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Abstract:  

Perforations contribute to liquid redistribution in corrugated sheet packings. We focus on a 

simplified but relevant experimental configuration where a vertical perforated flat sheet is 

solely supplied with liquid on its front. We then examine how the perforations irrigate the back 

of the plate when operating in the liquid curtain mode. We successively consider a single 

perforation, a spanwise row of perforations, and a staggered array of perforations. 

We quantify the liquid transfer through the perforations as a function of the supply flow rate, 

and we explore the effects of perforation diameter, perforation spacing, and plate thickness. We 

also analyze the spreading of the rivulets leaking from the perforations, their merging into a 

continuous wavy film, and the leveling of this film as it falls down the plate. The spreading and 

the merging exhibit a power-law behavior in agreement with theoretical models. The leveling 

exhibit exponential decay behavior. 
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Introduction 

Corrugated sheet packings are well suited for low liquid and vapor load applications, where 

minimizing column pressure drop is essential. Since their successful application in the early 

80s, these packings have become predominant in cryogenic air separation. Corrugated sheet 

packings consist of metallic crimped sheets placed vertically, side by side, with the corrugations 

of adjacent sheets crisscrossing one another. Such packings combine a high void fraction and a 

high interfacial area, resulting in a lower pressure drop and a higher capacity than trays or 

random packings at the same efficiency. However, the separation performances of corrugated 

sheet packings are very sensitive to the uniformity of liquid distribution over the column cross-

section compared to random packings. Indeed, in corrugated sheet packings, the vapor flow 

cannot redistribute the liquid over the column cross-section as apparatuses with random 

packings operating near the flooding point. The addition of perforations that transfer liquid from 

one side of a sheet to another decreases the sensitivity of corrugated sheet packings to irrigation 

uniformity1. 

As the liquid phase is poured to the top of the packing, liquid spreading throughout the packing 

essentially depends on the packing geometry2, the liquid flow rate6, the liquid viscosity6, and 

the contact angle of the liquid on the sheets3,4. Liquid distribution further conditions the liquid 

hold-up, the liquid-vapor interfacial area, and the mass transfer within the packing.  

Three geometrical features contribute to liquid distribution: the corrugations, the perforations, 

and optionally the microtexture of the sheets. Whereas the liquid tends to flow vertically from 

the pour points, the troughs of the corrugated sheets guide the liquid in the transverse direction 



 3 

of the sheets. The contact points between the corrugations of adjacent sheets divide the liquid 

flow between the sheets. The perforations transfer the liquid from one side of a sheet to the 

other side. Last, the microtexture enhances the wettability of the sheets. 

Liquid distribution and spreading over corrugated sheet packings have been investigated at 

different scales: (pilot) column scale, sheet scale, and geometrical feature scale.  

Tomographic techniques are efficient, non-intrusive tools to view inside a packed column and 

analyze the liquid flow distribution at the column scale. Fourati et al.2 used gamma-ray 

tomography to investigate liquid distribution in a counter-current gas-liquid column equipped 

with Mellapack 250.X packing and fed with a central liquid jet at the top. The working liquids 

were water and MEA 30wt%. They obtained hold-up maps (expressed in liquid volume 

fraction) at different axial positions in the column. They found that the overall liquid hold-up 

increases with the liquid flow rate and the liquid viscosity. The liquid phase disperses radially 

with a spreading factor5 of the order of a few millimeters. Since the spreading factor does not 

significantly vary with the liquid load, the gas load, and the liquid viscosity, Fourati et al.2 

conclude that liquid distribution is mainly controlled by the packing geometry.  

Most of the 3-D images of the packed column inside have been obtained using X-ray computed 

tomography (XCT)6,7,8. Janzen et al.6 investigated the liquid flow morphology in a small column 

equipped with MellapakPlus 752.Y packing and fed either with pure water or water-glycerin 

mixtures. They found that the overall liquid hold-up and the gas-liquid interfacial area increase 

with the liquid load and the liquid viscosity. They distinguish three flow patterns: film flow, 

liquid menisci/bridges at the contact points between corrugations of adjacent sheets, and 

flooded regions. The relative contribution of the film-flow pattern to hold-up decreases with 

both the liquid load and the liquid viscosity, while the relative contribution of the flooded 

regions increases correspondingly. The contribution of the liquid menisci appears independent 

of the varied parameters. Schug & Arlt7 imaged the liquid flow morphology in different 
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Mellapak 500.Y packings, i.e., with smooth, fluted, and gridded microtexture, with or without 

perforations. Packings were irrigated with water. The liquid hold-up in the packing with the 

gridded texture and holes shows the highest values, and the results indicate that the more 

complex the surface modification is, the higher is the liquid hold-up. The evaluation of the 

liquid film thickness shows that the packings are not totally wetted. Dry areas (or covered by a 

film below the resolution limit) subsist even at high liquid loads. Most of the liquid is located 

in the troughs of the sheets in the form of rivulets, and at the contact points between sheets in 

the form of liquid bridges. Wehrli et al.8 examined liquid flow in Mellapak 250.Y and Mellapak 

500.Y packings fed either with water or propan-2-ol. They found that the packings are better 

wetted by propan-2-ol than by water. They also distinguish three patterns, i.e., liquid films, 

rivulets, and bridges. Water tends to form rivulets in the troughs and bridges at the contact 

points, while a significant fraction of the packing surface remains not covered. Propan-2-ol 

tends to form liquid films that cover the packing surface uniformly. 

Liquid distribution mechanisms have been investigated with experiments carried out on a single 

corrugated sheet. The sheet is placed vertically and supplied with liquid on one side only. Either 

one or several channels (i.e., troughs) on the upper edge of the corrugated sheet are irrigated. 

For X and Y packings, it is found that the liquid flow pattern and the subsequent wetted area 

depend on the corrugation angle, surface microtexture, perforations, and flow parameters9–11. 

We retain that the wetted surface area increases with the liquid flow rate. Below a minimum 

film Reynolds number (Re ≅ 100 for liquid nitrogen), the liquid cannot cross the channel 

crests. It flows along the valley of the irrigated channel and does not fall into the underlying 

(non-irrigated) channels. The transferred flow through the perforations (from the supplied side 

to the non-supplied one) also depends on the local liquid flow rate and their position on the 

channel surface (flank, crest, or valley). The liquid is only transferred above a minimum film 

Reynolds number (Re ≅ 100 − 160). Then, the transferred flow rate increases with the local 



 5 

liquid flow rate (on the front of the plate, just upstream of the hole). Perforations may also 

facilitate the liquid flow from a channel to the underlying ones by multiple transfers, i.e., from 

the supplied side of the plate to the opposite one and back. We stress that the interplay between 

the inclined corrugations and the perforations makes the analysis very difficult. Gorodilov et 

al.1 quantified the transferred flow rate from the supplied side (front) to the non-supplied side 

(back) of a corrugated plate perforated with slits (instead of the standard round perforations). 

Corrugations and slits were parallel to the horizontal plane. The working liquid was water. They 

found that the liquid transfer starts above a minimum film Reynolds number and exhibits a 

hysteresis loop when varying the supply flow rate at the upper edge of the corrugated sheet. 

The threshold and the hysteresis loop are attributed to the liquid meniscus blockage at the slit 

entrance. 

Studies focusing on a single geometrical feature (perforation or channel, for example) provide 

helpful insight into the elementary mechanisms involved in packed column. Xie et al.12,13 and 

Iyer et al.14 considered the liquid flow down a vertical plate with a single perforation, round14 

or rectangular12,13. The plate was supplied with liquid either on one or two sides. At low values 

of the film Reynolds number, the liquid film flow is deflected by the perforation, and the liquid 

does not fill the perforation. Above a critical value of the Reynolds number, referred to as the 

curtain Reynolds number, the liquid fills the perforation entirely and forms a liquid curtain. Xie 

et al.12,13 and Iyer et al. 14 further investigated the curtain regime when the plate is supplied with 

equal volume flow rate on its front and on its back. The varicose capillary waves standing on 

the liquid curtain and the strong vorticity generation both inside the curtain and on its free 

surface explain the mass transfer intensification observed for the plate with perforation (as 

compared to the unperforated plate)15. However, the authors did not examine the effects of 

perforation on liquid redistribution.  
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Shetty & Cerro16 investigated the spreading of a rivulet over an inclined flat solid surface. Such 

a simplified configuration typically mimics the rivulet flowing in a channel of a corrugated 

sheet. Experiments were performed with silicone oils of two different viscosities and a brass 

plate at a varying inclination angle. The plate was fed at a single drip point by a small liquid 

jet. They observed that the rivulet spanwise profile evolves self-similarly and is well 

represented by a Gaussian. They used a viscous long-wave approximation to derive a film 

evolution equation and obtain the scaling laws followed by the rivulet. They distinguished two 

spreading regimes, i.e., capillary-dominant and gravity-dominant. When the capillarity (resp. 

gravity) controls the spreading, the spanwise spreading follows the 3/13th (resp. 3/7th) power of 

the distance traveled along with the flow (with appropriate rescaling) while the rivulet peak 

thickness thins out as the -1/13 (resp. -1/7) power of the traveled distance. They found a good 

agreement between the theory and the experiments. For an angle of inclination to the vertical 

greater than 10°, the spreading is controlled by gravity. It should be noted that the scaling laws 

for the gravity-dominant regime were first obtained by Smith17, who derived a similarity 

solution for a viscous source flow down an inclined plane. Duffy & Moffatt18,19 later obtained 

a similarity solution for a viscous source flow down a vertical plane and recovered the 

exponents of the capillary-dominant regime first found by Shetty & Cerro16. 

To better understand how the perforations contribute to liquid distribution in corrugated sheet 

packings, we consider a simplified configuration where a vertical perforated flat sheet is solely 

supplied with liquid on its front. We examine how the perforations irrigate the back of the plate. 

Plates have either a single perforation, a spanwise row of perforations, or a staggered array of 

perforations. We quantify the liquid transfer through the perforations as a function of the supply 

flow rate. After examining the impact of the flow regime on the transfer, we further focus on 

the curtain regime. We explore the effects of the perforation diameter, the perforation spacing, 

and the plate thickness. We carefully analyze the spreading of the rivulets leaking on the back 
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of the plate from the perforations, the merging of the rivulets into a continuous film, and the 

leveling of this film as it falls down the plate. Liquid film thickness profiles are assessed using 

confocal chromatic imaging. 

In the first part of the paper, we briefly address the physics of the problem. In the second part, 

we describe our experimental setup and the associated measurement methods. The third part 

presents our experimental data. The fourth part discusses the results and compares them to 

models either found in the literature or newly developed.   

Problem description 

We consider a vertical flat plate or sheet of thickness 𝑡 with single or multiple circular 

perforations of diameter 𝑑  (Figure 1). The plate is supplied with liquid on its front, above the 

first row of perforations. We study the liquid transfer from the front to the back of the plate. 𝑥 

denotes the streamwise direction, 𝑦 the spanwise direction, and 𝑧 is the direction in the thickness 

of the liquid film. Three perforation patterns are examined: (i) single perforation, (ii) spanwise 

row of equally-spaced perforations, and (iii) staggered array of perforations. 𝑠 is the (centre-to-

centre) spacing between the perforations in 𝑦-direction as well as the pitch (in 𝑥-direction) 

between the rows of perforations (see Figure 1).  

We consider a Newtonian liquid with constant physical properties such as density (𝜌), 

kinematic viscosity (𝜈) and surface tension (𝜎). 𝜇 = 𝜌𝜈 is its dynamic viscosity. We suppose 

that the equilibrium contact angle (𝜃!) of the liquid on the plate is significantly lower than 𝜋 2⁄ . 

Then, wetting is favorable. 

The front of the plate is supplied with liquid at a volume flow rate 𝑞. We define 𝑄 the supply 

flowrate per unit width, i.e., 𝑄 = 𝑞 𝑤⁄ , where 𝑤 is the width of the channel bounded by the 

frame that holds the plate (see Figure 1). The flow upstream of the perforations is characterized 

by the film Reynolds number which compares the inertial forces with the viscous forces acting 

on the film, i.e., Re = 𝑄 𝜈⁄  . Thereafter, Re will be referred to as the supply Reynolds number. 
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We assume that the film flow upstream of the perforations is steady, laminar and fully 

developed. We suppose that the amplitude of the waves that may travel on the free surface 

remains much lower than the film thickness. Then, the upstream film thickness is well described 

by the Nusselt20 thickness, 𝛿"#(𝑄) = 	 (3𝜈𝑄 𝑔⁄ )$ %⁄ . 

For a single perforation or a single spanwise row of perforations, we note 𝑞' the total volume 

flow rate transferred through the perforations. In the absence of supply on the back of the plate, 

𝑞' coincides with the volume flow rate 𝑞( flowing on the back of the plate beneath the 

perforations. We define the transferred volume flow rate per unit diameter of perforation 𝑄' =

𝑞' (𝑁𝑑)⁄  with 𝑁 the number of perforations. Following Gorodilov et al.1, we also introduce the 

so-called overflow number 𝑋 = 𝑄' 𝑄⁄  which quantifies the liquid transfer efficiency of a 

perforation.  

For a staggered array of perforation, we index the rows from top (𝑘 = 1) to bottom (𝑘 = 𝑛). 𝑁 

is the number of perforations of the odd numbered rows, (𝑁 − 1) the number of perforations 

of the even. The width of the array is defined as 𝑤) = 𝑁𝑠. We note 𝑞((𝑘) the volume flow rate 

on the back of the plate just beneath the kth row of perforations. The volume flow rate per unit 

width on the back of the plate just beneath the kth row of perforations is defined as 𝑄((𝑘) =

𝑞((𝑘) 𝑤)⁄ . 

Last, we define 𝛿(𝑥, 𝑦) the local thickness of the liquid film on the back of the plate. 

When a liquid film flows over a single perforation of small diameter (𝑑 ≤ 8 mm), different 

regimes may be distinguished depending on (1) the value of the film Reynolds number and (2) 

the history of the film flow14. When Re is low, the film flow is deflected by the perforation and 

does not fill it. The contact line is pinned at the top edge of the perforation (front of the plate) 

and there is no fluid transfer from the front to the back of the plate. When Re is moderate, a 

liquid rim forms within the perforation and liquid is transferred from the front to the back of 

the plate. On the back, the liquid climbs over the top edge of the perforation and makes an arch-
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shaped capillary ridge that extends in the form of two parallel rivulets (see Figure S1 in 

Supplementary Material). Therafter, this regime will be referred to as the rim mode. When Re 

is high, a liquid curtain closes the perforation. Liquid is still transferred from the front to the 

back of the plate but the flow pattern on the rear side differs from that encountered in the rim 

mode: the liquid leaks from the bottom edge of the perforation in the form of a single rivulet 

(see Figure S1 in Supplementary Material). The curtain transition occurs when the inertia of the 

film balances the surface tension forces. We note 𝑄*+ the supply flow rate per unit width at the 

curtain transition. The curtain Reynolds number Re*+ is the Reynolds number associated with 

𝑄*+. This regime will be referred to as the inertial curtain mode. 

When the supply flow rate is decreased from the inertial curtain mode, the film flow remains in 

the curtain mode for Re values much lower than Re*+. Liquid is transferred from the front to 

the back of the plate with the same flow pattern as for Re > Re*+. This regime will be referred 

to as the hysteretic curtain mode. This mode is metastable: if a hole is made in the curtain, the 

film flow switches in the rim mode. 

In the rest of the paper, we investigate the effect of perforation diameter (𝑑), perforation spacing 

(𝑠), plate thickness (𝑡), supply flow rate per unit width (𝑄) and flow mode (rim, inertial curtain, 

hysteretic curtain) on (i) the transferred flow rate per unit diameter of perforation (𝑄') and (ii) 

the subsequent wetting of the back of the plate (by measuring the liquid film profile). 
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Figure 1. Perforated plate front view and cross-section along x-z plane: (a) geometric 

parameters and coordinate system (b) Scheme of the film flow on the front and on the back of 

the plate (the plate is supplied solely on its front, the film flows in the curtain mode). The arrows 

indicate the flow path followed by the fluid. We define the top edges of the perforation on the 

front and on the back of the plate (red squares), the bottom edges (blue squares) and the 

perforation inner surface (in green). 

Experimental set-up 

Materials 
 
The test plates are cut from aluminum sheets. The plate length in the streamwise direction is 

𝐿 = 200 mm and the plate width in the spanwise direction is 𝐵 = 150 mm (see Figure 1).  

For the single perforation pattern, two different plate thicknesses, i.e., 𝑡	 = 0.5 and 1 mm, and 

up to six perforation diameters, i.e., 𝑑 = 4, 6, 8, 10, 14 and 16 mm, are considered. We define 

𝑑 = 4 mm and 𝑡 = 1 mm as our reference case. The center of the perforation is located on the 

midline of the plate, at 60 mm from the top edge.  

For the single spanwise row of perforations, the plate thickness is 𝑡 = 1 mm, the perforation 

diameter 𝑑 = 4 mm. Five centre-to-centre spacing, i.e., 𝑠 = 6, 8, 10, 12 and 14 mm are 
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examined. For each spacing, the number 𝑁 of perforations is such that 𝑁 × 𝑠 ≤ 70 mm and 𝑁 

maximal. 𝑁 is equal to 11, 9, 7, 5 and 5, respectively. Perforations are spread within 70 mm 

and not within the channel width 𝑤 = 90 mm to reduce side wall effects (the film flow is 

laterally bounded by the frame that holds the plate). 

For the staggered array of perforations (with 2, 3 or 10 rows of perforations), we selected 𝑡 = 1 

mm, 𝑑 = 4 mm, and 𝑠 = 14 mm. The pitch between the rows is fixed to 𝑠 = 14 mm. 

The test plates are slightly polished with abrasive (grit size P1200) to get a matt rendering and 

then reduce the impact of light parasitic reflection on optical based measurements. The resulting 

roughness parameter (Ra, arithmetical average of the roughness profile) of the plate ranges from 

0.2 to 0.5 µm with the standard deviation of the order of 0.01 µm as measured by confocal 

chromatic imaging (3D Measuring Station with CHR 150-N sensor, STIL).  

Pure propan-2-ol, purchased from VWR Chemicals (GPR Rectapurâ >99.0%), is used as a test 

liquid. Its physical properties are reported in Table 1 (see Supplementary Material). We stress 

that the wetting of the aluminum sheets with propan-2-ol is highly favorable (𝜃! ≪ 90°). 

Experimental set-up 
 
Since the setup has already been presented in detail elsewhere, we will only recall its main 

features. It comprises three parts (see Figure 2): the frame that holds the perforated plate, the 

liquid circuit, and the instrumentation dedicated to liquid film observation and measurement. 

The perforated plate is inserted in a rigid frame to ensure its flatness. The frame is held 

vertically. It is decoupled from the other parts of the device and mounted on an anti-vibration 

table to damp the parasitic vibrations that may affect the fluid film flowing on the plate. The 

front of the plate is supplied with liquid by a distributor (carefully designed to uniformly 

distribute the liquid in the spanwise direction of the plate). The liquid circulates thanks to a 

magnet gear pump (MDG-M15T3B, Iwaki). The volumetric flow rate delivered by the 

distributor is set by a needle control valve and monitored by an oval gear volumetric flow meter 
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(MX06, MacNaught). The liquid flowing from the bottom of the plate comes into a collector 

and then returns to the feeding tank. 

The liquid flow pattern is observed and recorded using a CMOS high-speed camera (v310, 

Phantom) mounted with a macro lens (AF Zoom-Micro Nikkor 70-180mm f/4.5-5.6D ED, 

Nikon). Images are captured with a resolution of 1200×800 px² and with an acquisition 

frequency of 1.8 kHz. For shadowgraph imaging of the suspended film, the plate is illuminated 

with a LED panel (see Figure 2). When looking at the free surface of the supported film, the 

plate is lit by a cold light illuminator (KL 2500 LCD, Schott). 

The instantaneous local thickness of the liquid film is measured along with the streamwise and 

spanwise directions using confocal chromatic imaging (sensor CL4, STIL) with a precision 

better than 0.5 µm at an acquisition frequency of 5 kHz. 

The volume flow rate of liquid transferred by the perforations is measured by diverting the 

liquid flow through a removable collector attached to the back of the plate (see Figure 2). The 

removable collector is glued at 10 to 15 mm distance from the last row of perforations with blue 

silicone gasket sealant. The volume flow rate is determined by weighing the diverted liquid.  
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Figure 2. (a) Schematic representation of the experimental set-up. (b) Photograph of the front 

of the plate (with a single perforation). (c) Photograph of the back (with a staggered array of 

perforations). 1. Test plate 2. LED panel 3. High-speed camera 4. Volumetric flow meter 5. 

Needle control valve 6. Spillway 7. Gear pump 8. Reservoir 9. CCI sensor 10. Distributor 11. 

Liquid Collector 12. Anti-vibration mount, 13. Removable collector, 14. Measuring beaker. 15. 

Frame that holds the plate. 

Experimental protocol 
 
First, the test plate is cleaned with a surfactant solution (3 vol%, Mucasol, Merz), thoroughly 

rinsed with distilled water and dried with compressed air. Then, the plate is inserted and fixed 

in the vertical frame. The outlet of the distributor is positioned on the front of the plate about 

two millimeters below its top edge. Since the outlet is located 60 mm upstream of the first row 

of perforations, we expect that the film flow would be fully developed on the front side at the 

location of the perforations. We are aware that a liquid film falling on a vertical flat plate is 

unconditionally unstable. However, we checked that the amplitude of the waves travelling on 

the liquid film upstream of the perforations remains small compared to the film thickness. The 

distance (in 𝑧 direction) between the distributor nozzles and the plate is carefully adjusted in 

order to obtain a uniform film thickness in the spanwise (𝑦) direction. The front of the plate is 

fed with the highest flow rate, i.e., 38 L h-1, such that the liquid is forced to wet the whole usable 

width of the front side, i.e., 𝑤	 =	 90 mm. Then, the liquid flowrate can be reduced down to 5 

L h-1 and the region upstream of the perforations remains totally covered by the liquid film. 

The supply flow rate (𝑞) is incrementally swept from 5 L h-1 to 38 L h-1 and then down to 5 

L h‑1 to explore the rim mode, the inertial curtain mode, and the hysteretic curtain mode 

successively. We examine if some liquid is transferred through the perforations for each flow 

rate value (in the forward and backward sweep). We determine the volume flow rate on the 

back of the plate beneath the perforations (𝑞() by measuring the weight of fluid recovered from 
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the removable collector over a while.  We remind that in the absence of supply on the back of 

the plate, 𝑞' (transferred by a single perforation or a single row of perforations) coincides with 

𝑞( just beneath the perforations. Optionally, the topography of the liquid film on the backside 

of the plate is investigated point-by-point by CCI. For each set of parameter values, experiments 

were performed at least in triplicate. 

Results 

Thereafter, we successively report the experimental data obtained with a single perforation, a 

spanwise row of perforations, and a staggered array of perforations. We only use propan-2-ol 

as a working liquid.  

Single perforation 

Fluid transfer in rim and curtain modes 

For the reference case, i.e., 𝑑 = 4 mm and 𝑡 = 1 mm, we measure the fluid flow rate transferred 

through a single perforation. The supply flow rate on the front of the plate is swept up and down 

from 5 L h-1 to 38 L h-1 to investigate the rim mode, the inertial curtain mode, and the hysteretic 

curtain mode. Figure 3 presents the variations of the transferred volume flow rate per unit 

diameter of perforation (𝑄') as a function of the supply flow rate per unit width (𝑄). The same 

data are presented in a different way in Figure S2 (see Supplementary Material): we plot the 

variations of the overflow number (𝑋) as a function of the supply Reynolds number (Re). We 

observe that the variations of 𝑄' (resp. 𝑋) in the rim mode are non-monotonous: 𝑄' (resp. 𝑋) 

first increases steeply with 𝑄 (resp. Re) and then decreases as 𝑄 (resp. Re) tends to 𝑄*+ (resp. 

Re*+). 𝑄' decreases less markedly than 𝑋 since the increase of supply flow rate partly offsets 

the drop in liquid transfer efficiency. 𝑋 reaches its peak value (𝑋 = 0.67) for Re = 25. At 𝑄*+ 

(resp. Re*+), the transition from the rim to the (inertial) curtain mode occurs. As 𝑄 (resp.	Re) is 

further increased beyond 𝑄*+ (resp. Re*+), 𝑄' (resp. 𝑋) grows. Ultimately, 𝑋 seems to reach the 

plateau 𝑋 = 0.5 corresponding to an equal partition of 𝑄 between the front and the back of the 
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perforation. As 𝑄 (resp.	Re) is swept down from 𝑄*+ (resp. Re*+), the film flow remains in the 

curtain mode, and 𝑄' (resp. 𝑋) regularly reduces with the decrease in 𝑄 (resp.	Re). We note that 

a minimal supply flow rate (resp. supply Reynolds number) is required for the liquid to be 

transferred through a perforation. In the rim mode, the threshold for liquid transfer is equal to 

𝑄 = 0.18 m3 m-1 h-1 (resp. Re = 19). In the hysteretic curtain mode, the liquid transfer stops 

when the curtain breaks, i.e. 𝑄 = 0.10 m3 m-1 h-1 (resp. Re = 11).  

When active, the rim mode is more efficient than the hysteretic curtain mode. However, the 

curtain modes (inertial and hysteretic) permit transfer over a broader range of supply flow rate. 

Furthermore, the variations of the transferred flow rate as a function of the supply flow rate are 

monotonous and more predictable when operating in curtain mode. 

 

   

Figure 3. Transferred volume flow rate per unit diameter of perforation (𝑄') as a function of 

the supply flow rate (on the front of plate) per unit width (𝑄). Single isolated perforation. The 

diameter is 𝑑	 =	 4 mm, the plate thickness	𝑡	 =  1 mm. The straight lines linking the dots are 

intended to guide the eye along the data points. Arrows indicate how 𝑄' evolves as 𝑄 is swept 

up and down. Rim mode (green), inertial curtain (red), hysteretic curtain (blue). 
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We focus on the curtain mode (either inertial or hysteretic) and measure the transferred volume 

flow rate as a function of the supply flow rate on the front of the plate, for six values of 

perforation diameter, i.e. 𝑑 = 4, 6, 8, 10, 14, 16 mm. The plate thickness is 𝑡 = 1 mm. 

Regardless of the value of 𝑑, the variations of 𝑄' with 𝑄 follow the same increasing trend (see 

Figure S3 in Supplementary Material and Figure 4). The liquid curtain ruptures and the liquid 

transfer ceases in the range 𝑄 = 0.04 to 0.1 m3 m-1 h-1 (Re	 =	5 to 11). At lower 𝑄 values (larger 

than 0.1 m3 m-1 h-1), the transferred flow rate 𝑄' is significantly lower (up to 30%) for 𝑑 = 4 

mm than for the other (larger) perforation diameters. The effect of 𝑑 on 𝑄' decreases as 𝑄 

increases. For the higher values of 𝑄, the overflow number is close to 𝑋 = 0.5 regardless of 𝑑.  

Effect of plate thickness on fluid transfer in curtain mode 

We measure the transferred volume flow rate in the curtain mode as a function of the supply 

flow rate for two plate thicknesses 𝑡 = 0.5, 1 mm, and three perforation diameters 𝑑 = 4, 6, 8 

mm. There is a clear and significant effect of plate thickness on 𝑄' for 𝑄 ≳ 0.3 m3 m-1 h-1 (Re ≳

30): all else being equal, the transfer is lower for smaller plate thickness 𝑡 = 0.5 mm (see Figure 

4). The overflow number at large 𝑄 values is close to 0.4 for 𝑡 = 0.5 mm. 

   

Figure 4. Transferred volume flow rate per unit diameter of perforation (𝑄') as a function of 

the supply flow rate (on the front of plate) per unit width (𝑄): effect of plate thickness. Single 
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perforation with 𝑑 = 4 mm (circle), 6 mm (square), 8 mm (triangle), plate thickness 𝑡 = 0.5 

mm (filled), 1 mm (empty). Curtain mode (hysteretic in blue, inertial in red). Linear fit for 𝑑 =

4 mm and 𝑡 = 0.5 mm (dotted line), for 𝑑 = 4 mm and 𝑡 = 1 mm (dashed line). 

Profile of the rivulet on the back of the plate 

We focus on the curtain mode and examine how the transferred liquid spreads over the back of 

the plate for the reference case (𝑡 = 1 mm, 𝑑 = 4 mm) and different values of the supply 

Reynolds number, i.e., Re = 24, 29, 33, 38, 42.  We observe that the liquid leaks from the 

bottom edge of the perforation and forms a single rivulet. We measure its spanwise profile at 

𝑥 = 2, 20, 40, 60, 80, 100 mm from the bottom edge of the perforation (see Figure 5 and Figure 

S4 in Supplementary Material). We also measure its streamwise profile along 𝑦	 = 0 (see Figure 

S5 in Supplementary Material). Since the minimum measurable thickness of the CCI sensor is 

about 100 µm, we could not measure the thickness profile across the entire width of the rivulet 

and miss the thinner parts close to the contact line. Figures 5 and S4 show that the rivulet widens 

and flattens as it flows in the x-direction. The spanwise profile is approximately symmetric 

about the axis 𝑦 = 0 and the thickness reaches its peak value close to 𝑦 = 0. We observe slight 

deviations from symmetry: they are attributed to flow disturbances within the perforation and 

to wetting heterogeneities on the back of the plate. We exclude meandering instability since the 

volume flow rate out of the perforation is at least one order of magnitude lower than the 

meandering threshold21. Figure S5 shows that the rivulet is thicker as the supply Reynolds 

number increases. Streamwise profiles are slightly rough because the rivulet is not perfectly 

straight, the flow out of the perforation is not rigorously constant, and waves may travel on the 

rivulet surface. 
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Figure 5. Spanwise rivulet profile at 𝑥 = 2, 20, 60, 100 mm from the bottom edge of the 

perforation. Plate thickness 𝑡 = 1 mm, perforation diameter 𝑑 = 4 mm. Curtain mode.  (a) 

Re	 = 29 ; (b) Re	 = 42. The lines linking the dots are intended to guide the eye along the data 

points. 

Spanwise row of perforations 
 
Effect of spacing on fluid transfer 

We investigate the effect of one row of perforations on the liquid transfer from the front to the 

back of the plate. The perforation diameter is 𝑑 = 4 mm and the plate thickness 𝑡 = 1 mm. We 

study five perforation spacings 𝑠 = 6, 8, 10, 12 and 14 mm. The supply flow rate on the front 

of the plate is swept up and down from 5 L h-1 to 38 L h-1 to investigate the rim mode, the 

inertial curtain mode, and the hysteretic curtain mode. The curtain Reynolds number, i.e., the 

Reynolds number at which curtain forms, ranges between 33 and 36 (see Figure S6 of the 
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Supplementary Material). These slight variations seem not correlated with the perforation 

spacing. Otherwise, Re*+ would increase with 𝑠: the broader the spacing, the more the flow can 

be deflected by a perforation, delaying the curtain transition. We instead believe that the 

variations in Re*+ are due to the variability of the plate curvature. A slight curvature of the sheet 

affects the liquid distribution upstream of the perforations and then the curtain transition. The 

residual curvature of the plate depends on its clamping within the frame. 

  

Figure 6.  Average volume flow rate transferred per unit diameter of perforation (𝑄') as a 

function of the supply flow rate (on the front of plate) per unit width (𝑄): effect of perforation 

spacing (𝑠). Perforation diameter 𝑑 = 4 mm, perforation spacing 𝑠 = 6 mm (Í), 8 mm (¯), 

10 mm (r), 12 mm (¡), 14 mm (¨), single isolated perforation or 𝑠 = ∞ (È). Plate thickness 

𝑡 = 1 mm. Rim mode (green), inertial curtain mode (red), hysteretic curtain mode (blue). Linear 

fit on the curtain mode data for 𝑠 = 6 mm (dashdotted line), 𝑠 = 8 mm (dotted line), and 𝑠 =

14 mm (dashed line). 

In the rim mode, the onset of fluid transfer through the perforations occurs at 𝑄 = 0.17 

m3 m-1 h-1 (Re	 = 	19) for all 𝑠 except for 𝑠	 = 	6 mm. In the latter case, the threshold is slightly 

greater: 𝑄 = 0.21 m3 m-1 h-1 (Re = 23). As already observed for a single isolated perforation, 

at a given supply flow rate, the rim mode, when active, is more efficient than the curtain mode 
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to transfer fluid from the front to the back of the plate. Whatever the spacing, the variations of 

𝑄' with 𝑄 in the rim mode follow the same increasing trend. However, at fixed 𝑄, no rule 

emerges from the variations of 𝑄' with 𝑠. The highest transfer per perforation is obtained for 

𝑠 = 8 mm and 𝑠 = 12 mm.  

In the curtain mode (inertial and hysteretic), the dependence of 𝑄' on 𝑠 is weaker. On average 

𝑄' tends to be higher at greater perforation spacing. 

Merging of the rivulets on the back of the plate 

We focus on the curtain mode and examine how the rivulets, flowing from the perforations, 

merge downstream and tend to form a liquid film of even thickness. The plate thickness is fixed 

to 𝑡 = 1 mm, the perforation diameter to 𝑑 = 4 mm, five spacing are examined 𝑠 = 6, 8, 10, 

12, 14 mm and two Reynolds numbers Re = 26 (hysteretic curtain mode) and Re = 38 (inertial 

curtain mode).  

 

Figure 7. Streamwise film profile along 𝑦 = 0 and 𝑦 = 𝑠/2 for spacing  𝑠 = 12, 14 mm. Single 

spanwise row of perforations, perforation diameter 𝑑	 = 	4 mm, plate thickness 𝑡	 = 	1 mm, 

and Reynolds number Re = 38 (curtain mode). 

We measure the streamwise film profile along 𝑦 = 0 and 𝑦 = 𝑠/2 (see Figure 7 and Figures S7 

and S8 in Supplementary material). 𝑦 = 0 (resp. 𝑦 = 𝑠/2) coincides with a crest (resp. a trough) 
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of the free surface (see Figure 8). Since the minimum measurable thickness of the CCI sensor 

is about 100 µm, we cannot capture the beginning of the merging between two adjacent rivulets. 

Thus, at given spacing, merging starts at a distance slightly lower than the abscissa of the first 

measuring point along the line 𝑦 = 𝑠/2 (Figures 7, S7, and S8). We observe that the film 

thickness along 𝑦 = 0 (resp. 𝑦 = 𝑠/2) decreases (resp. increases) with 𝑥 and reaches a plateau. 

The smaller the spacing, the faster the plateau is reached and the higher is the plateau value. 

For the smaller spacing values, we note that the film thickness tends to decline after the plateau: 

this is due to the further spreading of the liquid film. We remind that the width of a perforation 

row (about 70 mm) is narrower than the channel width available for the liquid (𝑤 = 90 mm).  

 

Figure 8. Film spanwise profiles for different streamwise locations (𝑥), supply Reynolds 

numbers (Re) and perforation spacings (𝑠). Single spanwise row of perforations, diameter 𝑑 = 

4 mm, plate thickness 𝑡 = 1 mm, curtain mode. The lines linking the dots are intended to guide 

the eye along the data points. 
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Figure 8 shows spanwise film profiles at distances 𝑥 = 60 mm and 100 mm. Rivulets have 

already merged. We observe that the profiles are still wavy with a wavelength close to the 

perforation spacing. The amplitude of these ripples decreases along with the 𝑥-axis (see the 

blue and the red curves in Figure 8): the film surface progressively levels as it flows 

downstream. At a given value of 𝑥 and Re, the spanwise profile flattens faster with 𝑥 and the 

average film thickness is larger when the perforation spacing is smaller (see the blue and the 

black curves in Figure 8). These findings are coherent with the observations of Figure 7. Last, 

all other things being equal, the average film thickness increases with the supply flow rate per 

unit width (see the blue and the green curves in Figure 8).  

Staggered array of perforations 
 
We perform experiments on a plate with a staggered array of perforations (up to 10 rows). The 

plate thickness is 𝑡 = 1 mm, the perforation diameter 𝑑	 = 4 mm, and the spacing 𝑠 =	14 mm. 

Perforations are spread laterally within 70 mm: odd (resp. even) rows comprise five perforations 

(resp. four). The opening rate of the perforation arrangement is equal to 6.4% (about half of the 

standard opening rate in industrial packing, that is 12.6%). 

Observations 
 
We sweep the supply flow rate on the front of the plate from Re = 10 to Re*+ and beyond. 

We distinguish three flow patterns depending on the supply Reynolds number.  

At low Re (Re < 23), the liquid film passes around the perforations of the odd numbered rows 

and flows in the curtain mode over the perforations of the even numbered rows. On the front of 

the plate, the perforations of the odd (resp. even) rows are topped by a U-shaped (resp. W-

shaped) capillary ridge. There is no fluid transfer through the perforations of the odd rows: the 

contact line is pinned either at the top edge of the perforation or in its inner surface. 

On the contrary, the fluid transfer is active in the perforations of the even rows. As the 

perforations of the odd rows deflect the liquid film, the spanwise distribution of flow rate per 
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unit width becomes strongly heterogeneous. The flow rate is depleted along 𝑦 = 0 (modulo 𝑠) 

and enhanced along 𝑦 = 𝑠/2 (modulo 𝑠), causing the film to flow in the curtain mode over the 

next (even numbered) row of perforations.  

The alternation of row of perforations operating either in rim mode or in curtain mode is a 

consequence of the array symmetry and orientation with respect to the vertical. In industrial 

corrugated sheet packings, we expect perforations operating in curtain mode to coexist with 

perforation in rim mode, but their spatial distribution within the packing will not be as regular. 

At Re = 23, a liquid rim forms within the perforations of the odd rows. Then, at a moderate 

flow rate (23 < Re < Re*+), the perforations of the odd rows operate in the rim mode, and 

those of the even rows are in the curtain mode (see Figure 9). On the back of the plate, all the 

perforations are topped by a U-shaped capillary ridge. A dry patch remains just below the 

perforations of the odd rows. Its area decreases as Re increases, and the patch finally disappears 

at even higher Re. 

For the perforations operating in the rim mode, the liquid climbs over the top edge of the 

perforation (back of the plate), makes an arch-shaped capillary ridge and drains in the form of 

two parallel rivulets. Furthermore, the Kapitza waves traveling on the front of the plate make 

the rims oscillate. For the perforations in the curtain mode, the liquid leaks from the bottom 

edge of the perforation as a single rivulet. These observations are consistent with those for a 

single isolated perforation (see Problem description).  

At Re = Re*+, curtain transition is observed simultaneously for all odd rows. At Re*+ and 

above, all the perforations (odd and even numbered rows) operate in the curtain mode (see 

Figures S9 and S10 in Supplementary Material). The liquid leaks from the bottom edge of the 

perforations. The corresponding rivulets widen as they flow in the 𝑥-direction. The liquid free 

surface is disturbed by waves traveling downstream. This phenomenon is clearly seen beneath 

the third row of perforations (see Figure S10). 
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As the supply flow rate is swept down below Re = Re*+, curtain mode and associated liquid 

transfer maintain in both odd and even rows. Curtain rupture is observed at low flow rates 

(about Re = 10). 

  

Figure 9. Liquid film pattern on a staggered array of perforations at Re = 23 when rim mode 

(in odd rows) and curtain mode (in even rows) coexist. Plate thickness 𝑡 = 1 mm, perforation 

diameter 𝑑 = 4 mm and spacing 𝑠 = 14 mm. (Top) front of the plate, (bottom) back of the 

plate. 

Fluid transfer 

We measure the total volume flow rate on the back of the plate beneath the 1st, 2nd, 3rd and 10th 

row of perforations. We use plates with either 1, 2, 3, or 10 rows of perforations and collect the 

fluid on the back of the sheet using the dedicated collector (see Experimental set-up). We focus 

on the curtain mode, either hysteretic or inertial. We define the volume flow rate per unit width 

(𝑄((𝑘)) flowing on the back of the plate downstream of the 𝑘', row of perforations as the ratio 
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of the volume flow rate (m3 h-1) beneath the 𝑘', row to the array width (𝑤) = 70 mm). Figure 

10 presents the variations of 𝑄( as a function of the supply flow rate per unit width 𝑄. We find 

that after ten rows of perforations, 𝑄( is already close to 𝑄/2, the expected asymptotic limit 

(when the flows on the front and on the back of the plate equalize, and the liquid transfer 

vanishes). Beneath the third row of perforations, 𝑄((3) already reaches 65% to 90% of the final 

𝑄( measured beneath the 10th row.     

   

Figure 10. Volume flow rate per unit width (𝑄() on the back of the plate beneath the 1st, 2nd, 

3rd and 10th row as a function of the supply flow rate per unit width on the front (𝑄). Plate 

thickness 𝑡 = 1	mm, perforation diameter 𝑑	 = 4 mm, and spacing 𝑠	 = 	14 mm. Curtain mode. 

The solid black line represents the asymptotic value of 𝑄(, i.e., after a large number of 

perforation rows. The beam of colored straight lines corresponds to the model predictions of 

𝑄( flowing on the back of the plate after 𝑘 = 1 to 𝑘 = 10 rows of perforations. 

Discussion 

Hysteresis loop and liquid transfer thresholds 

The variations of the transferred flow rate as a function of the supply flow rate (on the front of 

the plate) exhibit a hysteresis loop with two liquid transfer thresholds. The first one appears 

when the supply flow rate is increased from low values, the second when the flow rate is 
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decreased from values above the curtain transition (see Figures 3 and 6). In the former case, 

there is initially no fluid transfer from the front to the back of the plate: the contact line is pinned 

at the top edge of the perforation (front of the plate) or within its inner surface. As the contact 

line is released, the liquid transfer starts in the rim mode. This threshold is equal to Re = 19 for 

𝑑 = 4 mm, 𝑠 ≥ 8 mm and 𝑡 = 1 mm. In the latter case (flow rate descent), the liquid is 

transferred in hysteretic curtain mode, and the liquid transfer stops when the curtain breaks. 

This threshold is equal to about Re ≅ 10.  

A similar hysteresis loop is reported by Gorodilov et al.1: they performed experiments on a 

structured packing perforated with slits and found that the liquid (water) transfer through the 

slits starts at Re ≅ 1300. They attributed this threshold to the liquid meniscus blockage at the 

slit entrance. Pavlenko et al.1 found that for liquid nitrogen flowing on an aluminum sheet of 

500.Y type packing, the liquid transfer through the perforations starts when Re ≥ 100 − 160. 

To reconcile our results with the literature data, we calculate the Weber number We=

𝜌𝑄-/(𝛿"#(𝑄)𝜎) which compares the inertia force (which triggers depinning) to the capillary 

force. We obtain We ≅ 5 from Gorodilov et al. data, We = 0.3 − 0.7 from Pavlenko et al. and 

We = 0.27 in our experiments. The agreement with Pavlenko et al. results is satisfactory. We 

could not explain the high Weber value estimated from Gorodilov et al.. 

Transferred volume flow rate per perforation (int the curtain mode) 
 
The transferred volume flow rate through a single isolated perforation (in m3 m-1 h-1) reads 𝑞'= 

𝑄'𝑑. Beneath a single row of perforations, the volume flow rate per unit width flowing on the 

back of the plate is given by 𝑄( = 𝑄'𝑑 𝑠⁄ . In the curtain mode, for 0.15 ≤ 𝑄 ≤ 0.5 m3 m-1 h-1, 

𝑄' is adequately described by a linear model 𝑄' = 𝑝(𝑄 − 𝑄',) (see Figure S3, Figure 4, and 

Figure 6). The slope (𝑝) and the threshold flow rate (𝑄',) are obtained by least squares 

regression. 𝑄', lies in the 𝑄 range where curtain ruptures. 𝑝 and 𝑄', depend on the plate 

thickness, on the perforation diameter, and on the perforation spacing. However, Figure S3 and 
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Figure 6 show that 𝑝 and 𝑄', depend slightly on 𝑑 and 𝑠 in the range 4 mm	≤ 𝑑 ≤ 8 mm and 8 

mm	≤ 𝑠 ≤ 14 mm, respectively. The dependence of 𝑝 and 𝑄', on the plate thickness is more 

significant (see Figure 4). The effect of plate thickness can be explained by one of the 

mechanisms responsible for the so-called teapot effect22. At the top edge of a perforation on the 

front of the sheet (corresponding to the lip of the plate in Kistler & Scriven’s analysis38), the 

liquid flow is deflected from the vertical direction toward the horizontal direction (parallel to 

the inner surface of the perforation). Since the liquid wets the inner surface of the perforation, 

this deflection increases with the plate thickness. Liquid transfer from the front to the back of 

the plate is expected to grow as well. The teapot effect22 is driven by inertia, which may explain 

why the effect of plate thickness is more significant at higher values of the Reynolds number 

(see Figure 4). The teapot effect22 also explains why the overflow number increases with 𝑄 (or 

with the supply Reynolds number Re) at fixed 𝑡. 

For the standard perforation diameter 𝑑 = 4 mm (used in industrial packing) and the plate 

thickness 𝑡 = 1 mm, we retain that 𝑄'[m%	m.$	h.$] = 0.66(𝑄 − 0.10) for a single isolated 

perforation, 𝑄' = 0.48(𝑄 − 0.06) for s = 6 mm, and 𝑄' = 0.60(𝑄 − 0.10) for 8 mm ≤ 𝑠 ≤ 14 

mm (linear fit on the curtain mode data for 𝑠 = 8, 10, 12 and 14 mm, 𝑅- = 0.98, not displayed 

in Figure 10).  

Rivulet spreading 
 
We focus on a single isolated perforation with 𝑑 = 4 mm and 𝑡 = 1 mm. In the curtain mode, 

some liquid is systematically transferred through the perforation from the front to the back of 

the plate. The fluid leaks from the bottom edge of the perforation and forms a single rivulet on 

the back of the plate. The rivulet flattens and widens as it flows in the x-direction. Thereafter, 

we thoroughly analyze the rivulet spatial evolution and compare it to the model of Shetty & 

Cerro16. The derivation of the model and the checking of the assumptions in our experimental 

conditions are detailed in Appendix A8 of the Supplementary Material.  
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Following Shetty & Cerro16, we fit the rivulet spanwise profiles with a Gaussian law: 

𝛿(𝑥, 𝑦) = 𝛿*(𝑥) exp`−a
b𝑦 − 𝑦*(𝑥)c

-

2	𝑚-(𝑥) ef					(1) 

𝛿*(𝑥) is the maximum film thickness, 𝑦*(𝑥)	the spanwise location of the peak, and 𝑚(𝑥) the 

standard deviation of the Gaussian, which measures the lateral spreading of the rivulet. We 

determine these parameters for each spanwise profile (at given supply Reynolds number Re and 

given 𝑥) using the least-squares method. The parameter values of the best fits are reported in 

Table 2 (in Appendix A8 of the Supplementary Material). The relative error is of the order of 1 

to 2% for most of the fits, and it never exceeds 5%. We use 𝑦*(𝑥) as a fitting parameter to 

improve the estimation of 𝛿*(𝑥). However, since 𝑦*(𝑥) ≪ 𝑑, we will neglect the deviation of 

the peak from 𝑦 = 0 in the next analytical calculations and assume that the rivulet is symmetric 

about 𝑦 = 0. 

Figure 11 shows that the spanwise profiles collapse into a single curve when 𝛿(𝑥, 𝑦) and 𝑦 are 

appropriately rescaled. We deduce that the rivulet spanwise profiles are self-similar and well 

described by a Gaussian law. These results concord with the findings of Shetty and Cerro16. We 

checked that the Gaussian law is a better approximation of the present rivulet profiles than the 

quartic similarity solution obtained by Duffy and Moffatt27. 
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Figure 11. Collapse of the rivulet spanwise profiles with appropriate rescaling. Supply 

Reynolds number Re = 42 (inertial curtain mode). Data are well described by the Gaussian law 

(solid line).   

If we further assume a Nusselt velocity profile within the rivulet thickness, the volume flow 

rate of the rivulet is given by 

𝑞' =
𝑔
3𝜈
g2𝜋
3 𝛿*%(𝑥)	𝑚(𝑥)					(2) 

If this model is appropriate, the right-hand side of Eq. 2 calculated from the fitted Gaussian 

profile at the current abscissa 𝑥 should be independent on 𝑥. We find that this quantity remains 

constant within a few percent along 𝑥 for 𝑥 ≥ 𝑥/ (see Figure S11 in Supplementary Material). 

𝑥/ = 20 mm for Re = 24, 29, 33 and 𝑥/ = 2 mm for Re = 38, 42. 

We expect that the rivulet thickness satisfies the thin-film equation27 

𝛿
𝜕0𝛿
𝜕𝑦0 + 3

𝜕𝛿
𝜕𝑦	

𝜕%𝛿
𝜕𝑦% + 3

𝜌𝑔
𝜎 	
𝜕𝛿
𝜕𝑥 = 0					(3) 

given for a steady rivulet flowing down a vertical plate. 

If we restrict our analysis to 𝑦 = 0, where the rivulet peaks, and assume a Gaussian spanwise 

profile centered at 𝑦 = 0 (Eq. 1 with 𝑦*(𝑥) = 0), Eq. 3 becomes: 

𝑑𝛿*
𝑑𝑥 +

𝜎
𝜌𝑔

𝛿*-

𝑚0 = 0					(4) 

We introduce the rescaled quantities: 

𝑥# =
𝑥 − 𝑥/
2𝑚(𝑥/)

					 ; 					𝛿*#(𝑥) =
𝛿*(𝑥)
𝛿*(𝑥/)

					 ; 					𝑚#(𝑥) =
𝑚(𝑥)
𝑚(𝑥/)

 

Using Eq. 1,2 and 4, we recover after a few calculations the scaling laws first established by 

Shetty & Cerro16: 

𝛿*#(𝑥#) = k1 +
208
3
𝛼%

Ca 𝑥
#o

.$ $%⁄

					(5) 
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𝑚#(𝑥) = k1 +
208
3
𝛼%

Ca 𝑥
#o

% $%⁄

					(6) 

𝛼 and Ca are the aspect ratio and capillary number of the rivulet at 𝑥 = 𝑥/: 

𝛼 =
𝛿*(𝑥/)
2𝑚(𝑥/)

					 ; 					Ca =
𝜇
𝜎 k

𝑔𝛿*-(𝑥/)
3𝜈 o 

The derivation of Eq. 5 and 6 involves the quantity 𝑐$ = 2b𝛿*%(𝑥)𝑚(𝑥)c
- (see Appendix A8 in 

the Supplementary Material). Since this quantity is not strictly conserved experimentally (even 

for 𝑥 > 𝑥/) and slightly fluctuates along 𝑥, it is relevant to distinguish between the “best” 

estimate of 2b𝛿*%(𝑥)𝑚(𝑥)c
- over the region 𝑥 > 𝑥/ (taken as its mean value) and denoted 𝑐$̅, 

and the value of 2b𝛿*%(𝑥)𝑚(𝑥)c
- at 𝑥 = 𝑥/, i.e., 𝑐/ = 2b𝛿*%(𝑥/)𝑚(𝑥/)c

-. The former appears 

when removing 𝑚 from Eq. 4 using Eq. 2. The latter appears when rescaling. Then, the 

argument of the power-laws (Eq. 5-6) should be transformed as follows: 

k1 +
208
3
𝛼%

Ca 𝑥
#o → k1 +

208
3
𝛼%

Ca 𝛽𝑥
#o					(7) 

with 𝛽 = t*!
*"̅
u
-
. We recast the data of Table 2 (Supplementary Material) for 𝑥 > 𝑥/  into 

t1 + -/3
%

4#

Ca
𝛽𝑥#u, 𝛿*# , and 𝑚#. We plot them on log-log scale in Figure 12. We observe that 

the thickness (resp. width) data collapse into a single line with a slope equal to -0.075 (resp. 

0.25), very close to the theoretical slope −1/13 ≅ −0.077 (resp. 3/13 ≅ 	0.23) originally 

established by Shetty & Cerro16 and Duffy & Moffatt27. We retain that, far downstream of the 

perforation, the rivulet peak-thickness (resp. width) decreases as 𝑥././89 (resp. 𝑥/.-9), very 

close to 𝑥.$ $%⁄  (resp. 𝑥% $%⁄ ). 

We remind that the theoretical exponents 1/13 and 3/13 characterize the rivulet spreading 

when driven by the capillary pressure (as opposed to hydrostatic pressure). This is indeed the 

case for the rivulet falling down a vertical plate. 
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These small exponents (in absolute value) explain why the rivulet pattern may persist over the 

whole height of a corrugated sheet packing7. 

 

Figure 12. Rescaled peak film thickness and width as a function of the rescaled streamwise 

coordinate. Data (except the point (1;1)) are fitted with a power-law using the least-squares 

method. 

Rivulet merging and film leveling 
 
Figures 7, S7, and S8 show the merging dynamics of adjacent rivulets for 𝑑	 = 	4 mm, 𝑡	 = 	1 

mm, Re = 38 and 𝑠 = 6, 8, 10, 12, 14 mm. We roughly consider that the onset of merging 

happens close to the first measuring point (point with the smallest 𝑥-value at fixed 𝑠) on the 

centerline between two perforations (𝑦 = 𝑠/2). Then, we deduce that as the perforation spacing 

increases, the merging of the rivulets occurs further downstream. When the spacing increases 

from 10 mm to 12 mm, i.e., by 20%, the distance between the onset of merging and the row of 

perforations doubles.  

The results established for a single rivulet help explain the strong effect of 𝑠 on the rivulet 

merging. If the rivulet half-width at a distance 𝑥 from the perforation is approximately equal to 
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2𝑚(𝑥), two adjacent rivulets start to merge when 4𝑚(𝑥) ≈ 𝑠. We deduce that the rescaled 

distance 𝑥:;+#  between the onset of merging and the row of perforations satisfies: 

1 +
208
3
𝛼%

Ca 𝑥:;+
# ≅ w

𝑠
4𝑚(𝑥/)

x
$% %⁄

					(8) 

The prominent exponent (13/3) explains the strong effect of s on the onset of merging. As seen 

earlier, it is relevant to introduce the correction factor 𝛽: 

1 +
208
3
𝛼%

Ca 𝛽𝑥:;+
# ≅ w

𝑠
4𝑚(𝑥/)

x
$% %⁄

					(9) 

The left-hand side of Eq. 9 is estimated for Re = 	38 and 𝑠 = 	6, 8, 10, 12, 14 mm from the data 

of Figures 7, S7, and S8. Figure S12 (Supplementary material) presents the variations of 

1 + -/3
%

4#

<=
𝛽𝑥:;+#  as a function of 𝑠 b4𝑚(𝑥/)c⁄ . The data points are fitted by a power law using 

the least-squares method. The exponent (4.58) is close to the theoretical value (13/3 = 4.33). 

The prefactor (4.73) is significantly greater than the expected value (1). We presently 

overestimate 𝑥:;+#  because the first measuring point (corresponding to a film thickness close to 

100 µm) used to estimate the onset of merging is systematically located downstream of the 

actual position where the rivulets start to merge (corresponding to a vanishing film thickness).  

Let us now examine how the surface of the film formed from the recently merged rivulets 

relaxes downstream to a flat free surface. As seen earlier, the local film thickness 𝛿(𝑥, 𝑦) 

satisfies the thin-film equation, i.e., Eq. 3. Figure 8 suggests describing the film surface as a 

sine wave. We thus seek a solution of the form: 

𝛿(𝑥, 𝑦) = 𝛿> w1 + 𝜀(𝑥) cos w
2𝜋𝑦
𝑠 xx					(10) 

where 𝛿> is the flat-film thickness (reached far downstream of the perforation row) and 𝜀 the 

dimensionless perturbation amplitude of the film thickness. We consider 𝜀(𝑥) ≪ 1. 

We replace Eq. (10) into Eq. (3). Calculation under first-order approximation leads to: 
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𝜀(𝑥) =
𝛿(𝑥:;+ , 0) − 𝛿>

𝛿>
expk− t

𝑥 − 𝑥:;+
ℒ uo					(11) 

𝑥:;+ corresponds to the streamwise location where the rivulets start to merge. The film surface 

relaxes exponentially with streamwise coordinate. The characteristic length of the relaxation to 

a flat surface is given by 

ℒ =
3𝑠0

(2𝜋)0𝑙*-𝛿>
					(12) 

 where 𝑙* = �𝜎 𝜌𝑔⁄  is the capillary length. Let us recast the data of Figures 7, S7, and S8 into 

(𝑥 − 𝑥:;+) ℒ⁄  and b𝛿(𝑥, 0) − 𝛿(𝑥, 𝑠 2⁄ )c b𝛿(𝑥:;+ , 0) − 𝛿(𝑥:;+ , 𝑠 2⁄ )c� , and plot them in 

Figure 13. The flat-film thickness (𝛿>) is presently estimated as the mean value of 

b𝛿(𝑥, 0) + 𝛿(𝑥, 𝑠 2⁄ )c 2⁄  over 𝑥. We calculate that ℒ ranges from 3.3 mm for 𝑠 = 6 mm to 121 

mm for	𝑠 = 14 mm. We observe that all the data collapse into a single exponential curve. The 

characteristic length of the exponential decay is equal to ℒ 1.36⁄ , in good agreement with the 

theoretical prediction. 

 

Figure 13. Rescaled perturbation amplitude of the liquid film flowing on the back of the plate 

as a function of the rescaled streamwise coordinate. Single row of perforations, perforation 

diameter 𝑑	 = 	4 mm, plate thickness 𝑡	 = 	1 mm, and Reynolds number Re = 38 (curtain 
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mode). The data points with red dots are fitted with an exponential law using the least-squares 

method (red solid line extended with dashes). 

We note that the flat-film thickness (𝛿>) depends on the volume flow rate per unit width 

flowing on the back of the plate (𝑄() via 𝛿"#(𝑄() = 	 (3𝜈𝑄( 𝑔⁄ )$ %⁄ . Since 𝑄( = 𝑄'	𝑑 𝑠⁄ , we 

deduce from Eq. 12 that at given supply flow rate on the front of the plate, the characteristic 

length of the film relaxation (on the back of the plate) scales as 𝑠$%/%. 

Flow balancing between the front and the back of the plate 
 
Let us analyze the variations of the volume flow rate per unit width on the back of the plate, 

along with a staggered array of perforations. We propose a simple recurrence model that gives 

the volume flow rate per unit width on the back of the plate just downstream the kth row of 

perforations (𝑄((𝑘)) as a function of the flow rates per unit width just downstream of the (k-

1)th row of perforations, i.e., 𝑄(𝑘 − 1) on the front of the plate and 𝑄((𝑘 − 1) on the back. The 

variations of 𝑄(𝑘 − 1) and 𝑄((𝑘 − 1) over the array width are not taken into account. 𝑄(𝑘 −

1) and 𝑄((𝑘 − 1) represent volume flow rates per unit width averaged over the width. We 

suppose that all the perforations of the plate operate in the curtain mode. 

For 𝑑 = 4 mm, 𝑡 = 1 mm, and 𝑠 = 14 mm, we found (first paragraph of the discussion) that 

the transferred volume flow rate per unit diameter of perforation through the first row of 

perforations is well described by 

𝑄'(𝑘 = 1)[m%	m.$	h.$] = 0.6(𝑄(0) − 0.1) 

where 𝑄(0) = 𝑄 is the supply flow rate per unit width on the front of the plate. 

To establish an analogous relationship for the next rows (𝑘 > 1), we first estimate the curtain 

flow over a perforation as 𝑑@b𝑄(𝑘 − 1) + 𝑄((𝑘 − 1)c and consider that this flow divides 

equally between the front and the back of the plate. Then, the transferred volume flow rate per 

unit diameter of perforation through the kth row of perforations expresses as 
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𝑄'(𝑘) = b𝑄(𝑘 − 1) − 𝑄((𝑘 − 1)c 2⁄  

𝑄'(𝑘) is counted positively from the front to the back. The volume flow rate per unit width on 

the back of the plate beneath the kth row of perforations is given by: 

𝑄((𝑘) = 𝑄((𝑘 − 1) +
𝑑
𝑠 𝑄'

(𝑘) 

And the volume flow rate per unit width on the front of the plate beneath the kth row of 

perforations: 

𝑄(𝑘) = 𝑄(𝑘 − 1) −
𝑑
𝑠 𝑄'

(𝑘) 

In this formulation, we implicitly suppose that the number of perforations per row is large (𝑁 −

1 ≅ 𝑁) and we neglect what happens on the lateral borders of the array. 

The model is computed for 𝑘 = 1 to 𝑘 = 10, and the results are reported in Figure 10 and 

Figure S13 (Supplementary Material). 𝑄((𝑘) flowing on the back of the plate beneath the kth 

row of perforations varies linearly with the supply flow rate 𝑄(0) (see the colored straight lines 

of Figure 10). We observe that the model adequately describes the variations of the volume 

flow rate per unit width on the back of the plate when the supply volume flow rate 𝑄(0) is low. 

For high values of 𝑄(0), the model underestimates the liquid transfer. We advance that the flow 

inertia pushes the liquid curtain to the back of the plate (teapot effect22), which affects the 

partition of the curtain flow between the front and the back: the liquid transfer from the front to 

the back is then enhanced. 

Figure S13 shows that the volume flow rates on the front and the back of the plate tend to 

equalize as the row number (𝑘) increases. The transferred volume flow rate decreases with 𝑘 

since the driving force (𝑄(𝑘 − 1) − 𝑄((𝑘 − 1)) decreases. 𝑄( reaches 90% of its asymptotic 

value (𝑄(0)/2) beneath the 7th row of perforations. 

Conclusion 
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To better understand the effect of the perforations on the liquid redistribution in corrugated 

sheet packings, we considered a simplified but relevant configuration. We studied the liquid 

transfer from the front to the back of a vertical flat perforated sheet: we solely supplied the front 

of the plate with liquid (above the first perforation row), and we examined how the perforations 

irrigate the back of the plate. We essentially performed our experiments with all the perforations 

operating in the curtain mode. In that case, a liquid curtain closes each perforation. On the 

bottom edge of the perforations, the curtain flow divides between the plate's front and back. 

The transferred liquid leaks in the form of rivulets (one per perforation). We measured the 

transferred volume flow rate through the perforations and characterized the spreading and 

merging of the rivulets on the back of the plate. We successively investigated plates with a 

single perforation, a spanwise row of perforations, and a staggered array of perforations.  

Single perforation and spanwise row of perforations: we found that the transferred volume 

flow rate per unit diameter of perforation (𝑄') varies linearly with the supply flow rate per unit 

width (𝑄). For the standard perforation diameter 𝑑 = 4 mm, the plate thickness 𝑡 = 1 mm, the 

perforation spacing (center-to-center) lying in the range 8 mm ≤ 𝑠 ≤ 14 mm, and the supply 

flow rate per unit width in the interval 0.15 m3 m-1 h-1 < 𝑄 < 0.4 m3 m-1 h-1, 𝑄'	is well described 

by 𝑄'[m%	m.$	h.$] = 0.60(𝑄 − 0.10). 

The rivulet leaking from a perforation widens (resp. flattens) as the 0.25 (resp. -0.075) power 

of the traveled distance from the perforation (after appropriate rescaling). Adjacent rivulets 

merge into a continuous wavy film at a traveled distance which scales as the 4.58 power of the 

perforation spacing. The scaling exponents are very close to the theoretical exponents 

established by Shetty & Cerro16 and Duffy & Moffatt27 for a rivulet spreading in the capillary-

dominant regime. 

The wavy surface of the newly formed film relaxes downstream to a flat surface. The amplitude 

of crests and troughs at the film surface decay exponentially with the streamwise coordinate. 
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The characteristic length of this relaxation theoretically scales as the 13/3 power of the 

perforation spacing. 

Staggered array of perforations: From one row of perforations to another, the volume flow 

rate per unit width (and averaged over the width) flowing on the back (resp. front) of the plate 

increases (decreases) and relaxes toward its asymptotic value. This value is equal to half the 

supply flow rate. Beneath the third row of perforations, the flow rate on the back of the plate 

already reaches 65% to 90% of its asymptotic value. The relaxation is more rapid as the supply 

flow rate increases: we expect that the teapot effect22 (driven by the flow inertia) enhances the 

liquid transfer from the front to the back of the plate. 

Finally, we propose a simple recurrence model that gives the volume flow rate per unit width 

on the back of the plate beneath each row of perforations. This model adequately represents the 

data obtained at low supply flow rate. It predicts that the flow rate on the back of the plate 

reaches 90% of its asymptotic value beneath the 7th row of perforations. 

The present work provides helpful insight into the elementary mechanisms involved in the 

liquid redistribution through perforations. In the future, we plan to extend this study to vertical 

perforated sheets with horizontal corrugations as a next step to understand the interplay between 

perforations and corrugations. 
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Supplementary Material 
 

A1. Rim mode and curtain mode: typical flow patterns 

 

Figure S1. Flow patterns on the front and back of the plate in the rim mode and curtain mode. 

The top of Figure S1 presents the typical flow pattern encountered in the rim mode: a liquid rim 

forms within the perforation and covers its inner surface. On the front of the plate, the 

perforation is topped by a capillary ridge. On the back, the liquid climbs over the top edge of 

the perforation and makes a capillary ridge that extends in the form of two parallel rivulets.  

In the curtain regime (bottom of Figure S1), the liquid fills the perforation. On the front of the 

plate, the perforation is topped by a train of capillary ridges. On the back of the plate, the liquid 

leaks from the bottom edge of the perforation in the form of a single rivulet.   
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A2. Liquid properties 

Liquid 𝜌 
(kg m-3) 

𝜇 
(mPa s) 

𝜎 
(mN m-1) 

𝜃 
(°) 

Ka Re range 

Propan-2-ol 786a 2.05b 21c 11⁰-17⁰a 348 10 - 45 

ameasured, bfrom†, cfrom‡. 

Table 1. Physical properties of propan-2-ol at 25°C and range of Reynolds number investigated. 

The bounds of the contact angle (𝜃) interval correspond to the receding contact angle and to the 

advancing contact angle, respectively. The equilibrium contact angle (𝜃!) lies in-between. 

 

Table 1 reports the physical properties of the working fluid, i.e. propan-2-ol. We stress that the 

wetting of the aluminum sheets with propan-2-ol is highly favorable: the contact angle lies 

between 11° and 17°. We introduce the Kapitza number of the liquid, it compares surface 

tension to the viscous and gravitational effects, i.e., Ka = 𝜎 b𝜌𝑔$ %⁄ 𝜈0 %⁄ c⁄ . Re is the film 

Reynolds number, defined in the Problem description (see the main document). 

 

†Paez S, Contreras M. Densities and Viscosities of Binary Mixtures of 1-Propanol and 2 

Propanol with Acetonitrile. J Chem Eng Data. 1989;34(4):455-459. doi:10.1021/je00058a025 

‡Vazquez G, Alvarez E, Navaza JM. Surface Tension of Alcohol + Water from 20 to 50 °C. J 

Chem Eng Data. 1995;40(3):611-614. doi:10.1021/je00019a016 
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A3. Liquid transfer from a single perforation 

  

Figure S2. Overflow number (𝑋) as a function of the supply Reynolds number (Re). Single 

isolated perforation. The diameter is 𝑑	 =	 4 mm, the plate thickness	𝑡	 =  1mm. Rim mode 

(green), inertial curtain (red), hysteretic curtain (blue). 

Following Gorodilov et al.1 , we plot (Figure S2) the variations of the overflow number (𝑋) as 

a function of the supply Reynolds number (Re). We observe that the variations of 𝑋 in the rim 

mode are non-monotonous: 𝑋 first increases steeply with Re and then decreases as Re tends to 

Re*+. 𝑋 reaches its peak value (𝑋 = 0.67) for Re = 25. At Re*+, the transition from the rim to 

the (inertial) curtain mode occurs. As Re is further increased beyond Re*+, 𝑋 grows. Ultimately, 

𝑋 seems to reach a plateau 𝑋 = 0.5 corresponding to an equal partition of 𝑄 between the front 

and the back of the perforation. As Re is swept down from Re*+, the film flow remains in the 

curtain mode, and 𝑋 regularly reduces with the decrease in Re. 
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Figure S3. Transferred volume flow rate per unit diameter of perforation (𝑄') as a function of 

the supply flow rate (on the front of plate) per unit width (𝑄): effect of the perforation diameter. 

Single perforation with 𝑑 = 4 mm (¡), 6 mm (¨), 8 mm (r), 10 mm (¯), 14 mm (Í), 16 

mm (+), plate thickness 𝑡 = 1 mm. Curtain mode (hysteretic in blue, inertial in red). Linear fit 

for 𝑑 = 4 mm (broken line), for 𝑑 = 8 mm (dotted line). 

We focus on the curtain mode (either inertial or hysteretic) and measure the transferred volume 

flow rate as a function of the supply flow rate on the front of the plate, for six values of 

perforation diameter, i.e., 𝑑 = 4, 6, 8, 10, 14, 16 mm. The plate thickness is 𝑡 = 1 mm. 

Regardless of the value of 𝑑, the variations of 𝑄' with 𝑄 follow the same increasing trend 

(Figure S3). The liquid curtain ruptures and the liquid transfer ceases in the range 𝑄 = 0.04 to 

0.1 m3 m-1 h-1 (Re	 =	5 to 11). At lower 𝑄 values (larger than 0.1 m3 m-1 h-1), the transferred 

flow rate 𝑄' is significantly lower (up to 30%) for 𝑑 = 4 mm than for the other (larger) 

perforation diameters. The effect of 𝑑 on 𝑄' decreases as 𝑄 increases. For the higher values of 

𝑄, the overflow number is close to 𝑋 = 0.5 regardless of 𝑑. 
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A4. Rivulet from a single perforation: spanwise and streamwise profiles 

 
  

Figure S4. Spanwise rivulet profile at 𝑥 = 2, 20, 60, 100 mm from the bottom edge of the 

perforation. Plate thickness 𝑡 = 1 mm, perforation diameter 𝑑 = 4 mm. Curtain mode.  (a) 

Re	 = 24 ; (b) Re	 = 	33	 = 	Re*+ ; (c) Re	 = 38. The lines linking the dots are intended to 

guide the eye along the data points. 

Figure S4 completes the Figure 5 displayed in the main document and presents the rivulet 

spanwise profiles for supply Reynolds number Re = 24, 33, 38.  We observe that the rivulet 
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widens and flattens as it flows in the 𝑥-direction. The spanwise profile is approximately 

symmetric about the axis 𝑦 = 0 and the thickness reaches its peak value close to the line 𝑦 = 0. 

Figure S5 presents the streamwise rivulet profile along the line 𝑦 = 0 for different values of the 

supply Reynolds number. The rivulet flattens as it flows down the plate. At given streamwise 

position, the rivulet thickness increases with the supply Reynolds number. Streamwise profiles 

are slightly rough because the rivulet is not perfectly straight, the flow out of the perforation is 

not rigorously constant, and waves may travel on the rivulet surface. 

  

Figure S5. Streamwise rivulet profile along 𝑦 = 0 for different values of the supply Reynolds 

number, Re	 = 24, 29, 34, 38, 42. Plate thickness 𝑡 = 1 mm, perforation diameter 𝑑 = 4 mm. 

Curtain mode. 
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A5. Effect of the perforation spacing on the curtain Reynolds number 

 

Figure S6. Curtain Reynolds number determined for different values of the perforation spacing, 

𝑠 = 6, 8, 10, 12, 14 mm. Perforation diameter 𝑑 = 4 mm and plate thickness 𝑡 = 1 mm. The 

broken line corresponds to the curtain Reynolds number for a single isolated perforation (𝑠 =

∞). 

Figure S6 summarizes the curtain Reynolds number (Re*+) values determined for different 

perforation spacings. It appears that Re*+ ranges between 33 and 36. These slight variations 

seem not correlated with the perforation spacing. Otherwise, Re*+ would increase with 𝑠: the 

broader the spacing, the more the flow can be deflected by a perforation, delaying the curtain 

transition. We instead believe that the variations in Re*+ are due to the variability of the plate 

curvature. A slight curvature of the sheet affects the liquid distribution upstream of the 

perforations and then the curtain transition. The residual curvature of the plate depends on its 

clamping within the frame. 
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A6. Merging of the rivulets flowing from a row of perforations: streamwise profiles 

 

Figure S7. Streamwise film profile along 𝑦 = 0 and 𝑦 = 𝑠/2 for spacing  𝑠 = 6 mm and 8 mm. 

Single row of perforations, Perforation diameter 𝑑	 = 	4 mm, plate thickness 𝑡	 = 	1 mm, and 

Reynolds number Re = 38 (curtain mode). 

 

 

Figure S8. Streamwise film profile along 𝑦 = 0 and 𝑦 = 𝑠/2 for spacing  𝑠 = 10 mm. Single 

row of perforations, Perforation diameter 𝑑	 = 	4 mm, plate thickness 𝑡	 = 	1 mm, and 

Reynolds number Re = 38 (curtain mode). 

Figures S7 and S8 complete Figure 8 displayed in the main document and present the 

streamwise film profile along 𝑦 = 0 and 𝑦 = 𝑠/2 for 𝑠 = 6, 8, 10 mm. 𝑦 = 0 (resp. 𝑦 = 𝑠/2) 

coincides with a crest (resp. a trough) of the free surface. Since the minimum measurable 

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

!(x
,0

), 
!(
x,s

/2
)  

(μ
m

)

x (mm)

s = 6 mm (y=0)

s = 6 mm (y=s/2)

s = 8 mm (y=0)

s = 8 mm (y=s/2)

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

!(
x,

0)
, !

(x
,s/

2)
  (

μm
)

x (mm)

s = 10 mm (y=0)

s = 10 mm (y=s/2)



 48 

thickness of the CCI sensor is about 100 µm, we cannot capture the beginning of the merging 

between two adjacent rivulets. Thus, at given spacing, merging starts at a distance slightly lower 

than the abscissa of the first measuring point along 𝑦 = 𝑠/2. We observe that the film thickness 

along 𝑦 = 0 (resp. 𝑦 = 𝑠/2) decreases (resp. increases) with 𝑥 and reaches a plateau. The 

smaller the spacing, the faster the plateau is reached and the higher is the plateau value. 
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A7. Liquid film pattern on a staggered array of perforations 

 

Figure S9. Liquid film pattern on a staggered array of perforations at Re = 	35 ≅ Re*+ when 

all perforations are in curtain mode. Plate thickness 𝑡 = 1 mm, perforation diameter 𝑑	 = 4 mm 

and spacing 𝑠	 = 14 mm. (Top) Front of the plate (bottom) back of the plate. 

Figure S9 and S10 show the flow pattern on a staggered array of perforation at Re*+ and above. 

In that case, all the perforations (odd and even rows) operate in the curtain mode. The liquid 

leaks from the bottom edge of the perforations on the back of the plate. The corresponding 

rivulets widen as they flow in the 𝑥-direction. The liquid free surface is disturbed by waves 

traveling downstream. This phenomenon is clearly seen beneath the third row of perforations 

(Figure S10). 
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Figure S10. Liquid film pattern on a staggered array of perforations at Re = 	35 ≅ Re*+ when 

all perforations are in curtain mode. Plate thickness 𝑡 = 1 mm, perforation diameter 𝑑	 = 4 mm 

and spacing 𝑠	 = 14 mm. Full view of the back of the plate. 
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A8. Derivation of the rivulet model and assessment of the assumptions 

Following Shetty & Cerro16, we fit the rivulet spanwise profiles with a Gaussian law: 

𝛿(𝑥, 𝑦) = 𝛿*(𝑥) exp`−a
b𝑦 − 𝑦*(𝑥)c

-

2	𝑚-(𝑥) ef					(𝐴1) 

𝛿*(𝑥) is the maximum film thickness, 𝑦*(𝑥)	the spanwise location of the peak, and 𝑚(𝑥) the 

standard deviation of the Gaussian, which measures the lateral spreading of the rivulet. We 

determine these parameters for each spanwise profile (at given supply Reynolds number Re and 

given 𝑥) using the least-squares method. The parameter values of the best fits are reported in 

Table 2. The relative error is of the order of 1 to 2% for most of the fits, and it never exceeds 

5%. We use 𝑦*(𝑥) as a fitting parameter to improve the estimation of 𝛿*(𝑥). However, since 

𝑦*(𝑥) ≪ 𝑑, we neglect the deviation of the peak from 𝑦 = 0 in the further analysis. 

Figure 11 shows that the spanwise profiles collapse into a single curve when 𝛿(𝑥, 𝑦) and 𝑦 are 

appropriately rescaled. We deduce that the rivulet spanwise profiles are self-similar and well 

described by a Gaussian law. These results concord with the findings of Shetty and Cerro16, 

who studied a rivulet draining down a vertical prewetted plate. We checked that the Gaussian 

law is a better approximation of the present rivulet profiles than the quartic similarity solution 

obtained by Duffy and Moffatt27. 

However, we remind that we could not measure the rivulet thickness close to the lateral contact 

line. Thus, the Gaussian law has only been validated against the core of the rivulet profile. We 

suppose hereafter that the Gaussian law holds over the whole rivulet spanwise profile. We will 

come back to this hypothesis later. 
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𝑄 (L h-1) Re 𝑥 = 2 mm 20 mm 40 mm 60 mm 80 mm 100 mm 

20 24 

𝛿* (μm) 261 251 240 237 232 233 

𝑦* (mm) -0.062 -0.004 0.119 -0.072 0.273 -0.005 

𝑚 (mm) 1.60 2.38 2.71 2.91 2.99 2.94 

Err (%) 1.5 1.7 1.4 2.0 2.1 2.1 

24 29 

𝛿* (μm) 293 279 271 262 261 256 

𝑦* (mm) -0.093 0.062 -0.057 0.249 0.121 0.219 

𝑚 (mm) 2.06 2.89 2.89 3.15 3.21 3.29 

Err (%) 2.0 1.9 2.1 1.4 3.9 2.2 

28 33 

𝛿* (μm) 336 310 289 280 277 269 

𝑦* (mm) 0.061 0.152 0.405 0.160 0.245 0.479 

𝑚 (mm) 1.58 2.49 3.06 3.34 3.47 3.78 

Err (%) 1.4 1.9 2.6 2.3 3.1 2.9 

32 38 

𝛿* (μm) 395 336 320 305 299 303 

𝑦* (mm) 0.014 0.233 -0.225 0.020 0.354 0.257 

𝑚 (mm) 1.66 2.68 2.75 3.84 3.76 4.06 

Err (%) 1.7 2.1 1.4 4.1 4.2 4.9 

35 42 

𝛿* (μm) 416 347 330 325 306 299 

𝑦* (mm) 0.122 0.248 -0.101 0.114 0.264 -0.106 

𝑚 (mm) 1.50 2.73 3.15 3.29 3.79 4.07 

Err (%) 0.5 1.8 2.8 2.2 2.1 3.0 

 

Table 2. Parameters of the Gaussian function that best fits the rivulet spanwise profile: 𝛿*, 𝑦* 

and 𝑚 as a function of the supply Reynolds number (Re) and streamwise location 𝑥, relative 

error (Err, L2-norm) between the experimental profile and the fitting curve. 
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To go further, we also assume that the velocity component in the x-direction is semi-parabolic 

(Nusselt profile): 

𝑢(𝑥, 𝑦) =
𝑔
2𝜈
(2	𝛿(𝑥, 𝑦)	𝑧	 − 𝑧-)					(𝐴2) 

This assumption is reasonable if the rivulet is thin, its flow laminar, steady, and locally fully 

developed: data of Table 2 show that the rivulet thickness is at least one order of magnitude 

lower than its width, i.e., 𝛿*(𝑥) 2𝑚(𝑥)⁄ ≲ 0.1. The upper bound of the rivulet Reynolds number 

Re+A at the abscissa 𝑥 equals Re+A =
$
%
(𝛿*(𝑥) 𝑙B⁄ )% where 𝑙B = 𝜈- %⁄ 𝑔$ %⁄⁄  is the visco-

gravitational length. In the present dataset, the rivulet Reynolds number is systematically lower 

than Re+A = 35, the value reached at 𝑥	 = 	2 mm for the supply Reynolds number Re = 42. We 

expect that the flow is locally fully developed a few millimeters downstream of the perforation 

(see Appendix A9). 

Then, the volume flow rate is given approximately by 

𝑞' =
𝑔
3𝜈� 𝛿%𝑑𝑦

C>

.>
					(𝐴3) 

or 

𝑞' =
𝑔
3𝜈
g2𝜋
3 𝛿*%(𝑥)	𝑚(𝑥)					(𝐴4) 

If this model is appropriate, the right-hand side of Eq. A4 calculated from the rivulet profile at 

the current abscissa 𝑥 should be constant, i.e., independent on 𝑥. This quantity remains constant 

within a few percent along 𝑥, except close to the perforation (see Figure S11): the right-hand 

side of Eq. 4 estimated at 𝑥 = 2 mm is up to 25% lower than the value calculated further 

downstream. 
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Figure S11. Transferred volume flow rate (𝑞') as a function of the distance (𝑥) from the 

perforation. 𝑞' is estimated from Eq. A4 with the parameters of the rivulet spanwise profile.  

We also compared the right-hand side of Eq. A4 to the transferred volume flow rate 𝑞' measured 

experimentally. It appears that the former is significantly lower than the latter, i.e., from about 

10% up to 35%. The discrepancy decreases as the supply Reynolds number increases. Two 

main reasons can be advanced. (i) As the supply Reynolds number decreases, the part of the 

rivulet cross-section satisfying 𝑧 > 100 µm decreases. Then, the identification of the Gaussian 

parameters and the estimate of 𝑞' from Eq. 4 become less reliable. (ii) The Gaussian law fails 

to describe the region of the rivulet close to the lateral contact line because the liquid contact 

angle on the plate is low but not equal to zero as in Shetty & Cerro’s experiments, where the 

plate was prewetted. We retain that the product 𝛿*%(𝑥)	𝑚(𝑥) is approximately constant for 𝑥 ≥

𝑥/. 

If the flow is viscous and 1 ≫ |𝜕𝛿 𝜕𝑦⁄ | ≫ |𝜕𝛿 𝜕𝑥⁄ |, the rivulet thickness satisfies the thin-film 

equation given by Duffy & Moffatt27. This equation reads for a steady rivulet flowing down a 

vertical plate: 

𝛿
𝜕0𝛿
𝜕𝑦0 + 3

𝜕𝛿
𝜕𝑦	

𝜕%𝛿
𝜕𝑦% + 3

𝜌𝑔
𝜎 	
𝜕𝛿
𝜕𝑥 = 0					(𝐴5) 
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We must be careful: the Reynolds number of the rivulet is small but the flow is not strictly 

viscous in our experiments. The conditions on the thickness derivatives are fulfilled. 𝜕𝛿 𝜕𝑦⁄  is 

of the order of 𝛿*(𝑥) 𝑚(𝑥)⁄  which is much smaller than 1 for 𝑥 ≳ 20 − 40 mm. The ratio of 

𝜕𝛿 𝜕𝑥⁄  to 𝜕𝛿 𝜕𝑦⁄  is of the order of 𝑚(𝑥) 𝑥⁄  which is much lower than 1 for 𝑥 ≳ 20 − 40 mm 

(see Table 2). 

We now restrict our analysis to 𝑦 = 0, where the rivulet peaks, and assume a Gaussian spanwise 

profile centered at 𝑦 = 0 (Eq. 1 with 𝑦*(𝑥) = 0). Then, Eq. A5 becomes: 

𝑑𝛿*
𝑑𝑥 +

𝜎
𝜌𝑔

𝛿*-

𝑚0 = 0					(𝐴6) 

We further proceed as Shetty & Cerro16 to get the scaling law followed by 𝛿* and 𝑚. We have 

just seen that the quantity 𝛿*%(𝑥)𝑚(𝑥) remains constant along 𝑥 if 𝑥 is large enough. We note 

𝑥/	the first measuring point where 𝛿*%(𝑥)𝑚(𝑥) reaches this plateau value (see Figure S11). 𝑥/ =

20 mm for Re = 24, 29, 33 and 𝑥/ = 2 mm for Re = 38, 42. For 𝑥	 > 	 𝑥/, let 

𝑐$ = 2b𝛿*%(𝑥)𝑚(𝑥)c
-					(𝐴7) 

and replace in Eq. A6: 

𝑑𝛿*
𝑑𝑥 +

4𝜎
𝑐$-𝜌𝑔

𝛿*$0 = 0					(𝐴8) 

The streamwise coordinate (𝑥), the maximum thickness (𝛿*), and the standard deviation of the 

Gaussian (𝑚) are rescaled as follows: 

𝑥# =
𝑥 − 𝑥/
2𝑚(𝑥/)

					 ; 					𝛿*#(𝑥) =
𝛿*(𝑥)
𝛿*(𝑥/)

					 ; 					𝑚#(𝑥) =
𝑚(𝑥)
𝑚(𝑥/)

 

Then, Eq. A8 is recast as: 

𝑑𝛿*#

𝑑𝑥# +
16𝛼%

3	Ca
(𝛿*#)$0 = 0					(𝐴9) 

𝛼 and Ca are the aspect ratio and capillary number of the rivulet at 𝑥 = 𝑥/: 

𝛼 =
𝛿*(𝑥/)
2𝑚(𝑥/)

					 ; 					Ca =
𝜇
𝜎 k

𝑔𝛿*-(𝑥/)
3𝜈 o 
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The integration of Eq. A8 from 𝑥# = 0 to an arbitrary value of 𝑥# gives16: 

𝛿*#(𝑥#) = k1 +
208
3
𝛼%

Ca 𝑥
#o

.$ $%⁄

					(𝐴10) 

By combining Eq. 7 and 10, we get the evolution of the rescaled rivulet width: 

𝑚#(𝑥) = k1 +
208
3
𝛼%

Ca 𝑥
#o

% $%⁄

					(𝐴11) 

Since the quantity 2b𝛿*%(𝑥)𝑚(𝑥)c
- is not strictly conserved experimentally (even for 𝑥 > 𝑥/) 

and slightly fluctuates along 𝑥, it is relevant to distinguish between the “best” estimate of 𝑐$ 

taken as the mean value of 2b𝛿*%(𝑥)𝑚(𝑥)c
- over the region 𝑥 > 𝑥/ and denoted 𝑐$̅, and the 

value of 2b𝛿*%(𝑥)𝑚(𝑥)c
- at 𝑥 = 𝑥/, i.e., 𝑐/ = 2b𝛿*%(𝑥/)𝑚(𝑥/)c

-. The former appears when 

deriving Eq. A8 from Eq. A6 and Eq. A7. The latter appears when rescaling Eq. A9. Then, the 

argument of the power-laws (Eq. A10-A11) should be transformed as follows: 

k1 +
208
3
𝛼%

Ca 𝑥
#o → k1 +

208
3
𝛼%

Ca 𝛽𝑥
#o					(𝐴12) 

with 𝛽 = t*!
*"̅
u
-
. 
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A9. Length required for a rivulet flow to be locally fully developed 

Let us estimate the length required for the rivulet flow to be locally fully developed. We 

consider the rivulet peak thickness at the first measuring point downstream of the perforation: 

𝛿*(𝑥 = 2mm) ranges between 261µm to 416 µm (see Table 2). An estimate of the fluid mean 

velocity (𝑈) on the rivulet centerline is given by: 

𝑈 ≅
𝑔	𝛿*-

3𝜈  

The length to establish a Poiseuille flow between two parallel plates reads†: 

𝐿:
𝐷,

= 0.3125 + 0.011 × ReD, 

where 𝐷, is the hydraulic diameter. 𝐷, = 2𝐻 for two parallel plates spaced a distance 𝐻 apart. 

We then deduce the length required for the rivulet flow to be locally fully developed: 

𝐿:
𝛿*

≅ 1.25 + 0.044
𝑈𝛿*
𝜈  

We find that 𝐿: ranges from 0.7 mm to 3 mm when the supply flow rate on the front of the 

plate varies between 𝑄 = 20 L h-1 and 𝑄 = 35 L h-1, respectively. 

 

† Atkinson B, Brocklebank MP, Card CCH, Smith JM. Low Reynolds number developing 

flows. AIChE Journal. 1969;15:548-553.  
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A10. Scaling law of the rivulet merging 

 

Figure S12. Rescaled distance between the onset of rivulet merging and the row of perforations 

as a function of the rescaled perforation spacing. 𝑑	 = 	4 mm, 𝑡	 = 	1 mm, Re = 38 and 𝑠 = 6, 

8, 10, 12, 14 mm. Data points are fitted by a power law (red solid line) using the least-squares 

method. 

Figure S12 presents the variations of rescaled distance required for rivulet merging 

(1 + -/3
%

4#

<=
𝛽𝑥:;+# ) as a function of the rescaled perforation spacing (𝑠 b4𝑚(𝑥/)c⁄ ). The data 

points are fitted by a power law using the least-squares method. The exponent (4.58) is close 

to the theoretical value (13/3 = 4.33). The prefactor (4.73) is significantly greater than the 

expected value (1). We presently overestimate 𝑥:;+#  because the first measuring point 

(corresponding to a film thickness close to 100 µm) used to estimate the onset of merging is 

systematically located downstream of the actual position where the rivulets start to merge 

(corresponding to a vanishing film thickness).  
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A11. Model of liquid transfer through a staggered array of perforations 

 
Figure S13. Rescaled volume flow rate per unit width on the back (𝑄((𝑘)) and on the front 

(𝑄(𝑘)) of the plate as a function of the row number (𝑘): results provided by the model for 𝑑 =

4 mm, 𝑡 = 1 mm, 𝑠 = 14 mm, 𝑄 = 0.2 m3 m-1 h-1 and 𝑄 = 0.4 m3 m-1 h-1. 

Figure S13 shows the variations of the volume flow rate per unit width along the front and the 

back of the perforated plate computed from our simple recurrence model. It appears that the 

volume flow rates on the front and the back of the plate tend to equalize as the row number (𝑘) 

increases. The asymptotic value is equal to half the supply flow rate. The transferred volume 

flow rate decreases with 𝑘 since the driving force (𝑄(𝑘 − 1) − 𝑄((𝑘 − 1)) decreases. 𝑄( 

reaches 90% of its asymptotic value (𝑄(0)/2) beneath the 7th row of perforations. 

The solutions computed for 𝑄 = 0.2 m3 m-1 h-1 and 𝑄 = 0.4 m3 m-1 h-1 are not proportional 

since Eq. 18 describing the liquid transfer through the first row of perforations contains a 

constant term, i.e., the threshold flow rate 𝑄', = 0.1 m3 m-1 h-1. Then, the points associated 

with 𝑄 = 0.2 m3 m-1 h-1 and 𝑄 = 0.4 m3 m-1 h-1 do not superimpose. However, if 𝑄', = 0, the 

pointset would be unique. 
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For 𝑄(0) =	0.4 m3 m-1 h-1, we expect that 𝑄((𝑘) and 𝑄(𝑘) relax even more rapidly to their 

asymptotic value (𝑄(0)/2) than the predictions of Figure S13. Indeed, experiments show that 

the liquid transfer through the perforations is enhanced when the supply flow rate (𝑄(0)) 

increases (see Figure 10). 


