant

independent of x by Abel’s theorem. From A3 and (S.2), we deduce that R̂i′′(ζ(x)) < 0 for

all x ∈ (α, xi0) or, equivalently, that R̂i′′(y) < 0 for all y ∈ (ζ(xi0),∞) and thus, in particular,

for all y ∈ (ζ(xRi),∞) as xRi < xi0. From A7 and (S.2), we deduce that Ĝi′′ ≤ 0 everywhere

Ĝi′′ is defined. Another useful remark is that, from Lemma 1 and A6, we have Gi > 0 over

I. Thus, Ĝi > 0 over (0,∞), and (8) implies

lim
y→0

Ĝi(y) = lim
y→∞

Ĝi(y)

y
= 0. (S.5)

S.2 Basic Lemmas

Proof of Lemma 1: The proof proceeds along the same lines as in Décamps, Gensbittel,

and Mariotti (2024, Lemma 1). The result follows. �

Proof of Lemma 2: For each µ ∈ ∆(I), ω and ui are independent under Pi
µ ≡

Pµ ⊗ Leb, and hence, for each t ≥ 0,

Γit(ω) = Pi
µ [γi ≤ t |F ](ω)

for Pµ-almost every ω ∈ Ω. We may assume that γ(·, ui) ∈ T for all ui, as we can replace γi

by the constant stopping time 0 for all ui in a Borel set of Lebesgue measure zero without

modifying the process Γi. Therefore, for all ui ∈ [0, 1] and t ≥ 0, we have {ω ∈ Ω : γi(ω, ui) ≤
t} ∈ Ft as γ(·, ui) ∈ T . It follows from Solan, Tsirelson, and Vieille (2012, Corollary 2) that

this implies that Γit is measurable with respect to the augmentation of Ft by the Pµ-null,

Fµ∞-measurable sets, which coincides with Fµt . As this is true for all µ ∈ ∆(I), we deduce

that Γi is adapted with respect to Ft. In particular, letting µ ≡ δx yields

Γit(ω) = Pi
x [γi ≤ t |Ft](ω)

for Px-almost every ω ∈ Ω by the law of iterated expectations. The result follows. �

Proof of Lemma 3: Suppose that, for each i = 1, 2, γi is a randomized stopping time

with ccdf Γi. We have

Ex

[
1{γi≤γj} e−rγ

i

Ri(Xγi)
]

=

∫ 1

0

∫ 1

0

Ex

[
1{γi(ui)≤γj(uj)} e−rγ

i(ui)Ri(Xγi(ui))
]
duj dui

=

∫ 1

0

Ex

[
e−rγ

i(ui)Ri(Xγi(ui))

∫ 1

0

1{γi(ui)≤γj(uj)} duj
]
dui

2



=

∫ 1

0

Ex

[
e−rγ

i(ui)Ri(Xγi(ui))Λ
j
γi(ui)−

]
dui

= Ex

[∫ 1

0

e−rγ
i(ui)Ri(Xγi(ui))Λ

j
γi(ui)− dui

]
= Ex

[∫
[0,∞)

e−rtRi(Xt)Λ
j
t− dΓit

]
,

where the second and fourth equalities follow from Fubini’s theorem, and the third equality

follows from the definition of Λj. The last equality follows from observing that, for Px-almost

every ω ∈ Ω, t 7→ Γit(ω) is the cdf of the random variable γi(ω, ·) defined on the probability

space ([0, 1],B([0, 1]), Leb) and taking values in [0,∞], where Γi∞(ω) ≡ 1 by convention;

Fubini’s theorem then implies that the random variable ui 7→ e−rγ
i(ω,ui)Ri(Xγi(ω,ui))Λ

j
γi(ω,ui)−

is Lebesgue integrable over [0, 1] for Px-almost every ω ∈ Ω,1 and we can thus apply the

usual formula for the expectation. The proof for the second term appearing in (11) and (12)

is similar and thus omitted.

Let us then verify that (13) defines a randomized stopping time in the sense of Definition

1. That γ̂i(ui) ∈ T for Leb-almost every ui ∈ [0, 1] is standard (Jacod and Shiryaev (1994,

Proposition I.1.28)). The random variable (ω, ui) 7→ γ̂i(ui)(ω) is F∞ ⊗ B([0, 1])-measurable

as it is nondecreasing and right-continuous with respect to ui. That the ccdf associated to

γ̂i is Γi is proven in De Angelis, Ferrari, and Moriarty (2018, Lemma 4.1), who use this

representation as the definition of a randomized stopping time. The result follows. �

Proof of Lemma 4: We focus on player 1, the proof for player 2 being symmetrical.

Observe from (12) that, for each τ 1 ∈ T , player 1’s payoff from playing τ 1 against Γ2 is

J1(x, τ 1,Γ2) = Ex

[
e−rτ

1

R1(Xτ1)Λ
2
τ1− +

∫
[0,τ1)

e−rtG1(Xt) dΓ2
t

]
. (S.6)

Letting γ̂1 be the randomized stopping time associated to the ccdf Γ1 by (13), we have

J1(x,Γ1,Γ2) =

∫ 1

0

Ex

[
e−rγ̂

1(u1)R1(Xγ̂1(u1))Λ
2
γ1(u1)− +

∫
[0,γ̂1(u1))

e−rtG1(Xt) dΓ2
t

]
du1

=

∫ 1

0

J1(x, γ̂1(u1),Γ2) du1

≤ sup
u1∈[0,1]

J1(x, γ̂1(u1),Γ2)

≤ sup
τ1∈T

J1(x, τ 1,Γ2).

where the first equality follows along the same steps as in the proof of Lemma 3, and the

second equality follows from (S.6). The result follows. �

1Recall that, by convention, this random variable is equal to 0 if γi(ω, ui) =∞.
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The following consequence of the strong Markov property will be used several times

throughout this Online Supplement.

Lemma S.1 If the players use Markovian randomized stopping times with ccdfs (Γ1,Γ2),

then, for all x ∈ I and τ ∈ T , their expected payoffs write as

J i(x,Γ1,Γ2) = Ex

[ ∫
[0,τ)

e−rtRi(Xt)Λ
j
t− dΓit +

∫
[0,τ)

e−rtGi(Xt)Λ
i
t dΓjt

+ e−rτJ i(Xτ ,Γ
1,Γ2)Λj

τ−Λi
τ−

]
. (S.7)

Proof: It follows from Lemma 3 that

J i(x,Γ1,Γ2) = Ex

[ ∫
[0,τ)

e−rtRi(Xt)Λ
j
t− dΓit +

∫
[0,τ)

e−rtGi(Xt)Λ
i
t dΓjt

+ e−rτRi(Xτ )Λ
j
τ−(Γiτ − Γiτ−) + e−rτGi(Xτ )Λ

i
τ (Γ

j
τ − Γjτ−)

+

∫
(τ,∞)

e−rtRi(Xt)Λ
j
t− dΓit +

∫
(τ,∞)

e−rtGi(Xt)Λ
i
t dΓjt

]
. (S.8)

Notice from (15) that the only jump of Λi occurs at τSi , at which time Λi jumps down to 0

and remains there forever after, and similarly for Λj. Hence

e−rτRi(Xτ )Λ
j
τ−(Γiτ − Γiτ−) + e−rτGi(Xτ )Λ

i
τ (Γ

j
τ − Γjτ−)

= 1{τ
Sj
≥τ=τSi} e−rτRi(Xτ )Λ

j
τ−Λi

τ− + 1{τSi>τ=τ
Sj
} e−rτGi(Xτ )Λ

i
τ−Λj

τ−

= 1{τ
Sj
≥τ=τSi} e−rτJ i(Xτ ,Γ

1,Γ2)Λj
τ−Λi

τ− + 1{τSi>τ=τ
Sj
} e−rτJ i(Xτ ,Γ

1,Γ2)Λi
τ−Λj

τ−

= 1{τ≥τSi∧τSj } e−rτJ i(Xτ ,Γ
1,Γ2)Λj

τ−Λi
τ−, (S.9)

where the last equality follows from the fact that e−rτJ i(Xτ ,Γ
1,Γ2)Λi

τ−Λj
τ− vanishes over

{τ > τSi ∧ τSj}. On the other hand, we have∫
(τ,∞)

e−rtRi(Xt)Λ
j
t− dΓit +

∫
(τ,∞)

e−rtGi(Xt)Λ
i
t dΓjt

= 1{τ<τSi∧τSj } e−rτ
[∫

(0,∞)

e−rtRi(Xτ+t)Λ
j
(τ+t)− dΓiτ+t +

∫
(0,∞)

e−rtGi(Xτ+t)Λ
i
τ+t dΓjτ+t

]
= 1{τ<τSi∧τSj } e−rτΛj

τΛ
i
τ

[ ∫
(0,∞)

e−rtRi(Xt ◦ θτ )(Λj
t− ◦ θτ ) d(Γit ◦ θτ )

+

∫
(0,∞)

e−rtGi(Xt ◦ θτ )(Λi
t ◦ θτ ) d(Γ2

t ◦ θτ )
]

= 1{τ<τSi∧τSj } e−rτΛj
τ−Λi

τ−

[ ∫
[0,∞)

e−rtRi(Xt ◦ θτ )(Λj
t− ◦ θτ ) d(Γit ◦ θτ )

+

∫
[0,∞)

e−rtGi(Xt ◦ θτ )(Λi
t ◦ θτ ) d(Γjt ◦ θτ )

]
,

4



where the second equality follows from (14). Taking expectations and applying the strong

Markov property at τ yields

Ex

[ ∫
(τ,∞)

e−rtRi(Xt)Λ
j
t− dΓit +

∫
(τ,∞)

e−rtGi(Xt)Λ
i
t dΓjt

]
= Ex

[
1{τ<τSi∧τSj } e−rτJ i(Xτ ,Γ

1,Γ2)Λj
τ−Λi

τ−
]
. (S.10)

Inserting (S.9) and (S.10) into (S.8) yields (S.7). The result follows. �

S.3 Proofs of Propositions 1 and 2

Proof of Proposition 1: Suppose, with no loss of generality, that i = 1. We first

prove that VR1 ≤ J̄1 ≤ G1. For the first inequality, let τ 1 ≡ τ(α,xR1 ], the hitting time by X of

(α, xR1 ], and let γ̂2(u) be defined by (13). Using Lemma 3 and G1 ≥ VR1 by A6, we obtain

J̄1(x) ≥ J1(x, τ 1,Γ2)

=

∫ 1

0

J1(x, τ 1, γ̂2(u)) du

≥
∫ 1

0

Ex

[
1{τ1≤γ̂2(u)} e−rτ

1

R1(Xτ1) + 1{τ1>γ̂2(u)} e−rγ̂
2(u)VR1(Xγ̂2(u))

]
du

for all x ∈ I. For each u ∈ [0, 1], we have

e−rγ̂
2(u)VR1(Xγ̂2(u)) = Ex

[
e−rτ

1

R1(Xτ1) |Fγ̂2(u)

]
Px-almost surely over {τ 1 > γ̂2(u)}. Thus, by the tower property of conditional expectation,

Ex

[
1{τ1≤γ̂2(u)} e−rτ

1

R1(Xτ1) + 1{τ1>γ̂2(u)} e−rγ̂
2(u)VR1(Xγ̂2(u))

]
= Ex

[
e−rτ

1

R1(Xτ1)
]

= VR1(x),

and we conclude that, for each x ∈ I,

J̄1(x) ≥
∫ 1

0

VR1(x) du = VR1(x).

For the second inequality, we have R1 ≤ VR1 ≤ G1 by A6. Hence, for each τ 1 ∈ T ,

J1(x, τ 1,Γ2) =

∫ 1

0

J1(x, τ 1, γ̂2(u)) du

≤
∫ 1

0

Ex

[
1{τ1≤γ̂2(u)} e−rτ

1

G1(Xτ1) + 1{τ1>γ̂2(u)} e−rγ̂
2(u)G1(Xγ̂2(u))

]
du

=

∫ 1

0

Ex

[
e−r(τ

1∧γ̂2(u))G1(Xτ1∧γ̂2(u))
]

du

≤
∫ 1

0

G1(x) du

= G1(x)
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for all x ∈ I, where the second inequality follows from the fact that (e−rtG1(Xt))t≥0 is a

supermartingale by A7. We now prove properties (i)–(v) in turn.

(i) It is not optimal for player 1 to concede at x ∈ S2 if R1(x) < G1(x), that is, if x > α1.

Therefore, if (µ1, S1) is a pbr to (µ2, S2), then S1 ∩ S2 ∩ (α1, β) = ∅.
(ii) This directly follows from the definition (11) of players’ payoffs.

(iii) By Lemma 3, for each x ∈ suppµ1, we have

J̄1(x) =

∫ 1

0

J1(x, γ̂1(u),Γ2) du,

where γ̂1(u) = inf {t ≥ 0 : Γ1
t > u}. Thus the inequality J1(x, γ̂1(u),Γ2) ≤ J̄1(x), which

holds for all u ∈ [0, 1], must be an equality for all u in a set U of Lebesgue measure 1. By

definition of Γ1, γ̂1(u) = inf {t ≥ 0 : 1 − e−
∫
I\S1 L

y
t µ

1(dy) > u} ∧ τS1 for all u ∈ [0, 1). Notice

that γ̂1(u) > 0 Px-almost surely for all u ∈ (0, 1) as the mapping t 7→ 1{t<τS1} e−
∫
I\S1 L

y
t µ

1(dy)

is continuous over [0, τS1) by Theorem 1. We claim that, because x ∈ suppµ1, we also have

limu→0 γ̂
1(u) = 0 Px-almost surely. Indeed, γ̂1(u, ω) is nondecreasing in u for all ω and

converges to γ̂1(0, ω) = inf {t ≥ 0 :
∫
I\S1 L

y
t (ω)µ1(dy) > 0} ∧ τS1(ω). Let us fix a continuous

version (t, y) 7→ Lyt of the local time of X (Revuz and Yor (1999, Chapter VI, §1, Theorem

1.7)), and observe that Lxt > 0 Px-almost surely for all t > 0. Thus there exist a sequence

(tn)n≥1 converging to 0 and, for each n ≥ 1, a set Ωtn ∈ F of Px-probability 1 such that

Lxtn(ω) > 0 and y 7→ Lytn(ω) is continuous at x for all ω ∈ Ωtn . Now, x ∈ suppµ1 and suppµ1

being closed jointly imply that any open interval of I containing x has positive µ1-measure.

From these observations, it follows that, for each n ≥ 1,
∫
I\S1 L

y
tn(ω)µ1(dy) > 0 for all

ω ∈ Ωtn , so that γ̂1(0, ω) = 0 for all ω ∈
⋂
n≥1 Ωtn and thus Px-almost surely, as claimed.

Finally, for each u ∈ U ,

J̄1(x) = J1(x, γ̂1(u),Γ2) = Ex

[∫
[0,γ̂1(u))

e−rtG1(Xt) dΓ2
t + e−rγ̂

1(u)R1(Xγ̂1(u))Λ
2
γ̂1(u)−

]
. (S.11)

Using bounded convergence to take the limit as u ∈ U goes to 0, two cases must be

distinguished. If x 6∈ S2, then Γ2
t is continuous at t = 0, from which it follows that

J̄1(x) = R1(x). If x ∈ S2, then Γ2
0− = 0, Γ2

0 = 1, and Λ2
γ̂1(u)− = 0 for all u ∈ (0, 1),

from which it follows that J̄1(x) = G1(x).

(iv) We claim that, for each x ∈ I,

J̄1(x) ≥ J1(x, (0, (α, xR1 ]), (µ2, S2)) ≥ J1(x, (0, (α, xR1 ]), (0, ∅)). (S.12)

The first inequality in (S.12) directly follows from the fact that (µ1, S1) is a pbr to (µ2, S2).

For the second one, recall that, by A6,

G1(x) ≥ VR1(x) = sup
τ∈T

Ex

[
e−rτR1(Xτ )

]
= Ex

[
e−rτ

1

R1(Xτ1)
]
,
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where τ 1 ≡ τ(α,xR1 ]. We have

J1(x, τ 1,Γ2) =

∫ 1

0

J1(x, τ 1, γ̂2(u)) du

=

∫ 1

0

Ex

[
1{τ1≤γ̂2(u)} e−rτ

1

R1(Xτ1) + 1{τ1>γ̂2(u)} e−rγ̂
2(u)G1(Xγ̂2(u))

]
du.

Over {τ 1 > γ̂2(u)}, we have

e−rγ̂
2(u)G1(Xγ̂2(u)) ≥ e−rγ̂

2(u)VR1(Xγ̂2(u)) = Ex

[
e−rτ

1

R1(Xτ1) |Fγ̂2(u)

]
.

Px-almost surely by A6. Therefore, using the tower property of conditional expectation,

J1(x, τ 1, γ̂2(u)) ≥ Ex

[
e−rτ

1

R1(Xτ1)
]
,

which implies the second inequality of (S.12) upon integrating with respect to u. The

conclusion follows from noticing that J1(x, (0, (α, xR1 ]), (0, ∅)) = VR1(x) > R1(x) for all

x > xR1 and applying (ii) and the first assertion in (iii).

(v) Arguing as in (iii) yields that J̄1(x) =
∫ 1

0
J1(x, γ̂1(u),Γ2) du for all u in a set U of

Lebesgue measure 1. Moreover, using the explicit expression for γ̂1(u) given in (iii), it is

easy to check that limu→1 γ̂
1(u) = τS1 . Therefore, taking the limit in (S.11) as u ∈ U goes

to 1, we deduce that

J̄1(x) = Ex

[∫
[0,τS1 )

e−rtG1(Xt) dΓ2
t + e−rτS1R1(XτS1

)Λ2
τS1−

]
= J1(x, τS1 ,Γ2)

by bounded convergence, from which the first assertion follows. For the second assertion, let

Γ̃1 be the ccdf associated to (µ̃1, S1) and γ̃1(u) = inf{t ≥ 0 : Γ̃1
t > u}. By assumption,

J̄1(Xγ̃1(u)) = R1(Xγ̃1(u)). (S.13)

for all u ∈ [0, 1]. On the one hand,

J1(x, Γ̃1,Γ2) =

∫ 1

0

Ex

[∫
[0,γ̃1(u))

e−rtG1(Xt) dΓ2
t + e−rγ̃

1(u)R1(Xγ̃1(u))Λ
2
γ̃1(u)−

]
du. (S.14)

On the other hand, using that J̄1 = J1(·, τS1 ,Γ2) and applying the strong Markov property

at γ̃1(u) in (12) yields

J̄1(x) = Ex

[∫
[0,γ̃1(u))

e−rtG1(Xt) dΓ2
t + e−rγ̃

1(u)J̄1(Xγ̃1(u))Λ
2
γ̃1(u)−

]
= Ex

[∫
[0,γ̃1(u))

e−rtG1(Xt) dΓ2
t + e−rγ̃

1(u)R1(Xγ̃1(u))Λ
2
γ̃1(u)−

]
, (S.15)
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where the second equality follows from (S.13). Integrating (S.15) with respect to u yields

(S.14), from which the second assertion follows. Hence the result. �

Proof of Proposition 2: Our argument requires some technical results on processes

A ≡ (At)t≥0 of the form At ≡
∫
I\S L

x
t µ(dx), where S ⊂ I is a closed set and µ is a Radon

measure over I \S. Precisely, if τ is the first exit time of (a, b) ⊂ I \S, with [a, b] ⊂ I, then

Ex [Aτ ] =

∫
I\S

Ex [Lyτ ]µ(dy) =

∫
(a,b)

Ex [Lyτ ]µ(dy) =

∫
(a,b)

2[p′(y)]−1Φa,b(x, y)µ(dy), (S.16)

where p′ is the derivative of the scale function (S.3) of the diffusion X, and

Φa,b(x, y) ≡ [p(x ∧ y)− p(a)][p(b)− p(x ∨ y)]

p(b)− p(a)

is the Green function of the diffusion X killed at the boundaries a and b (Borodin and

Salminen (2002, Part I, Chapter II, Section 1, §11, and Section 2, §13)). It is easy to check

that Ex [Aτ ] is finite if and only if, for some x ∈ (a, b),∫ x

a

[p(y)− p(a)]µ(dy) <∞ and

∫ b

x

[p(b)− p(y)]µ(dy) <∞.

A more precise result can be stated as follows (Çetin (2018, Theorem 2.1)):

Aτa1{τa<τb} =∞ a.s. if

∫ x

a

[p(y)− p(a)]µ(dy) =∞ for some x ∈ (a, b), (S.17)

Aτa1{τa<τb} <∞ a.s. otherwise. (S.18)

A symmetric result holds for b. The following lemma is key to our continuity result.

Lemma S.2 For each t ≥ 0, let At ≡
∫

(a,b)
Lyt µ(dy) for some Radon measure µ over (a, b) ⊂

I. Then the function h defined, for nonnegative constants Ca and Cb, by

h(x) = Ex

[
Ca1{τa<τb} e−Aτa + Cb1{τb<τa}e

−Aτb
]
, x ∈ (a, b),

is nonnegative, p-convex,2 and continuous over (a, b). Moreover, the limits h(a+) and h(b−)

exist and are given by

h(a+) =

{
0 if

∫ x
a

[p(y)− p(a)]µ(dy) =∞ for some x ∈ (a, b)
Ca otherwise

, (S.19)

h(b−) =

{
0 if

∫ b
x

[p(b)− p(y)]µ(dy) =∞ for some x ∈ (a, b)
Cb otherwise

. (S.20)

2That is,

h(λx1 + (1− λ)x2) ≤ h(x1)
p(x2)− p(λx1 + (1− λ)x2)

p(x2)− p(x1)
+ h(x2)

p(λx1 + (1− λ)x2)− p(x1)
p(x2)− p(x1)

for all x1, x2 ∈ (a, b) and λ ∈ [0, 1].
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Proof: First, h is clearly nonnegative. Next, applying the strong Markov property to

h(λx1 + (1− λ)x2) at τx1 ∧ τx2 yields

h(λx1 + (1− λ)x2) = Eλx1+(1−λ)x2

[
h(x1)1{τx1<τx2} e−Aτx1 + h(x2)1{τx2<τx1} e−Aτx2

]
.

Using that e−At ≤ 1, we then obtain from standard computations (Karatzas and Shreve

(1998, Chapter 5, Section 5, §C)) that h is p-convex. Finally, that h is continuous follows

from its being p-convex (Revuz and Yor (1999, Appendix, §3)).

Consider now (S.19). If
∫ x
a

[p(y) − p(a)]µ(dy) = ∞ for some x ∈ (a, b), then by (S.17)

h(x) = Ex

[
Cb1{τb<τa} e−Aτb

]
and thus 0 ≤ h(x) ≤ CbPx [τb < τa], which goes to 0 as x goes

to a. Hence h(a+) = 0. If
∫ x
a

[p(y) − p(a)]µ(dy) < ∞ for some x ∈ (a, b), then by (S.18)

e−Aτa > 0 Px-almost surely. If (an)n≥1 is a decreasing sequence converging to a and strictly

bounded above by x, then, applying the strong Markov property to h(x) at τan , we have

h(x) = Ex

[
h(an)1{τan<τb} e−Aτan + Cb1{τb<τan} e−Aτb

]
.

Using bounded convergence to take the limit along any subsequence (h(ank))k≥1 converging

to some z <∞, we obtain that

h(x) = Ex

[
z1{τa<τb} e−Aτa + Cb1{τb<τan} e−Aτb

]
,

and thus z = Ca as Ex

[
1{τa<τb} e−Aτa

]
> 0. It follows that limn→∞ h(an) = Ca. Because this

is true for any decreasing sequence (an)n≥0 converging to a, this implies that h(a+) exists

and is equal to Ca. This concludes the proof of (S.19). The argument for (S.20) proceeds

along similar lines, using (S.18). The result follows. �

The proof of Proposition 2 relies on two preliminary lemmas.

Lemma S.3 If (µi, Si) is a pbr to (µj, Sj) with associated brvf J̄ i, then the restriction of J̄ i

to [a, b] is continuous for any interval [a, b] such that (a, b) ⊂ I \ (S1 ∪ S2).

Proof: Suppose, with no loss of generality, that i = 1. Given x /∈ S1 ∪ S2, and for each

integer n ≥ 1, let τ̃n ≡ τx−η∧τx+εn , where η > 0, (εn)n≥1 is a decreasing sequence converging

to 0, and [x− η, x+ εn] ⊂ I \ (S1 ∪ S2). Applying Lemma S.1 with τ ≡ τ̃n yields

J̄1(x)

= Ex

[∫
[0,τ̃n)

e−rtR1(Xt)Λ
2
t− dΓ1

t +

∫
[0,τ̃n)

e−rtG1(Xt)Λ
1
t dΓ2

t + e−rτ̃n J̄1(Xτ̃n)Λ2
τ̃n−Λ1

τ̃n−

]
= Ex

[∫
[0,τ̃n)

e−rtR1(Xt)Λ
2
t dΓ1

t +

∫
[0,τ̃n)

e−rtG1(Xt)Λ
1
t dΓ2

t + e−rτ̃n J̄1(Xτ̃n)Λ2
τ̃nΛ1

τ̃n

]
, (S.21)
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where the second equality follows from the fact that Λi
t− = Λi

t over {t ≤ τ̃n}. Consider

a subsequence (J̄1(x + εnk))k≥1 converging to some z. Because η is fixed, τ̃nk goes to 0

Px-almost surely as k goes to ∞, and Px [τ̃nk = τx+εnk
] goes to 1. The equality Xτ̃nk

=

1{τ̃nk=τx−η}(x − η) + 1{τ̃nk=τx+εnk
}(x + εnk) then implies that J̄1(Xτ̃nk

) goes to z Px-almost

surely as k goes to infinity. Using bounded convergence to take the limit in (S.21), and

taking advantage of the fact that both Γ1
t and Γ2

t are continuous at t = 0 as x 6∈ S1 ∪ S2,

we obtain that J̄1(x) = z, from which it follows as in the proof of Lemma S.2 that J̄1 is

right-continuous at x. The proof that J̄1 is left-continuous at x is similar.

Now, let us consider an interval (a, b) ⊂ I \ (S1 ∪ S2). That J̄1 is continuous over (a, b)

follows from the preceding argument; but we need to check that J̄1 is right-continuous at a

and left-continuous at b. We focus on a, the arguments for b being symmetrical. Because

S1 ∪ S2 is closed, the only difficulty arises when a ∈ S1 ∪ S2. We distinguish two cases.

Case 1 Suppose first that a ∈ S1, so that J̄1(a) = R1(a) by Proposition 1(ii). By

Proposition 1(v), J̄1 = J1(·, (0, S1), (µ2, S2)). Applying Lemma S.1 with τ ≡ τa ∧ τb yields

J̄1(x) = Ex

[∫
[0,τ)

e−rtG1(Xt) dΓ2
t + e−rτe−A

2
τ J̄1(Xτ )

]
for all x ∈ (a, b). Moreover,

0 ≤ Ex

[∫
[0,τ)

e−rtG1(Xt) dΓ2
t

]
≤ C Ex

[
1− e−A

2
τ
]
,

where C is an upper bound for G1 over [a, b]. Because a /∈ S2, µ2 is locally finite at a.

Applying Lemma S.2 with Ca = Cb ≡ 1 and µ ≡ µ2 then yields that Ex

[
1− e−A

2
τ
]

goes to 0

as x > a goes to a. Letting µ ≡ µ2 + rLeb, Lemma S.2 also yields that Ex

[
e−rτe−A

2
τ J̄1(Xτ )

]
goes to J̄1(a) = R1(a) as x > a goes to a. Thus J̄1 is right-continuous at a.

Case 2 Suppose next that a ∈ S2, so that J̄1(a) = G1(a) by Proposition 1(i) and (iii).

Fix some ε ∈ (0, b− a). As in Case 1 with τ ≡ τa ∧ τa+ε, we have

J̄1(x) = Ex

[∫
[0,τ)

e−rtG1(Xt) dΓ2
t + e−rτe−A

2
τ J̄1(Xτ )

]
for all x ∈ (a, a+ ε). If

∫ x
a

[p(y)− p(a)]µ2(dy) <∞, the proof proceeds along the same lines

as in Case 1. Thus let us assume that
∫ x
a

[p(y)− p(a)]µ2(dy) =∞. Letting µ ≡ µ2 + rLeb,

Lemma S.2 yields that Ex

[
e−rτe−A

2
τ J̄1(Xτ )

]
goes to 0 as x > a goes to a. Moreover,

Ex

[∫
[0,τ)

e−rtG1(Xt) dΓ2
t

]
≥ min

y∈[a,a+ε]
G1(y) Ex

[
e−rτ − e−rτe−A

2
τ
]
.
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By (5) and Lemma S.2, the last expectation goes to 1 as x > 0 goes to a. We deduce that

lim infx→a+ J̄
1(x) ≥ miny∈[a,a+ε] G

1(y) and thus that lim infx→a+ J̄
1(x) ≥ G1(a) by letting ε

go to zero. Finally, we also have lim supx→a+ J̄
1(x) ≤ G1(a) as J̄1 ≤ G1 by Proposition 1,

and this concludes the proof that J̄1 is right-continuous at a. The result follows. �

Lemma S.4 The following holds:

(i) If (µi, Si) is a pbr to (µj, Sj), then (α, αi] ⊂ S1 ∪ S2;

(ii) If α1 < α2 and ((µ1, S1), (µ2, S2)) is an MPE, then S1 and S2 cannot both intersect

(α1 ∧ α2, α1 ∨ α2], so that either [α1 ∧ α2, α1 ∨ α2] ⊂ S1 or [α1 ∧ α2, α1 ∨ α2] ⊂ S2.

Proof: (i) Suppose, with no loss of generality, that i = 1, and recall that J̄1 = R1 =

VR1 = G1 over (α, α1]. Suppose, by way of contradiction, that x ∈ (α, α1) \ (S1 ∪ S2). Let

(a, b) ⊂ I \ (S1 ∪S2), with b < α1 and x ∈ (a, b). Because (0, S1) is also a pbr to (µ2, S2) by

Proposition 1(v), applying Lemma S.1 with τ ≡ τI\(a,b) yields

J̄1(x) = Ex

[∫
[0,τ)

e−rtG1(Xt) dΓ2
t + e−rτ J̄1(Xτ )Λ

2
τ−

]
= Ex

[∫
[0,τ)

e−rtR1(Xt) dΓ2
t + e−rτR1(Xτ )Λ

2
τ−

]
=

∫ 1

0

Ex

[
1{γ̂2(u,·)<τ} e−rγ̂

2(u,·)R1(Xγ̂2(u,·)) + 1{γ̂2(u,·)≥τ} e−rτR1(Xτ )
]

du

=

∫ 1

0

Ex

[
e−r(γ̂

2(u,·)∧τ)R1(Xγ̂2(u,·)∧τ )
]

du

< R1(x), (S.22)

where the third equality follows along the same lines as in Lemma 3, and the inequality

follows from A3 together with the fact that, for each u > 0, τ ∧ γ̂2(u, ·) > 0 Px-almost surely

as Γ2 is continuous over [0, τS2) and τS2 > 0 Px-almost surely. By (S.22), J(x) < R1(x), in

contradiction with Proposition 1. Therefore, (α, α1) ⊂ S1 ∪ S2, from which (i) follows as

S1 ∪ S2 is closed.

(ii) Suppose, with no loss of generality, that α1 < α2. By Proposition 1(i), S1 ∩ S2 ∩
(α1, α2] = ∅, and, as shown in (i), (α1, α2] ⊂ S1 ∪ S2. It follows that S1 ∩ (α1, α2] and

S2 ∩ (α1, α2], which are both relatively closed sets in (α1, α2], are complementary sets in

(α1, α2], and thus are both relatively open in (α1, α2]. As their union (α1, α2] is a connected

set, either one or the other must be empty. Thus either (α1, α2] ⊂ S1 or (α1, α2] ⊂ S2, from

which (ii) follows as both S1 and S2 are closed sets. The result follows. �
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We are now ready to complete the proof of Proposition 2. We focus on the right-continuity

of the functions J̄ i, i = 1, 2, the arguments for their left-continuity being symmetrical. For

any function J : I → R and for each S ⊂ I, we denote by J|S the restriction of J to S.

Suppose, with no loss of generality, that α1 ≤ α2. For each i = 1, 2, Ri = Gi over (α, αi]

and Ri ≤ J̄ i ≤ Gi by Proposition 1. Thus J̄ i is continuous over (α, αi] and, in particular,

over (α, α1]. Moreover, by Lemma S.4(ii), J1 coincides with R1 or G1 over (α1, α2]. We

conclude that, for each i = 1, 2, J̄ i|(α,α2] is continuous. Notice that J̄2 is right-continuous at

α2 and that the same is true for J̄1 if α1 = α2. By Lemma S.3, for each i = 1, 2, J̄ i|[a,b] is

continuous for any interval [a, b] such that (a, b) ⊂ I \ (S1 ∪ S2); moreover, J̄ i|Si = Ri
|Si and

J̄ i|Sj = Gi
|Sj are also continuous. Therefore, if J̄1 or J̄2 is not right-continuous at x, it must

be that x ≥ α2, that x ∈ S1 ∪ S2, and that, for each ε > 0, [x, x+ ε) intersects both S1 ∪ S2

and I \ (S1 ∪ S2); we refer to this last property as Property P. We distinguish two cases.

Case 1 Let us first consider the case where x ∈ S2 and x > α2, and suppose, by way

of contradiction, that J̄1 or J̄2 is not right-continuous at x, so that Property P is satisfied.

As (α2, β) ∩ S1 ∩ S2 = ∅ by Proposition 1(i), x 6∈ S1. Hence, because S1 is closed, there

exists ε > 0 such that [x, x+ ε)∩ S1 = ∅. If (a, b) is a connected component of the open set

[x, x+ ε) \S2, so that a, b ∈ S2, then it must be that µ1[(a, b)] > 0. Indeed, suppose, by way

of contradiction, that this is not the case. Then, for each y ∈ (a, b), we have

J̄2(y) = J2(y, (0, S1), (µ2, S2)) = Ey

[
e−rτS2R2(XτS2

)
]
< R2(y)

by A3 as b ≤ xR2 by Proposition 1(iv), in contradiction with Proposition 1. Thus µ1[(a, b)] >

0 and, by Proposition 1(iii), there exists some y ∈ (a, b) such that J̄1(y) = R1(y). As this is

true for every connected component of [x, x+ ε) \S2, Property P implies that there exists a

decreasing sequence (yn)n≥1 converging to x such that J̄1(yn) = R1(yn), as well as a sequence

of connected components ((an, bn))n≥1 of [x, x+ ε) \ S2 such that yn ∈ (an, bn) for all n ≥ 1

and whose length goes to zero as n goes to ∞. By Proposition 1, J̄1(an) = G1(an) and

J̄1(bn) = G1(bn). Because x > α1, G1(x) > R1(x). For each n ≥ 1, because (0, S2) is a best

reply to (µ1, S1) by Proposition 1(v), applying Lemma S.1 to τn ≡ τan ∧ τbn yields

J̄1(yn) = Eyn

[∫
[0,τn)

e−rtG1(Xt) dΓ2
t + e−rτn J̄1(Xτn)Λ2

τn−

]
= Eyn

[∫
[0,τn)

e−rtG1(Xt) dΓ2
t + e−rτnG1(Xτn)Λ2

τn−

]
.

G1 and R1 being locally Lipschitz, there exists ε > 0 such that, for any sufficiently large n,

G1(y) > R1(yn) + ε, y ∈ (an, bn).
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Hence, for any such n,

J̄1(yn) ≥ [R1(yn) + ε] Eyn

[∫
[0,τn)

e−rt dΓ2
s + e−rτnΛ2

τn−

]
≥ [R1(yn) + ε] Eyn [e−rτn ].

We have Eyn [e−rτn ] = Anφ(yn) +Bnψ(yn), where the coefficients An and Bn are such that

Anφ(an) +Bnψ(an) = Anφ(bn) +Bnψ(bn) = 1.

If follows that these coefficients are bounded, and, therefore, as φ and ψ are locally Lipschitz,

that Eyn [e−rτn ] goes to 1 as n goes∞. This, for n sufficiently large, contradicts the fact that

J̄1(yn) = R1(yn). Thus J̄1 and J̄2 are right-continuous at x. The right-continuity of J̄1 and

J̄2 at x in case x ∈ S1 and x > α2 and the right-continuity of J̄1 at x in case x ∈ S2 and

x = α2 > α1 can be proven in a similar way.

Case 2 It remains only to prove that J̄1 is right-continuous at x in case x ∈ S1 and

x = α2 > α1. Suppose that Property P is satisfied so that J̄1 may not be right-continuous

at x. As (α1, β)∩S1∩S2 = ∅ by Proposition 1(i), x 6∈ S2. Hence, because S2 is closed, there

exists ε > 0 such that [x, x + ε) ∩ S2 = ∅. Notice that µ2([x, x + ε)) < ∞ as µ2 is locally

finite on I \ S2. If (a, b) is a connected component of the open set (x, x + ε) \ S1, so that

a, b ∈ S1, then, for y ∈ (a, b) and τ ≡ τa ∧ τb, we have

J̄1(y)−R1(y) = J1(y, (0, S1), (µ2, S2))−R1(y)

= Ey

[∫
[0,τ)

e−rtG1(Xt) dΓ2
t + e−rτR1(Xτ )Λ

2
τ−

]
−R1(y)

≥ 0, (S.23)

where the first equality follows from Proposition 1(v). We also have

J̄1(y)−R1(y)

= Ey

[∫
[0,τ)

e−rtG1(Xt) dΓ2
t + e−rτR1(Xτ )Λ

2
τ−

]
−R1(y)

= Ey

[∫
[0,τ)

e−rtR1(Xt) dΓ2
t + e−rτR1(Xτ )Λ

2
τ− −R1(y) +

∫
[0,τ)

e−rt[G1(Xt)−R1(Xt)] dΓ2
t

]
=

∫ 1

0

Ey

[
e−r[τ∧γ̂

2(u,·)]R1(Xτ∧γ̂2(u,·))−R1(y)
]

du+ Ey

[∫
[0,τ)

e−rt(G1(Xt)−R1(Xt)) dΓ2
t

]
=

∫ 1

0

Ey

[∫ τ∧γ̂2(u,·)

0

(LR1 − rR1)(Xt) dt

]
du+ Ey

[∫
[0,τ)

e−rt[G1(Xt)−R1(Xt)] dΓ2
t

]
≤ Ey

[∫
[0,τ)

e−rt[G1(Xt)−R1(Xt)] dΓ2
t

]
, (S.24)
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where the third equality follows along the same lines as in the proof of Lemma 3, the fourth

equality follows from Itô’s formula, and the inequality follows from A3 and Proposition 1(iv).

Letting C > 0 be an upper bound for G1 −R1 over [x, x+ ε), we then have

Ey

[∫
[0,τ)

e−rt[G1(Xt)−R1(Xt)] dΓ2
t

]
≤ C Ey [Γ2

τ ]

= C Ey [1− Λ2
τ ]

= C Ey [1− e−A
2
τ ]

≤ C Ey [A2
τ ].

From (S.16), we have, for some positive constant C ′,

Ey [A2
τ ] =

∫ b

a

2[p′(z)]−1Φa,b(y, z)µ
2(dz) ≤ C ′µ2[(a, b)],

as the mapping z 7→ 2[p′(z)]−1Φa,b(y, z) is uniformly bounded over [x, x + ε). Property P

implies that there exists a sequence ((an, bn))n∈N of connected components of [x, x+ ε) \ S1

whose length goes to zero as n goes to∞. Because µ2 is locally bounded at x, it must be that

µ2[(an, bn)] goes to 0 as n goes to∞, and the inequalities 0 ≤ J̄1(y)−R1(y) ≤ C C ′ µ2[(an, bn)]

along with the fact that the constants C and C ′ are independent of n imply that J̄1 is

right-continuous at x. Hence the result. �

S.4 Proofs for Section 4

Lemma S.5 The equation

R1(xR1) =
φ(xR1)

φ(x)
G1(x) (S.25)

has a unique solution x2 ∈ (α1, xR1) and R1(xR1) <
φ(xR1 )

φ(x)
G1(x) over (x2, β).

Proof: For each x ∈ I, let f(x) ≡ φ(x)
φ(xR1 )

R1(xR1). Notice that f = VR1 ≥ R1 over

[xR1 , β) and that f ′(xR1) = R1′(xR1) by the smooth-fit property. Applying the change-of-

variables formula (S.1) to f , a direct computation shows that x2 is a solution to (S.25) if

and only if ζ(x2) is a solution to

f̂(y) = Ĝ1(y), that is,
R1(xR1)

φ(xR1)
y = Ĝ1(y).

Because f = VR1 over [xR1 , β), it follows from A6 that f̂ < Ĝ1 over (0, ζ(xR1)]. Because Ĝ1 is

positive, concave, and satisfies (S.5), it follows in turn that (S.25) admits a unique solution
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x2 < xR1 , and that φ
φ(xR1 )

R1(xR1) > G1 over (α, x2) and φ
φ(xR1 )

R1(xR1) < G1 over (x2, β).

Finally, recall from A3 and A6 that α1 < xR1 < x1
0 and that R̂1 is strictly concave over

(ζ(x1
0),∞). Therefore, f̂ > R̂1 over (ζ(xR1),∞) as f̂ is linear and tangent to R̂1 at ζ(xR1).

Hence, if α1 > α, it must be that α1 < x2 as G1 = R1 over (α, α1]. The result follows. �

Proof of Proposition 5: The next lemma provides sufficient conditions for the

variational system (24)–(34) to admit a solution.

Lemma S.6 In the running example, if the firms’ liquidation values l1 ≤ l2 are close enough

to each other, and if m is sufficiently large and b > 0, then there exists a constant a1 > 0

and two functions w1 ∈ C0(I) ∩ C2(I \ {x2}) and w2 ∈ C0(I) ∩ C2(I \ {x2, xR1}) solution to

the variational system (24)–(34).

Proof: We shall use the standard fact (see, for instance, Dixit and Pindyck (1994))

that, in the running example, φ(x) = xρ
−

and ψ(x) = xρ
+

for all x ∈ (0,∞), where

ρ− ≡ 1

2
− b

σ2
−

√(
1

2
− b

σ2

)2

+
2r

σ2
and ρ+ ≡ 1

2
− b

σ2
+

√(
1

2
− b

σ2

)2

+
2r

σ2
. (S.26)

The proof then consists of two parts. We first characterize a candidate solution to (24)–(34)

and provide sufficient conditions for its existence. We then show that these conditions are

met under our parameter restrictions.

A Candidate Solution Using the notation of Section 2.3, we have

VRi(x) = sup
τ∈T

Ex [e−rτRi(Xτ )] =

{
φ(x)
φ(xRi )

(li − 1
r−b xRi) if x > xRi

li − 1
r−b x if x ≤ xRi

,

where xRi = ρ−

ρ−−1
(r − b)li. Similarly,

V i
m(x) = sup

τ∈T
Ex

[∫ τ

0

e−rtmXt dt+ e−rτ li
]

=

{
m
r−b x+ φ(x)

φ(αi)
(li − m

r−b α
i) if x > αi

li if x ≤ αi
,

where αi =
xRi
m

< xRi . Thus

Gi(x) = (V i
m − E)(x) =

{
m−1
r−b x+ φ(x)

(1−ρ−)φ(αi)
li if x > αi

li − 1
r−b x if x ≤ αi

.

This allows us to rewrite (S.25) as

xρ
−

(1− ρ−)
[

ρ−

ρ−−1
(r − b)l1

]ρ− l1 =
m− 1

r − b
x+

xρ
−
mρ−

(1− ρ−)
[

ρ−

ρ−−1
(r − b)l1

]ρ− l1.
15



Solving this equation yields x2 = ξxR1 , where

ξ ≡

[
1−mρ−

ρ−(1−m)

] 1
1−ρ−

∈
(

1

m
, 1

)
. (S.27)

It follows that the function w1 defined by

w1(x) ≡

{
φ(x)
φ(xR1 )

(l1 − 1
r−b xR1) if x > x2

G1(x) if x ≤ x2

is, by construction, solution to the variational system (24)–(28).

If a solution (w2, a1) to the variational system (29)–(34) exists, then, letting T 2
x denote

the unique solution to Lu− ru = 0 that is tangent to R2 at x, it must be that w2 = T 2
x2 over

(x2, xR1). Specifically, we have T 2
x2 = Bψ +Cφ with positive coefficients B and C given by3

B =
−φ′(x2)

(
l2 − 1

r−b x
2
)
− 1

r−b φ(x2)

ψ′(x2)φ(x2)− ψ(x2)φ′(x2)
and C =

ψ′(x2)
(
l2 − 1

r−b x
2
)

+ 1
r−b ψ(x2)

ψ′(x2)φ(x2)− ψ(x2)φ′(x2)
.

Similarly, we have w2 = Aφ over (xR1 ,∞) for

A ≡ B
ψ(xR1)

φ(xR1)
+ C,

as required by the continuity of w2 at xR1 . It follows that

∆w2′(xR1) = B

[
ψ(xR1)

φ(xR1)
φ′(xR1)− ψ′(xR1)

]
< 0

by (S.4). We deduce that, if

G2(xR1) > T 2
x2(xR1) > T 2

xR2
(xR1), (S.28)

then

w2 = 1(0,x2]R
2 + 1(x2,xR1 ]T

2
x2 + 1(xR1 ,∞)Aφ and a1 = − ∆w2′(xR1)

G2(xR1)− w2(xR1)

is solution to the variational system (29)–(34). In (S.28), the first inequality ensures that

a1 > 0, while the second inequality ensures that x2 < xR2 and that w2 ≥ R2 over (xR1 ,∞).

The convexity of T 2
x2 and the linearity of R2 imply that w2 ≥ R2 over (x2, xR1 ].

Checking the Sufficient Conditions We now show that, if l1 ≤ l2 are close enough to

3That B and C are positive can be seen as follows. First, the denominator of B and C is positive by
(S.4). Second, because φ′ < 0, φ′′ > 0, x2 < xR1 , and l2 ≥ l1, the numerator of B is greater than or equal
to −φ′(xR1)

(
l1 − 1

r−b xR1

)
− 1

r−b φ(xR1), which is equal to 0 by the smooth-pasting condition for (3) with

i = 1. Third, because ψ′ > 0, x2 < xR1 , and l2 ≥ l1, the numerator of C is positive.
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each other, and if m is sufficiently large and b > 0, then (S.28) holds. Letting ∆ρ ≡ ρ+−ρ−,

direct computations lead to

B =
ρ−(x2)−ρ

+

∆ρ
(ξl1 − l2) and C =

ρ+(x2)−ρ
−

∆ρ

(
l2 − ρ+ − 1

ρ+

ρ−

ρ− − 1
ξl1
)
.

Using that x2 = ξxR1 , we deduce from this that

T 2
x2(xR1) = Bxρ

+

R1 + Cxρ
−

R1 =
ρ−ξ−ρ

+

∆ρ
(ξl1 − l2) +

ρ+ξ−ρ
−

∆ρ

(
l2 − ρ+ − 1

ρ+

ρ−

ρ− − 1
ξl1
)
.

Now, we have T 2
xR2

= l2

(1−ρ−)φ(xR2 )
φ, so that

T 2
xR2

(xR1) =
l2

1− ρ−

(
l1

l2

)ρ−
.

If l1 and l2 are close enough to each other so that l1 ≥ l2

m
, then xR1 ≥ α2 and thus

G2(xR1) =
m− 1

r − µ
xR1 +

φ(xR1)

(1− ρ−)φ(α2)
l2 =

ρ−

ρ− − 1
(m− 1)l1 +

l2

1− ρ−

(
l1

l2

)ρ−
mρ−.

Therefore, if l1 ≥ l2

m
, then (S.28) holds if and only if

ρ−

ρ− − 1
(m− 1)l1 +

l2

1− ρ−

(
l1

l2

)ρ−
mρ−

>
ρ−ξ−ρ

+

∆ρ
(ξl1 − l2) +

ρ+ξ−ρ
−

∆ρ

(
l2 − ρ+ − 1

ρ+

ρ−

ρ− − 1
ξl1
)

>
l2

1− ρ−

(
l1

l2

)ρ−
.

This is true for any close enough values of l1 and l2 if

ρ−

ρ− − 1
(m− 1) +

1

1− ρ−
mρ−

>
ρ−ξ−ρ

+

∆ρ
(ξ − 1) +

ρ+ξ−ρ
−

∆ρ

(
1− ρ+ − 1

ρ+

ρ−

ρ− − 1
ξ

)
>

1

1− ρ−
. (S.29)

As for the second inequality in (S.29), notice from (S.27) that, as ρ− < 0, ξ goes to 0 as

m goes to ∞, and thus, as ρ+ > 0 and ρ−(ξ − 1) > 0, that the left-hand side goes to ∞
as m goes to ∞. Therefore, the second inequality in (S.29) is satisfied if m is sufficiently

large. As for the first inequality in (S.29), notice from (S.27) that the right-hand side is of

the order m
ρ+

1−ρ− as m goes to ∞, while the left-hand side is of the order m. Therefore, the
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first inequality in (S.29) is satisfied if m is sufficiently large and ρ+ + ρ− < 1, that is, from

(S.26), if b > 0. The result follows. �

Given Lemma S.6, Proposition 5 is then a direct consequence of Theorem 3 as explained

in the main text. Hence the result. �

The martingale property of firm 2’s discounted cum-dividend stock-price process is a

direct consequence of the following lemma.

Lemma S.7 Let γ1 be a randomized stopping time of player 1 associated to Λ1 ≡ (Λ1
t )t≥0 ≡(

e−a
1L

x
R1
t

)
t≥0

of the form

γ1 ≡ inf{t ≥ 0 : Γ1
t > U1},

where U1 is uniformly distributed over [0, 1] and independent of X. Then γ1 is an (F̂t)t≥0-

stopping time and its (F̂t)t≥1-predictable compensator is (a1L
xR1

t∧γ1)t≥0, where (F̂t)t≥0 is the

shareholders’ filtration defined by (35). In particular, the processes (1{t∧τx2≥γ1}− a
1L

xR1

t∧τc)t≥0

and (e−rt∧τ
c
V 2,τc

t +
∫ t∧τc

0
e−rsXs ds)t≥0 are (F̂t)t≥0-martingales.

Proof: We only need to check that Z ≡ (Zt)t≥0 ≡ (1{t≥γ1} − a1L
xR1

t∧γ1)t≥0 is an (F̂t)t≥0-

martingale for all Px, x ∈ I. Let s ≤ t, and consider the random variable U1
s (ω, u1) ≡

u11{Γ1
s(ω)≥u1}+ 1{Γ1

s(ω)<u1} over the probability space Ω1 ≡ Ω× [0, 1]. It is easy to check that

F̂s = Fs ∨ σ(U1
s ) ⊂ F∞ ∨ σ(U1

s ).

From the definition of F∞, we have

Ex [Zt − Zs |F∞ ∨ σ(U1
s )] = Ex [Zt − Zs |ω, U1

s ].

A version of the conditional law of U1 given (ω, U1
s (ω, U1)) is

1{U1
s<1} δU1

s
+ 1{U1

s=1} U[Γ1
s,1],

where U[a,b] denotes the uniform distribution over [a, b]. Hence

1{U1
s=1}Px [γ1 ≤ t |ω, U1

s ] = 1{U1
s=1}

Γ1
t − Γ1

s

1− Γ1
s

.

We deduce that

Ex [Zt − Zs |ω, U1
s ]

= Ex

[
1{s<γ1≤t} − a1(L

xR1

t∧γ1 − L
xR1
s ) |ω, U1

s

]
= Ex

[
1{Γ1

s<U
1≤Γ1

t } − a
1(L

xR1

t∧γ1 − L
xR1
s ) |ω, U1

s

]
=

1U1
s=1

1− Γ1
s

[
Γ1
t − Γ1

s − a1

∫ t

s

(L
xR1
u − LxR1

s ) dΓ1
u − a1(1− Γ1

t )(L
xR1

t − LxR1
s )

]
= 0,
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where the fourth equality follows from the integration by parts formula and the fact that

Γ1
t − Γ1

s =

∫ t

s

a1(1− Γ1
u) dL

xR1
u .

We conclude that Ex [Zt−Zs | F̂s] = 0 by using the law of iterated conditional expectations.

The result follows. �

The fact that the volatilities of firms’ stock returns comove negatively over the attrition

zone is a direct consequence of the following lemma.4

Lemma S.8 For each x ∈ (0,∞), let F (x) ≡ Bxρ
+

+ Cxρ
−

+ x
r−b for two nonnegative

numbers B and C such that (B,C) 6= (0, 0). Then xF ′(x)
F (x)

is strictly increasing in x.

Proof: For concision, let us write J(x) ≡ Bxρ
+

+ Cxρ
−

for all x ∈ (0,∞). Then

d

dx

[
xF ′(x)

F (x)

]
=

[xF ′′(x) + F ′(x)]F (x)− x[F ′(x)]2

[F (x)]2

∝
[
xJ ′′(x) + J ′(x) +

1

r − b

][
J(x) +

x

r − b

]
− x
[
J ′(x) +

1

r − b

]2

= xJ ′′(x)

[
J(x) +

x

r − b

]
+ J(x)J ′(x)− xJ ′(x)

r − b
+
J(x)

r − b
− x[J ′(x)]2

= x
[
Bρ+(ρ+ − 1)xρ

+−2 + Cρ−(ρ− − 1)xρ
−−2
][
Bxρ

+

+ Cxρ− +
x

r − b

]
+ (Bxρ

+

+ Cxρ−)(Bρ+xρ
+−1 + Cρ−xρ

−−1)− x Bρ
+xρ

+−1 + Cρ−xρ
−−1

r − b

+
Bxρ

+
+ Cxρ−

r − b
− x(Bρ+xρ

+−1 + Cρ−xρ
−−1)2

=
B(ρ+ − 1)2

r − b
xρ

+

+
C(ρ− − 1)2

r − b
xρ
−

+BC(ρ+ − ρ−)2xρ
++ρ−−1

> 0.

The result follows. �

S.5 Proofs of Lemmas for Theorem 2

Proof of Lemma A.1: Recall that any solution u ∈ C2((a, b)) to the ODE Lu−ru = 0

is of the form u = Aφ+Bψ for some constants A and B. Whenever needed, we use the change

of variables (S.1) to reexpress the assumptions and the conclusions of (i)–(iv). For instance,

u(x) ≥ VRi(x) for all x ∈ (a, b) if and only if û(z) = Az+B ≥ V̂Ri(z) for all z ∈ (ζ(b), ζ(a)).

4It follows from Footnote 5 that Lemma S.8 can be used to reach the same conclusion for any singular
mixed-strategy MPE in our running example.
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Recall also that V̂Ri ∈ C1((0,∞)), that, for some Ci > 0, V̂Ri(z) = Ciz > R̂i(z) for all

z ∈ (0, ζ(xRi)), and that V̂Ri = R̂i is C2 and strictly concave over [ζ(xRi),∞).

(i) The assumption u(β−) = 0 implies B = 0, and thus û(0+) = 0. The assumption

that û ≥ V̂Ri over (0, ζ(a)) implies A ≥ Ci. If this inequality were strict, then we would

have Az > Ciz ≥ R̂i(z) for all z > 0 as V̂Ri is concave, in contradiction to the assumption

û(ζ(a)−) = Aζ(a) = R̂i(ζ(a)). We conclude that A = Ci and, from the properties of V̂Ri ,

that the unique solution to Az = R̂i(z) is ζ(xRi).

(ii) Notice that VRi > Ri over (xRi , β), so that V̂Ri > R̂i over (0, ζ(xRi)). Hence, if there

exists z0 ∈ (ζ(b), ζ(a)) such that û(z0) = R̂i(z0), then it must be that z0 ≥ ζ(xRi). In this

case, û is tangent to the concave C1 function V̂Ri at z0. Over [ζ(xRi),∞), V̂Ri = R̂i is strictly

concave. As a result, û(z) > R̂i(z) for all z 6= z0 in [ζ(xRi),∞) ∩ (ζ(b), ζ(a)), and thus for

all z 6= z0 in (ζ(b), ζ(a)) by the preceding remark.

(iii) If a > α, then û is an affine function over (ζ(b), ζ(a)) that coincides with R̂i at both

boundaries of this interval. The fact that R̂i is strictly concave over [ζ(xRi),∞) together

with ζ(b) ≥ ζ(xRi) then implies that û < R̂i over (ζ(b), ζ(a)). If a = α, then u(a+) = 0

implies that u = Bψ for some constant B by (4), and thus that R̂i(ζ(b)) = û(ζ(b)) = B.

The function R̂i is strictly concave and, by Lemma 1, positive over [ζ(xRi),∞). It is thus

increasing over this interval, which implies that û = B < R̂i over (ζ(b),∞).

(iv) The function û satisfies û(z) = Az + B for all z ∈ (ζ(b), ζ(a)) for some constants A

and B. A direct computation yields

A = û′(ζ(a)−) =
ψ(a)u′(a+)− ψ′(a)u(a)

ψ(a)2ζ ′(a)
and R̂i′(ζ(a)) =

ψ(a)Ri′(a)− ψ′(a)Ri(a)

ψ(a)2ζ ′(a)
,

so that, as u(a) = Ri(a), u′(a+) > Ri′(a), and ζ ′(a) < 0,

R̂i′(ζ(a))− A =
Ri′(a)− u′(a+)

ψ(a)ζ ′(a)
> 0.

Hence R̂i(ζ(a − ε)) > Aζ(a − ε) + B for ε > 0 small enough. Similarly, the function f̂ε

satisfies f̂ε(z) = A′z + B′ for all z ∈ (0,∞) for some constants A′ and B′. Moreover,

f̂ε(ζ(a− ε)) = R̂i(ζ(a− ε)) and f̂ε(ζ(a+ ε)) = û(ζ(a+ ε)). Hence

A′ζ(a+ ε) +B′ = Aζ(a+ ε) +B and A′ζ(a− ε) +B′ > Aζ(a− ε) +B,

so that A′ζ(a) +B′ > Aζ(a) +B as ζ(a) ∈ (ζ(a+ ε), ζ(a− ε)). The result follows. �

Proof of Lemma A.2: As in the proof of Lemma S.6, let T ix denote, for each x < xRi ,

the unique solution to Lu − ru = 0 that is tangent to Ri at x. Then T ix ≥ Ri over (xRi , β)
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and T ix ≡ Axφ + Bxψ for some positive coefficients Ax and Bx.
5 For each z ≥ ζ(xRi), let

T̂ iz ≡ T̂ iζ−1(z) be the affine function tangent to R̂i at z, which is given by

T̂ iz(y) = Aζ−1(z)y +Bζ−1(z) = R̂i(z) + R̂i′(z)(y − z), y ∈ (0,∞). (S.30)

Now, suppose, by way of contradiction, that χ∞ ≡ limn→∞ χ
1
n = limn→∞ χ

2
n > α. Also

suppose, with no loss of generality, that χ1
1 > χ2

1, and let y2n−1 ≡ ζ(χ1
n) and y2n ≡ ζ(χ2

n)

for all n ≥ 1. Because (χin)n≥1 is a sequence in suppµi ∩ (s, β) and, hence, in (α, xRi ] by

Proposition 1(iv), (yn)n≥1 is a sequence in [ζ(xRi),∞). As in Step 3 of the proof of Theorem

2, that player 1 does not stop over the interval (χ1
n+1, χ

1
n) and that χ2

n ∈ (χ1
n+1, χ

1
n) belongs

to the support of µ2 implies that LJ̄2 − rJ̄2 = 0 over (χ1
n+1, χ

1
n) and that J̄2 ≥ VR2 and

J̄2(χ2
n) = R2(χ2

n). Moreover, as J̄2 is continuous, it coincides with T jχ2
n

on [χ1
n+1, χ

1
n]. It

follows that, for each n ≥ 1, J̄2(χ1
n+1) = T jχ2

n
(χ1

n+1) = T j
χ2
n+1

(χ1
n+1), and a similar property

holds for J̄1. Using (S.30) to rewrite these equalities yields, for each n ≥ 1,

R̂1(y2n−1) + R̂1′(y2n−1)(y2n − y2n−1) = R̂1(y2n+1) + R̂1′(y2n+1)(y2n − y2n+1),

R̂2(y2n) + R̂2′(y2n)(y2n+1 − y2n) = R̂2(y2n+2) + R̂2′(y2n+2)(y2n+1 − y2n+2).

With y < y′ < y′′ three appropriate consecutive terms of the sequence (yn)n≥1, these

equalities can be compactly rewritten for i = 1, 2 as

R̂i(y) + R̂i′(y)(y′ − y)− R̂i(y′) = R̂i(y′′) + R̂i′(y′′)(y′ − y′′)− R̂i(y′). (S.31)

Using Taylor’s theorem with integral remainder, (S.31) is equivalent to

−
∫ y′

y

(y′ − z)R̂i′′(z) dz = −
∫ y′′

y′
(z − y′)R̂i′′(z) dz. (S.32)

Because R̂i′′ < 0 over [y1,∞) ⊂ [ζ(xRi),∞), the right-hand side of (S.32) is increasing in

y′′. Therefore, given y′ > y ≥ y1, if a solution y′′ > y′ to (S.32) exists, it is unique. By

assumption, limn→∞ yn = y∞ ≡ ζ(χ∞) < ∞. Moreover, because R̂i′′ is locally Lipschitz by

A8, there exists K > 0 such that |R̂i′′(z)− R̂i′′(y′)| ≤ K|z − y′| for all z, y′ ∈ [y1, y∞]. Thus

−
∫ y′

y

(y′ − z)R̂i′′(z) dz ≥ −Ri′′(y′)
(y′ − y)2

2
−K (y′ − y)3

3
, (S.33)

−
∫ y′′

y′
(z − y′)R̂i′′(z) dz ≤ −Ri′′(y′)

(y′′ − y′)2

2
+K

(y′′ − y′)3

3
. (S.34)

By (S.32), we have

(y′′ − y′)2 +
2K

3|R̂i′′(y′)|
(y′′ − y′)3 ≥ (y′ − y)2 − 2K

3|R̂i′′(y′)|
(y′ − y)3. (S.35)

5That Ax and Bx are positive follows from x < xRi along the same lines as in Footnote 3.
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Let C such that, for each y′ ∈ [y1, y∞],

2K

3|R̂i′′(y′)|
≤ C.

Then, by (S.35), we have

(y′′ − y′)2 + C(y′′ − y′)3 ≥ (y′ − y)2 − C(y′ − y)3.

Letting un ≡ yn+1 − yn for all n ≥ 1, the upshot of the above analysis is that h(un+1) ≥
g(un), where g(u) ≡ u2 − Cu3 and h(u) ≡ u2 + Cu3. By assumption, y1 +

∑
n≥1 un =

y∞ < ∞, which implies that limn→∞ un = 0. Therefore, for n sufficiently large, g(un) > 0

and un+1 ≥ h−1(g(un)), where h−1 denotes the inverse of h restricted to [0,∞). Because

h−1(z) =
√
z − C

2
z + o(z), we have h−1(g(u)) = u− Cu2 + o(u2). Hence

un+1 ≥ un − Cu2
n + o(u2

n)

and, as a result,

1

un+1

− 1

un
≤ 1

un

[
1

1− Cun + o(un)
− 1

]
= C + o(1).

We obtain

1

un
=

1

u1

+
n−1∑
k=1

(
1

uk+1

− 1

uk

)
≤ nC + o(n)

and thus

un ≥
1

nC
+ o

(
1

n

)
,

so that
∑

n≥1 un = ∞, a contradiction. The case of increasing sequences, whose limit must

be in (α, xRi ], can be dealt in a similar way by replacing the inequalities (S.33) and (S.34)

by an upper bound and a lower bound of the same type, respectively. The result follows. �

S.6 Proofs of Lemmas for Theorem 3

Proof of Lemma A.3: From Proposition 1(v), if ((µ1, S1), (µ2, S2)) is a MPE, then

(0, S2) is a pbr to (µ1, S1). Applying the strong Markov property (S.7) to the value function

of player 2 associated to the pair of Markov strategies ((µ1, S1), (0, S2)) yields, for all x ∈ I
and τ ∈ T ,

J̄2(x) = Ex

[
N∑
n=1

∫
[0,τ∧τS2 )

e−rtG2(q1
n)Λ1

tan dL
q1n
t

+ 1{τS2<τ} e−rτS2R2(XτS2
)Λ1

τS2
+ 1{τS2≥τ} e−rτ J̄2(Xτ )Λ

1
τ

]
,

where we used that dΓ1
t =

∑N
n=1 anΛ1

t dL
q1n
t . This proves (A.5).
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To prove (A.6), we apply the Itô–Tanaka–Meyer formula to e−r(τ∧τS2∧τk)J̄2(Xτ∧τS2∧τk)

Λ1
τ∧τS2∧τk

, where, for each k ∈ N, τk ≡ inf {t ≥ 0 : Xt /∈ [αk, βk]} for some increasing

sequence ([αk, βk])k∈N of compacts intervals of I such that
⋃
k∈N [αk, βk] = I. Observe that

Ex [τk] < ∞ (Karatzas and Shreve (1998, Chapter 5, Section 5, §C)) and that Xt ∈ [αk, βk]

over {t ≤ τk} Px-almost surely for all x ∈ [αk, βk]. Moreover, because X does not explode

in finite time, limk→∞ τk =∞ and, hence, limk→∞ τ ∧ τk = τ for all τ ∈ T . We obtain

J̄2(x) = e−r(τ∧τS2∧τk)J̄2(Xτ∧τS2∧τk)Λ
1
τ∧τS2∧τk

−
∫

[0,τ∧τS2∧τk)

e−rtJ̄2(Xt) dΛ1
t

−
∫

[0,τ∧τS2∧τk)

e−rt[LJ̄2(Xt)− rJ̄2(Xt)]
N∏
n=1

1{Xt 6=q1n} Λ1
t dt

−
∫

[0,τ∧τS2∧τk)

e−rtσ(Xt)J̄
2′(Xt)

N∏
n=1

1{Xt 6=q1n} Λ1
t dWt

− 1

2

N∑
n=1

∆J̄2′(q1
n)

∫
[0,τ∧τS2∧τk)

e−rtΛ1
t dL

q1n
t .

Taking expectations, we obtain

J̄2(x) = Ex

[
e−rτ∧τS2∧τk J̄2(Xτ∧τS2∧τk)Λ

1
τ∧τS2∧τk

−
∫

[0,τ∧τS2∧τk)

e−rtJ̄2(Xt) dΛ1
t

− 1

2

N∑
n=1

∆J̄2′(q1
n)

∫
[0,τ∧τS2∧τk)

e−rtΛ1
t dL

q1n
t

]
,

where we have used the fact that J̄2 satisfies (45) and that

Ex

[∫
[0,τ∧τS2∧τk)

e−rtσ(Xt)J̄
2′(Xt)

N∏
n=1

1{Xt 6=q1n} Λ1
t dWt

]
= 0. (S.36)

Indeed, notice that σ is continuous on I, and that J̄2 ∈ C1(I \{(q1
n)1≤n≤N}) with |J̄2′(x+)| <

∞ and |J̄2′(x−)| < ∞ for x ∈ {q1
n : 1 ≤ n ≤ N}. Thus there exists Ck > 0 such that

|σ(Xt)J̄
2′(Xt)| ≤ Ck over {t ≤ τS2 ∧ τk} Px-almost surely, which implies (S.36). Hence

J̄2(x) = Ex

[
1{τS2≥τ∧τk} e−rτ∧τk J̄2(Xτ∧τk)Λ

1
τ∧τk

]
+ Ex

[
1{τS2<τ∧τk} e−rτS2R2(XτS2

)Λ1
τS2

]
+ Ex

[
N∑
n=1

∫
[0,τ∧τS2∧τk)

e−rtJ̄2(Xt)Λ
1
tan dL

q1n
t

]

− Ex

[
1

2

N∑
n=1

∆J̄2′(q1
n)

∫
[0,τ∧τS2∧τk)

e−rtΛ1
t dL

q1n
t

]
.

Using that the measure dL
q1n
t only charges the set {t ≥ 0 : Xt = q1

n}, we obtain

J̄2(x) = Ex

[
1{τS2≥τ∧τk} e−rτ∧τk J̄2(Xτ∧τk)Λ

1
τ∧τk

]
+ Ex

[
1{τS2<τ∧τk} e−rτS2R2(XτS2

)Λ1
τS2

]
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+ Ex

[
N∑
n=1

∫
[0,τ∧τS2∧τk)

e−rt
[
J̄2(q1

n)an −
1

2
∆J̄2′(q1

n)

]
Λ1
t dL

q1n
t

]
. (S.37)

By the monotone convergence theorem,

lim
k→∞

Ex

[∫
[0,τ∧τS2∧τk)

e−rt
[
J̄2(q1

n)an −
1

2
∆J̄2′(q1

n)

]
Λ1
t dL

q1n
t

]

= Ex

[∫
[0,τ∧τS2 )

e−rt
[
J̄2(q1

n)an −
1

2
∆J̄2′(q1

n)

]
Λ1
t dL

q1n
t

]

for all n, and

lim
k→∞

Ex

[
1{τS2<τ∧τk} e−rτS2R2(XτS2

)Λ1
τS2

]
= Ex

[
1{τS2<τ} e−rτS2R2(XτS2

)Λ1
τS2

]
.

Because 0 ≤ J̄2 ≤ G2 by Proposition 1, it follows from A4 that the sequence (1{τ∧τk≤τS2}

e−rτ∧τk J̄2(Xτ∧τk))k∈N is uniformly integrable. Therefore, by Vitali’s convergence theorem,

lim
k→∞

Ex

[
1{τS2≥τ∧τk} e−r(τ∧τk)J̄2(Xτ∧τk)Λ

1
τ∧τk

]
= Ex

[
1{τS2≥τ} e−rτ J̄2(Xτ )Λ

1
τ

]
.

Finally, 1{τS2≥τ∧τk} e−r(τ∧τk)J̄2(Xτ∧τk)Λ
1
τ∧τk = 1{τS2≥τk} e−rτk J̄2(Xτk)Λ

1
τk

over {τ = ∞}. For

k large enough, x ∈ (αk, βk). Hence

Ex

[
1{τS2≥τk} e−rτk J̄2(Xτk)Λ

1
τk

]
≤ Ex

[
1{Xτk=αk} e−rτk J̄2(Xτk)Λ

1
τk

]
+ Ex

[
1{Xτk=βk} e−rτk J̄2(Xτk)Λ

1
τk

]
≤ Ex

[
e−rτk J̄2(αk)Λ

1
ταk

]
+ Ex

[
e−rτk J̄2(βk)Λ

1
τβk

]
≤ φ(x)

φ(αk)
G2(αk) +

ψ(x)

ψ(βk)
G2(βk).

Because J̄2 ≥ 0, it then follows from the growth properties (8) that

lim
k→∞

Ex

[
1{τS2≥τk} e−rτk J̄2(Xτk)Λ

1
τk

]
= 0.

Thus, letting k go to ∞ in (S.37) yields

J̄2(x) = Ex

[
N∑
n=1

∫
[0,τ∧τS2 )

e−rt
[
J̄2(q1

n)an −
1

2
∆J̄2′(q1

n)

]
Λ1
t dL

q1n
t

+ 1{τS2<τ} e−rτS2R2(XτS2
)Λ1

τS2
+ 1{τS2≥τ} e−rτ J̄2(Xτ )Λ

1
τ

]
.

This shows (A.6). The result follows. �

Proof of Lemma A.4: Suppose, with no loss of generality, that i = 2 and j = 1. First,

24



let us observe that (S.7) leads to

J2(x, (µ1, S1), τ) = Ex

[
e−rτR2(Xτ )Λ

1
τ +

N∑
n=1

∫
[0,τ)

e−rtG2(Xt)Λ
1
san dL

q1n
t

]
.

Let w2 be a solution to (44)–(50). Applying the Itô–Tanaka–Meyer formula to e−r(τ∧τk)

w2(Xτ∧τk)Λ
1
τ∧τk , with τk defined as in the proof of Lemma A.3, we obtain

w2(x) = e−r(τ∧τk)w2(Xτ∧τk)Λ
1
τ∧τk −

∫
[0,τ∧τk)

e−rtw2(Xt) dΛ1
t

−
∫

[0,τ∧τk)

e−rt[Lw2(Xt)− rw2(Xt)]
N∏
n=1

1{Xt 6=q1n} Λ1
t dt

−
∫

[0,τ∧τk)

e−rtσ(Xt)w
2′(Xt)

N∏
n=1

1{Xt 6=q1n} Λ1
t dWt

− 1

2

N∑
n=1

∆w2′(q1
n)

∫
[0,τ∧τk)

e−rtΛ1
t dL

q1n
t . (S.38)

From (46) and A3, we have Lw2 − rw2 = LR2 − rR2 ≤ 0 over (α, s2) ⊂ (α, xR2 ]. It then

follows from (45) that

Ex

[
−
∫

[0,τ∧τk)

e−rt[Lw2(Xt)− rw2(Xt)]
N∏
n=1

1{Xt 6=q1n} Λ1
t dt

]
≥ 0. (S.39)

Next, we have

Ex

[
− 1

2

N∑
n=1

∆w2′(q1
n)

∫
[0,τ∧τk)

e−rtΛ1
t dL

q1n
t

]

= Ex

[
N∑
n=1

an[G2(q1
n)− w2(q1

n)]

∫
[0,τ∧τk)

e−rtΛ1
t dL

q1n
t

]

= Ex

[
N∑
n=1

∫
[0,τ∧τk)

e−rtG2(Xt)Λ
1
tan dL

q1n
t −

N∑
n=1

∫
[0,τ∧τk)

e−rtw2(Xt)Λ
1
tan dL

q1n
t

]

= Ex

[∫
[0,τ∧τk)

e−rtG2(Xt) dΓ1
t +

∫
[0,τ∧τk)

e−rtw2(Xt) dΛ1
t

]
, (S.40)

where the first equality follows from (49), the second equality follows from the fact that the

measure dL
q1n
t only charges the set {t ≥ 0 : Xt = q1

n}, and the third equality follows from the

representation (15). We obtain from (S.38)–(S.40) that

w2(x) ≥ Ex

[
e−r(τ∧τk)w2(Xτ∧τk)Λ

1
τ∧τk +

∫
[0,τ∧τk)

e−rtG2(Xt) dΓ1
t

]
≥ Ex

[
e−r(τ∧τk)R2(Xτ∧τk)Λ

1
τ∧τk +

∫
[0,τ∧τk)

e−rtG2(Xt) dΓ1
t

]
,

25



where the first inequality follows from the fact that the stochastic integral in (S.38) is a

centered square-integrable random variable as shown in the proof of Lemma A.3, and the

second inequality follows from (44). Using again the same arguments as in Lemma A.3,

letting k go to ∞ yields

w2(x) ≥ Ex

[
e−rτR2(Xτ )Λ

1
τ +

∫
[0,τ)

e−rtG2(Xt) dΓ1
t

]
= J2(x, (µ1, S1), τ),

where the equality follows from (12). Taking the supremum over τ ∈ T yields (A.8).

To establish (A.9), we apply the Itô–Tanaka–Meyer formula to e−rτkw2(Xτk)Λ
1
τk

Λ2
τk−.

Taking expectations, we obtain

w2(x) = Ex

[
e−rτkw2(Xτk)Λ

1
τk

Λ2
τk− −

∫
[0,τk)

e−rtw2(Xt)Λ
2
t− dΛ1

t

−
∫

[0,τk)

e−rtw2(Xt)Λ
1
t dΛ2

t −
1

2

N∑
n=1

∆w2′(q1
n)

∫
[0,τk)

e−rtΛ1
tΛ

2
t− dL

q1n
t

]
, (S.41)

where, as in the proof of Lemma A.3, we have used that

Ex

[∫
[0,τk)

e−rtσ(Xt)w
2′(Xt)

N∏
n=1

1{Xt 6=q1n} Λ1
tΛ

2
t− dWs

]
= 0

and that

Ex

[∫
[0,τ∧τk)

e−rt[Lw̄2(Xt)− rw2(Xt)]
N∏
n=1

1{Xt 6=q1n} Λ1
tΛ

2
t− dt

]
= 0,

which follows from (45) and from the fact that Λ2
t− = 1{t≤τS2} e−

∫
I L

y
t µ

2(dy) vanishes over

{Xt < s2}. Now, using that the measure dΓ2
t only charges the set {t ≥ 0 : w2(Xt) = R2(Xt)},

we have

Ex

[
−
∫

[0,τk)

e−rtw2(Xt)Λ
1
t dΛ2

t

]
= Ex

[∫
[0,τk)

e−rtw2(Xt)Λ
1
t dΓ2

t

]
= Ex

[∫
[0,τk)

e−rtR2(Xt)Λ
1
t dΓ2

t

]
. (S.42)

Next, using (43), and following the same steps as for (S.40), we have

Ex

[
− 1

2

N∑
n=1

∆w2′(q1
n)

∫
[0,τk)

e−rtΛ1
tΛ

2
t− dL

q1n
t

]

= Ex

[
N∑
n=1

∫
[0,τk)

e−rtG2(q1
n)Λ1

tΛ
2
t−an dL

q1n
t −

N∑
n=1

∫
[0,τk)

e−rtw2(q1
n)Λ1

tΛ
2
t−an dL

q1n
t

]

= Ex

[∫
[0,τk)

e−rtG2(Xt)Λ
2
t− dΓ1

t +

∫
[0,τk)

e−rtw2(Xt)Λ
2
t−dΛ1

t

]
. (S.43)
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We obtain from (S.41)–(S.43) that

w2(x) = Ex

[
e−rτkw2(Xτk)Λ

1
τk

Λ2
τk− (S.44)

+

∫
[0,τk)

e−rtR2(Xt)Λ
1
t dΓ2

t +

∫
[0,τk)

e−rtG2(Xt)Λ
2
t− dΓ1

t

]
. (S.45)

Using again the same arguments as in Lemma A.3, letting k go to ∞ yields

w2(x) = Ex

[∫
[0,∞)

e−rtR2(Xt)Λ
1
t dΓ2

t +

∫
[0,∞)

e−rtG2(Xt)Λ
2
t− dΓ1

t

]
= J2(x, (µ1, S1), (µ2, S2)),

where the equality follows from (12). The result follows. �
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