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Abstract

We study a generic family of two-player continuous-time nonzero-sum stopping
games modeling a war of attrition with symmetric information and stochastic payoffs
that depend on an homogeneous linear diffusion. We first show that any Markovian
mixed strategy for player i can be represented by a pair (µi, Si), where µi is a measure
over the state space representing player i’s stopping intensity, and Si is a subset of the
state space over which player i stops with probability 1. We then prove that, if players
are asymmetric, then, in all mixed-strategy Markov-perfect equilibria, the measures
µi have to be essentially discrete, and we characterize any such equilibrium through
a variational system satisfied by the players’ equilibrium value functions. This result
contrasts with the literature, which focuses on pure-strategy equilibria, or, in the case
of symmetric players, on mixed-strategy equilibria with absolutely continuous stopping
intensities. We illustrate this result by revisiting the model of exit in a duopoly under
uncertainty, and exhibit a mixed-strategy equilibrium in which attrition takes place on
the equilibrium path though firms have different liquidation values.
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1 Introduction

The war of attrition is a workhorse to model situations in which, at each point of time, each

player has to decide whether to hold fast or to concede and forfeit a prize to its opponent.

Examples of such situations include animal conflict (Maynard Smith (1974)), public good

provision (Bliss and Nalebuff (1984)), exit from a declining industry (Ghemawat and Nalebuff

(1985), Fudenberg and Tirole (1986)), labor strikes (Kennan and Wilson (1989)), delays

in agreement to stabilization policies (Alesina and Drazen (1991)), competition between

technological standards (Bulow and Klemperer (1999)), bargaining (Abreu and Gul (2000)),

and investment in the presence of informational externalities (Décamps and Mariotti (2004)).

Meanwhile, a growing literature attempts to test the theoretical predictions of these models

and to estimate the welfare cost of delayed exit decisions (Takahashi (2015)).

Theoretical and empirical applications of war-of-attrition models face several challenges,

however. The first is the multiplicity of equilibria, both in pure and mixed strategies, that

characterize these models (Riley (1980), Hendricks, Weiss, and Wilson (1988)). It is therefore

important to identify theoretical predictions of these models that are robust, in the sense that

they hold in a large class of equilibria. The second is to account for observable asymmetries

in players’ characteristics, which many applied models disregard for simplicity. The third is

to allow for stochastic payoffs, so as to capture uncertainty about the future evolution of,

say, market conditions. The present paper is an attempt at resolving these issues in a unified

framework. In so doing, it identifies a new class of equilibria in mixed strategies that have

robust and novel empirical implications.

To this end, we study a generic model of the war of attrition with symmetric information,

stochastic payoffs and potentially asymmetric players, which embeds the earlier models of

Lambrecht (2001), Murto (2004), Steg (2015), and Georgiadis, Kim, and Kwon (2022). Two

players initially present on a market face uncertainty about future market conditions—for

instance, the future price of a relevant commodity, or the future state of market demand.

Market conditions evolve according to an homogenous linear diffusion. Each player has the

option to exit the market, which he may exert at any point in time. Specifically, both

players continuously observe the evolution of market conditions; based on this information,

each player then decides whether to remain in the market or to irreversibly exit, which

terminates the game. In a Markovian way, the players’ continuation payoffs when a player

decides to exit the market only depend on current market conditions. Besides, there is a

second-mover advantage in the sense that, if and when a player exits first, his continuation

payoff is lower than the continuation payoff he would have obtained if the other player
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had exited first given the same market conditions. All payoff-relevant variables—the law of

evolution of market conditions and the players’ payoff functions—are assumed to be common

knowledge. An example of this game is a war of attrition between two firms that may exit a

market by liquidating their assets—say, because market demand deteriorates too much—but

would meanwhile individually fare better as a monopolist than as a duopolist.

Given the payoff structure we postulate, it is natural to focus on Markov-perfect equilibria

in which players’ exit decisions at any point in time only depend on current market conditions

(Maskin and Tirole (2001)). Our first contribution is to provide a precise definition of

Markovian mixed strategies that allows for rich possibilities of randomization for the players.

Specifically, our first main result, Theorem 1, shows that a randomized stopping time for

any player i, as defined by Touzi and Vieille (2002) by introducing an auxiliary randomizing

device à la Aumann (1964), is Markovian if and only if it can be represented by a pair (µi, Si),

where µi is a measure over the state space of the diffusion representing player i’s stopping

intensity, and Si is a subset of the state space over which player i stops with probability 1;

the interpretation is that player i exits the market with positive but finite intensity over the

support of µi, and with infinite intensity over Si. Well-known examples of this representation

include pure strategies—that is, stopping times—as in Lambrecht (2001) and Murto (2004),

in which the intensity measure µi is degenerate, and mixed strategies in which µi is absolutely

continuous with respect to Lebesgue measure, as in Steg (2015) and Georgiadis, Kim, and

Kwon (2022). These authors characterize pure-strategy Markov-perfect equilibria, and, in

the case of symmetric players, mixed-strategy Markov-perfect equilibria in which players

exit the market with the same absolutely continuous intensity measure. In the latter case,

attrition is maximal in the sense that each player obtains the payoff he would obtain when

facing a stubborn opponent threatening him never to exit the market.

These examples, however, do not exhaust the range of possibilities made available by

our formalization of Markovian mixed strategies. In particular, it is possible to conceive

of such strategies in which the measure µi is singular with respect to Lebesgue measure.

Such strategies need not be artificial nor exotic. For instance, µi may be a Dirac measure

at a given point xi of the state space, weighted by some positive coefficient ai. The

interpretation is that, each time market conditions reach xi, player i exits the market with

finite intensity ai, a strategy that can easily be obtained as the limit of Markovian mixed

strategies defined on discretized state spaces with increasingly fine mesh, or, alternatively,

as the limit of Markovian strategies with absolutely continuous intensity measures with

supports that degenerate to xi.
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Our second main result, Theorem 2, precisely shows that, if players are asymmetric—for

instance, if firms in a duopoly have different liquidation values—then any mixed-strategy

Markov-perfect equilibrium involves strategies with discrete intensity measures. At each

point in the support of these measures, the corresponding player is indifferent between exiting

and remaining in the market. This implies that the state space is partitioned into intervals

in which players alternate between being in a dominated position (with a continuation payoff

close to the value he could secure if facing a stubborn opponent) or in a dominant position

(with a continuation payoff significantly above that value). Our third main result, Theorem

3, finally characterizes these mixed-strategy Markov-perfect equilibria through a variational

system satisfied by the two players’ continuation value functions. Solving for these equilibria

then becomes a rather simple numerical task.

As an illustration, and to show that these necessary and sufficient conditions can be

satisfied—in the sense that our variational system has a solution—we provide conditions

under which the war of attrition between two duopolists with different liquidation values

has a mixed-strategy Markov-perfect equilibrium. In this equilibrium, the firm with the

lowest liquidation value randomizes between remaining in the market and exiting at the

exit threshold for market conditions that would be optimal if its opponent were stubborn.

By contrast, the firm with the highest liquidation value exits with probability 1 if market

conditions fall below an even lower threshold, the value of which is determined precisely so

as to meet its opponent’s indifference condition.

It may rightly be objected that our construction does not solve the multiplicity problem

that plagues standard models of the war of attrition: if anything, we exhibit additional

equilibria that have been disregarded in the literature (Georgiadis, Kim, and Kwon (2022)).

A first answer to this objection is that, in the case of asymmetric players, any mixed-strategy

Markov-perfect equilibrium must feature the discrete intensity measures we highlight in

Theorem 2. Yet there may be many equilibria of this form. It is thus important to identify

robust implications of such equilibria that differentiate them from those the literature has

focused upon. In that respect, a robust property of the novel equilibria we identify in this

paper is that, at any point at which a player randomizes between exiting or remaining

in the market, the equilibrium value function of its opponent exhibits a kink. In our

duopoly example, the market value of its opponent reaches a peak at this kink, while the

randomizing firm’s market value goes down to its liquidation value. Moreover, a robust

testable implication of such equilibria is that, along any path of the diffusion process modeling

the evolution of market conditions, the two firms’ market values fluctuate stochastically over
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the attrition region, moving in opposite directions as long as none of them exits the market.

This negative comovement of firms’ market values stands in contrast with the symmetric

mixed-strategy Markov-perfect equilibrium with an absolutely continuous intensity measure

that arises when firms have identical liquidation values, in which firms’ market values are

constant and equal to their common liquidation value over the attrition region.

Related Literature

This paper belongs to the large literature on the war of attrition, starting with the seminal

contribution of Maynard Smith (1974) on animal conflict. Ghemawat and Nalebuff (1985)

study a war of attrition between duopolists who must decide when to exit from a declining

industry. Hendricks, Weiss, and Wilson (1988) offer an exhaustive characterization of pure-

and mixed-strategy equilibria in the war of attrition with symmetric information when

players have potentially asymmetric payoffs that are deterministic functions of time. Riley

(1980), Bliss and Nalebuff (1984), and Fudenberg and Tirole (1986) extend the analysis to

asymmetric-information setups where, for instance, a firm is uncertain about its opponent’s

costs. In the same vein, Décamps and Mariotti (2004) study an investment game that has the

structure of a war of attrition because a firm’s investment generates additional information

for its opponent about the return of a common-value project.

With the exception of the last paper—which, however, considers a very special Poisson

information structure for signals—these papers confine their analysis to situations in which

players’ payoffs are deterministic. By contrast, a small literature, starting with Lambrecht

(2001) and Murto (2004), examines the case where players in a war of attrition have

symmetric information, but are uncertain about their future payoffs, which are driven by a

diffusion process. Lambrecht (2001) analyzes the order in which firms go bankrupt within

a given industry, and how this order is influenced by aggregate economic factors and firm-

specific factors such as their financial structure. Murto (2004) studies a stochastic version of

Ghemawat and Nalebuff (1985), and shows that a firm with a lower liquidation value may

actually end up exiting the market first in equilibrium, despite being a priori more enduring

than its opponent. Closest to the present paper in this literature is Georgiadis, Kim, and

Kwon (2022). In a setting that extends Murto (2004), they show that, as soon as firms

have different liquidation values, there exists no mixed-strategy Market-perfect equilibrium

in which firms exit the market according to absolutely continuous intensity measures. They

conclude that only pure-strategy Markov-perfect equilibria exist, and therefore that no

attrition can actually take place in equilibrium. Our analysis shows that this conclusion
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is unwarranted once firms can exit the market according to Markovian randomized stopping

times with singular intensity measures.

We have borrowed from Touzi and Vieille (2002) our concept of a randomized stopping

time, which they introduced to show that continuous-time zero-sum Dynkin games admit

a value. A technical contribution of the present paper is to provide a characterization of

Markovian randomized stopping times in terms of an intensity measure and a stopping region.

This characterization may prove useful for the study of general stochastic timing games.

The paper is organized as follows. Section 2 describes the model. Section 3 provides

rigorous definitions of our strategy and equilibrium concepts, as well as preliminary properties

of Markov-perfect equilibria. Section 4 heuristically shows how to construct a mixed-strategy

Markov-perfect equilibrium involving a singular intensity measure for one of the players.

Section 5 states our main characterization results. Proofs not given in the main text are

collected in Appendices A–C.

2 The Model

2.1 A General Model of War of Attrition under Uncertainty

We study a war of attrition with symmetric information between two players, 1 and 2, facing

uncertainty about future market conditions. In what follows, i (he) refers to an arbitrary

player and j (she) to his opponent. Time is continuous and indexed by t ≥ 0. Both players

observe the evolution of market conditions; based on this information, each player decides

whether to hold fast, that is, to remain in the market, or to concede, that is, to exit the

market, an irreversible decision that effectively terminates the game.

The evolution of market conditions is modeled as a one-dimensional time-homogeneous

diffusion process X ≡ (Xt)t≥0 defined over the canonical space (Ω,F ,Px) of continuous

trajectories with X0 = x under Px, that is solution in law to the stochastic differential

equation (SDE)

dXt = b(Xt) dt + σ(Xt) dWt, t ≥ 0, (1)

driven by some Brownian motion W ≡ (Wt)t≥0. The state space for X is an interval

I ≡ (α, β), with −∞ ≤ α < β ≤ ∞, and b and σ are continuous functions, with σ > 0 over

I. We assume that α and β are inaccessible (natural) endpoints for the diffusion. Therefore,

X is regular over I and the SDE (1) admits a weak solution that is unique in law.

Player 1 chooses a (random) time τ 1 and player 2 chooses a (random) time τ 2. Both
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players discount future payoffs at a constant rate r > 0. For each i = 1, 2, the expected

payoff of player i is1

J i(x, τ 1, τ 2) = Ex

[

1{τ i≤τ j} e
−rτ iRi(Xτ i) + 1{τ i>τ j} e

−rτ jGi(Xτ j)
]

. (2)

The payoff functions Ri and Gi in (2) are continuous over their domain I and satisfy Gi ≥ Ri,

with Gi(x) > Ri(x) for x above some threshold αi < β.2 Therefore, if player i concedes at

time τ i ≤ τ j , he obtains a payoff Ri(Xτ i), whereas, if player j concedes at time τ j < τ i

and Xτ j > αi, then player i obtains a strictly higher payoff Gi(τ j) than the payoff Ri(τ j)

he would have obtained by conceding at time τ j . The payoff functions Ri and Gi, i = 1, 2,

are assumed to be common knowledge among the players; hence the only primitive source of

uncertainty in the model is the diffusion process (1), whose realizations are observed by both

players. We study the resulting war of attrition with symmetric information and uncertain

payoffs under technical assumptions that we now present.

2.2 Technical Assumptions

We first recall useful properties of the solution X to the SDE (1). We next detail the

assumptions on the payoff functions Ri andGi and emphasize useful properties of the optimal

stopping problem

VRi(x) ≡ sup
τ∈T

Ex [e
−rτRi(Xτ )] (3)

faced by player i when player j is stubborn, that is, plays τ j = ∞; here T denotes the set of

all stopping times of the usual augmentation (Ft)t≥0 of the natural filtration generated by

X over the canonical space.3 We refer to (3) as player i’s stand-alone exit problem, in which

he cannot benefit from player j conceding.

Properties of the Diffusion X The infinitesimal generator of the diffusion X is defined

for functions u ∈ C2(I) by

Lu(x) ≡ b(x)u′(x) +
1

2
σ2(x)u′′(x), x ∈ I. (4)

That σ > 0 over I ensures that the ordinary differential equation (ODE) Lu−ru = 0 admits

a two-dimensional space of solutions in C2(I), which is spanned by two positive fundamental

1By convention, we let f(Xτ ) ≡ 0 over {τ = ∞} for any Borel function f and any random time τ .
2Notice that one may have αi ≤ α. If αi > α, then Gi = Ri over (α, αi]; this reflects that, for low values

of x, it may be optimal for player i to exit the market even as a monopolist.
3The definition of (Ft)t≥0 is recalled in Appendix A.
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solutions ψ and φ, respectively strictly increasing and strictly decreasing, that are uniquely

defined up to a linear transformation. By Abel’s theorem, the ratio

γ ≡ ψ′(x)φ(x)− ψ(x)φ′(x)

S ′(x)
> 0 (5)

of the Wronskian of ψ and φ and of the derivative of the scale function of the diffusion X ,

which is uniquely defined up to an affine transformation by

S(x) ≡
∫ x

c

exp

(

−
∫ y

c

2b(z)

σ2(z)
dz

)

dy, x ∈ I (6)

for some fixed c ∈ I, is a constant independent of x. Because the boundaries α and β of I
are natural, we know in particular that

lim
x→α+

ψ(x) = 0, lim
x→β−

ψ(x) = ∞, lim
x→α+

φ(x) = ∞, lim
x→β−

φ(x) = 0. (7)

Furthermore, letting τy ≡ inf {t ≥ 0 : Xt = y} be the hitting time of y ∈ I from X0 = x, we

have that

Ex [e
−rτy ] =

{

ψ(x)
ψ(y)

if x ≤ y,
φ(x)
φ(y)

if x > y.
(8)

Assumptions on the Payoff Functions Ri and Gi For each i = 1, 2, we assume that

Ri ∈ C2(I), and that it satisfies

A1 For each x ∈ I, Ex [supt≥0 e
−rt|Ri(Xt)|] <∞.

A2 For each x ∈ I, limt→∞ e−rtRi(Xt) = 0, Px-almost surely.

A3 There exists xi0 ∈ I such that LRi − rRi < 0 over (α, xi0) and LRi − rRi > 0 over

(xi0, β).

A1 guarantees that the family (e−rτRi(Xτ ))τ∈T is uniformly integrable. A1–A2 imply the

useful growth property

lim
x→α+

Ri(x)

φ(x)
= lim

x→β−

Ri(x)

ψ(x)
= 0. (9)

A3 intuitively captures the idea that, as long as the market conditions remain in the portion

(α, xi0) of the state space, the gains from staying in the market decline if no player has

conceded yet. This guarantees that the optimal stopping region {x ∈ I : VRi(x) = Ri(x)}
for problem (3) is of the form (α, xRi ] for some threshold xRi < xi0, so that

VRi(x) =

{

Ri(x) if x ≤ xRi ,
φ(x)
φ(x

Ri )
Ri(xRi) if x > xRi .

(10)
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The smooth-fit property applies at xRi , that is, Ri′(xRi) =
φ′(x

Ri)

φ(x
Ri )

Ri(xRi) (Peskir and

Shiryaev (2006), Dayanik and Karatzas (2003, Corollary 7.1)). It follows from standard

optimal stopping theory that (e−rtVRi(Xt))t≥0 is a supermartingale and that LVRi−rVRi ≤ 0

over I \ {xRi}. The following lemma holds.

Lemma 1 VRi > 0 over I and Ri > 0 over (α, xRi ].

We assume that Gi ∈ C1(I), that Gi is piecewise C2 over I, and that it satisfies

A4 For each x ∈ I, Ex [supt≥0 e
−rtGi(Xt)] <∞.

A5 For each x ∈ I, limt→∞ e−rtGi(Xt) = 0, Px-almost surely.

A6 Gi ≥ VRi over I and Gi(x) > VRi(x) if and only if x > αi for some αi < xRi .

A7 LGi − rGi ≤ 0 everywhere Gi′′ is defined.

The interpretation of A7 is that player i would rather obtain the payoff Gi(Xt) sooner than

later. This is the case, for instance, when Gi is the value function of an ulterior optimal

stopping problem faced by the winner of the war of attrition. From (3) and A6–A7, we have

Gi > Ri ∨ 0 over I, so that, by Lemma 1, Gi > 0 over I; hence A4 guarantees that the

family (e−rτGi(Xτ ))τ∈T is uniformly integrable. A4–A5 imply the useful growth property

lim
x→α+

Gi(x)

φ(x)
= lim

x→β−

Gi(x)

ψ(x)
= 0. (11)

2.3 A Running Example: Exit in Duopoly

Consider the following model of exit in duopoly, in the spirit of Murto (2004) or Giorgiadis,

Kim, and Kwon (2022). Two firms are initially present on the market. As long as both firms

remain in the market, each earns a flow duopoly profit Xt, where X follows a geometric

Brownian motion with drift b < r and volatility σ,

dXt = bXt dt+ σXt dWt, t ≥ 0,

over the state space I ≡ (0,∞). If firm i concedes at time τ i, then its assets are liquidated

for a value li > 0, while firm j enjoys from time τ i on a flow monopoly profit mXt for some

m > 1, until it in turn decides to exit the market and receive its liquidation value lj > 0.

Thus the expected discounted profit of every firm i for given exit times τ i and τ j is

F i(x, τ 1, τ 2) ≡ Ex

[
∫ τ1∧τ2

0

e−rtXt dt + 1{τ i≤τ j} e
−rτ ili + 1{τ i>τ j} e

−rτjV i
m(Xτ j )

]

,
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where V i
m is firm i’s value function as a monopolist,

V i
m(x) ≡ sup

τ∈T
Ex

[
∫ τ

0

e−rtmXt dt+ e−rτ li
]

.

Letting E(x) ≡ Ex

[∫∞

0
e−rtXt dt

]

= x
r−b

, Ri ≡ li − E, and Gi ≡ V i
m − E, we obtain the

expression (2) for J i(·, τ 1, τ 2) ≡ F i(·, τ 1, τ 2)−E. Standard computations (see, for instance,

Dixit and Pindyck (1994)) yield

xRi =
ρ−

ρ− − 1
(r − b)li and αi =

xRi

m
,

where

ρ− ≡ 1

2
− b

σ2
−
√

(

1

2
− b

σ2

)2

+
2r

σ2
.

Notice that Gi(x) = Ri(x) = li − E(x) for all x ∈ (α, αi]. It is easy to check that this

specification satisfies A1–A7. We will use it in Section 4 to illustrate our results.

3 Mixed Strategies and Equilibrium Concept

Our key methodological contribution is to allow players to play randomized stopping times.

We first recall the definition and basic properties of randomized stopping times. Imposing

a Markov restriction leads to our first main result, which is a representation theorem

for Markov randomized stopping times. We then define the concept of Markov-perfect

equilibrium and give some important properties of best replies.

3.1 Randomized Stopping Times

One classical definition of a randomized stopping time consists, following Aumann (1964),

in enlarging the probability space; this compensates for the absence of a natural measurable

structure over the space of stopping times. For every player i = 1, 2, the corresponding

enlarged probability space is (Ωi,F i) ≡ (Ω× [0, 1],F ⊗B([0, 1])), endowed with the product

probability Pi
x ≡ Px ⊗Leb, where Leb denotes Lebesgue measure. We borrow the following

definition from Touzi and Vieille (2002).

Definition 1 A randomized stopping time for player i = 1, 2 is a F ⊗ B([0, 1])-measurable

function γi : Ωi → R+ such that, for Leb-almost every ui ∈ [0, 1], γi(·, ui) ∈ T . The process

Γi ≡ (Γit)t≥0 defined by

Γit(ω) ≡
∫

[0,1]

1{γi(ω,ui)≤t} du
i, (ω, t) ∈ Ω× R+, (12)
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is the conditional cumulative distribution function (ccdf) of the randomized stopping time

γi. The process Λi ≡ (Λit)t≥0 defined by

Λit(ω) ≡ 1− Γit(ω), (ω, t) ∈ Ω× R+, (13)

is the conditional survival function (csf) of the randomized stopping time γi.

It is immediate that the ccdf process Γi defined by (12) takes values in [0, 1] and has

nondecreasing and right-continuous trajectories. The following lemma shows that the process

Γi is adapted and provides a useful representation.

Lemma 2 The ccdf process Γi is (Ft)t≥0-adapted and, for Px-almost every ω ∈ Ω,

Γit(ω) = Pi
x [γ

i ≤ t |Ft](ω) (14)

for all x ∈ I and t ≥ 0.

We adopt the convention Γi0− ≡ 0. This allows us in what follows to interpret integrals

of the form
∫

[0,τ)
· dΓit in the Stieltjes sense for any ccdf Γi.

If the players use randomized stopping times γ1 and γ2, then their expected payoffs are

defined over the product probability space Ω× [0, 1]× [0, 1] with canonical element (ω, u1, u2)

endowed with the product probability Px ≡ Px ⊗ Leb⊗ Leb by

J i(x, γ1, γ2) ≡ Ex

[

1{γi≤γj} e
−rγiRi(Xγi) + 1{γi>γj} e

−rγjGi(Xγj )
]

, (15)

where γ1 ≡ γ1(ω, u1) and γ2 ≡ γ2(ω, u2), reflecting that player 1 and player 2 use the

independent randomization devices u1 and u2, respectively.

Our next result shows that we may equivalently work with the family of ccdf processes

Γi. As similar results appear elsewhere in the literature (Touzi and Vieille (2002), Riedel

and Steg (2017)), its proof is relegated to Appendix A.

Lemma 3 If the players use randomized stopping times with ccdf Γ1 and Γ2, then their

expected payoffs write as

J i(x,Γ1,Γ2) = Ex

[
∫

[0,∞)

e−rtRi(Xt)Λ
j
t− dΓit +

∫

[0,∞)

e−rtGi(Xt)Λ
i
t dΓ

j
t

]

. (16)

Moreover, any nondecreasing, right-continuous, Ft-adapted, [0, 1]-valued process Γi is the ccdf

of the randomized stopping time γ̂i defined by

γ̂i(ui) ≡ inf {t ≥ 0 : Γit > ui}. (17)
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3.2 Markovian Randomized Stopping Times

Our goal in this paper is to characterize equilibria in which players concede according to

Markov randomized strategies that only depend on current market conditions. Notice that

such strategies have to be defined for any initial market conditions x ∈ I. As a preliminary,

we need the following standard definition (Revuz and Yor (1999, Chapter I, §3)).

Definition 2 Let Y ≡ (Yt)t≥0 be the coordinate process over the canonical space Ω, defined

by Yt(ω) ≡ ωt for all ω ∈ Ω and t ≥ 0. Then, for each t ≥ 0, the shift operator θt : Ω → Ω

is defined by Ys ◦ θt ≡ Ys+t for all s ≥ 0.

In words, the effect of θt on a trajectory ω is to forget the part of the trajectory prior to

time t and to shift back the remaining part by t units of time. We are now ready to define

our notion of a Markovian randomized stopping time.

Definition 3 A randomized stopping time for player i = 1, 2 with csf Λi : Ω × R+ → [0, 1]

is Markovian if, for Px-almost every ω ∈ Ω and for all x ∈ I, τ ∈ T , and s ≥ 0,

τ(ω) <∞ implies Λiτ(ω)+s(ω) = Λiτ(ω)(ω)Λ
i
s(θτ(ω)(ω)) (18)

or, more compactly, Λiτ+s = Λiτ · Λis ◦ θτ over the event {τ <∞}.

Definition 3 can be intuitively understood as follows. According to Definition 1 and

Lemma 2, Λiτ+s is the probability that player i concedes after time τ + s conditionally on

Fτ+s. The Markov restriction then states that, at time τ , and conditionally on the fact that

player i did not concede by then, the probability that he holds fast for at least s additional

units of time should not depend on the trajectory prior to time τ . This probability is thus

given by Λis ◦ θτ , that is, the probability induced by the randomized strategy applied to

the shifted trajectory. Formula (18) then follows from the standard formula for conditional

probabilities.

Processes satisfying (18) are known as strongly Markovian multiplicative functionals

of the Markov process X and are studied in the literature on general Markov processes

(Blumenthal and Getoor (1968)). Combining a result by Sharpe (1971) with the classical

representation result of additive functionals of regular diffusions (Borodin and Salminen

(2002, Chapter II, Section 4, §23)), we can deduce the following representation result for

Markovian randomized stopping times.

11



Theorem 1 For any Markovian randomized stopping time for player i = 1, 2 with csf Λi :

Ω× R+ → [0, 1], there exists a closed set Si ⊂ I and a Radon measure4 µi over I \ Si such
that, for each x ∈ I, and for Px-almost every ω ∈ Ω and each t ≥ 0,

Λit(ω) = e−
∫
I
L
y
t (ω)µ

i(dy) 1{τ
Si (ω)>t}, (19)

where

Lyt ≡ lim
ε↓0

1

2ε

∫ t

0

1(y−ε,y+ε)(Xs)σ
2(Xs) ds, (20)

is the local time of X at (y, t), and

τSi ≡ inf {t ≥ 0 : Xt ∈ S}

is the hitting time of Si by X. In particular, the mapping t 7→ Λit(ω) is continuous over

[0, τSi(ω)) for Px-almost every ω ∈ Ω.

The interpretation of (19) is that player i concedes with probability 1 over Si, and with

positive but finite intensity over supp µi. The relation (19) allows us in the following to

indifferently refer to a Markov strategy for player i as a ccdf Γi, a csf Λi, or a pair (µi, Si);

we shall use these notations interchangeably in the definition of players’ payoffs. Three cases

of the representation (19) are worth mentioning.

The Pure Stopping Case If µi ≡ 0, then the Markov strategy (0, Si) is just the pure

stopping time τSi . This is the class of Markov strategies considered by Murto (2004).

The Absolutely Continuous Case If µi ≡ gi ·Leb is absolutely continuous with density

gi with respect to Lebesgue measure, then, using the occupation time formula (Revuz and

Yor (1999, Chapter VI, §1, Corollary 1.6)), the corresponding csf writes as

Λit = e−
∫
I
L
y
t g

i(y) dy 1{τ
Si>t} = e−

∫ t
0
gi(Xs)σ2(Xs) ds 1{τ

Si>t}. (21)

Outside Si, this strategy consists for player i in conceding according to a Poisson process with

stochastic intensity λi(Xt) ≡ gi(Xt)σ
2(Xt); that is, during a short time interval [t, t + dt),

he concedes with probability 1 if Xt ∈ Si and with probability λi(Xt) dt otherwise. This is

the class of Markov strategies considered by Giorgiadis, Kim, and Kwon (2022).

4Recall that a Radon measure over an open set U ⊂ R is a nonnegative Borel measure that is locally
finite in the sense that every point of U has a neighborhood having finite µ-measure.
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The Singular Case If µi ≡ aiδxi, where a
i > 0 and δxi is the Dirac mass at xi ∈ I \ S,

then the corresponding csf writes as

Λit = e−a
iLxi

t 1{τ
Si>t}. (22)

In particular, the mapping t 7→ Λit(ω) is singular over [0, τSi(ω)) for Px-almost every ω ∈ Ω

such that the trajectory of X crosses xi; that is, its derivative is zero for Leb-almost every

t ∈ [0, τSi(ω)), though Λit(ω) is not constant as it decreases each time X crosses xi. To the

best of our knowledge, Markov strategies with singular csf have not been considered in the

literature. Yet there is no reason to discard such strategies, as they naturally emerge as

limits of more familiar ones. Here are two illustrations:

(i) First, discretize the state space (and possibly the time space) and consider Markov

strategies for player i prescribing him to concede with positive intensity when the

current state is xi. Then, with appropriate normalizations, the natural limit of such

strategies when the mesh of the discretization goes to 0 corresponds to a distribution

with hazard rate proportional to the local time of the diffusion at xi.

(ii) Second, consider the Markov strategy that, outside Si, consists for player i in conceding

according to a Poisson process with stochastic intensity λiε(Xt) ≡ ai

2ε
σ2(Xt) 1(xi−ε,xi+ε)

for ai > 0 and some small ε > 0. By (21), the corresponding csf writes as

Λiε,t = e−
∫ t
0
λiε(Xs) ds 1{τ

Si>t}.

From the definition (20) of the local time Lx
i

t of X at (xi, t), we deduce that, for each

t ≥ 0, Λiε,t converges Px-almost surely to Λit in (22) as ε goes to 0.

Let us finally mention an important property of a Markov strategy, such as (22), associated

to a singular measure with an atom at xi. Using the properties of the local time, one can

check5 that the total probability of conceding before time t starting from xi is of order
√
t,

whereas the same quantity is of order t for a Markov strategy, such as (21), associated to

an absolutely continuous measure. As we will see in Sections 4–5, this particular singular

behavior will create points of nondifferentiability in the players’ equilibrium value functions.

3.3 Markov-Perfect Equilibrium and Properties of Best Replies

We are now ready to define our equilibrium concept and to provide some basic properties

of best replies. Our first result, which we will repeatedly use in what follows, illustrates the

5This be obtained for example by adapting the method used in Lemma 15 in Peskir (2019).
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standard fact that a player, given the behavior of his opponent, cannot improve his payoff

merely by randomizing over pure strategies.

Lemma 4 For each x ∈ I and for any pair of randomized stopping times with ccdf (Γ1,Γ2),

J1(x,Γ1,Γ2) ≤ sup
τ1∈T

J1(x, τ 1,Γ2),

J2(x,Γ1,Γ2) ≤ sup
τ2∈T

J2(x,Γ1, τ 2).

This motivates the following definition.

Definition 4 A Markov-Perfect Equilibrium (MPE) is a profile of Markov strategies

((µ1, S1), (µ2, S2)) such that, for each x ∈ I,

J1(x, (µ1, S1), (µ2, S2)) = J̄1(x, (µ2, S2)) ≡ sup
τ1∈T

J1(x, τ 1, (µ2, S2)),

J2(x, (µ1, S1), (µ2, S2)) = J̄2(x, (µ1, S1)) ≡ sup
τ2∈T

J2(x, (µ1, S1), τ 2).

That is, for each i = 1, 2, (µi, Si) is a perfect best reply (pbr) for player i to (µj, Sj), and

J̄ i(·, (µj, Sj)) is player i’s best-reply value function (brvf) to (µj, Sj).

When no confusion can arise as to the strategy of player j, we write J̄ i instead of

J̄ i(·, (µj, Sj)). The next proposition provides useful general properties of pbr and brvf,

and is key to establish our main results.

Proposition 1 If (µi, Si) is a pbr to (µj, Sj) with associated brvf J̄ i, then VRi ≤ J̄ i ≤ Gi.

Furthermore,

(i) S1 ∩ S2 ∩ (αi, β) = ∅;

(ii) Si ⊂ C i ≡ {x ∈ I : J̄ i(x) = Ri(x)};

(iii) suppµi ⊂ C i ∪ Sj;

(iv) suppµi ∪ Si ⊂ (α, xRi ];

(v) (0, Si) is also a pbr to (µj, Sj) and more generally (µ̃i, Si) is a pbr to (µj, Sj) for any

µ̃i such that supp µ̃i ⊂ C i ∪ Sj;
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Property (i) intuitively states that player i should never concede when market conditions

x are such that player j concedes with probability 1 and player i’s payoff from conceding is

strictly less than the payoff from letting player j concede, that is, x ∈ Sj and Gi(x) > VRi(x).

Property (ii) simply expresses the fact that player i’s brvf coincides with Ri over the portion

Si of the state space over which he concedes with probability 1. Property (iii) states that

player i’s payoff is Ri when he concedes with positive intensity outside of player j’s stopping

region Sj . Property (iv) reflects that player i should never concede when market conditions

are above the optimal threshold xRi for his stand-alone exit problem; intuitively, this is

because waiting for X to drop down to xRi before conceding is player i’s optimal strategy

even in the worst-case scenario in which player j is stubborn, that is, (µj, Sj) = (0, ∅).
Finally, property (v) states that, when conceding with positive intensity outside of Si, player

i should be indifferent between holding fast and conceding.

Remark Some authors (see, for instance, Murto (2004)) include, as a refinement in the

definition of an MPE, the requirement that (α, αi] ⊂ Si for all i. The rationale for this

assumption is that, because Gi = VRi = Ri over (α, αi], holding fast further below αi would

be weakly dominated for player i by conceding with probability 1 over this interval. For

instance, being stubborn is a best reply for player i over (α, αi) only if player j concedes

with probability 1 over this interval, except perhaps over a set of Lebesgue measure 0. This

behavior is not per se inconsistent with an MPE, but it is not consistent with trembling-hand

perfection in the spirit of Selten (1975), see Ghemawat and Nalebuff (1985) for a discussion

of a similar point in a deterministic model. Hereafter, we do not systematically impose this

refinement, especially in Section 5 where this allows to simplify notation; however, we will

indicate which MPEs can be modified so as to satisfy it.

We close this section with an important global regularity result.

Proposition 2 If ((µ1, S1), (µ2, S2)) is an MPE, then, for each i = 1, 2, player i’s brvf J̄ i

is continuous over I.

4 MPEs with Singular Strategies: Heuristics

We first recall within our general framework two standard MPEs, respectively in pure and

mixed strategies, that have been emphasized in the literature. Based on these examples and

on our representation theorem for Markovian randomized stopping times, we next describe

a novel type of MPE involving a singular strategy for one of the two players. Our heuristic
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presentation leads to a variational system that turns out to fully characterize the candidate

equilibrium. We use the running example of Section 2.3 to illustrate our findings.

4.1 A Pure-Strategy MPE

We say that player 1 is as least as enduring as player 2 if α1 ≤ α2 and xR1 ≤ xR2 ; intuitively,

player 1 is at least as willing to hold fast as player 2. Suppose then that player 1 threatens

to hold fast maximally and concede only at τ 1 = inf {t ≥ 0 : Xt ≤ α1}. Then, because

α1 ≤ α2, we have G2(Xτ1) = R2(Xτ1) by definition of α2. In light of (2)–(3), this implies

that, for all x ∈ I and τ 2 ∈ T ,

J2(x, τ 1, τ 2) = Ex

[

e−rτ
1∧τ2R2(Xτ1∧τ2)

]

≤ VR2(x).

Thus a pbr for player 2 to τ 1 is to concede at τ 2 = inf {t ≥ 0 : Xt ≤ xR2}. As for player 1,

if player 2 concedes at τ 2, then, for each x ∈ I,

Ex

[

e−rτ
2

G1(Xτ2)
]

≥ R1(x).

For x ≤ xR2 , this follows from the fact that G1(x) ≥ R1(x) by A6, with a strict inequality

if x > α1. For x > xR2 , this follows from A6 again along with the fact that the process

(e−rtVR1(Xt))t≥0 is a martingale up to τx
R1
, the hitting time of xR1 , which is no less than τ 2

because xR1 ≤ xR2 by assumption. Thus a pbr for player 1 to τ 2 is to concede at τ 1. This

implies the following result, which has many counterparts in the literature (see, for instance,

Ghemawat and Nalebuff (1985), Décamps and Mariotti (2004), Murto (2004), Giorgiadis,

Kim, and Kwon (2022)).

Proposition 3 If player 1 is at least as enduring as player 2, then ((0, (α, α1]), (0, (α, xR2 ]))

is a pure-strategy MPE.

In the case where the asymmetry between the players is small, ((0, (α, xR1]), (0, ∅)) is

also an MPE in which the more enduring player 1 follows his stand-alone optimal strategy

because the less enduring player 2 is stubborn (Giorgiadis, Kim, and Kwon (2022)). However,

this MPE does not satisfy Murto’s (2004) trembling-hand-perfection refinement, because, for

x ∈ (α1, α2), player 2’s strategy is no longer a best response when player 1 does not concede

with probability 1 in any small enough neighborhood of x. Nevertheless, Murto (2004) shows

that, when we allow player 1’s stopping set S1 to exhibit a gap, there may exist an MPE

satisfying this refinement in which, when x > xR1 , player 1 exits first when X reaches xR1 .
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4.2 A Mixed-Strategy MPE in the Symmetric Case

Suppose now that players are symmetric, in the weak sense that they are as enduring as

each other, α1 = α2 ≡ α∗ and xR1 = xR2 ≡ x∗. This is of course the case when the players

have identical payoff functions, R1 = R2 and G1 = G2. The following result, which restates

in our framework earlier results in the literature (Steg (2015), Georgiadis, Kim, and Kwon

(2022))6, characterizes a mixed-strategy MPE in which the players concede with absolutely

continuous intensities over the interval (α∗, x∗].

Proposition 4 If the players are as enduring as each other, then the strategy profile

((λ1(x)σ−2(x) dx, (α, α∗]), (λ2(x)σ−2(x) dx, (α, α∗]))

defined, for each i = 1, 2, by

λi(x) ≡ rRj(x)−LRj(x)

Gj(x)−Rj(x)
1{α∗<x≤x∗}, (23)

is a mixed-strategy MPE.

We know from Proposition 1(iv) that supp µi ⊂ (α∗, x∗]. Following Theorem 5.1 in Steg

(2015), the MPE constructed in Proposition 4 is such that each player stops with an intensity

function λi with support (α∗, x∗]. This intensity is constructed so that, at each point of this

interval, each player is indifferent between holding fast and conceding. In equilibrium, the

value function of each player coincides with the value function of his stand-alone exit problem

(3). Thus, in expectation, the war of attrition yields no benefit to either player.

4.3 A Singular Mixed-Strategy MPE

When players are asymmetric but there is no uncertainty about their future payoffs, the war

of attrition may admit mixed-strategy equilibria in which players strategies are described,

over some interval of exit times, by absolutely continuous distributions (see, for instance,

Hendricks, Weiss, and Wilson (1988)); this is certainly the case in the limiting case of

our model where µ = σ = 0, so that market conditions are constant. This result has no

counterpart under Brownian uncertainty. Indeed, Georgiadis, Kim, and Kwon (2022) have

shown that the construction of Proposition 4 does not extend to the case of asymmetric

players: specifically, when players are not as enduring as each other, there exists no mixed-

6A related construction also appears in Kwon and Palczewski (2022). There, a symmetric Bayesian
equilibrium is constructed in a model with asymmetric information and a continuum of types. The pure
strategies, seen as randomized strategies assimilating the types as randomization devices, use absolutely
continuous intensities depending on X and on an auxiliary belief process.
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strategy MPE in which the players concede with absolutely continuous intensities. For all

that, it would be incorrect to conclude that only pure-strategy MPEs exist, and thus that

attrition cannot take place in an MPE of our model. This section argues for this claim by

describing an MPE involving a singular strategy for one of the two players. For the sake

of simplicity, the analysis below remains at a heuristical level. A full justification of our

arguments is provided in Section 5.

From now on, assume as in Section 4.1 that player 1 is at least as enduring as player 2,

that is, α1 ≤ α2 and xR1 ≤ xR2 . Consider then the following equation in x:

R1(xR1) =
φ(xR1)

φ(x)
G1(x). (24)

We show in Appendix B that (24) admits a unique solution x2 ∈ (α1, xR1). In words, the

threshold x2 is such that, if player 2 threatens to concede only at τ 2 = inf {t ≥ 0 : Xt ≤ x2},
then, at xR1 , player 1 is indifferent between conceding and obtaining R1(xR1) immediately

and waiting for player 2 to concede at τ 2 and obtaining G1(x2) only then. We claim that, if

xR2 is close enough to xR1 , then there exists an MPE in which player 1 randomizes between

holding fast and conceding at xR1 and player 2 concedes only at τ 2. Using the representation

for randomized stopping times provided in Theorem 1, this amounts to the existence of a

constant a1 > 0 such that the profile of strategy ((a1δx
R1
, (α, α1)), (0, (α, x2)) is an MPE in

which player 1 concedes, with positive but finite intensity, only at xR1 .

4.3.1 Necessary Conditions

To establish this claim, we first assume that such an MPE exists, and we derive necessary

conditions for the brvf J̄1 and J̄2. An obvious preliminary observation is that J̄1 ≥ R1 and

J̄2 ≥ R2, because, when current market conditions are x, every player i can always guarantee

himself the payoff Ri(x) by exiting the market immediately.

Player 1 Player 1, whose strategy involves randomization at xR1 , should be indifferent at

xR1
between conceding and holding fast until τ 2. This implies that his brfv J̄1 must be C2

over (x2, β), with J̄1(xR1) = R1(xR1) (value-matching). Because J̄1 ≥ R1, it follows in turn

that J̄1′(xR1) = R1′(xR1) as well. Moreover, by standard dynamic-programming arguments,

J̄1 must satisfy the ODE LJ̄1 − rJ̄1 = 0 over (x2, β) (see, for instance, Dixit and Pindyck

(1994)). This leads to

J̄1(x) =
φ(x)

φ(xR1)
R1(xR1), x ∈ (x2, β). (25)
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In particular, J̄1 = VR1 over [xR1 , β): player 1 does not benefit from the war of attrition over

[xR1 , β). By contrast, J̄1 > VR1 over [x2, xR1), reflecting that player 1 can hope that player

2 may concede at x2 before he himself concedes at xR1 .

Player 2 Player 2 plays a pure strategy and hopes to benefit from player 1 conceding at xR1 .

We guess that J̄2 is C2 over (x2, xR1)∪ (xR1 , β), with J̄2(x2) = R2(x2) (value-matching) and

J̄2′(x2) = R2′(x2) (smooth pasting), and that it satisfies the ODE LJ̄2 − rJ̄2 = 0 over that

region. There remains to characterize the behavior of J̄2 at xR1 . Because player 1 randomizes

at xR1 between holding fast and conceding, we expect that G2(xR1) > J̄2(xR1) > R2(xR1).

This, along with the properties of the local time highlighted in Section 3.2, implies that J̄2

is not differentiable at xR1 . Indeed, starting from xR1 , player 1 concedes in a small time

interval of length dt with probability Ex
R1
[Γdt] = a1c

√
dt+ o(

√
dt), where Γdt = 1− e−a

1L
x
R1

dt

and c is a positive constant. If player 1 concedes, then player 2 benefits from the follower

payoff G2(xR1), while if player 1 holds fast, player 2 achieves the value J̄2(Xdt). Thus

J̄2(xR1) = a1c
√
dt G2(xR1) + (1− a1c

√
dt)Ex

R1
[e−rdtJ̄2(Xdt)] + o(

√
dt). (26)

Now, suppose, by way of contradiction, that J2 is C2 in a neighborhood of xR1 . Then, from

Itô’s formula,

Ex
R1
[e−rdtJ̄2(Xdt)] = J̄2(xR1) + (LJ̄2 − rJ̄2)(xR1) dt+ o(dt). (27)

Plugging (27) into (26) yields a1c[G2(xR1) − J̄2(xR1)]
√
dt + o(

√
dt) = 0, a contradiction as

G2(xR1) > J̄2(xR1) and a1 and c are positive constants. This is an indication that J̄2 is not

differentiable at xR1 ; let us denote by ∆J̄2′(xR1) ≡ J̄2′+(xR1)− J̄2′−(xR1) the corresponding

derivative jump. From the Itô–Tanaka–Meyer formula, which generalizes Itô’s formula to

functions, such as J̄2, that can be written as the difference of two convex functions (Karatzas

and Shreve (1991, Theorem 3.7.1 and Problem 3.6.24)), we have

Ex
R1
[e−rdtJ̄2(Xdt)] = J̄2(xR1) + Ex

R1

[
∫ t

0

e−rs(LJ̄2 − rJ̄2)(Xs) ds

+

∫ t

0

e−rsJ̄2′−(Xs)σ(Xs) dWs +
1

2
∆J̄2′(xR1)L

x
R1

dt

]

= J̄2(xR1) +
1

2
∆J̄2′(xR1)c

√
dt+ o(

√
dt), (28)

where the second equality follows from the fact that LJ̄2 − rJ̄2 = 0 over (x2, xR1) ∪ (xR1 , β)

and from the properties of local time. Plugging (28) into (26) yields

a1[G2(xR1)− J̄2(xR1)] +
1

2
∆J̄2′(xR1) = 0. (29)
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Notice from G2(xR1) > J2(xR1) and (29) that ∆J̄2′(xR1) < 0. Intuitively, player 2 gets more

and more optimistic as X approaches xR1 , but is disappointed if X crosses xR1 but player 1

does not concede at xR1 .

The Variational System Our discussion so far leads to the following variational system:

find a constant a > 0, and two functions w1 ∈ C0((α, β)) ∩ C2((α, β) \ {x1}) and w2 ∈
C0((α, β)) ∩ C2((α, β) \ {x1, xR1}) such that

w1 ≥ R1 over (α, β), (30)

Lw1 − rw1 = 0 over (x2, β), (31)

w1 = G1 over (α, x2], (32)

w1(xR1) = R1(xR1), (33)

w1(β−) = 0, (34)

w2 ≥ R2 over (α, β), (35)

Lw2 − rw2 = 0 over (x2, xR1) ∪ (xR1 , β), (36)

w2(x2) = R2(x2), (37)

w2′(x2) = R2′(x2), (38)

a[G2(xR1)− w2(xR1)] +
1

2
∆w2′(xR1) = 0, (39)

w2(β−) = 0. (40)

4.3.2 Sufficient Conditions

It is an implication of our main characterization result, Theorem 4, that, if (a1, J̄1, J̄2)

is a solution to the variational system (30)–(40), then J̄1 is the brfv to (0, (α, x2)) and

w2 is the brfv to (a1δx
R1
, (α, α1)), so that, according to the construction in Section 4.3.1,

((a1δx
R1
, (α, α1)), (0, (α, x2)) is an MPE. As for J̄1, we have already seen that (30)–(31) and

(33) pin down a unique solution, given by (25), which satisfies J̄1(x2) = G1(x2) by definition

of x2. As for J̄2, the analysis is a bit more delicate due to the presence of the derivative

jump ∆J̄2′(xR1) at xR1 , which, by (39), is pinned down by the intensity a1 with which player

1 exits at xR1 . In our running example, it can be shown that, as long as the asymmetry

between the players is small, assuming that b > 0 and m is sufficiently large, one can indeed

find a positive value for a1 such that (35)–(40) holds. The following result then holds7.

7A numerical study that we performed suggests that, for firms’ liquidation values l1 ≤ l2 close to each
other, the variational systems (30)-(34) and (35)-(40) admit a solution whatever the parameter values of the
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Proposition 5 In the running example, if the firms’ liquidation values l1 ≤ l2 are close

to each other, b > 0 and m is sufficiently large, then there exists a mixed-strategy MPE

((a1δx
R1
, (α, α1)), (0, (α, x2)) in which the more enduring firm 1 randomizes between holding

fast and conceding at xR1 while the less enduring firm 2 exits with probability 1 as soon as

market conditions fall below x2 < xR1.

The MPE constructed in Proposition 5 differs from the pure-strategy MPE of Proposition

3 in that, for x ≥ xR1 , it is the more enduring enduring player 1 who does not benefit from

the war of attrition, in the sense that J̄1 = VR1 over [xR1 , β); by contrast, J̄2 > VR2 over this

portion of the state space. The reason is that player 2 adopts a tougher stance by threatening

to exit the market only at x2 < xR1 < xR2 , which makes player 1 indifferent between

holding fast and conceding at xR1 . By construction, this MPE satisfies the requirement that

(α, αi] ∈ Si for every player i, as in Murto (2004).

It should also be noted that, in this singular mixed-strategy MPE, we have max S1 ∨
max S2 = x2 < xR1 < xR2 . This contrasts with pure-strategy MPEs, in which one always

have max S1 ∨ max S2 ∈ {xR1 , xR2}. Thus mixing by player 1 delays the time at which a

firm must necessarily exit the market. In particular, the difference with the pure-strategy

MPE characterized by Murto (2004), in which the stopping set S1 of player 1 exhibits a gap

below max S1 = xR1 and player 1 is the first to exit the market at xR1 when x > xR1 , is that

player 1 does not exit with probability 1 at xR1 . This leads to a richer dynamics, whereby,

on the equilibrium path, every player i can alternate between being in a dominated position

(with a value close to VRi) or in a dominant position (with a value significantly above VRi);

specifically, player 1 is in a dominant position when X is close to x2, while player 2 is in

a dominant position when X is close to xR1 . As we show in Theorem 3, this alternation

phenomenon is a robust feature of any mixed-strategy MPE.

Figure 1 illustrates this point in the running example by plotting the firms’ market-value

functions F i ≡ J̄ i + E in the singular mixed-strategy MPE constructed in Proposition 5.

Notice that firm 1’s value function coincides with its monopolist value function V 1
m over

(α, x2], because player 2 exits the market with probability 1 at any point of this interval. It

can also be checked that F 2′−(xR1) > 0 > F 2′+(xR1), reflecting that player 2’s market value

reaches a local maximum when Xt = xR1 . Finally, a testable implication of this MPE, which

is also apparent from Figure 1, is that, along any path of X , the firms’ market values move

in opposite directions as long as none of them exits the market and market conditions do

model if b > 0, and for m in some compact interval [1, C] if b < 0 for some constant C which increases with
σ.
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Figure 1: The value of never exiting the market in a duopoly (in black), the value of never
exiting the market in a monopoly (in purple), and the more enduring firm 1’s value (in blue)
and the less ensuring firm 2’s value (in red) in the singular mixed-strategy MPE.

not wander too much above xR1 . Again, this negative comovement of firms’ market values

is a robust feature of any mixed-strategy MPE.

Our analysis also has novel welfare implications. As already noted, because firm 1 does

not exit with probability 1 at xR1 , firm 2’s market value at xR1 , F 2(xR1), must be less than

its value as a monopolist, V 2
m(xR1). Because firm 1’s market value satisfies F 1 = VR1+E over

[xR1 ,∞) and thus coincides with his stand-alone market value, this implies that, for x > xR1 ,

the mixed-strategy MPE characterized in Proposition 5 is ex-ante Pareto dominated by the

pure-strategy MPE ((0, (α, xR1]), (0, ∅)). Thus, even when firms have asymmetric liquidation

values, wasteful attrition takes place with positive probability on the equilibrium path, in

contrast with the conclusion of Georgiadis, Kim, and Kwon (2020).

5 Main Results

This section presents our main results, which extend Proposition 5 to our general model.

We first provide a necessary condition for mixed-strategy MPEs in the case of asymmetric

players. We then characterize such equilibria by a variational system satisfied by the two

players’ value functions.
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5.1 The Alternating Structure of Mixed-Strategy MPEs

The proofs of our main results require an additional regularity assumption, which we will

throughout maintain in what follows.

A8 The functions b, σ, and Ri′′ are locally Lipschitz.

By convention, let us set max ∅ ≡ α and, for any MPE ((µ1, S1), (µ2, S2)), let si ≡
max Si. The following theorem then holds.

Theorem 2 Suppose that xR1 6= xR2 . Then, for any mixed-strategy MPE ((µ1, S1), (µ2, S2)),

the restrictions of the intensity measures µ1 and µ2 to (s1 ∨ s2, β) are purely atomic.

Theorem 2 confirms the basic insight of Georgiadis, Kim, and Kwon (2022), according

to which there exists no mixed-strategy MPE with absolutely continuous intensity measures

when xR1 6= xR2 . Thus, if a mixed-strategy MPE exists at all, it must feature intensity

measures that are singular with respect to Lebesgue measure. The additional information

provided by Theorem 2 is that these measures must be discrete, which, for instance, rules

out intensity measures with Cantor-set supports. The proof can be sketched as follows. Let

us consider a mixed-strategy MPE ((µ1, S1), (µ2, S2)), supposing one exists. Property (v) of

Proposition 1 and dynamic-programming arguments imply that the brvf J̄ i of every player

i satisfies the ODE Lu− ru = 0 over any interval where player j does not concede. It also

follows from Proposition 1 that J̄ i ≥ VRi and that J̄ i(qi) = Ri(qi) for all qi ∈ suppµi. These

observations imply that any point qi > s1 ∨ s2 in the support of µi is isolated in this set.

Thus the only potential accumulation point of the support of µi is s1 ∨ s2; it turns out that
in this case s1 ∨ s2 = α, so that S1 = S2 = ∅. (This is where A8 is needed.) In turn, over

an open interval around any point qi > s1 ∨ s2 in the support of µi, J̄ i coincides with the

solution T i
qi
to the ODE Lu−ru = 0 that is tangent to Ri at qi. At any such point qi, player

i is indifferent between holding fast and conceding.

Because the brvf of both players must satisfy these properties, a lot of structure is

thereby induced on the supports of µ1 and µ2. First, it is easy to see that, because J̄ i ≥ VRi ,

we must have max supp µi ≤ xRi for every player i. To fix ideas, let us suppose that

q11 ≡ max supp µ1 ≥ max suppµ2 ≡ q21. We can then show that in fact xR1 = q11 > q21. It also

follows that, for each i = 1, 2, and for any two consecutive points qin > qin+1 > s1 ∨ s2 in the

support of µi, there must exists a single point qj ∈ (qin+1, q
i
n) in the support of µj at which

player j is indifferent between conceding or holding fast; as discussed above, this implies

that J̄ j = T j
qj

over (qin+1, q
i
n). We thus obtain two decreasing sequences of randomization
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thresholds (q1n)
N1

n=1 and (q2n)
N2

n=1, with either N1 = N2 = ∞ or 0 ≤ N1 − N2 ≤ 1, which are

intertwined in the sense that q11 > q21 > q12 > q22 > . . . as long as these thresholds are defined,

and which satisfy limn→∞ q1n = limn→∞ q2n = α if N1 = N2 = ∞. These two sequences

characterize the restrictions of µ1 and µ2 to (s1 ∨ s2, β). Thus any mixed-strategy MPE

must fall into one of three categories.

Corollary 1 Suppose that xR1 6= xR2 , and let ((µ1, S1), (µ2, S2)) be a mixed-strategy MPE

such that, for every player i, supp µi ∩ (s1 ∨ s2, β) = {qin : n = 1, . . . , N i} for intertwined

decreasing sequences of randomization thresholds (q1n)
N1

n=1 and (q2n)
N2

n=1 satisfying, with no loss

of generality, q11 > q21. Then q11 = xR1 and

1. if N1 = N2 ≡ N ∈ N \ {0}, then q1N > q2N > s1 > s2;

2. if N1 = N2 + 1 ≡ N ∈ N \ {0}, then q2N−1 > q1N > s2 > s1, with q20 ≡ β by convention;

3. if N1 = N2 = ∞, then limn→∞ q1n = limn→∞ q2n = s1 = s2 = α, so that S1 = S2 = ∅.

In an MPE of type 1, player 1 exits the market with probability 1 at s1, and player

2 has the lowest randomization threshold. In an MPE of type 2, player 1 has the lowest

randomization threshold, and player 2 exits the market with probability 1 at s2—the example

of Section 4.3 is a case in point, with N1 = 1 and N2 = 0. In an MPE of type 3, neither

player exits the market with probability 1 at any point of the state space, and players keep

randomizing all the way down to α. It should be noted that an equilibrium of type 3 can

exist only if α1 = α2 = α; indeed, every player i such that αi > α would not be willing to

delay exiting the market over (α, αi) if his opponent were to do the same.

The upshot from Theorem 2 and Corollary 1 is that, when players have different stand-

alone optimal exit thresholds, alternation is a robust feature of any mixed-strategy MPE,

which generalizes the insights from Section 4.3. In the attrition region, players randomize

between conceding and holding fast at isolated thresholds. In an equilibrium of type 1 and

type 2, this process may persist until one player eventually reaches his stopping region and

exits the market with probability 1. By contrast, in an equilibrium of type 3, exit must take

place at some randomization threshold.

Corollary 1 fully characterizes equilibrium outcomes for an MPE of type 3, because any

market conditions in I can be reached with positive probability from any initial market

conditions x ∈ I. The same holds true for MPEs of types 1 and 2, provided x > xR1

(with the convention that q11 > q21). Indeed, for any such MPE ((µ1, S1), (µ2, S2)) and

for each x > xR1 , there exists an outcome-equivalent MPE ((µ̃1, S̃1), (µ̃2, S̃2)) such that
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supp µ̃i = supp µi ∩ (s1 ∨ s2, β) for every player i and S̃1 = (α, s1) and S̃2 = ∅ (for an

equilibrium of type 1), or S̃1 = ∅ and S̃2 = (α, s2) (for an equilibrium of type 2).

By contrast, Corollary 1 does not determine equilibrium outcomes of MPEs of types 1

and 2 for lower initial market conditions. First, as in Murto (2004), it may be possible to

construct MPEs in which the stopping regions S1 and S2 exhibit gaps. Second, these gaps

may themselves include randomization thresholds at which players exit the market with

positive but finite intensity.

5.2 The Characterization Result

The next Theorem gives a necessary and sufficient condition for the existence of an equilibrium

of type 2. Similar results can be written for equilibria of types 1 and 3.

Theorem 3 Let us consider two sequences of positive real numbers (q1i )1≤i≤n and (q2i )1≤i≤n−1

and s2 ∈ I with q11 = xR1 > q21 > q12 > ... > q2n−1 > q1n > s2 and two sequences of posi-

tive real numbers (ai)1≤i≤n and (bi)1≤i≤n−1. Then, the strategy profile ((µ1, S1), (µ2, S2)) ≡
((
∑n

i=1 aiδq1i , ∅), (
∑n−1

i=1 biδq2i , (α, s
2]))) is a mixed-strategy MPE if and only if there exists a

pair (w1, w2) solution to the variational systems VS1 and VS2 below.

Precisely:

(i) w1 ∈ C0(I) ∩ C2(I \ {(q2i )1≤i≤n−1, s
2}) is solution to VS1 if:

Lw1 − rw1 = 0 on (s2, β) \ {(q2i )1≤i≤n−1} (41)

w1(x) = G1(x) on x ≤ s2, (42)

w1(q1i ) = R1(q1i ), 1 ≤ i ≤ n (43)

bi[G
1(q2i )− w1(q2i )] +

1

2
∆(w1)′(q2i ) = 0, 1 ≤ i ≤ n− 1 (44)

lim
x→β

w1(x) = 0, (45)

w1(x) ≥ R1(x) on I. (46)
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(ii) w2 ∈ C0(I) ∩ C2(I \ ({(q1i )1≤i≤n} ∪ {s2})) is solution to VS2 if:

Lw2 − rw2 = 0 on (s2, β) \ {(q1i )1≤i≤n} (47)

w2(x) = R2(x) on x ≤ s2, (48)

w2(q2i ) = R2(q2i ), 1 ≤ i ≤ n− 1 (49)

(w2)′(s2) = (R2)′(s2), (50)

ai[G
2(q1i )− w2(q1i )] +

1

2
∆(w2)′(q1i ) = 0, 1 ≤ i ≤ n (51)

lim
x→β

w2(x) = 0, (52)

w2 ≥ R2 on I. (53)

The proof is relegated to Appendix C and is based on the properties obtained from

the proof of Theorem 2 together with classical methods employed in optimal stopping and

stopping games. In particular, the conditions (44) and (51) are obtained by applying the

Itô-Tanaka-Meyer formula.
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Appendix A: Proofs for Section 3

We start with some definitions (Revuz and Yor (1999, Chapter I, §4)). The process X is

defined over the canonical space (Ω,F) of continuous trajectories, and Pµ denotes the law

of the process X given an initial distribution µ ∈ ∆(I) over B(I). We denote by (F0
t )t≥0 the

natural filtration (σ(Xs; s ≤ t))t≥0 generated by X , and we let F0
∞ ≡ σ(

⋃

t≥0F0
t ). For each

µ ∈ ∆(I), we denote by Fµ
∞ the completion of F0

∞ with respect to Pµ, and, for each t ≥ 0, we

let Fµ
t be the augmentation of F0

t by the Pµ-null, Fµ
∞-measurable sets. The usual augmented

filtration (Ft)t≥0 is then defined by Ft ≡
⋂

µ∈∆(I)Fµ
t for all t ≥ 0. Because the process X is

a Feller process in the sense of Revuz and Yor (1999, Chapter III, §2, Definition 2.5) and a

standard process in the sense of Blumenthal and Getoor (1968, Chapter I, Definition 9.2),

the filtration (Ft)t≥0 is actually right-continuous. As usual in this literature, we say that a

property of the trajectories ω ∈ Ω is satisfied almost surely if it is satisfied Pµ-almost surely

for all µ ∈ I or, equivalently, Px-almost surely for all x ∈ I.

Proof of Lemma 1. The proof proceeds along the same lines as that of Lemma 1 in

Décamps, Gensbittel, and Mariotti (2021). The result follows. �

Proof of Lemma 2. For each µ ∈ ∆(I), ω and ui are independent under Pi
µ ≡ Pµ ⊗ Leb,

and hence

Γit(ω) = Pi
µ [γ

i ≤ t |F ](ω)

almost surely for all t ≥ 0. We may assume that γ(·, ui) ∈ T for all ui, as we can replace γi

by the constant stopping time 0 for all ui in a Borel set of zero Lebesgue measure without

modifying the process Γi. Therefore, for all ui ∈ [0, 1] and t ≥ 0, we have {ω ∈ Ω : γi(ω, ui) ≤
t} ∈ Ft as γ(·, ui) ∈ T . Using Corollary 2 in Solan, Tsirelson, and Vieille (2012), this implies

that Γit is measurable with respect to the augmentation of Ft by the Pµ-null, Fµ
∞-measurable

sets, which coincides with Fµ
t . As this is true for all µ ∈ ∆(I), we deduce that Γi is adapted

with respect to Ft. In particular, letting µ ≡ δx yields

Γit(ω) = Pi
x [γ

i ≤ t |Ft](ω)

almost surely for all t ≥ 0 by the law of iterated expectations. The result follows. �

Proof of Lemma 3. Assume that, for each i = 1, 2, γi is a randomized stopping time with
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ccdf Γi. We have

Ex

[

1{γi≤γj} e
−rγiRi(Xγi)

]

=

∫ 1

0

∫ 1

0

Ex

[

1{γi(ui)≤γj(uj)} e
−rγi(ui)Ri(Xγi(ui))

]

duj dui

=

∫ 1

0

Ex

[

e−rγ
i(ui)Ri(Xγi(ui))

∫ 1

0

1{γi(ui)≤γj(uj)} du
j

]

dui

=

∫ 1

0

Ex

[

e−rγ
i(ui)Ri(Xγi(ui))Λ

j

γi(ui)−

]

dui

= Ex

[
∫ 1

0

e−rγ
i(ui)Ri(Xγi(ui))Λ

j

γi(ui)− dui
]

= Ex

[
∫

[0,∞)

e−rtRi(Xt)Λ
j
t− dΓit

]

,

where the second and fourth equalities follow from Fubini’s theorem, and the third equality

follows from the definition of Λj . The last equality follows from observing that, for Px-almost

every ω ∈ Ω, t 7→ Γit(ω) is the cdf of the random variable γi(ω, ·) defined on the probability

space ([0, 1],B([0, 1]), Leb) and taking values in [0,∞], where Γi∞(ω) ≡ 1 by convention;

Fubini’s theorem then implies that the random variable ui 7→ e−rγ
i(ω,ui)Ri(Xγi(ω,ui))Λ

j

γi(ω,ui)−

is Lebesgue integrable over [0, 1] for Px-almost every ω ∈ Ω,8 and we can thus apply the

usual formula for the expectation. The proof for the second term appearing in (15) and (16)

is similar and thus omitted.

Let us then verify that (17) defines a randomized stopping time in the sense of Definition

1. That γ̂i(ui) ∈ T for Leb-almost every ui ∈ [0, 1] is standard (Jacod and Shiryaev (2003,

Proposition I.1.28)). The random variable (ω, ui) 7→ γ̂i(ui)(ω) is F∞ ⊗ B([0, 1])-measurable

as it is nondecreasing and right-continuous with respect to ui. That the ccdf associated with

γ̂i is Γi is proven in De Angelis, Ferrari, and Moriarty (2018, Lemma 4.1), who use this

representation as the definition of a randomized stopping time. The result follows. �

Proof of Theorem 1 If Γ is a Markovian strategy, then Λ = 1 − Γ satisfies almost surely

for all τ ∈ T , for all s ≥ 0

Λτ+s = Λτ (Λs ◦ θτ ), (A.1)

on the event {τ <∞}, where θ. denotes the shift operator on Ω. In particular, this property

applied at τ = s = 0 implies that Λ0 = (Λ0)
2 and thus Λ0 ∈ {0, 1} a.s. In the terminology of

Blumenthal and Getoor (1968), Λ is a strong right-continuous multiplicative functional of X

adapted to (Ft). The set E = {x|Px(Λ0 = 1) = 1} is called the set of permanent points of

Λ. Using Blumenthal’s 0− 1 law and the fact that Λ0 ∈ {0, 1}, we have I \E = {x|Px(Λ0 =

0) = 1}. The stopping time τ = inf{t > 0|Λt = 0} ∈ T is called the lifetime of Λ. In order

8Recall that, by convention, this random variable is equal to 0 if γi(ω, ui) = ∞.

28



to apply the main result of Sharpe (1971), we need to prove that Λ is an exact multiplicative

functional, in the sense of Definition III.4.13 in Blumenthal and Getoor (1968). It is sufficient

to prove that (see Proposition III.5.9 in Blumenthal and Getoor (1968))

∀x /∈ E, ∀t > 0, lim
u↓0

Ex[Λt−u ◦ θu] = 0.

Note that

1{t−u≥τx◦θu}Λt−u ◦ θu = 0 Px − a.s.

so that for u sufficiently small:

Ex[Λt−u ◦ θu] ≤ Px(t− u < τx ◦ θu) = Ex[PXu
(t− u < τx)] ≤ Ex[PXu

(t/2 < τx)].

The map y → Py(τx > t/2) is (universally) measurable and bounded, and has limit 0 when

y → x since X is a regular diffusion. We conclude therefore by bounded convergence. This

implies that E is open and thus that I \ E is closed (see Blumenthal and Getoor (1968)

p.126 last paragraph, using that the fine topology coincides with the usual topology in our

case).

We can therefore apply Theorem 7.1 in Sharpe (1971). The stopping time appearing in

the general expression (7.1) in Sharpe (1971) is called the exact regularization of τ and is

equal in our particular case to the hitting time of a Borel set B since the lifetime of X is +∞
and X is continuous. Moreover, using that X is a regular diffusion, this stopping time is a.s.

equal to the hitting time of the closure of B, which we denote by S. The product term in

expression (7.1) of Sharpe (1971) is identically equal to 1 and thus disappears (see Theorems

5.1 and 5.2 in Sharpe (1971), having in mind that all semipolar sets for X are empty since

X is a regular diffusion, and that X has continuous trajectories). Thanks to these remarks,

there exists a continuous additive functional A with bounded 1-potential (which means that

x→ Ex[
∫∞

0
e−tdAt] is bounded) and a positive Borel map f such that

Λit = 1t<τSe
−

∫ t

0
f(Xs)dAs a.s.

Moreover, as stated in Theorem 7.1 in Sharpe (1971), the integral
∫ t

0
f(Xs)dAs is Px a.s.

finite for all t < τS except maybe for x in a τS-polar set. From the definition of a τS polar

set (see the definition and Lemma 2.1 page 29 in Sharpe (1971)) we see that a τS-polar set

in our case must be a subset of S.

Using the classical representation result (see Borodin and Salminen (2002) chapter I.2

paragraph 23), there exists a positive Radon measure µ (locally finite) on I such that

At =
∫

I
Lxt dµ(x) a.s.. Therefore, we have for t < τ

Ãt =

∫ t

0

f(Xs)dAs =

∫ t

0

∫

I

f(Xs)dL
x
sdµ(x) =

∫

I

Lxt f(x)dµ(x).
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It follows that the measure f(x)dµ(x) on I \S is a Radon measure, i.e. a non-negative Borel

measure which is locally finite. Indeed, assume by contradiction that it is not locally finite,

then there exists x ∈ I \S such that for every ε > 0 such that (x−ε, x+ ε) ⊂ I \S, we have
∫

(x−ε,x+ε)
f(x)dµ(x) = ∞. For all t > 0, we have for all ω in a set of Px-probability 1 that

Lxt (ω) > 0, and therefore since the local time of X is a.s. jointly continuous, that Lyt (ω) > 0

for y ∈ [x− ε(ω), x+ ε(ω)] for some ε(ω) > 0. This implies that if 0 < t < τS(ω)

Ãt(ω) =

∫

I

Lxt (ω)f(x)dµ(x) ≥ min
y∈[x−ε(ω),x+ε(ω)]

Lyt (ω)

∫

(x−ε(ω),x+ε(ω))

f(x)dµ(x) = +∞.

Since Px(τS > 0) = 1, this contradicts the statement of Theorem 7.1 in Sharpe (1971).

Reciprocally, if S is a closed subset of I and µ is a Radon measure on I \ S, then the

process

Λt = 1t<τSe
−

∫
I
Lx
t dµ(x),

is well-defined and is a strong right-continuous multiplicative functional, and in particular

satisfies (A.1). It can be checked directly that Γ = 1−Λ satisfies the assumptions of Lemma

3 and thus is the c.c.d.f. a randomized stopping time. �

Proof of Lemma 4. We focus on player 1, the proof for player 2 being symmetrical.

Observe from (16) that, for each τ 1 ∈ T , player 1’s payoff from playing τ 1 against Γ2 is

J1(x, τ 1,Γ2) = Ex

[

e−rτ
1

R1(Xτ1)Λ
2
τ1− +

∫

[0,τ1)

e−rtG1(Xt) dΓ
2
t

]

. (A.2)

Letting γ̂1 be the randomized stopping time associated to the ccdf Γ1 by (17), we have

J1(x,Γ1,Γ2) =

∫ 1

0

Ex

[

e−rγ̂
1(u1)R1(Xγ1(u1))Λ

2
γ1(u1)− +

∫

[0,γ̂1(u1))

e−rtG1(Xt) dΓ
2
t

]

du1

=

∫ 1

0

J1(x, γ̂1(u1),Γ2) du1

≤ sup
u1∈[0,1]

J1(x, γ̂1(u1),Γ2)

≤ sup
τ1∈T

J1(x, τ 1,Γ2).

where the first equality follows along the same steps as in the proof of Lemma 3, and the

second equality follows from (A.2). The result follows. �

Proof of Proposition 1 Before proving Proposition 1, we need a few technical results

related to continuous additive functional of diffusions. More precisely, we consider processes

A defined by At =
∫

I
Lxt dµ(x) where µ is a Radon measure on I \ S for some closed set S.

30



If (a, b) ⊂ I \S, the restriction of µ to (a, b) is a Radon measure, and A defines a continuous

additive functional of the diffusion X killed at a and b, with state space (a, b).

If τ is the first exit time of (a, b) with [a, b] ⊂ I, then

Ex[Aτ ] =

∫

I

Ex[L
y
τ ]dµ(y) =

∫

(a,b)

Ex[L
y
τ ]dµ(y) =

∫

(a,b)

2(S ′(y))−1Φa,b(x, y)dµ(y), (A.3)

where

Φa,b(x, y) =
(S(x ∧ y)− S(a))(S(b)− S(x ∨ y))

S(b)− S(a)

denotes the Green function (potential density) of the diffusion X killed at the boundaries

a and b. (see Borodin and Salminen (2002) page 20-21). It is easy to check that Ex[Aτ ] is

finite if and only if for some x ∈ (a, b):
∫ x

a

(S(y)− S(a))dµ(y) <∞ and

∫ b

x

(S(b)− S(y))dµ(y) <∞.

A more precise result can be shown (see Theorem 2.1 in Cetin (2018)). Precisely:
{

Aτa1τa<τb = +∞ a.s. if
∫ x

a
(S(y)− S(a))dµ(y) = +∞ for some x ∈ (a, b)

Aτa1τa<τb < +∞ a.s. otherwise
(A.4)

A symmetric result holds for b.

We will use the following lemma in the proof of Proposition 2.

Lemma 5 Let At =
∫

(a,b)
Lyt dµ(y) for some Radon measure µ on (a, b). Define the function

h by

∀x ∈ (a, b), h(x) = Ex[Cae
−Aτa1{τa<τb} + Cbe

−Aτb1{τb<τa}],

with Ca, Cb ≥ 0 and τy = inf{t ≥ 0, Xt = y}.

Then, h is non-negative, S-convex and continuous on (a, b), and the limits h(a+) and

h(b−) exists and are given by

h(a+) =

{

Ca if
∫ x

a
(S(y)− S(a))dµ(y) <∞

0 otherwise
(A.5)

h(b−) =

{

Cb if
∫ b

x
(S(b)− S(y))dµ(y) <∞

0 otherwise
. (A.6)

Proof of Lemma 5. h is clearly non-negative. S-convexity follows directly from the Markov

property applied for h(λx1+ (1−λ)x2) up to the stopping time τx1 ∧ τx2 . Precisely, we have

h(λx1 + (1− λ)x2) = Eλx1+(1−λ)x2 [h(x1)e
−Aτx1 1{τx1<τx2} + h(x2)e

−Aτx2 1{τx2<τx1}].
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Using that e−At ≤ 1, we obtain that h is S-convex, i.e.

h(λx1+(1−λ)x2) ≤ h(x1)
S(x2)− S(λx1 + (1− λ)x2)

S(x2)− S(x1)
+h(x2)

S(λx1 + (1− λ)x2)− S(x1)

S(x2)− S(x1)
].

S-convexity implies the continuity of h on (a, b).

If
∫ x0

a
(S(y) − S(a))dµ(y) < ∞ for some x0 ∈ (a, b), then by property (A.4) h(x) =

Ex[Cbe
−Aτb1{τb<τa}] and thus

0 ≤ h(x) ≤ CbPx(τb < τa) −→
x→a

0.

It follows that h(a+) = 0.

If
∫ x0

a
(S(y)−S(a))dµ(y) = ∞ for some x0 ∈ (a, b), then by property (A.4) e−Aτa > 0 Px-a.s.

If an is a decreasing sequence with limit a and an < x, applying the Markov property at τan ,

we have

h(x) = Ex[h(an)e
−Aτan 1{τan<τb} + Cbe

−Aτb1{τb<τan}].

Taking the limit along any subsequence such that h(ank
) converges to some z, we obtain

h(x) = Ex[ze
−Aτa1{τa<τb} + Cbe

−Aτb1{τb<τa}],

and thus z = Ca since Ex[e
−Aτa1{τa<τb}] > 0. Therefore h(a+) exists and equals Ca. (A.6)

follows by the same method. �

Strong Markov property: We formalize in the next lemma a consequence of the strong

Markov property that we will use several times throughout this Appendix.

Lemma 6 If the players use Markovian randomized stopping times with ccdf Γ1 and Γ2,

then for every stopping time T and every x ∈ I, their expected payoffs write as

J i(x,Γ1,Γ2) = Ex[

∫

[0,T )

e−rsRi(Xs)Λ
j
s−dΓ

i
s+

∫

[0,T )

e−rsGi(Xs)Λ
i
sdΓ

j
s+e

−rTΛjT−Λ
i
T−J

i(XT ,Γ
1,Γ2)]

(A.7)

Proof of Lemma 6. It follows from Lemma 3 that

J i(x,Γ1,Γ2) = Ex

[

∫

[0,T )

e−rsRi(Xs)Λ
j
s−dΓ

i
s +

∫

[0,T )

e−rsGi(Xs)Λ
i
sdΓ

j
s

+ e−rTRi(XT )Λ
j
T−(Γ

i
T − ΓiT−) + e−rTGi(XT )Λ

i
T (Γ

j
T − ΓjT−)

+

∫

(T,∞)

e−rsRi(Xs)Λ
j
s−dΓ

i
s +

∫

(T,∞)

e−rsGi(Xs)Λ
i
sdΓ

j
s

]
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Recall that the only jump of Λi occurs at τSi at which time the process jumps to zero and

remains equal to zero. On the one hand, we have

e−rTRi(XT )Λ
j
T−(Γ

i
T − ΓiT−) + e−rTGi(XT )Λ

i
T (Γ

j
T − ΓjT−)

= e−rTRi(XT )Λ
j
T−Λ

i
T−1τSj≥T=τSi

+ e−rTGi(XT )Λ
i
T−Λ

j
T−1τSi>T=τSj

= e−rTJ i(XT )Λ
j
T−Λ

i
T−1τSj≥T=τSi

+ e−rTJ i(XT ,Γ
1,Γ2)ΛiT−Λ

j
T−1τSi>T=τSj

.

On the other hand, we have

∫

(T,∞)

e−rsRi(Xs)Λ
j
s−dΓ

i
s +

∫

(T,∞)

e−rsGi(Xs)Λ
i
sdΓ

j
s

= e−rT1T<τ
Si∧τSj

(
∫

(0,∞)

e−rsRi(XT+s)Λ
j

(T+s)−dΓ
i
T+s +

∫

(0,∞)

e−rsGi(XT+s)Λ
i
T+sdΓ

j
T+s

)

= e−rT1T<τ
Si∧τSj

ΛjTΛ
i
T

(

∫

(0,∞)

e−rsRi(Xs ◦ θT )(Λjs− ◦ θT )d(Γis ◦ θT )

+

∫

(0,∞)

e−rsGi(Xs ◦ θT )(Λis ◦ θT )d(Γ2
s ◦ θT )

)

= e−rT1T<τ
Si∧τSj

ΛjT−Λ
i
T−

(

∫

[0,∞)

e−rsRi(Xs ◦ θT )(Λjs− ◦ θT )d(Γis ◦ θT )

+

∫

[0,∞)

e−rsGi(Xs ◦ θT )(Λis ◦ θT )d(Γjs ◦ θT )
)

,

where we used (18) in the second equality. Taking expectation and applying the Markov

property at T , it leads to

Ex

[

∫

(T,∞)

e−rsRi(Xs)Λ
j
s−dΓ

i
s +

∫

(T,∞)

e−rsGi(Xs)Λ
i
sdΓ

j
s

]

= Ex

[

e−rT1T<τ
Si∧τSj

ΛjT−Λ
i
T−J

i(XT ,Γ
1,Γ2)

]

The conclusion follows by putting the pieces together and noticing that e−rTΛjT−Λ
i
T−J

i(XT ,Γ
1,Γ2)

vanishes on the event {T > τSi ∧ τSj}. �

Proof of Proposition 1. Let us fix Markov strategies (µi, Si) for i = 1, 2. Let Ait =
∫

I
Lat dµ

i(a) denote the continuous additive functional associated to µi, Λit = e−A
i
t1t<τ

Si
and

Γit = 1− Λit.

The payoff of player 1 for a pure stopping time τ 1 is given by

J1(x, τ 1,Γ2) =

Ex[e
−rτ1Λ2

τ1−R
1(Xτ1) +

∫

[0,τ1∧τ
S2 )

e−rsG1(Xs)dΓ
2
s + e−rτS2Λ2

τ
S2−

G1(Xτ
S2
)1τ

S2<τ1 ].

33



Note that J̄1 is equal to R1 on S1 and to G1 on S2 \ S1.

Using assumption A6, we first prove that VR1(x) ≤ J̄1(x) ≤ G1(x). These inequalities imply

limx→α+
J̄1(x)
φ(x)

= 0 and limx→β−
J̄1(x)
ψ(x)

= 0.

For the first inequality, let τ 1∗ = τ(α,x
R1 ], and γ̂

2(u) be defined by (17). Using Lemma 3 and

that G1 ≥ VR1 we obtain

J̄1(x) ≥ J1(x, τ 1∗ ,Γ
2) =

∫ 1

0

J1(x, τ 1∗ , γ̂
2(u))du ≥

∫ 1

0

Ex[e
−rτ1∗R1(Xτ1∗

)1τ1∗≤γ̂2(u) + e−rγ̂
2(u)VR1(Xγ̂2(u))1τ1∗>γ̂2(u)]du.

For all u, we have on {τ 1∗ > γ̂2(u)},

e−rγ̂
2(u)VR1(Xγ̂2(u)) = Ex[e

−rτ1∗R1(Xτ1∗
)|Fγ̂2(u)] Px − a.s. (A.8)

Therefore, using the tower property of conditional expectation

Ex[e
−rτ1∗R1(Xτ1∗

)1τ1∗≤γ̂2(u) + e−rγ̂
2(u)VR1(Xγ̂2(u))1τ1∗>γ̂2(u)] = Ex[e

−rτ1∗R1(Xτ1∗
)] = VR1(x),

and we conclude that

J̄1(x) ≥
∫ 1

0

VR1(x)du = VR1(x).

For the second inequality, we have by assumption A6 R1 ≤ VR1 ≤ G1. Therefore for every

τ 1 ∈ T

J1(x, τ 1,Γ2) =

∫ 1

0

J1(x, τ 1, γ̂2(u))du

≤
∫ 1

0

Ex[e
−rτ1G1(Xτ1)1τ1≤γ̂2(u) + e−rγ̂

2(u)G1(Xγ̂2(u))1τ1>γ̂2(u)]du

=

∫ 1

0

Ex[e
−r(τ1∧γ̂2(u))G1(Xτ1∧γ̂2(u))]du

≤
∫ 1

0

G1(x)du = G1(x),

where we used that e−rtG1(Xt) is a supermartingale by assumption A7.

Let us prove (i): It is not optimal for player 1 to stop immediately in S2 if R1 < G1.

Therefore, for any PBR, S1 ∩ S2 ∩ (α1, β) = ∅ which proves (i).
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Let us prove (ii): The inclusion S1 ⊂ C1 = {x|J̄1(x) = R1(x)} is obvious from the definition

of a PBR.

We now prove (iii): supp(µ1) ⊂ C1 ∪ S2.

Assume that x ∈ supp(µ1) \ S2. Recall that by Lemma 3

J̄1(x) =

∫ 1

0

J1(x, γ̂1(u),Γ2)du,

where γ̂1(u) = inf{t ≥ 0 |Γ1
t > u}. Moreover, since for all u ∈ [0, 1], J1(x, γ̂1(u),Γ2) ≤ J̄1(x),

the latter inequality is an equality for all u ∈ M where M has Lebesgue measure 1.

From the definition of Γ1, we have γ̂1(u) = inf{t | 1 − e−A
1
t > u} ∧ τS1 for u ∈ [0, 1).

We have γ̂1(u) > 0 Px-a.s. for all u > 0 as A1 is continuous. Using that x ∈ supp(µ1), we

also have limu→0 γ̂
1(u) = 0 Px-a.s.. Indeed, γ̂

1(u) is non-decreasing with respect to u for all

ω and converges to γ̂1(0) = inf{t ≥ 0|A1
t > 0} ∧ τS1 . Then, arguing as in Lemma 2.16 p.

416 in Revuz and Yor (1999), we obtain that γ̂1(0) = τsupp(µ1) ∧ τS1 a.s., and therefore that

γ̂1(0) = 0 Px-a.s..

Precisely, the local times of X have a continuous version (t, y) → Lyt , and we know that for

all t > 0, Lxt > 0 Px-a.s.. We deduce that for every ω in a set of Px-probability one, Lyt > 0

for y in a neighborhood of x, which implies

A1
t =

∫

I

Lyt dµ
1(y) > 0 Px − a.s.,

and thus γ̂1(0) = 0 Px-a.s..

For all u ∈M :

J̄1(x) = J1(x, γ̂1(u),Γ2) = Ex[

∫

[0,γ̂1(u))

e−rsG1(Xs)dΓ
2
s + e−rγ̂

1(u)Λ2
γ̂1(u)−R

1(Xγ̂1(u))]

Taking the limit as u ∈ M goes to zero, we deduce that J̄1(x) = R1(x) by bounded

convergence.

Proof of (iv). We have

J̄1(x) ≥ J1(x, (0, (α, xR1 ]), (µ2, S2)) ≥ J1(x, (0, (α, xR1]), (0, ∅)). (A.9)

The first inequality in (A.9) follows from the fact that (µ1, S1) is a PBR to (µ2, S2). For the

second one, recall that by assumption A6

G1(x) ≥ VR1(x) = sup
τ

Ex[e
−rτR1(Xτ )] = Ex[e

−rτ1∗R1(Xτ1∗
)],
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where τ 1∗ = τ(α,x
R1 ]. We have

J1(x, τ 1∗ ,Γ
2) =

∫ 1

0

J1(x, τ 1∗ , γ̂
2(u))du

=

∫ 1

0

Ex[e
−rτ1∗R1(Xτ1∗

)1τ1∗≤γ̂2(u) + e−rγ̂
2(u)G1(Xγ̂2(u))1τ1∗>γ̂2(u)]du.

On {τ 1∗ > γ̂2(u)}, using assumption A6, we have Px-a.s.

e−rγ̂
2(u)G1(Xγ̂2(u)) ≥ e−rγ̂

2(u)VR1(Xγ̂2(u)) = Ex[e
−rτ1∗R1(Xτ1∗

)|Fγ̂2(u)]. (A.10)

Therefore, using the tower property of conditional expectation

J1(x, τ 1∗ , γ̂
2(u)) ≥ Ex[e

−rτ1∗R1(Xτ1∗
)],

and the second inequality of (A.9) follows by integrating with respect to u.

The conclusion follows by noticing that J1(x, (0, (α, xR1 ]), (0, ∅)) > R1(x) for x > xR1 and

applying (ii) and (iii).

Proof of (v). We have from Lemma 3

J̄1(x) =

∫ 1

0

J1(x, γ̂1(u),Γ2)du,

and for all u ∈ [0, 1], J1(x, γ̂1(u),Γ2) ≤ J̄1(x), so that the latter inequality is an equality for

all u ∈M , where M has Lebesgue measure 1.

We will use that γ̂1(u) → τS1 as u → 1. This property follows from the definition of Γ1

since we have τS1 = inf{t ≥ 0 |Γ1 = 1}, and Γ1
t < 1 on t < τS1. Moreover u → γ̂1(u) is

non-decreasing. We have for u ∈M

J̄1(x) = J1(x, γ̂1(u),Γ2) = Ex[

∫

[0,γ̂1(u))

e−rsG1(Xs)dΓ
2
s + e−rγ̂

1(u)Λ2
γ̂1(u)−R

1(Xγ̂1(u))].

Taking the limit as u→ 1 with u ∈M ,we obtain by bounded convergence

J̄1(x) = Ex[

∫

[0,τ
S1)

e−rsG1(Xs)dΓ
2
s + e−rτS1Λ2

τ
S1−

R1(Xτ
S1
)] = J1(x, τS1 ,Γ2),

which concludes the proof of the first assertion.

For the second assertion, let Γ̃1 be associated with (µ̃1, S1) and γ̃1(u) = inf{t ≥ 0 | Γ̃1
t > u}.

By assumption, we have that for all u

J̄1(Xγ̃1(u)) = R1(Xγ̃1(u)). (A.11)
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Therefore

J1(x, Γ̃1,Γ2) =

∫ 1

0

Ex[

∫

[0,γ̃1(u))

e−rsG1(Xs)dΓ
2
s + e−rγ̃

1(u)Λ2
γ̃1(u)−R

1(Xγ̃1(u))]du.

Applying the Markov property at γ̃1(u) and using that J̄1(.) = J1(., (0, S1),Γ2), we have

J̄1(x) = Ex[

∫

[0,γ̃1(u))

e−rsG1(Xs)dΓ
2
s + e−rγ̃

1(u)Λ2
γ̃1(u)−J̄

1(Xγ̃1(u))]

= Ex[

∫

[0,γ̃1(u))

e−rsG1(Xs)dΓ
2
s + e−rγ̃

1(u)Λ2
γ̃1(u)−R

1(Xγ̃1(u))],

where the second equality follows from (A.11). We conclude that

J1(x, Γ̃1,Γ2) =

∫ 1

0

J̄1(x)du = J̄1(x),

which ends the proof. �

Proof of Proposition 2

We first prove the following Lemma on the continuity of brvf.

Lemma 7 If (µ1, S1) is a pbr to (µ2, S2) with associated brvf J̄2, then J̄1 is continuous on

any interval [a, b] such that (a, b) ⊂ I \ (S1 ∪ S2).

Proof of Lemma 7 Given x /∈ S1 ∪ S2, define Tε = τx+ε ∧ τx−η such that ε, η > 0 and

[x− η, x+ ε] ⊂ (S1)c ∩ (S2)c. Lemma 6 applied at Tε implies:

J̄1(x) = Ex[

∫

[0,Tε)

e−rsR1(Xs)Λ
2
s−dΓ

1
s +

∫

[0,Tε)

e−rsG1(Xs)Λ
1
sdΓ

2
s + e−rTεΛ2

Tε−Λ
1
Tε−J̄

1(XTε)]

= Ex[

∫

[0,Tε)

e−rsR1(Xs)Λ
2
sdΓ

1
s +

∫

[0,Tε)

e−rsG1(Xs)Λ
1
sdΓ

2
s + e−rTεΛ2

Tε
Λ1
Tε
J̄1(XTε)].

The last equality follows from the fact that on {t ≤ Tε}, we have Λit− = Λit.

Tε goes to zero in probability as ε goes to zero (η being fixed) (even a.s. since it is

decreasing with ε) and Px(Tε = τx+ε) goes to 1. Therefore bounded convergence implies

that J̄1(x) = J̄1(x+). Similarly, we can prove J̄1(x) = J̄1(x−).

Now, let us consider an interval (a, b) ⊂ (S1)c ∩ (S2)c. J̄1 is continuous on (a, b) thanks to

the preceding argument. Le us assume that a > α and belongs to S1 so that J̄1(a) = R1(a),

we will prove that J̄1 is right-continuous at a.

37



Using Proposition 1-(v), J̄1(x) = J1((0, S1), (µ2, S2)). Applying Lemma 6 with τ = τa ∧ τb,
we have for x ∈ (a, b):

J̄1(x) = Ex[

∫

[0,τ)

e−rsG1(Xs)dΓ
2
s + e−rτe−A

2
τ J̄1(Xτ )]. (A.12)

Since a /∈ S2, the measure µ2 is locally finite at a. Therefore,

0 ≤ Ex[

∫

[0,τ)

e−rsG1(Xs)dΓ
2
s] ≤ CEx[1− e−A

2
τ ], (A.13)

where C is an upper bound on G1 on [a, b]. Applying Lemma 5 (with Ca = Cb = 1 and

µ = µ2), Ex[1− e−A
2
τ ] goes to 0 as x converges to a.

Lemma 5 also implies that Ex[e
−rτe−A

2
τ J̄1(Xτ )] goes to J̄

1(a) = R1(a) as x converges to a

(by taking µ = µ2 + rLeb), and thus J̄1 is right-continuous at a.

Let us now consider the case a ∈ S2 so that J̄1(a) = G1(a), we will prove that J̄1 is

right-continuous at a. Let 0 < ε < b − a. As before with τ = τa ∧ τa+ε, we have for

x ∈ (a, a+ ε):

J̄1(x) = Ex[

∫

[0,τ)

e−rsG1(Xs)dΓ
2
s + e−rτe−A

2
τ J̄1(Xτ )]. (A.14)

If
∫ x

a
(S(y)−S(a))dµ2(y) <∞, the proof is completely similar as for the case a ∈ S1. Let us

assume that
∫ x

a
(S(y)− S(a))dµ2(y) = ∞. Lemma 5 implies that Ex[e

−rτe−A
2
τ J̄1(Xτ )] goes

to zero as x converges to a (by taking µ = µ2 + rLeb). On the other hand

Ex[

∫

[0,τ)

e−rsG1(Xs)dΓ
2
s] ≥ ( min

[a,a+ε]
G1)Ex[e

−rτ (1− e−A
2
τ )] = ( min

[a,a+ε]
G1)Ex[e

−rτ − e−rτe−A
2
τ )].

By Lemma 5, the last expectation goes to 1 as x converges to a. We deduce that lim infx→a+ J̄
1(x) ≥

(min[a,a+ε]G
1) and the conclusion follows by sending ε to zero. The cases b ∈ S1, b ∈ S2 can

be proven in a similar way. Lemma 7 is proven �.

We now prove a second lemma related to the pbr on the intervals (α, αi].

Lemma 8 The following properties hold:

• If (µi, Si) is a pbr to (µj, Sj), then (α, αi] ⊂ S1 ∪ S2.

• If ((µ1, S1), (µ2, S2)) is a MPE, then either [α1∧α2, α1∨α2] ⊂ S1 or [α1∧α2, α1∨α2] ⊂
S2.
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Proof of Lemma 8 We prove the first point with i = 1. Note that J̄1 = R1 = VR1 = G1 on

(α, α1]. Assume by contradiction that x ∈ (α, α1) and x /∈ S1∪S2. Let (a, b) ⊂ I \ (S1∪S2)

with b < α1 which contains x. Since (0, S1) is a PBR to (µ2, S2), and using Lemma 6 at τ

the exit time of (a, b) we have

J̄1(x) = Ex[

∫

[0,τ)

e−rsG1(Xs)dΓ
2
s + e−rτΛ2

τ−J̄
1(Xτ )]

= Ex[

∫

[0,τ)

e−rsR1(Xs)dΓ
2
s + e−rτΛ2

τ−R
1(Xτ )]

=

∫ 1

0

Ex[e
−rγ̂2(u,.)R1(Xγ̂2(u,.))1γ̂2(u,.)<τ + e−rτ1τ≤γ̂2(u,.)R

1(Xτ )]du

=

∫ 1

0

Ex[e
−r(γ̂2(u,.)∧τ)R1(Xγ̂2(u,.)∧τ )]du

< R1(x),

where the third equality is obtained as in Lemma 3, and the last inequality follows from

assumption A3 together with the fact that for for all u > 0, τ ∧ γ̂2(u, .) > 0 Px-almost

surely since Γ2 is continuous on [0, τS2) and τS2 > 0 Px-almost surely. The above inequality

contradicts J̄1 ≥ R1 and this concludes the proof of the first point.

Let us prove the second point. Assume without loss of generality that α2 < α1. By

Proposition 1, we have S1 ∩ S2 ∩ (α2, α1] = ∅. However, the preceding point implies that

(α2, α1] ⊂ S1 ∪ S2. Using a connectedness argument, it must be that either S1 ∩ (α2, α1] or

S2 ∩ (α2, α1] is empty. This concludes the proof of the second point. �.

Let us now prove the Proposition. Assume without loss of generality that α2 ≤ α1.

For i = 1, 2, the payoff at equilibrium J̄ i is continuous on (α, α1] by the preceding points

since it is equal to Ri or Gi on this interval. Note that J̄1 is right-continuous at α1 since

R1 ≤ J̄1 ≤ G1, and that the same is true for J̄2 if α2 = α1.

By Lemma 7, J̄ i is continuous on any interval [a, b] such that (a, b) ⊂ I \ (S1 ∪ S2).

Moreover, J̄ i is also continuous on S1 and on S2. Therefore, if J̄1 is not right-continuous at

x, it must be that x ≥ α1, that x ∈ S1 ∪ S2 and that for every ε > 0, [x, x + ε) intersects

both S1∪S2 and I \ (S1∪S2). Let us consider the case that x ∈ S1 and x > α1 and assume

by contradiction that J̄ i is not right-continuous at x. Since (α1, β) ∩ S1 ∩ S2 = ∅, we may

choose ε sufficiently small so that [x, x + ε) ∩ S2 = ∅. If (a, b) is a connected component
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of the open set [x, x + ε) \ S1, so that a, b ∈ S1, then it must be that µ2((a, b)) > 0. By

contradiction, if µ2((a, b)) = 0, then for y ∈ (a, b):

J̄1(y) = J1(y, (0, S1), (µ2, S2)) = Ey[e
−rτ

S1R1(Xτ
S1
)] < R1(y),

where we used that b ≤ xR1 and assumption A3. This contradicts the fact that J̄1 ≥ R1.

Therefore, there exists some y ∈ (a, b) such that J̄2(y) = R2(y). As this is true for every

connected component, it must be that there exists a decreasing sequence yn with limit x such

that J̄2(yn) = R2(yn) and a sequence of connected components (an, bn) such that yn ∈ (an, bn)

whose length goes to zero. By Proposition 1, we have J̄2(an) = G2(an) and J̄
2(bn) = G2(bn).

Recall also that G2(x)− R2(x) > 0. On the interval (an, bn), since (0, S2) is a best reply to

(µ1, S1), we have by Lemma 6

J̄2(yn) = Eyn [

∫

[0,τn)

e−rsG2(Xs)dΓ
1
s + e−rτnΛ1

τn−J̄
2(Xτn)]

= Eyn [

∫

[0,τn)

e−rsG2(Xs)dΓ
1
s + e−rτnΛ1

τn−G
2(Xτn)]

where τn := τan ∧ τbn . G2 and R2 being locally Lipschitz, there exists ε > 0 such that for all

n sufficiently large

∀y ∈ (an, bn), G
2(y) > R2(yn) + ε.

We deduce that

J̄2(yn) ≥ (R2(yn) + ε)Eyn[

∫

[0,τn)

e−rsdΓ1
s + e−rτnΛ1

τn−]

≥ (R2(yn) + ε)Eyn[e
−rτn ].

We have Eyn[e
−rτn ] = Anψ(yn) +Bnφ(yn), where the coefficients An, Bn are such that

Anψ(an) +Bnφ(an) = Anψ(bn) +Bnφ(bn) = 1.

If follows easily that these coefficients are bounded, and therefore that Eyn[e
−rτn ] → 1 by

using that ψ, φ are locally Lipschitz. For n sufficiently large, it contradicts the fact that

J̄2(yn) = R2(yn). We conclude that the functions J̄ i for i = 1, 2 are right-continuous at x.

The cases (x > α1 and x ∈ S2) and (x = α1 and α1 > α2 and x ∈ S1) are similar.

To conclude that the payoff functions are right-continuous on I, it remains only to prove

that J̄2 is right-continuous at x = α1 if x ∈ S2 and α2 < α1. Assume by contradiction that

J̄2 is not right-continuous at x. Since (α2, β) ∩ S1 ∩ S2 = ∅, we may choose ε sufficiently

small so that [x, x+ ε) ∩ S1 = ∅ as well as

G2 − R2 > ε and LR2 − rR2 < −ε on [x, x+ ε).
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Note that µ1([x, x + ε)) < ∞ since µ1 is locally finite on I \ S1. If (a, b) is a connected

component of the open set (x, x+ε)\S2, so that a, b ∈ S2, then for y ∈ (a, b) and τ = τa∧τb:

J̄2(y) = J2(y, (µ1, S1), (0, S2)) = Ey[

∫

[0,τ)

e−rsG2(Xs)dΓ
1
s + e−rτΛ1

τ−R
2(Xτ )] ≥ R2(y).

We deduce that

εEy[Γ
1
τ−] ≥ Ey[

∫

[0,τ)

e−rs(G2(Xs)−R2(Xs))dΓ
1
s]

≥ Ey[R
2(y)− e−rτΛ1

τ−R
2(Xτ )−

∫

[0,τ)

e−rsR2(Xs)dΓ
1
s]

=

∫ 1

0

Ey[R
2(y)− e−r(τ∧γ̂

1(u,.))R2(Xτ∧γ̂1(u,.)))]du

= −
∫ 1

0

Ey[

∫ τ∧γ̂1(u,.)

0

(LR2 − rR2)(Xs)ds]du

≥ εEy[

∫ τ

0

Λ1
sds]

≥ εEy[Λ
1
τ ].

Using that Γ1
τ− = 1− Λ1

τ and dividing by ε, we obtain

1 ≥ 2Ey[Λ
1
τ ] = 2Ey[e

−A1
τ ] ≥ 2(1−Ey[A

1
τ ]).

Using the formula (A.3), we have

Ey[A
2
τ ] =

∫ b

a

2(S ′(z))−1Φa,b(y, z)dµ
1(z) ≤ Cµ1((a, b)),

for some positive constant C using that 2(S ′(x))−1Φa,b(y, x) is uniformly bounded on [x, x+

ε). We obtain finally

1 ≥ 2(1− Cµ1((a, b))).

There exists a sequence of connected components (an, bn) of (x, x+ε)\S2 whose length goes

to zero. Since µ1 is locally bounded at x, it must be that µ1((an, bn)) goes to zero, and the

previous inequality implies 1 ≥ 2, a contradiction. We conclude that J̄2 is right-continuous

at x.

That the payoff functions are left-continuous follows from similar arguments.

We conclude that at equilibrium, the payoff functions of both players are continuous. �.
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Appendix B: Proofs for Section 4

The next Lemma solves equation (24)

Lemma 9 The equation

Ri(xRi) =
φ(xRi)

φ(x)
Gi(x) (B.1)

has a unique solution xj ∈ (αi, xRi) and, Ri(xRi) <
φ(x

Ri )

φ(x)
Gi(x) on (xj , β).

The proof of Lemma 9 is a direct consequence of a useful and elegant change of variable

introduced by Dayanik and Karatzas (2003) which we will use in several proofs. For each

x ∈ I, let us define ζ(x) := φ(x)
ψ(x)

which is strictly decreasing in x and maps I onto (0,∞).

For any function g : I → R, define the function ĝ by

ĝ(y) :=
g

ψ
◦ ζ−1(y), y ∈ (0,∞). (B.2)

Observe that φ̂(y) = y and ψ̂(y) = 1 for every y ∈ (0,∞). A direct computation shows that,

if g ∈ C2(I), then for any x ∈ I

ĝ′′(ζ(x)) =
2φ(x)3

(γS ′(x))2σ2(x)
(Lg − rg)(x). (B.3)

Thus, we deduce from assumption A7 that (Ĝi)
′′ ≤ 0 everywhere (Ĝi)

′′

is defined. From

assumption A3, (R̂i)
′′

(ζ(x)) < 0 for every x ∈ (α, xi0) or, equivalently, (R̂
i)

′′

(y) < 0 for every

y ∈ (ζ(xi0),∞). This implies that (R̂i)
′′

(y) < 0 for every y ∈ (ζ(xRi),∞) since xRi < xi0.

We will use also the following remarks. From Lemma 1 and assumption A6, we have Gi > 0

over I. Thus, Ĝi > 0 over (0,∞), and (11) implies

lim
y→0

Ĝi(y) = 0, (B.4)

lim
y→∞

Ĝi(y)

y
= 0. (B.5)

Proof of Lemma 9 Let define f(x) :=
Ri(x

Ri )

φ(x
Ri )

φ(x). Notice that f = VRi ≥ Ri on [xRi , β) and

that thanks to the smooth-fit property, f is tangent to Ri at xRi . Applying to f the change

of variable formula (B.2), a direct computation shows that, xi is a solution to (B.1) iff ζ(xi)

is a solution to

f̂(y) = Ĝi(y), (B.6)

which is equivalent to
Ri(xRi)

φ(xRi)
y = Ĝi(y).
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Using that f = VRi on [xRi , β), we deduce from assumption A6 that f̂(y) < Ĝi(y) on

(0, ζ(xRi)]. It follows that Equation (B.1) admits a unique solution xj < xRi because Ĝi is

positive concave and satisfies (B.5). Moreover, we have φ(x)
φ(x

Ri )
Ri(xRi) < Gi(x) on (xj, β) and

φ(x)
φ(x

Ri )
Ri(xRi) > Gi(x) on (α, xj). Finally, note that αi ≤ xRi ≤ xi0 and that R̂i is strictly

concave on (ζ(xi0),+∞). Therefore, f̂ > R̂i on (ζ(xRi),+∞) since f̂ is linear and tangent to

R̂i at ζ(xRi). If αi > α, because Gi = Ri over (α, αi], it must be that αi < xj . �

Proof of Proposition 5. We show in the next lemma that the variational systems (30)-(34)

and (35)-(40) admit a solution. Proposition 5 is then a direct consequence of Theorem 3 as

we explained in the main text.

Lemma 10 In the running example, if the firms’ liquidation values l1 ≤ l2 are close to each

other, m is sufficiently large and b > 0 then, there exists a constant a > 0, and two functions

w1 ∈ C0((α, β)) ∩ C2((α, β) \ {x1}) and w2 ∈ C0((α, β)) ∩ C2((α, β) \ {x1, xR1}) solution to

the variational systems (30)-(34) and (35)-(40).

Proof of Proposition 5. Using notations of section 2.3, we have φ(x) = xρ
−

, ψ(x) = xρ
+

and

VRi(x) ≡ sup
τ∈TX

Ex[e
−rτRi(Xτ )] =

{

φ(x)
φ(x

Ri )
(− 1

r−µ
xRi + li) if x > xRi ,

− 1
r−µ

x+ li if x ≤ xRi .
(B.7)

Also,

V i
m(x) = sup

τ

Ex[

∫ τ

0

e−rsmXs ds+ li] (B.8)

=

{

m
r−µ

x+ φ(x)
φ(αi)

(− m
r−µ

αi + li) if x ≥ αi,

li if x ≤ αi,
(B.9)

with αi = 1
m
xRi < xRi and xRi = ρ−(r−µ)

ρ−−1
li. Thus,

Gi(x) = (V i
m −E)(x) (B.10)

=

{

m−1
r−µ

x+ φ(x)
φ(αi)

(− m
r−µ

αi + li) if x ≥ αi,

− 1
r−µ

x+ li if x ≤ αi.
(B.11)

=

{

m−1
r−µ

x+ li φ(x)
φ(αi)(1−ρ−)

if x ≥ αi,

− 1
r−µ

x+ li if x ≤ αi.
(B.12)

Equation (24) that we write under the form

φ(x)

φ(xR1)
R1(xR1) = G1(x), (B.13)

43



has a unique solution x2 ∈ (α1, xR1) which is explicit. Precisely, (B.13) is equivalent to

xρ
−

(

l1(r − µ) ρ−

ρ−−1

)ρ−

[

l1 − 1

(r − µ)
l1(r − µ)

ρ−

ρ− − 1

]

=
m− 1

r − µ
x+l1

xρ
−

mρ−

(

l1(r − µ) ρ−

ρ−−1

)ρ−

(1− ρ−)

.

Multiplying by
(

l1(r − µ) ρ−

ρ−−1

)ρ−

and dividing by xl1, we obtain

xρ
−−1 1

1− ρ−
=
m− 1

r − µ
(l1)ρ

−−1

(

(r − µ)
ρ−

ρ− − 1

)ρ−

+
xρ

−−1mρ−

(1− ρ−)
.

xρ
−−11−mρ−

1− ρ−
= (m− 1)(r − µ)ρ

−−1(l1)ρ
−−1

(

ρ−

ρ− − 1

)ρ−

.

x = l1(r − µ)
ρ−

ρ− − 1

[

(1−mρ−)

(−ρ−)(m− 1)

]
1

1−ρ−

.

We conclude that

x2 = l1(r − µ)
ρ−

ρ− − 1
θ = θxR1 .

with θ := θ(m, ρ−) =
[

(1−mρ− )
(−ρ−)(m−1)

]

1

1−ρ− ∈ (1/m, 1).

It follows that the function w1 defined by

w1(x) =

{

φ(x)
φ(x

R1)
(− 1

r−µ
xR1 + li) if x > x2,

G1(x) if x ≤ x2.
(B.14)

is, by construction, solution to the variariational system (30)-(34).

If a solution w2 to (35)-(40) exists, then letting T 2
x denote the unique solution to Lu−ru = 0

which is tangent to R2 at x, it must be that w2 = T 2
x2

on (x2, xR1) and that w2 = Aφ on

(xR1 ,∞) for some constant A. Precisely, we have T 2
x2 = Bψ + Cφ with B,C > 0 given by

B =
φ′(x2)( 1

r−µ
x2 − l2)− 1

r−µ
φ(x2)

ψ′(x2)φ(x2)− ψ(x2)φ′(x2)
> 0

C =
ψ(x2) 1

r−µ
+ ψ′(x2)(− 1

r−µ
x2 + l2)

ψ′(x2)φ(x2)− ψ(x2)φ′(x2)
> 0

Continuity at xR1 yields

A = B
ψ(xR1)

φ(xR1)
+ C,

which leads to

∆(w2)′(xR1) = B(
ψ(xR1)

φ(xR1)
φ′(xR1)− ψ′(xR1)) < 0.
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We deduce that, if

G2(xR1) > T 2
x2(xR1) > T 2

x
R2
(xR1) (B.15)

then, w2 = R21(0,x2] + T 2
x2
1[x2,x

R1 ] +Aφ1(x
R1 ,∞) and, a = −1

2
∆w2′(xR1)/(G2(xR1)−w2(xR1))

is a solution to the variational system (35)-(40). The first inequality in (B.15) ensures that

a > 0, the second inequality ensures that x2 < xR2 , and it also implies that w2 ≥ R2 on

[xR1 ,∞). The inequality w2 ≥ R2 on (x2, xR1) follows from the convexity of T 2
x2
. We show

below that, if l1, l2 are close to each other, m is sufficiently large, and b > 0 then, (B.15)

holds true.

Letting γ = ρ+ − ρ−, direct computations lead to

B =
1

γ

[

−(1 − ρ−)

r − µ
(x2)1−ρ

+ − l2ρ−(x2)−ρ
+

)

]

=
ρ−(x2)−ρ

+

γ

[

θl1 − l2
]

C =
1

γ

[

1− ρ+

r − µ
(x2)1−ρ

−

+ l2ρ+(x2)−ρ
−

]

=
ρ+(x2)−ρ

−

γ

[

l2 − θ
ρ+ − 1

ρ+
ρ−

ρ− − 1
l1
]

Using that x2 = θxR1 , we deduce that

T 2
x2(xR1) = B(xR1)ρ

+

+ C(xR1)ρ
−

=
ρ−θ−ρ

+

γ

[

θl1 − l2
]

+
ρ+θ−ρ

−

γ

[

l2 − θ
ρ+ − 1

ρ+
ρ−

ρ− − 1
l1
]

We have T 2
x
R2

= l2

(1−ρ−)φ(x
R2 )
φ so that

T 2
x
R2
(xR1) =

l2

(1− ρ−)φ(xR2)
φ(xR1) =

l2

(1− ρ−)

(

l1

l2

)ρ−

.

We also have (with equality if xR1 ≥ α2)

G2(xR1) ≤ m− 1

r − µ
xR1 + l2

φ(xR1)

φ(α2)(1− ρ−)

= (m− 1)
ρ−

ρ− − 1
l1 + l2

(

l1

l2

)ρ−
mρ−

1− ρ−
.
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Therefore, a sufficient condition for (B.15) is

(m− 1)
ρ−

ρ− − 1
l1 + l2

(

l1

l2

)ρ−
mρ−

1− ρ−

>
ρ−θ−ρ

+

γ

[

θl1 − l2
]

+
ρ+θ−ρ

−

γ

[

l2 − θ
ρ+ − 1

ρ+
ρ−

ρ− − 1
l1
]

>
l2

(1− ρ−)

(

l1

l2

)ρ−

.

Let us rewrite these inequalities with l1 = l2:

(m− 1)
ρ−

ρ− − 1
+

mρ−

1− ρ−

>
ρ−θ−ρ

+

γ
[θ − 1] +

ρ+θ−ρ
−

γ

[

1− θ
ρ+ − 1

ρ+
ρ−

ρ− − 1

]

>
1

(1− ρ−)
.

We observe that, for m large enough

(m− 1)
ρ−

ρ− − 1
+

mρ−

1− ρ−
>

1

(1− ρ−)
.

Noticing that 1− θ ρ
+−1
ρ+

ρ−

ρ−−1
> 1− ρ+−1

ρ+
ρ−

ρ−−1
> 0, we also have that

ρ−θ−ρ
+

γ
[θ − 1] +

ρ+θ−ρ
−

γ

[

1− θ
ρ+ − 1

ρ+
ρ−

ρ− − 1

]

>
1

(1− ρ−)
.

We finally show that, for m large enough and b > 0,

(m− 1)
ρ−

ρ− − 1
+

mρ−

1− ρ−
>
ρ−θ−ρ

+

γ
[θ − 1] +

ρ+θ−ρ
−

γ

[

1− θ
ρ+ − 1

ρ+
ρ−

ρ− − 1

]

. (B.16)

Recall that θ =
[

(1−mρ− )
(−ρ−)(m−1)

]

1

1−ρ−

. We deduce that a sufficient condition for (B.16) is that,

for m large enough

m >
ρ−m

ρ+

1−ρ−

γ
(m

1

ρ−−1 − 1) +
ρ+m

ρ−

1−ρ−

γ
(1−m

1

ρ−−1
ρ+ − 1

ρ+
ρ−

ρ− − 1
).

The latter inequality holds true for m large when ρ+ + ρ− < 1 which is equivalent to b > 0.

A simple continuity argument ends the proof of the Lemma. �

Appendix C: Proofs for Section 5

The proof of Theorem 2 is mainly based on Proposition 1 and on assertions (i), (ii) and (iii)

of the following simple lemma. We will use later assertion (iv) in the proof of Theorem 3.
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Lemma 11 Let u be a C2 function defined on an open interval (a, b) ⊂ I which satisfies

∀x ∈ (a, b), Lu(x)− ru(x) = 0.

Then, we have

(i) If b = β, u(β−) = 0, u(a+) = Ri(a) and u(x) ≥ VRi(x) for all x ∈ (a, β), then a = xRi .

(ii) If u(x) ≥ VRi(x) for all x ∈ (a, b) then {x ∈ (a, b) | u(x) = Ri(x)} contains at most one

point.

(iii) If there exist two points a′, b′ ∈ (a, b) with b′ ≤ xRi and u(a′) = Ri(a′), and u(b′) =

Ri(b′), then u(x) < Ri(x) for all x ∈ (a′, b′).

(iv) Assume that α < a ≤ xRi , u ≥ Ri on (a, b), u(a) = Ri(a) and u′(a+) > (Ri)′(a).

Then, for every ε > 0 sufficiently small, the function f solution of Lf − rf = 0 on

(a− ε, a+ ε) with f(a− ε) = Ri(a) and f(a+ ε) = u(a+ ε) satisfies f(a) > u(a).

Proof of Lemma 11. Recall that a solution u ∈ C2((a, b)) of the equation Lu(x)−ru(x) = 0

writes under the form u(x) = Aψ(x) + Bφ(x) where A and B are real numbers. Using the

change of variables (B.2), the inequation u(x) ≥ VRi(x) on (a, b) is equivalent to û(z) =

Az +B ≥ V̂Ri(z) for all z ∈ (ζ(b), ζ(a)).

Recall that V̂Ri is C1, that V̂Ri(z) = C iz > R̂i(z) for all z ∈ (0, ζ(xRi)) for some C i > 0,

and that V̂Ri = R̂i and is C2 and strictly concave on [ζ(xRi),∞).

Proof of (i). The assumption u(β−) = 0 implies B = 0, and thus û(0+) = 0. The

assumption û ≥ V̂Ri on (0, ζ(a)), implies that A ≥ C i. If this inequality is strict, then

Az > C iz ≥ R̂i(z) for all z > 0, since V̂Ri is concave, which would contradict the assumption

û(ζ(a)−) = Aζ(a) = R̂i(ζ(a)). Therefore A = C i and from the properties of V̂Ri , the unique

solution of Az = R̂i(z) is ζ(xRi).

Proof of (ii). Note that VRi > Ri on (xRi , β), so that V̂Ri > R̂i on (0, ζ(xRi)). Therefore,

if there exists z̄ ∈ (ζ(b), ζ(a)) such that û(z̄) = R̂i(z̄), it must be that z̄ ≥ ζ(xRi). In such a

case, û is a tangent to the concave C1 map V̂Ri at z̄. On the interval [ζ(xRi),+∞), V̂Ri = R̂i

is strictly concave and thus û(z) > R̂i(z) for all z 6= z̄ in [ζ(xRi),+∞) ∩ (ζ(b), ζ(a)), which

concludes the proof.

Proof of (iii). û is an affine map on the interval [ζ(b′), ζ(a′)] which is equal to R̂i at

both boundaries. The inequality follows directly from the fact that R̂i is strictly concave on

[ζ(xRi),∞) given that b′ ≤ xRi .
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Proof of (iv). We have û(z) = Az + B for some constants A,B on [ζ(b), ζ(a)]. Since

a ≤ xRi , the map R̂i is concave on [ζ(a),+∞). A direct computation shows that

A = û′(ζ(a)−) =
ψ(a)u′(a+)− ψ′(a)u(a)

ψ(a)2ζ ′(a)
, (R̂i)′(ζ(a)) =

ψ(a)(Ri)′(a)− ψ′(a)Ri(a)

ψ(a)2ζ ′(a)
,

so that

(R̂i)′(ζ(a))− û′(ζ(a)−) =
(Ri)′(a)− u′(a+)

ψ(a)ζ ′(a)
> 0,

using that u(a) = Ri(a), ζ ′(a) < 0 and u′(a+) > (Ri)′(a). We deduce that for ε small enough,

R̂i(ζ(a − ε)) > Aζ(a − ε) + B. The function f satisfying Lf − rf = 0 on (a − ε, a + ε),

f(a− ε) = Ri(a− ε) and f(a+ ε) = u(a+ ε) is such that f̂(z) = A′z+B′ for some constants

A′, B′ with f̂(ζ(a− ε)) = R̂i(ζ(a− ε)) and f̂(ζ(a+ ε)) = û(ζ(a+ ε)). We deduce that

Aζ(a+ ε) +B = A′ζ(a+ ε) +B and A′ζ(a− ε) +B′ > Aζ(a− ε) +B,

which imply A′ζ(a) +B′ > Aζ(a) +B or equivalently f(a) > u(a). �

Proof of Theorem 2. For i ∈ {1, 2}, let us define qi1 := max(supp(µi)) with the convention

max ∅ = α. We assume without loss of generality that q11 ≥ q21. From assertion (iv) of

Proposition 1, we have that xRi ≥ qi1∨si. The proof consists of four steps and uses repeatedly

Lemma 11. In the following, T iq denotes the curve solution to Lu − ru = 0 and tangent to

Ri at q where q ≤ xRi .

Step 1. We show that

(i) If q11 > s1 ∨ s2 then q11 = xR1 > q21 , and xR1 is an isolated point of the support of µ1.

(ii) If q21 > s1 ∨ s2 then, q21 is an isolated point of the support of µ2.

Note that the assumption q11 > s1 ∨ s2 implies q11 > α. From Proposition 1-(v), the

strategy (0, S1) is a PBR to strategy (µ2, S2). Therefore, τS1 is an optimal solution to

J̄1(x, (µ2, S2)) = supτ1∈T J
1(x, τ 1, (µ2, S2)). Letting y = q21 ∨ s1 ∨ s2, we have τS1 ≥ τy

Px-almost surely for all x ∈ (y, β). We deduce that the best reply value function J̄1 satisfies,

for any x ∈ (y, β),

J̄1(x) := J̄1(x, (µ2, S2)) = J1(x, (µ1, S1), (µ2, S2)) = J1(x, (0, S1), (µ2, S2))

= Ex

[

e−rτy J̄1(Xτy)
]

= Ex

[

e−rτy J̄1(y)
]

,
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where the strong Markov Property (A.7) yields the penultimate equality. It follows from (8)

that

lim
x→β

J̄1(x) = 0 and LJ̄1(x)− rJ̄1(x) = 0 on (y, β). (C.1)

Furthermore, we have that

J̄1(x) ≥ VR1(x) on (y, β), and, J̄1(q11) = R1(q11), (C.2)

where the last equality follows from assertions (ii) and (iii) of Proposition 1. Finally, Lemma

11-(i) together with (C.1) and (C.2) imply that q11 = xR1 .

By way of contradiction, assume that q11 = q21 . Applying the same arguments than above

and exchanging the roles of the two players, we obtain q21 = xR2 6= xR1 , a contradiction.

Therefore, q11 > q21 and thus q11 > y. Lemma 11-(ii) together with (C.1) and (C.2) imply

q11 = xR1 , and, (y, β) ∩ {x ∈ (α, β) | J̄1(x) = R1(x)} = {xR1}. (C.3)

Thus, q11 = xR1 is an isolated point of the support of µ1. Observe that J̄1 = T 1
q1
1

on (y, β).

To prove (ii), we first define for i = 1, 2

q12 = max(supp(µ1) \ {q11}) < q11,

where the strict inequality follows from (i). Note that the assumption q21 > s1 ∨ s2 implies

y = q21 > s1 ∨ s2. It follows that q21 > q12. Indeed, if q11 > q12 ≥ q21, then the strong Markov

property implies that, for any x ∈ (q12, q
1
1), J̄

1(x) = Ex[e
−rτ

q1
1
∧τ

q1
2 J̄1(Xτ

q1
1
∧τ

q1
2

)]. We deduce

from a standard computation that J̄1 satisfies LJ̄1 − rJ̄1 = 0 on (q12, q
1
1). We also have

J̄1(q11) = R1(q11), and J̄
1(q12) = R1(q12). It follows from Lemma 11 - (iii) that J̄1(x) < R1(x)

on (q12 , q
1
2), thus a contradiction.

Thus, we have that q11 > q21 > q12. Then, given x ∈ (q12, q
1
1), the strong Markov property

leads to J̄2(x) = Ex[e
−rτ

q1
1
∧τ

q1
2 J̄2(Xτ

q1
1
∧τ

q1
2

)] with

J̄2(x) ≥ VR2(x) on (q12 , q
1
1), and J̄

2(q21) = R2(q21). (C.4)

We apply Lemma 11-(ii) to J̄2 and we get that

J̄2(x) > R2(x) on (q12, q
1
1) \ {q21}. (C.5)

Thus, q21 is an isolated point of the support of µ2. Observe that J̄2 = T 2
q2
1

on (q12, q
1
1).

Define then

q22 = max(supp(µ2) \ {q21}) < q21.

Step 2. We show that
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(i) If q12 > s1 ∨ s2 then, q12 is an isolated point of the support of µ1.

(ii) If q22 > s1 ∨ s2 then, q22 is an isolated point of the support of µ2.

Let us consider that q12 > s1 ∨ s2 and let us show that q12 is an isolated point of the

support of µ1. The same reasoning than in step 1-(ii) applies, and the inequality q12 > q22 is

proven by contradiction using Lemma 11-(iii). Then, we have

J̄1(x) = Ex[e
−rτ

q2
1
∧τ

q2
2 J̄1(Xτ

q2
1
∧τ

q2
2

)] ≥ VR1(x) on (q22, q
2
1) and J̄

1(q12) = R1(q12), (C.6)

and Lemma 11-(ii) implies

J̄1(x) > R1(x) on (q22, q
2
1) \ {q12}. (C.7)

Thus, q12 is an isolated point of the support of µ1.

Observe that J̄1 = T 1
q1
2

on (q22, q
2
1). Because J̄

1 is continuous from Proposition 2, T 1
q1
1

and

T 1
q1
2

intersects at q21 and we have that J̄1(q21) = T 1
q1
1

(q21) = T 1
q1
2

(q21).

Let us assume that q22 > s1 ∨ s2. An analogous reasoning yields that q22 is an isolated

point of the support of µ2. The curve T 2
q2
1

and T 2
q2
2

intersects at q12 and we have J̄2(q12) =

T 2
q2
1

(q12) = T 2
q2
2

(q12).

Step 3. Proceeding by induction, let us define for all k ≥ 1 and i = 1, 2

qik+1 = max(supp(µi) \ {qi1, qi2, ..., qik}).

Assume that (q1l )1≤l≤k and (q2l )1≤l≤k are such that q11 > q21 > q12 > q22 > ... > q1k−1 > q2k−1 >

q1k > q2k and that:

• for any 2 ≤ l ≤ k, J̄1 = T 1
q1
l

on (q2l , q
2
l−1) and, T

1
q1
l−1

and T 1
q1
l

intersects at q2l−1.

• for any 2 ≤ l ≤ k, J̄2 = T 2
q2
l

on (q1l+1, q
1
l ) and, T

2
q2
l−1

and T 2
q2
l

intersects at q1l .

The same arguments as in step 2 show that

(i) If q1k+1 > s1 ∨ s2 then, q1k+1 is an isolated point of the support of µ1 and, T 1
q1
k

and T 1
q1
k+1

intersects at q2k.

(ii) If q2k+1 > s1 ∨ s2 then, q2k+1 is an isolated point of the support of µ2 and, T 2
q2
k

and T 2
q2
k+1

intersects at q1k+1.
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Step 4. If for some k ≥ 1 and i = 1, 2, we have qik ≤ s1 ∨ s2, then applying the induction

step a finite number of times, we conclude that the restrictions of µ1 and µ2 to (s1 ∨ s2, β)
have finite support, which concludes the proof.

Otherwise, we may apply the induction step infinitely many times, and we obtain two

decreasing sequences (q1n)n≥1, (q
2
n)n≥1 with q11 > q21 > q12 > q22 > ... > q1n > q2n > ... where

q11 = xR1 , q21 < xR1 is given and where for any n ≥ 2,

• T 1
q1n

and T 1
q1n−1

intersects at q2n−1.

• T 2
q2n−1

and T 2
q2n

intersects at q1n.

Lemma 12 below shows that any decreasing sequences (q1n)n≥1, (q2n)n≥1 satisfying these

properties converge to α. Thus, if for any n ≥ 1, qin > s1 ∨ s2 then, S1 = S2 = ∅ and,

suppµi = {qik, k ≥ 1}, for i = 1, 2. This concludes the proof of Theorem 2. �

Lemma 12 The two decreasing sequences (q1n)n∈N and (q2n)n∈N converge to α.

Proof of Lemma 12.

The proof makes extensive use of change of variable (B.2). As a preliminary, observe that,

using the change of variable (B.2), assumption A8 implies that (R̂i)′′ is locally Lipschitz.

Let us assume by contradiction that lim qni = q̄ > α.

Let T i(q) denote the curve solution to Lu− ru = 0 and tangent to Ri at q for q ≥ xRi . This

curve is above Ri for x > xRi and is equal to A(q)ψ + B(q)φ for some positive coefficients

A(q), B(q).

Define zi = ζ(xRi) and note that for any z ≥ zi, then T̂ iz = T̂ i
ζ−1(z) is the affine map tangent

line to the function R̂i at z given by:

T̂ iz(y) = A(ζ−1(z))y +B(ζ−1(z)) = R̂i(z) + R̂′i(z)(y − z).

We define y2n = ζ(q2n) and y2n−1 = ζ(q1n) for n ≥ 1.

As a consequence of the proof of Theorem 2, the following recursive relations are satisfied:

R̂1(y2n−1) + (R̂1)′(y2n−1)(y2n − y2n−1) = R̂1(y2n+1) + (R̂1)′(y2n+1)(y2n − y2n+1).

R̂2(y2n) + (R̂2)′(y2n)(y2n+1 − y2n) = R̂2(y2n+2) + (R̂2)′(y2n+2)(y2n+1 − y2n+2).

In words,
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• The tangent line T̂ 1
y2n−1

to the function R̂1 at y2n−1 and the tangent line T̂ 1
y2n+1

to the

function R̂1 at y2n+1 intersect at y2n.

• The tangent line T̂ 2
y2n

to the function R̂2 at y2n and the tangent line T̂ 2
y2n+2

to the

function R̂2 at y2n+2 intersect at y2n+1.

The above equations for i = 1, 2 can be written as (with x < y < z three consecutive terms

of the sequence (yn))

R̂i(x) + (R̂i)′(x)(y − x)− R̂i(y) = R̂i(z) + (R̂i)′(z)(y − z)− R̂i(y) (C.8)

Using Taylor’s theorem with integral remainder, (C.8) is equivalent to

−
∫ y

x

(y − s)(R̂i)′′(s)ds = −
∫ z

y

(s− y)(R̂i)′′(s)ds. (C.9)

Note that (R̂i)′′ < 0 on [y1,∞), so that the right-hand side of (C.9) is increasing in z.

Therefore, given y1 ≤ x < y, if a solution z > y exists, it is unique.

By assumption, we have yn → ȳ = ζ(q̄) <∞.

Since (R̂i)′′ is locally Lipschitz, there exists K such that for all n and i = 1, 2,

∀s, y ∈ [y1, ȳ], |(R̂i)′′(s)− (R̂i)′′(y)| ≤ K|s− y|.

We deduce that

−
∫ y

x

(y − s)(R̂i)′′(s)ds ≥ −(R̂i)′′(y)
(y − x)2

2
−K

(y − x)3

3

−
∫ z

y

(s− y)(R̂i)′′(s)ds ≤ −(R̂i)′′(y)
(z − y)2

2
+K

(z − y)3

3

From equation (C.9), we obtain

(z − y)2 + 2K
(z − y)3

3|(R̂i)′′(y)|
≥ (y − x)2 − 2K

(y − x)3

3|(R̂i)′′(y)|
Let C such that for all y ∈ [y1, ȳ] and i = 1, 2

2K

3|(R̂i)′′(y)|
≤ C.

Then, we have

(z − y)2 + C(z − y)3 ≥ (y − x)2 − C(y − x)3.
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Define un = yn+1 − yn and

g(u) = u2 − Cu3, h(u) = u2 + Cu3

so that the previous analysis leads to h(un+1) ≥ g(un).

By assumption y1 +
∑

n≥1 un = ȳ < ∞, which implies that un → 0. Therefore, for n

sufficiently large g(un) > 0 and we have un+1 ≥ h−1(φ(un)), where h
−1 denotes the inverse

of h restricted to [0,∞).

We have h−1(z) =
√
z − C

2
z + o(z), so that h−1(g(u)) = u− Cu2 + o(u2). We deduce that

un+1 ≥ un − Cu2n + o(u2n).

It follows that
1

un+1
− 1

un
≤ 1

un

[

1

1− Cun + o(un)
− 1

]

= C + o(1).

We obtain
1

un
=

1

u1
+

n−1
∑

k=1

(

1

uk+1
− 1

uk

)

≤ nC + o(n),

and finally

un ≥ 1

nC
+ o(

1

n
),

which is a contradiction as y1 +
∑

n≥1 un = ȳ <∞. �

Proof of Theorem 3. Let us assume that

((µ1, S1), (µ2, S2)) =

((

n
∑

i=1

aiδq1i , ∅
)

,

(

n−1
∑

i=1

biδq2i , (α, s
2]

))

is a mixed strategy MPE. Let Λi for i = 1, 2 denote the ccdf associated to the strategy

(µi, Si), so that

Λ1
t = e−

∑n
i=1 aiL

q1i
t , Λ2

t = e−
∑n−1

i=1
biL

q2i
t 1t<τ2∗ ,

where for the sake of lighter notation τ 2∗ = τ(α,s2].

Let us consider J̄2, the best reply value function to strategy (µ1, S1). We will show that

J̄2 is a solution to the system VS2. From Proposition 1 we have that, VR2 ≤ J̄2 ≤ G2,

thus J̄2(x) ≥ R2(x) on I. From Proposition 2, J̄2 is continuous on I. From the proof of

Proposition 2, we have that limx→β J̄
2(x) = 0, that LJ̄2− rJ̄2 = 0 on (q11, β) and on (s2, q1n),

and that J̄2 = T 2
q
l
on (q1l+1, q

1
l ) for 1 ≤ l ≤ n − 1 where T 2

q denotes the curve solution to
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Lu − ru = 0 and tangent to R2 at q. Therefore, if ((µ1, S1), (µ2, S2)) is a MPE then, J̄2

satifies (47), (49), (52),(53). Also, J̄2(x) = R2(x) for x ≤ s2 because the payoff of player 2 is

R2 on S2. Therefore, (48) is satisfied. Therefore, J̄2 is in C0(I)∩C2(I \({(q1i )1≤i≤n}∪{s2})),
and also |(J̄2)′(x+)| < ∞ and |(J̄2)′(x−)| < ∞ for x ∈ {(q1i )1≤i≤n} ∪ {s2}. It remains to

prove the conditions (50) and (51) to show that J̄2 is a solution of the system VS2.

Let us prove that J̄2 satisfies (50). Since J̄2 ≥ R2 with equality at s2, it must be

that (J̄2)′(s2) ≥ (R2)′(s2). Assume by contradiction that this inequality is strict. Let us

consider the stopping time Tε := inf{t ≥ 0 |Xt /∈ (s2 − ε, s2 + ε)} where ε > 0 is such that

α < s2 − ε < s2 + ε < q1n. Define f(x) = Ex[e
−rTεJ̄2(XTε)] for x ∈ [s2 − ε, s2 + ε]. Noting

that τ 2∗ is a best reply to (µ1, S1) and applying the strong Markov property, we obtain that

f is the payoff of player 2 against (µ1, S2) when using the (non Markovian) stopping time

Tε + τ(α,s2] ◦ θTε (i.e. waiting up to Tε and then stopping the first time X is below s2 in the

continuation game). Applying Lemma 11-(iv) with i = 2, a = s2, b = q1n and u = J̄2, we

deduce that for sufficiently small ε, f(s2) > J̄2(s2), which contradicts the fact that (µ2, S2)

is a PBR to (µ1, S1). Thus J̄2 satisfies (50).

That J̄2 satisfies (51) follows from Lemma 13 below.

Lemma 13 If ((µ1, S1), (µ2, S2)) =
((

∑n
i=1 aiδq1i , ∅

)

,
(

∑n−1
i=1 biδq2i , (α, s

2])
))

is a mixed

strategy MPE then, for every stopping time τ ∈ T and every x ∈ I,

J̄2(x) = Ex

[

n
∑

i=1

∫

[0,τ∧τ2∗ )

e−rsG2(q1i )Λ
1
saidL

q1i
s + e−rτ

2
∗Λ1

τ2∗
R2(Xτ2∗

)1τ2∗<τ

+e−rτΛ1
τ J̄

2(Xτ )1τ≤τ2∗

]

(C.10)

= Ex

[

n
∑

i=1

∫

[0,τ∧τ2∗ )

((J̄2(q1i )ai −
1

2
∆(J̄2)′(q1i ))e

−rsΛ1
sdL

q1i
s + e−rτ

2
∗Λ1

τ2∗
R2(Xτ2∗

)1τ2∗<τ

+e−rτΛ1
τ J̄

2(Xτ )1τ≤τ2∗

]

(C.11)

As the proof will show, Equation (C.10) follows from the strong Markov property and

Equation (C.11) follows from an application of the Itô-Meyer-Tanaka formula. Let us admit

for a while Lemma 13. It follows that, for every stopping time τ ,

Ex

[

n
∑

i=1

∫

[0,τ)

1s<τ2∗ e
−rsG2(q1i )aiΛ

1
sdL

q1i
s

]

= Ex

[

n
∑

i=1

∫

[0,τ)

1s<τ2∗ e
−rs(J̄2(q1i )ai −

1

2
∆J̄2′(q1i ))Λ

1
sdL

q1i
s

]

.

Equivalently, for every stopping time τ , Ex[Mτ ] = Ex[M0] = 0 where

Mt ≡
n
∑

i=1

∫

[0,τ)

1s<τ2∗ e
−rs(ai[G

2(q1i )− J̄2(q1i )] +
1

2
∆J̄2′(q1i ))Λ

1
sdL

q1i
s .
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It follows that the process (Mt)t≥0 is a martingale.9 Noting that (Mt)t≥0 is a continuous

bounded variation process, we deduce that, for every stopping time τ ,

Mτ =M0 = 0. (C.12)

Let us assume that for some i with 1 ≤ i ≤ n,

ai[G
2(q1i )− J̄2(q1i )] +

1

2
∆J̄2′(q1i ) 6= 0. (C.13)

Let us consider X0 = q1i and Tε := inf{t ≥ 0 |Xt /∈ (q1i − ε, q1i + ε)} where ε > 0 is such that

q1i+1 < q1i − ε < q1i + ε < q1i−1 (with the convention that q1−1 = β and q1n+1 = s2). From the

properties of the local time process we have that, for all t > 0, L
q1i
t > 0 Pq1i

− a.s.10 It then

follows from (C.13) that MTε 6= 0, which contradicts (C.12). We conclude that J̄2 satisfies

(51) and that J̄2 is a solution to VS2.

An analogous reasoning shows that if J̄1 is the best reply value function to strategy

(µ2, S2) then J̄1 is a solution to VS1.

Let us now prove Lemma 13.

Proof of Lemma 13 From (v) of Proposition 1, if ((µ1, S1), (µ2, S2)) is a MPE, then

(0, (α, s2]) is a best reply to (µ1, S1). Applying the strong Markov property (A.7) to the

expected payoff of player 2 associated to the pair of Markov strategies ((µ1, S1), (0, (α, s2]))

yields for every stopping time τ and every x ∈ I

J̄2(x) = Ex

[

n
∑

i=1

∫

[0,τ∧τ2∗ )

e−rsG2(q1i )Λ
1
saidL

q1i
s + e−rτs2Λ1

τ
s2
R2(Xτ2∗

)1τ2∗<τ

+e−rτΛ1
τ J̄

2(Xτ )1τ≤τ2∗

]

which shows (C.10).

To prove (C.11), we apply the Ito-Meyer-Tanaka formula to the process

e−r(τ∧τ
2
∗∧τk)Λ1

τ∧τ2∗∧τk
J̄2(Xτ∧τ2∗∧τk

) where, for each k ∈ N, τk := inf{t ≥ 0 : Xt 6= [αk, βk]} with

([αk, βk])k∈N an increasing sequence of compacts intervals of I such that ∪k∈N[αk, βk] = (α, β).

Observe that τk <∞ and that Xt ∈ [αk, βk] over {t ≤ τk}, Px-almost surely for x ∈ [αk, βk].

Also, because X is a regular diffusion, limk−→∞ τk = ∞ and, hence, limk−→∞ τ ∧ τk = τ with

τ ∈ T .

9See for instance Proposition 3.5 page 70 in Revuz and Yor (1999).
10See for instance the proof of Proposition 2.5 page 241 in Revuz and Yor (1999).
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We thus obtain from the Ito-Meyer-Tanaka formula

J̄2(x) = e−r(τ∧τ
2
∗∧τk)Λ1

τ∧τ2∗∧τk
J̄2(Xτ∧τ2∗∧τk)−

∫

[0,τ∧τ2∗∧τk)

e−rsJ̄2(Xs)dΛ
1
s

+

∫

[0,τ∧τ2∗∧τk)

e−rsΛ1
s(rJ̄

2(Xs)− LJ̄2(Xs))Π
n
i=11{Xs 6=q1i }

ds

−
∫

[0,τ∧τ2∗∧τk)

e−rsΛ1
sσ(Xs)J̄2′(Xs)Π

n
i=11{Xs 6=q1i }

dWs (C.14)

− 1

2

n
∑

i=1

∆J̄2′(q1i )

∫

[0,τ∧τ2∗∧τk)

e−rsΛ2
sdL

q1i
s . (C.15)

After taking expectations, we get,

J̄2(x) = Ex[e
−rτ∧τ2∗∧τkΛ1

τ∧τ2∗∧τk
J̄2(Xτ∧τ2∗∧τk

)]−Ex

[

∫

[0,τ∧τ2∗∧τk)

e−rsJ̄2(Xs)dΛ
1
s

]

−Ex

[1

2

n
∑

i=1

∆(J̄2)′(q1i )

∫

[0,τ∧τ2∗∧τk)

e−rsΛ1
sdL

q1i
s

]

,

where we have used the fact that J̄2 satisfies (47) and that,

Ex

[

∫

[0,τ∧τ2∗∧τk)

e−rsΛ1
sσ(Xs)J̄2′(Xs)Π

n
i=11{Xs 6=q1i }

dWs

]

= 0. (C.16)

To justify this latter equality, note that σ is continuous on I, and J̄2 ∈ C1(I \ {(q1i )1≤i≤n})
with |(J̄2)′(x+)| < ∞ and |(J̄2)′(x−)| < ∞ for x ∈ {(q1i )1≤i≤n}. Thus, there exists Ck > 0

such that |σ(Xt)(J̄
2)′(Xt)| ≤ Ck over {t ≤ τ 2∗ ∧ τk}, Px-almost surely, which implies (C.16).

It follows that,

J̄2(x) = Ex[e
−rτ∧τkΛ1

(τ∧τk)
J̄2(Xτ∧τk)1τ∧τk≤τ2∗ ] + Ex[e

−rτ2∗Λ1
τ2∗
R2(Xτ2∗

)1τ2∗<τ∧τk ]

+Ex

[

n
∑

i=1

∫

[0,τ∧τ2∗∧τk)

e−rsJ̄2(Xs)Λ
1
saidL

q1i
s

]

− Ex

[1

2

n
∑

i=1

∆J̄2′(q1i )

∫

[0,τ∧τ2∗∧τk)

e−rsΛ1
sdL

q1i
s

]

.

That is,

J̄2(x) = Ex[e
−rτ∧τkΛ1

(τ∧τk)−
J̄2(Xτ∧τk)1τ∧τk≤τ2∗ ] + Ex[e

−rτ
q1nΛ1

τ
q1n

R2(Xτ2∗
)1τ2∗<τ∧τk ]

+Ex

[

n
∑

i=1

∫

[0,τ∧τ2∗∧τk)

((J̄2(q1i )ai −
1

2
∆J̄2′(q1i ))e

−rsΛ1
sdL

q1i
s

]

(C.17)

We have that

lim
k−→∞

Ex

[

∫

[0,τ∧τ2∗∧τk)

((J̄2(q1i )ai −
1

2
∆J̄2′(q1i ))e

−rsΛ1
sdL

q1i
s

]

= Ex

[

∫

[0,τ∧τ2∗ )

((J̄2(q1i )ai −
1

2
∆J̄2′(q1i ))e

−rsΛ1
sdL

q1i
s

]
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and

lim
k−→∞

Ex[e
−rτ

s2Λ1
τ
s2
R2(Xτ2∗

)1τ2∗<τ∧τk ] = Ex[e
−rτ

s2Λ1
τ
s2
R2(Xτ2∗

)1τ2∗<τ ]

by the monotone convergence theorem. Because from Proposition 1 J̄2 ≤ G2, it follows

from assumption A4 that the sequence (e−rτ∧τk J̄2(Xτ−∧τk)1τ∧τk≤τ2∗1τ<∞)k∈N is uniformly

integrable. We have

lim
k→∞

Ex[e
−r(τ∧τk)Λ1

(τ∧τk)
J̄2(Xτ∧τk)1τ∧τk≤τ2∗ 1τ<∞] = Ex[e

−rτΛ1
τ J̄

2(Xτ )1τ≤τ2∗ 1τ<∞]

by Vitali’s convergence theorem.

Finally, over {τ = ∞}, we have e−r(τ∧τk)Λ1
(τ∧τk)

J̄2(Xτ∧τk)1τ∧τk≤τ2∗ = e−rτkΛ1
τk
J̄2(Xτk)1τk≤τ2∗ .

For k large enough, x ∈ (αk, βk), thus

Ex[e
−rτkΛ1

τk
J̄2(Xτk)1τk≤τ2∗ ] ≤ Ex[e

−rτkΛ1
τk
J̄2(Xτk)1{Xτk

=αk}] + Ex[e
−rτkΛ1

τk
J̄2(Xτk)1{Xτk

=βk}]

= Ex[e
−rταkΛ1

ταk
J̄2(αk)] + Ex[e

−rτβkΛ1
τβk
J̄2(βk)]

≤ φ(x)

φ(αk)
G2(αk) +

ψ(x)

ψ(βk)
G2(βk),

We deduce from the growth properties (11) that

lim
k−→∞

Ex[e
−rτkΛ1

τk
J̄2(Xτk)1τk≤τ2∗ ] = 0.

Thus, letting k go to ∞ in (C.17) yields

J̄2(x) = Ex

[

n
∑

i=1

∫

[0,τ∧τ2∗ )

((J̄2(q1i )ai −
1

2
∆(J̄2)′(q1i ))e

−rsΛ1
sdL

q1i
s + e−rτ

2
∗Λ1

τ2∗
R2(Xτ2∗

)1τ2∗<τ

+e−rτΛ1
τ J̄

2(Xτ )1τ≤τ2∗

]

,

which shows (C.11).

To close the proof of Theorem 3 it simply remains to establish a verification Lemma that

shows that, if a pair (w1, w2) are solutions to the systems VS1 and VS2 then,

((µ1, S1), (µ2, S2)) =

((

n
∑

i=1

aiδq1i , ∅
)

,

(

n−1
∑

i=1

biδq2i , (α, s
2]

))

is a mixed strategy MPE. Specifically, Lemma 14 below shows that the strategy (
∑n

i=1 aiδq1i , ∅)
is a PBR to player’s 2 strategy (

∑n−1
i=1 biδq2i , (α, s

2]) and that the strategy (
∑n−1

i=1 biδq2i , (α, s
2])

is a PBR to player’s 1 strategy (
∑n

i=1 aiδq1i , ∅). This ends the proof of Theorem 3.
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Lemma 14 For i = 1, 2, let wi be a solution to VSi then, with j 6= i

wi(x) ≥ sup
τ

J i(x, τ, (µj, Sj)), (C.18)

wi(x) = J i(x, (µ1, S1), (µ2, S2)). (C.19)

Proof of Lemma 14. We prove Lemma 14 for i = 2 and j = 1.

At first, let us observe that (A.7) leads to

J2(x, (µ1, S1), τ) = Ex[e
−rτR2(Xτ )Λ

1
τ +

n
∑

i=1

∫

[0,τ)

e−rsG2(Xs)Λ
1
sai dL

q1i
s ].

Let w2 be a solution to VS2. We apply the Itô-Meyer-Tanaka formula to the process

(e−r(τ∧τk)Λ1
τ∧τk

w2(Xτ∧τk))t≥0 where τk := inf{t ≥ 0 : Xt 6= [αk, βk]} and where ([αk, βk])k∈N

be an increasing sequence of compact intervals of I such that ∪k∈N[αk, βk] = I as in the

proof of Lemma 13. We get

w2(x) = e−r(τ∧τk)Λ1
τ∧τk

w2(Xτ∧τk)−
∫

[0,τ∧τk)

e−rsw2(Xs)dΛ
1
s

+

∫

[0,τ∧τk)

e−rsΛ1
s(rw

2(Xs)− Lw2(Xs))Π
n
i=11{Xs 6=q1i }

ds

−
∫

[0,τ∧τk)

e−rsΛ1
sσ(Xs)w

2′(Xs)Π
n
i=11{Xs 6=q1i }

dWs (C.20)

− 1

2

n
∑

i=1

∆w2′(q1i )

∫

[0,τ∧τk)

e−rsΛ1
sdL

q1i
s . (C.21)

From assumption A3 and (48), we have Lw2 − rw2 = LR2 − rR2 ≤ 0 on (α, s2). It then

follows from (47) that

Ex

[
∫

[0,τ∧τk)

e−rsΛ1
s(rw

2(Xs)−Lw2(Xs))Π
n
i=11{Xs 6=q1i }

ds

]

≥ 0. (C.22)

From (51) and from the properties of the local time process (L
q1i
t )t≥0, we have

− 1

2

n
∑

i=1

∆w2′(q1i )

∫

[0,τ∧τk)

e−rsΛ1
sdL

q1i
s =

n
∑

i=1

ai(G
2(q1i )− w2(q1i ))Ex[

∫

[0,τ∧τk)

e−rsΛ1
sdL

q1i
s ]

= Ex[
n
∑

i=1

∫

[0,τ∧τk)

e−rsG2(Xs)Λ
1
saidL

q1i
s ]− Ex[

n
∑

i=1

∫

[0,τ∧τk)

e−rsΛ1
sw

2(Xs)aidL
q1i
s ]

= Ex[

n
∑

i=1

∫

[0,τ∧τk)

e−rsG2(Xs)Λ
1
saidL

q1i
s ] + Ex[

∫

[0,τ∧τk)

e−rsw2(Xs)dΛ
1
s]

(C.23)
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We obtain from (C.21), (C.22), (C.23)

w2(x) ≥ Ex[e
−r(τ∧τk)Λ1

τ∧τk
w2(Xτ∧τk)] + Ex[

n
∑

i=1

∫

[0,τ∧τk)

e−rsG2(Xs)Λ
1
saidL

q1i
s ]

≥ Ex[e
−r(τ∧τk)Λ1

τ∧τk
R2(Xτ∧τk)] + Ex[

n
∑

i=1

∫

[0,τ∧τk)

e−rsG2(Xs)Λ
1
saidL

q1i
s ]

where we have used that the stochastic integral in (C.20) is a centered square integrable

martingale as shown in Lemma 13 and that w2(x) ≥ R2(x) on I. Using again the same

arguments than in Lemma 13, letting k go to ∞ yields

w2(x) ≥ Ex[e
−r(τ)Λ1

τR
2(Xτ )] + Ex[

n
∑

i=1

∫

[0,τ)

e−rsG2(Xs)Λ
1
saidL

q1i
s ],

where we note that, from (16), the left-hand-side of the above equation corresponds to

J2(x, (µ1, S1), τ). Then, taking the supremum over τ yields (C.18).

To establish (C.19), we apply the Ito-Meyer-Tanaka formula to e−rτkΛ1
τk
Λ2
τk
w2(Xτk) where

w2 is a solution to VS2. We obtain that

w2(x) = Ex[e
−rτkΛ1

τk
Λ2
τk
w2(Xτk)]− Ex[

∫

[0,τk)

e−rsw2(Xs)Λ
2
sdΛ

1
s]− Ex[

∫

[0,τk)

e−rsw2(Xs)Λ
1
sdΛ

2
s]

−Ex[
1

2

n
∑

i=1

∆w2′(q1i )

∫

[0,τk)

e−rsΛ1
sΛ

2
sdL

q1i
s ].

(C.24)

where, as in the proof of Lemma 13, we have used that

Ex

[

∫

[0,τk)

e−rsΛ1
sΛ

2
sσ(Xs)w

2′(Xs)Π
n
i=11{Xs 6=q1i }

dWs

]

= 0.

and

Ex[

∫

[0,τ∧τk)

e−rsΛ1
sΛ

2
s(rw

2(Xs)− Lw̄2(Xs))Π
n
i=11{Xs 6=q1i }

ds] = 0.

This latter equality follows from (47) and from the definition of Λ2
s which contains the

indicator 1s<τ2∗ . Next, we have

−Ex[

∫

[0,τk)

e−rsw2(Xs)Λ
1
sdΛ

2
s] = Ex[

n−1
∑

i=1

∫

[0,τk)

e−rsw2(Xs)Λ
1
sΛ

2
sbidL

q2i
s ]

+Ex[e
−rτ2∗ e−rsw2(Xτ

s2
)Λ1

τ2∗
Λ2
τ2∗
1τ2∗≤τk ]

= Ex[
n−1
∑

i=1

∫

[0,τk)

e−rsR2(Xs)Λ
1
sΛ

2
sbidL

q2i
s ]

+Ex[e
−rτ2∗ e−rsR2(Xτ

s2
)Λ1

τ2∗
Λ2
τ2∗
1τ2∗≤τk ]. (C.25)
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Using (45), we get

−Ex[
1

2

n
∑

i=1

∆w2′(q1i )

∫

[0,τk)

e−rsΛ1
sΛ

2
sdL

q1i
s ] = Ex[

n
∑

i=1

∫

[0,τk)

e−rsG2(q1i )Λ
1
sΛ

2
saidL

q1i
s ]

−Ex[
n
∑

i=1

∫

[0,τk)

e−rsw2(q1i )Λ
1
sΛ

2
saidL

q1i
s ]

= Ex[

n
∑

i=1

∫

[0,τk)

e−rsG2(Xs)Λ
1
sΛ

2
saidL

q1i
s ]

+Ex[

∫

[0,τk)

e−rsw2(Xs)Λ
2
sdΛ

1
s]. (C.26)

We get from (C.24), (C.25), (C.26) that,

w(x) = Ex[e
−rτkΛ1

τk
Λ2
τk
w(Xτk)] + Ex[

n−1
∑

i=1

∫

[0,τk)

e−rsR2(Xs)Λ
1
sΛ

2
sbidL

q2i
s ]

+Ex[e
−rτ2∗R2(Xs2)Λ

1
τ2∗
Λ2
τ2∗
1τ2∗≤τk ] + Ex[

n
∑

i=1

∫

[0,τk)

e−rsG2(Xs)Λ
1
sΛ

2
saidL

q1i
s ]. (C.27)

Letting k go to ∞ as in Lemma 13, yields

w2(x) = Ex[

n−1
∑

i=1

∫

[0,∞)

e−rsR2(Xs)Λ
1
sΛ

2
sbi dL

q2i
s

+ e−rτ
2
∗R2(Xτ

s2
)Λ1

τ
s2
Λ2
τ
s2

+
n
∑

i=1

∫

[0,∞)

e−rsG2(Xs)Λ
1
sΛ

2
sai dL

q1i
s ].

Finally, we observe from (16) that the right hand side of the latter equation corresponds to

J2(x, (µ1, S1), (µ2, S2)), which ends the proof.
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