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Abstract. The classification analysis of imbalanced data remains a chal-
lenging task since the base classifier usually focuses on the majority class
and ignores the minority class. This paper proposes a reliability-based AQ1

imbalanced data classification approach (RIC) with Dempster-Shafer
theory to address this issue. First, based on the minority class, mul-
tiple under-sampling for the majority one are implemented to obtain the
corresponding balanced training sets, which results in multiple globally
optimal trained classifiers. Then, the neighbors are employed to evaluate
the local reliability of different classifiers in classifying each test sam-
ple, making each global optimal classifier focus on the sample locally.
Finally, the revised classification results based on various local reliability
are fused by the Dempster-Shafer (DS) fusion rule. Doing so, the test
sample can be directly classified if more than one classifier has high local
reliability. Otherwise, the neighbors belonging to different classes are
employed again as the additional knowledge to revise the fusion result.
The effectiveness has been verified on synthetic and several real imbal-
anced datasets by comparison with other related approaches.

Keywords: Imbalanced data · Reliability · Dempster-Shafer theory

1 Introduction

Imbalanced data refers to the dataset has an unequal distribution between
classes [1]. For a binary class problem, if the number of samples in the major-
ity class is significant larger than that of the minority class, traditional classi-
fiers, such as K-nearest neighbors (K-NN) [2], support vector machine classifier
(SVM) [3], are dedicated to maximize the overall classification performance. In
this case, most minority samples are assigned to majority class.

Increasingly works are emerged for classifying imbalanced data, and they
can be roughly divided into three categories including sampling approaches [4],
cost-sensitive learning [5] and ensemble learning [6]. Sampling approaches focus
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Le Hégarat-Mascle et al. (Eds.): BELIEF 2022, LNAI 13506, pp. 1–10, 2022.
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2 H. Tian et al.

on preprocessing the input data to balance the classes. By doing this, the
preprocessed data can be classified by basic classifiers. Cost-sensitive learning
approaches assign relatively high weights to minority samples, which can reduce
the misclassification of the minority class. Ensemble learning approaches combine
different classifiers trained by various subsets, which supplies the complementar-
ity information to improve the performance of classification with respect to an
individual classifier. However, these imbalanced data classification approaches
only consider the global optimum and are not suitable for each test sample. For
instance, the samples lying in the overlap area of different classes are indistin-
guishable and easily misclassified. In this case, there are some uncertain infor-
mation between between classes.

Dempster-Shafer theory (DST) [7,8], also known as the theory of belief func-
tions, has the advantage of reasoning uncertain information, and has been widely
used in classification [9–12]. Recently, a few works [13,14] have been proposed
to deal with imbalanced data classification within the belief function theory.
Although these approaches has the advantage of capturing uncertain informa-
tion thanks to evidence reasoning, they fill to consider the local performance
of classifiers for each test sample. In this paper, we propose a reliability-based
imbalanced data classification approach with Dempster-Shafer theory. The con-
tributions mainly include three aspects. 1) We design a reliability evaluation
strategy to obtain local reliability of different classifiers for each test sample,
which can characterize the local performance of classifiers. 2) We introduce a
revision strategy to resubmit the samples with low local reliability of different
classifiers according to neighbors from various classes. 3) We apply RIC to syn-
thetic and several real imbalanced datasets to demonstrate the superiority.

The rest of this paper is organized as follows. The proposed approach is
presented in detail in Sect. 2. Then, it is tested in Sect. 3 and compared with
several other typical methods, followed by conclusions.

2 Reliability-Based Imbalanced Data Classification

In this section, a reliability-based imbalanced data classification approach is
proposed in detail. Assume that a test set X = {x1, ...,xN} is classified
under the frame of discernment Ω = {ωmin, ωmaj} according to a training set
Y = {y1, ...,yM} on H different attribute spaces. Ymin and Ymaj represent the
minority class and majority class, respectively.

2.1 Multiple Under-Sampling for Majority Class

In this subsection, we implement random under-sampling1 for the majority class
multiple times to obtain different training sets thereby training basic classifiers.

T subsets Y1
maj , ...,YT

maj are random sampled from the majority class Ymaj .
Each subset has the same number of samples as that of the minority class Ymin,
1 In applications, users can employ other appropriate under-sampling approaches

according to the request of practice.
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Reliability-Based Imbalanced Data Classification 3

and is combined with Ymin to form a new training set. By doing this, we can
obtain T training sets, named Y1, ...,YT , and the number of T is denoted as:

T= [IR] (1)

with

IR =
|Ymaj |
|Ymin| (2)

where IR, such that IR ≥ 1, refers to the measurement for the imbalanced
degree of the dataset, and |.| represents the cardinality symbol. [·] is a rounding
symbol that rounds the elements of IR to the nearest integers towards infinity.

Then, each training set can train a basic classifier that has high performance
in classifying a balanced dataset. The classification result of xi by t-th classifier
is denoted as Pt

i = [pt
i({ωmin}), pt

i({ωmaj}], t = 1, ..., T .

2.2 Evaluate the Local Reliability for Classifiers Fusion

In this subsection, we evaluate the local reliability of different classifiers for
classifying each test sample. Then, we combine classifiers with various reliability
by the original discounting fusion rule.

Here, we employ the neighbors y1, ...,yK of the test sample xi to evaluate
the local reliability of different classifiers, since xi has the similar data structure
and distribution with respect to y1, ...,yK . The better the performance of the
classifier to classify y1, ...,yK , the higher the reliability for classifying xi. Based
on the above analysis, we define a rule to evaluate the degree of reliability of
different classifiers, denoted as:

ξit =
exp(−ϑit)

T∑

t=1
exp(−ϑit)

(3)

with

ϑit =
K∑

k=1

√ ∑

{ωc}∈Ω

[pt
k({ωc}) − lk({ωc})]2 (4)

where ξit, such that 0 < ξit < 1, represents the reliability of the t-th clas-
sifier for classifying xi. pt

k({ωc}) refers to the probability of yk belongs to
{ωc}. The truth of classification of yk is characterized by the binary vector
Lk = [lk({ωmin}), lk({ωmaj})]. The lk({ωc}) = 1 if the true class of yk is
{ωc}. If not, lk({ωc}) is equal to 0. Ω is the frame of discernment, such that
Ω = {{ωmin}, {ωmaj}}. We can observe that the lower the deviation between
classification results and truths, the higher reliability of the classifier.

Each classification result can be considered as a piece of evidence under the
framework of DST, which is appealing to combine multi-source information. The
reliability-based discount fusion method [8], is employed here for discounting and
fusing pieces of evidence. The reliability ξit for different T classifiers can be con-
sidered as the discounting factors. The discounted masses of belief is denoted as:
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4 H. Tian et al.

⎧
⎨

⎩

mt
i({ωc}) = ξitp

t
i({ωc}), {ωc} ∈ Ω

mt
i(Ω) = 1 − ξit

(5)

where pt
i({ωc}) represents the probability (Bayesian BBA) that the sample xi

belongs to {ωc} under Bayesian framework, and Ω is the the total unknown class.
We can find that the more important and reliable the classification result, the
larger the corresponding discounting factor, and the less discounted information
assigned to the total ignorance Ω. In particular, the degree of conflict between
pieces of evidence is reduced since the conflict information is transferred into
Ω that plays a particular neutral role in the fusion process. In this case, the
global fusion result for T basic belief assignments (BBAs) of the sample xi is
denoted as:

mi = m1
i ⊕ · · · ⊕ mT

i (6)

where mt
i = [mt

i({ωmin}),mt
i({ωmaj})], and ⊕ refers to the DS fusion rule [7]

for the combination of these T pieces of evidence. mi represents the normalized
combination result. As a result, the fused BBAs can be transferred into pignistic
probability[15] for the preliminary decision-making.

2.3 Employ Neighbors for Final Decision

In this subsection, we employ neighbors from different classes as the additional
information to make final decision.

For the test sample xi, it can be directly classified if there is more than
one classifier that has high local reliability. In contrast, when all classifiers have
low reliability to classify xi, which means it is hard to be correctly classified by
different classifiers.

We evaluate the different degrees of local reliability of classifiers for classifying
xi before normalization, and obtain the max values of them, denoted as:

ξ̂i,max = max{ξ̂i1, ..., ξ̂iT } (7)

where ξ̂it represents the degree of local reliability of t-th classifier for classify-
ing xi, such that ξ̂it = exp(−ϑit). The higher the value of ξ̂i,max, the bigger
the possibility of xi being correctly classified. Thus, we define a threshold δ to
distinguish whether xi can be directly classified or not, given by:

δ= quantile(Ξ̂max, γ) (8)

with
Ξ̂max = {ξ̂1,max, ..., ξ̂N,max} (9)

where γ is a quantile number such that γ ∈ [0, 1]. If ξ̂i,max > δ, the test sample
xi can be classified directly according to the classification result obtained by
discounting fusion. Otherwise, we need to mine some additional information by
neighbors to revise classification results. We convert the distances between xi
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Reliability-Based Imbalanced Data Classification 5

and different classes into the mass of belief that it belongs to different classes,
denoted as:

m̂i({ωc}) =
exp(−d(xi, {ωc}))

∑

{ωc}∈Ω

exp(−d(xi, {ωc}))
. (10)

where d(xi, {ωc}) represent the mean Euclidean distance between xi and its K
neighbors in class {ωc}. We can observe that the larger the distance d(xi, {ωc}),
the lower the possibility that xi belongs to class {ωc}. Then, the BBA of xi,
named m̂i, is fused with mi according to the DS fusion rule. Finally, the fused
BBAs can be transferred into pignistic probability to make final decision.

3 Experiment Applications

In this section, the proposed RIC is compared with several typical approaches
including ROS [4], RUS [16], SMOTE [17], CBU [18] and RUSBoost [6]. SVM [3]
is taken as the basic classifier in different approaches. Two common indexes [1],
i.e., F-measure (FM) and G-mean (GM), widely used in imbalanced data classi-
fication, are employed to evaluate the performance of different approaches. The
higher the values of FM and GM, the better the performance of the approach.

3.1 Benchmark Datasets

A 2-D dataset with two classes Ω = {ωmin, ωmaj} is given in Fig. 1(a)(b), where
each sample denoted as a point has two dimensions of attributes corresponding
to x-coordinate and y-coordinate. The minority class ωmin has 2000 samples
and majority class ωmaj consists of 200 samples. All the samples are generated
from two bivariate Gaussian densities and have the following means vectors
and covariance matrices, denoted as: μmin = (3.1, 5), Σmin = 0.01I, μmaj =
(4, 5) , Σmaj = 0.1I, where I represents the 2 × 2 identity matrix. Half of the
samples in each class are randomly selected as training samples and others are as
test samples. ωtr

min and ωte
maj represent the minority class and majority class in

the training set, respectively. The ground truth of test set is marked by different
colors and represented by ωte

min and ωte
maj .

Ten generally used real imbalanced datasets from Keel repository2 are
employed to test and evaluate the performance of different approaches in clas-
sifying imbalanced data. Each dataset is partitioned using a five-folds stratified
cross validation. The basic information of these datasets including the number
of all samples (#Size.), majority class samples (#Maj.), minority class samples
(#Min), attributes (#Attr.) and imbalance ratio (#IR.) are shown in Table 1.

2 http://www.keel.es/.
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6 H. Tian et al.

Table 1. Basic information of the Keel datasets.

Data #Size. #Min. #Maj. #Attr. #IR.

glass1 214 76 138 9 1.82

yeast1 1484 429 1055 8 2.46

vehicle2 846 218 628 18 2.88

ecoli2 336 52 284 7 5.46

page-blocks0 5472 559 4913 10 8.79

vowel0 998 90 898 13 9.98

led7digit 443 37 406 7 10.97

ecoli4 336 20 316 7 15.80

yeast5 1484 44 1440 8 32.73

shuttle2vs5 3316 49 3267 9 66.67

3.2 Performance Evaluation

1) RIC vs. comparisons in the synthetic dataset.
This experiment is designed to intuitively validate the effectiveness of RIC in

classifying imbalanced data with the overlapped area between classes. We take
K = 7 and γ = 0.05 in RIC, and the parameters in comparison approaches
are as default. The training and test set of the synthetic dataset are reported
in Fig. 1(a)(b). We can see that the majority class and minority class are partly
overlapped on their borders. The classification results of comparison approaches
are shown in Fig. 1(c)-(g), where most samples lying in the overlapped area
are misclassified. Actually, these samples are hard to be correctly classified and
there are uncertain information between classes in this case. We can observe from
Fig. 1(h) that these samples marked by black points are correctly identified. As
shown in Fig 1(i), RIC can correctly resubmit most of these samples according
to neighbors from different classes. Moreover, an ablation study is carried out
on this dataset to compare the contribution of each step in RIC, and the results
are reported in Table 2. We can find that with the addition of each step in RIC,
the performance continues to improve, which verifies the effectiveness of each
step in RIC.

2) RIC vs. comparisons in Keel datasets.
In this experiment, ten Keel datasets are employed to further investigate

the effectiveness of the proposed approach by comparing it to other comparison
approaches in real word datasets. We take K = 7 and γ = 0.15 in RIC, and the
parameters in comparison approaches are as default. The classification results of
different approaches for classifying different approaches are reported in Table 3.
We can observe that the proposed RIC generally provides better performances
than comparison approaches in most datasets. The reason is that RIC evaluates
the local reliability of different classifiers in classifying each test sample, making
each global optimal classifier focus on the sample locally.
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Reliability-Based Imbalanced Data Classification 7
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(a) Training set.
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(b) Test set.
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(g) RUSBoost.
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Fig. 1. Classification results of the synthetic dataset by different approaches.

Table 2. The values of FM and GM of different approaches for the synthetic dataset
(IN %)

Indexes ROS RUS SMOTE CBU RUSBoost RICStep 1 RICStep 1−2 RICStep 1−3

FM 90.45 85.84 90.25 88.30 90.25 85.47 86.02 94.06

GM 98.72 98.34 98.70 98.67 98.70 98.29 98.36 98.92

3.3 Influence of K and γ

In this experiment, we employ the synthetic dataset to investigate the perfor-
mance of RIC with various values of K and γ. The classification results of RIC
with various parameters are shown in Fig. 2, where the x-coordinate denotes the
value of K, ranging from 5 to 15, and the y-coordinate represents the value of γ,
which is expressed in [0, 1]. The z-coordinate of Fig. 2(a) and (b) is the value of
FM and GM, respectively. We can see that with the increase of K, the variations
of the result are small, which verifies it is robust to the value of K. Of course,
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8 H. Tian et al.

Table 3. Classification results for Keel datasets by different approaches (IN %)

Indexes Datasets ROS RUS SMOTE CBU RUSBoost RIC

ecoli2 72.38 72.40 71.45 70.97 69.30 83.70

ecoli4 73.21 60.64 74.35 63.69 68.55 84.14

led7digit 61.99 58.16 64.44 60.15 60.16 80.03

glass1 57.36 56.59 55.81 56.10 49.76 66.26

FM page-blocks0 22.87 22.59 18.38 31.54 46.84 80.54

shuttle2vs5 93.61 74.01 93.61 73.64 93.02 97.89

vehicle2 92.04 91.90 92.79 89.42 80.80 94.03

vowel0 78.23 72.45 81.58 72.29 75.25 94.10

yeast1 58.15 58.29 58.57 57.24 57.87 58.84

yeast5 46.69 38.65 46.96 37.78 56.96 58.41

ecoli2 90.77 89.72 90.39 89.15 88.05 93.36

ecoli4 95.28 95.08 92.92 93.79 87.00 96.20

led7digit 88.15 89.66 87.51 88.82 87.95 90.04

glass1 61.11 54.14 54.63 56.55 64.40 71.87

GM page-blocks0 50.26 46.02 38.21 48.85 83.51 87.94

shuttle-2vs5 96.69 99.46 96.69 99.43 99.59 98.96

vehicle2 95.62 95.69 96.32 94.80 88.95 96.93

vowel0 95.23 95.65 96.23 95.59 86.74 97.31

yeast1 70.60 70.58 70.20 69.09 70.15 71.18

yeast5 96.43 94.98 96.46 94.79 96.49 95.49

K is not the higher the better. The result in Fig. 2 reveals that the value of
GM tends to decrease when the K is taken too large, which may be affected by
noise samples. Thus, we recommend K ∈ [5, 12] as the default in applications.
Moreover, we can also observe that the value of γ should not taken too small,
since RIC may fail to fully mine the uncertain information in such a case. Thus,
γ ∈ [0.02, 0.15] can be recommended in applications.

Fig. 2. Classification results of RIC with different parameters in the synthetic dataset.
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Reliability-Based Imbalanced Data Classification 9

3.4 Execution Time

The execution time in seconds of RIC and other comparison approaches on differ-
ent datasets with SVM as shown in Table 4. We can see that the execution time
of RIC is higher than other approaches since it needs to calculate a large number
of distances between samples to obtain neighbors. In applications, the proposed
RIC approach is more suitable for cases where high accuracy is required, whereas
efficient computation is not a vital requirement.

Table 4. Execution time of different methods (In seconds)

Datasets ROS RUS SMOTE CBU RUSBoost RIC

ecoli2 0.1946 0.0512 0.1412 0.1800 2.9829 0.7967

ecoli4 0.1773 0.0589 0.1374 0.1389 2.7882 2.0548

led7digit 0.1885 0.0633 0.1487 0.1619 2.9539 1.5250

glass1 0.2001 0.0543 0.1380 0.1602 2.9692 0.4475

page-blocks0 216.1961 18.9831 186.3028 14.4645 3.0455 251.9016

shuttle-2vs5 71.1344 0.0591 70.4835 1.4666 2.2398 12.8517

vehicle2 14.9956 3.4566 14.5732 1.7628 3.0990 22.3558

vowel0 0.3269 0.0724 0.3118 0.2386 3.0903 1.7887

yeast1 0.2646 0.0633 0.2313 0.2744 3.0286 1.9574

yeast5 0.2919 0.0557 0.1942 0.2191 3.2067 4.5351

4 Conclusion

This paper proposes a reliability-based imbalanced data classification approach
(RIC) with Dempster-Shafer theory. RIC considers not only the global optimiza-
tion of different classifiers, but also the local optimization. Thus, we can obtain a
more robust and reasonable performance for each test sample. The experiments
on synthetic and several real imbalanced datasets have verified the effectiveness
of RIC with respect to typical approaches. Moreover, we also investigate the
influence of parameters on the classification performance of RIC. In the future,
we will extend the application scope of RIC to other real-word tasks, such as
network intrusion detection.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China under Grant U20B2067, Grant 61790552, and Grant 61790554; the
Aeronautical Science Foundation of China under Grant 201920007001.
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