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BSC: Belief Shift Clustering
Zuo-wei Zhang, Zhun-ga Liu, Arnaud Martin, Kuang Zhou

Abstract—It is still a challenging problem to characterize
uncertainty and imprecision between specific (singleton) clusters
with arbitrary shapes and sizes. In order to solve such a problem,
we propose a belief shift clustering (BSC) method for dealing
with object data. The BSC method is considered as the evidential
version of mean shift or mode seeking under the theory of belief
functions. First, a new notion, called belief shift, is provided
to preliminarily assign each query object as the noise, precise,
or imprecise one. Second, a new evidential clustering rule is
designed to partial credal redistribution for each imprecise
object. To avoid the “uniform effect” and useless calculations,
a specific dynamic framework with simulated cluster centers is
established to reassign each imprecise object to a singleton cluster
or related meta-cluster. Once an object is assigned to a meta-
cluster, this object may be in the overlapping or intermediate
areas of different singleton clusters. Consequently, the BSC can
reasonably characterize the uncertainty and imprecision between
singleton clusters. The effectiveness has been verified on several
artificial, natural, and image segmentation/classification datasets
by comparison with other related methods.

Index Terms—Belief shift, mean shift, evidential clustering,
uncertainty, mode seeking.

I. INTRODUCTION

CLUSTERING analysis has been widely used in various
fields [1]- [3], aiming to assign the dataset to different

clusters where the objects are similar in one cluster but dis-
similar to the objects in other clusters. A number of clustering
techniques based on different philosophies have emerged.

K-means [4], as a representative of partition-based methods,
provides a hard partition for the object depending on its
distance to different cluster centers. The best cluster centers
candidates are found by optimizing an objective function, typi-
cally the sum of the distance to a set of putative cluster centers.
Motivated by [4], the early fuzzy c-means (FCM) [5] assigns
the object to different clusters with various levels of support,
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which has robust characteristics for ambiguity. The extensions
to the fuzzy-based method are widely studied in [6]- [13]. For
example, the literatures [6]- [9] are dedicated to improving the
performance and reassigning levels of support reasonably for
objects. The literatures [10]- [12] aim to combine fuzzy-based
methods and transfer learning. In [12], based on some useful
knowledge available in the related scenes/domains, a set of
transfer prototype-based fuzzy clustering methods is developed
by exploiting the idea of leveraging knowledge from the source
domain. The literature [13] develops a noise clustering method
to make fuzzy-based methods more robust against noise.
However, these fuzzy-based methods depending on symmetric
distance [14], e.g. Euclidean distance, are not suitable for the
clusters with arbitrary shapes and sizes in the space, such as
nonspherical clusters [15] or imbalanced clusters [1], [4]. A
few improved methods have been developed [1], [16]- [17].
For example, the literature [1] presents a multi-center (MC)
clustering method to avoid the “uniform effect” of imbalanced
data1. In MC, multiple centers (clusters) are used to represent
each class. But it doesn’t apply to close clusters and cannot
be generalized to the clusters with arbitrary shapes and sizes.

Interestingly, density-based clustering methods can solve the
above problems well, such as mean shift or mode seeking
(MS) [19]- [20]. In MS, a probability density function is
developed to represent the mode (cluster), then estimated
by gradient ascent. Motivated by [19]- [20], some improved
versions have been proposed [21]- [25]. For example, the
literature [24] presents a semi-supervised framework for kernel
mean shift clustering (SKMS), where the pairwise constraints
are used to guide the clustering procedure. The literature [25]
studies the properties of mean shift (MS)-type methods for
estimating modes of probability density functions, and it finds
several new properties of mode and corresponding density
estimate sequences based on the function. Besides, the lit-
erature [26]- [27] replaces the kernel density estimate by K-
nearest neighbor (KNN) ones. In KNN-based methods, the
bandwidth is adaptively adjusted to make modes converge
quickly. The area with low density has a large bandwidth,
while a small bandwidth has a high density.

In addition, some other density-based methods have also
been developed [15], [28]. For example, a new density peaks
clustering (DPC) is proposed in [15]. In DPC, the centers are
characterized by a higher density than neighbors and far away
from other objects with higher densities. A density-based spa-
tial clustering of applications with noise (DBSCAN) method
is introduced in [28]. The objects in areas with densities lower
than the density threshold are discarded as noise, and others
with high density are assigned to different specific clusters.

1The “uniform effect” refers to that a part of objects belonging to majority
classes are assigned to minority classes, which makes clusters have relatively
uniform sizes, although input data have varied cluster sizes [1], [18].
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Besides, the literature [29] successfully applies DBSCAN to
large-scale datasets based on KNNs [30]. In addition, some
spectral-based clustering methods [31], [32] also have shown
good performance on arbitrarily shaped data. For example,
an ultra-scalable ensemble clustering (U-SENC) method is
proposed in [32], and it can effectively cluster extremely large-
scale datasets with limited resources.

Some above methods have achieved good results for clusters
with arbitrary shapes and sizes. However, there are some un-
certain and imprecise information between these clusters. Here
we argue that uncertainty is caused by insufficient knowledge;
In contrast, imprecision is caused by fuzziness of knowledge.
In clustering tasks, for example, one object simultaneously
close to several singleton (specific) clusters is difficult to
classify correctly since these close singleton clusters appear
not distinguishable for this object. In this paper, we allow
this object belonging to any singleton cluster or the unions
of these singleton clusters (called meta-cluster) with different
support degrees to characterize uncertainty and imprecision in
the results. For example, if an object is assigned to a meta-
cluster, we can say it is an imprecise object; Otherwise, it
is called a precise object if it is only close to one singleton
cluster. As shown in Fig. 1, there is a 7-class problem with two
dimensions. The objects, distributed in the overlapping areas
(e.g. Area 1) or intermediate areas (e.g. Area 4) of different
clusters, are challenging to be identified by singleton clusters.
If they are assigned forcibly, it may increase the risk of errors.
Thus, it is unreasonable to assign these objects to singleton
clusters only depending on current knowledge.

Area 1

Area 2

Area 3Area 4

Area 5

Fig. 1. Illustration of the noise and uncertainty between
different clusters with arbitrary shapes and sizes.

The theory of belief functions (TBF) [33]- [36], also known
as Dempster-Shafer theory, is appealing to deal with such
uncertain and imprecise information. In TBF-based clustering
analysis [2], [37]- [42], the object can be assigned to three
kinds of clusters: singleton (specific) cluster (e.g. {ωi}), meta-
cluster (e.g. {ωk, ..., ωt}) and the noise cluster represented
by ∅. The “meta-cluster” is regarded as a new cluster and
considered as a transition cluster among these different close
singleton clusters [38]. For example, a new belief-peaks ev-
idential clustering (BPEC) method is proposed in [2], which
aims to overcome the shortages of density peaks clustering
(DPC) [15] in characterizing uncertainty and imprecision in

results. In BPEC, the cluster centers are first obtained based on
the concept of “belief peak”, and then each object is assigned
to the nearest center under the TBF framework. However,
this partition-based assignment mechanism is only used for
spherical data. Therefore, it cannot effectively detect non-
spherical data or generates backward results sometimes, a
regression with respect to DPC.

In this paper, we propose a belief shift clustering (BSC)
method, aiming to characterize uncertainty and imprecision
between arbitrary clusters and thereby obtain a more robust
and reasonable performance. The proposed BSC contains two
characteristics: 1) Belief shift for preliminary credal partition;
2) Evidential clustering rule for partial credal redistribution.
The main contributions can be summarized as follows.

1) A new notion of “belief shift” is proposed based on mean
shift and the TBF, which can detect clusters with arbitrary
shapes and sizes. In the process, each object is preliminarily
assigned as the noise, precise object, or imprecise one.

2) An evidential clustering rule is designed to reassign the
imprecise objects by partial credal redistribution, which pro-
vides a specific dynamic sub-framework with corresponding
simulated centers to avoid the “uniform effect”.

3) The proposed BSC can characterize uncertainty and
imprecision between clusters with arbitrary shapes and sizes
in results. Numerous experimental studies demonstrate the
effectiveness of this argument.

The rest of this paper is organized as follows. After a brief
introduction of belief functions in Section II, the belief shift
clustering (BSC) is introduced in detail in Section III. The
BSC is then tested in Section IV and compared with several
typical methods. Section V includes some discussions such as
the parameters, comparison of different methods, problems in
applications, followed by conclusions.

II. BASICS OF BELIEF FUNCTIONS

The theory of belief functions (TBF), also called Dempster-
Shafer theory or evidence reasoning, which is a theo-
retical framework for reasoning with uncertain and im-
precise information and has been widely used in vari-
ous fields including data clustering [37]- [42], classifica-
tion [43]- [46], and decision-making [47]- [49]. In the
TBF, the frame of discernment Ω = {ω1, ..., ωc} is ex-
tended to the power-set 2Ω, which contains all subsets
of Ω. For example, if Ω = {ω1, ω2, ω3}, then 2Ω =
{∅, {ω1}, {ω2}, {ω3}, {ω1, ω2}, {ω1, ω3}, {ω2, ω3},Ω}.

A basic belief assignment (BBA) is introduced to express
the degrees of support for different elements in 2Ω and it is a
function m(.) from 2Ω to [0,1], defined by:{ ∑

A∈2Ω
m(A) = 1

m(∅) = 0
(1)

where A is called the focal element of m(A) if A ∈ 2Ω and
m(A) > 0, and the set of all its focal elements is called
the core of m(A). For clustering tasks, these focal elements
are also called clusters or categories. The TBF can generate
three clusters: singleton cluster, meta-cluster, and noise cluster.
Given Ω = {ω1, ..., ωc}, we define these clusters as follows.
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Definition 1. Singleton cluster, also called specific cluster
and formed by Aj , aims to characterize the exact information,
and has the following form: Aj = {ωk}, k ∈ [1, c].

Definition 2. Given a meta-cluster Aj , it is defined by the
union (disjunction) of several singleton clusters and has the
following form: Aj = {ωk, ..., ωl}, k ̸= l ∈ [1, c].

Definition 3. Noise cluster, represented by ∅, is considered
a separate cluster and is defined as the set of those objects that
are far from all singleton clusters. Once objects are assigned
to the noise cluster, they are regarded as noise or outliers.

In TBF-based clustering, we usually consider that mass
functions can characterize uncertainty, and meta-clusters can
characterize imprecision in results. Moreover, we also review
some TBF-based clustering methods in Sections A, B, C of the
supplementary file.

The lower and upper bounds of probability associated
with BBAs correspond to the belief function Bel(.) and the
plausibility function Pl(.) with ∀A ⊆ Ω defined by:

Bel(A) =
∑
B⊆A

m(B) (2)

Pl(A) =
∑

B∩A ̸=∅

m(B) (3)

Bel(.) and Pl(.) can be used for decision-making support
when adopting pessimistic or optimistic attitudes. Similar to
A in Eq. (1), both B in Eqs. (2) (3) and the subsequent C in
Eqs. (4) (5) denote focal elements, i.e. A,B,C ∈ 2Ω.

The combination of mass functions plays a critical role in
the TBF, where Dempster’s (DS) rule has been widely used
in the combination because it is commutative and associative.
Assuming that m1(B) and m2(C) are two mass functions,
then the combination with DS rule is defined by:

m(A) =


∑

B∩C=A

m1(B)m2(C)

1−K , ∀A ∈ 2Ω, A ̸= ∅

0, A = ∅
(4)

where
K=

∑
B∩C=∅

m1(B)m2(C), K ̸= 1. (5)

The DS rule is applicable only when the denominator is
strictly positive. Hence, the value of K must be smaller than
1 as K=

∑
B∩C=∅ m1(B)m2(C) < 1.

In addition, we also review some basics of mean shift in
Sections D of the supplementary file.

III. BELIEF SHIFT CLUSTERING

In this section, the proposed belief shift clustering (BSC)
method is presented in detail to characterize uncertainty and
imprecision between clusters with arbitrary shapes and sizes
in the space. The BSC mainly includes two parts:

1) Belief shift for preliminary credal partition. It mainly
assigns each object in the query set as the noise (outlier) that
is too far away from other singleton clusters, or a precise
object with exact cluster information, or an imprecise object
with several possible clusters information;

2) Evidential clustering rule for partial credal redistribution.
It can further reassign each imprecise object obtained in the

first part to different singleton clusters or meta-clusters includ-
ing several singleton clusters that the object likely belongs to.

A. Belief shift for preliminary credal partition

Let us consider a dataset X including n objects with p
attributes on the frame of discernment Ω = {ω1, ..., ωc}. Belief
shift for preliminary credal partition can be detailed as follows.
For a specific object xi (i = 1, ..., n), we can obtain the
neighbors by calculating the Euclidean distance between xi

and the others, defined by:

∥xi − xj∥ =

√√√√ p∑
q=1

(xiq − xjq)2 (6)

where xj ∈ X and xj ̸= xi. As a result, we can obtain the K1

neighbors, named y1, ...,yk, ...,yK1
, with the corresponding

minimum distance. These neighbors are selected from the
whole dataset and each neighbor provides a piece of evidence
represented by a mass function mik(.) for the object xi being
a cluster center in a new frame of discernment Θ = {C,U}.
It is defined to describe the belief degree of the object as the
cluster center (C) or unknown (U). A detailed description of
this definition is included in Section L of the supplementary
file. We assume that cluster centers are the objects with the
highest global (local) density. If an object is close to all the
neighbors, it has the potential to become a cluster center.
Therefore, the mass function mik(.) on Θ is defined by:

mik(E) =

{
1
K1

· e−∥xi−yk∥2

, if E = C
1− 1

K1
· e−∥xi−yk∥2

, if E = U
(7)

where ||.|| is the Euclidean distance. In Eq. (7), if E = C, for
example, it means that the object xi is a cluster center. The
mass function mik(C) can be regarded as the support degree
that the object yk believes the object xi as a cluster center.
We can see from Eq. (7) that the nearer the neighbor to xi, the
larger the mik(C) obtained, i.e. this neighbor strongly supports
the object xi as a cluster center.

Afterward, K1 pieces of evidence provided by the neighbors
can be fused by the DS rule, thereby we can obtain the degree
of belief mi(.) on Ω̃ that the object xi is a cluster center or
not, defined by:

mi(E) =
⊕

k∈[1,K1]

mik(E) (8)

where
⊕

represents the DS rule operation symbol. We can
get mi(E) = Beli(E) by deriving Eq. (8). The proof process
is included in Section L of the supplementary file. Thus, we
can redefine the degree of belief Beli(E) as follows:

Beli(E) =


1−

K1∏
k=1

(1−mik(C)) , if E = C
K1∏
k=1

mik(U) , if E = U .
(9)

By doing so, we further calculate the belief degrees of all the
n objects. In the process, each object is regarded as the initial
cluster center for belief shift to eliminate the negative impact
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of random selection2. Thus, the centers are all real objects. In
the process, for the specific object xi (i = 1, ..., n), as the
initial cluster center, it will shift to the new center (object),
named xµ, corresponding to the neighbor yk with the highest
belief degree and defined by:

xµ = argmax
yk∈X

{Beli1(C), ..., BeliK1
(C)} (10)

where Belik(C) (k = 1, ...,K1) represents the belief degree of
the k-th neighbor yk as a cluster center. Then, the center xµ

keeps shifting until the belief degree Belµ(C) is higher than
that of all the new neighbors and defined by:

Belµ(C) ≥ max{Belµ1(C), ..., BelµK1
(C)} (11)

We can obtain the final cluster center xµ that xi converges
to. Similarly, all objects will converge to c cluster centers,
where these centers have the highest belief degrees than their
neighbors. Moreover, although the object xi converges to a
singleton cluster, as a neighbor of different query objects, it
may also be searched by other singleton clusters. In this case,
we temporarily consider it as an imprecise object. To show
belief shift more intuitively and explain its difference from
typical mean shift, we present the following example.

4O 5O

6O

7O8O

1O

2O
3O

9O

1ω

10O
11O

12O

15

10

5

0 5 10 15 20 x

y

2ω

Fig. 2. Illustration of the belief shift process.

Fig. 2 shows a 2-class problem with two dimensions. We
assume that the objects O2 and O12 have the highest degree
of beliefs as the cluster centers. In the process, K1 = 5 is
the default for each query object. For more intuitively, the
K1 neighbors are in the range of the black dotted line, and
the trajectory of belief shift is marked as a red line with an
arrow. For example, as the initial center, the object O4 will
find the K1 neighbors (i.e. O3, O5, O7, O8, O9), and then shifts
to the neighbor O3 with the highest belief degree, and finally
converges to the cluster center O2, i.e. O4 ∈ {ω1}. Similarly,
the object O10 will converge to the cluster center O12, i.e.
O10 ∈ {ω2}. For objects like O4 and O10, both mean shift
(MS) and belief shift will assign them to singleton clusters
{ω1} and {ω2} directly because each object is searched
by only one cluster. Hence, these objects are called precise
objects. This is the same for MS and belief shift.

For the object O5, however, MS will also assign it to
the cluster {ω1} or {ω2} directly. The reason is that MS

2The class with few objects is hard to be identified accurately if we just
initial part objects as cluster centers like mean shift. Thus, BSC initials each
object as a cluster center to implement belief shift.

depends only on the times searched by these two clusters.
Thus, the cluster with the most search times will have this
object. However, it may have a huge error risk because the
search times are related to the randomly initialized cluster
centers in MS. Thus, it is unreasonable to depend only on the
search times. Unlike MS, we consider that as a neighbor, once
different clusters search the object O5, it indicates that O5 may
be distributed in these clusters’ overlapping or intermediate
areas. We also have a similar inference from the object O6 if
interesting. Therefore, it is unreasonable to assign the object
O5 (or O6) to the singleton cluster {ω1} or {ω2} since it
will significantly increase the risk of errors. In this case,
they are temporarily assigned to the specific edited framework
Mi = {ω1, ω2}, Mi ⊆ Ω and i = 5, 6, as imprecise objects
to wait for the next credal redistribution. In addition, although
the object O1 can converge to the cluster {ω1}, as a neighbor
of other query objects, it will not be searched by different
clusters because it is too far away from other objects. The
object O1 is more suitable for assigning to the noise cluster.
That is, we prefer to consider the object O1 as noise. However,
MS cannot deal with these above cases.

By the above analysis, the query object xi have two general
indexes: 1) The number of different clusters that search this
object, denoted as |Mi|; 2) As a neighbor, the number of times
this object is searched by other ones, recorded as Ti. The total
number Ti of searched times for xi is defined by:

Ti =
∑

{ωj}∈Mi

T j
i (12)

where T j
i represents the number of times that the object xi is

searched by the other ones that converge to the cluster {ωj}.
If xi is searched significantly less than that of others, it is
assigned directly to the noise cluster, i.e. ∅, defined by:

∅ = {xi | Ti ≤
[
T α

]
} (13)

with

T =
1

n

n∑
i=1

Ti (14)

where [·] is the rounding symbol, and T is the mean of Ti for
all objects. α is the outlier adjustment factor, which controls
the number of objects assigned to the noise cluster, i.e. ∅.

The flowchart of preliminary adaptive credal partition by
belief shift is given in Section E of the supplementary file. We
can see that 1) the query object xi is regarded as the noise
(outlier) if it is searched as a neighbor by very few or even
no other objects. This also means that xi is far away from the
others. 2) If |Mi| = 1 with Ti >

[
T α

]
, it indicates that xi

is a precise object with exact cluster information and should
be assigned to the singleton cluster Mi. 3) Otherwise, it is
temporarily regarded as an imprecise object.

Here we need to clarify that belief shift has two functions.
The first one is to obtain the c cluster centers. The second
one is to assign each object as the noise, precise, or im-
precise one. To avoid the “uniform effect” when reassigning
imprecise objects, we generate new simulated cluster centers
for each imprecise object in subsection III-B. In this case,
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the c cluster centers obtained in this part are not employed
in subsection III-B. This also means getting the c cluster
centers is not our goal. Therefore, we highlight the preliminary
credal partition of each object by belief shift while weakening
obtaining the cluster centers.

B. Evidential clustering rule for credal redistribution

For the imprecise object xi, the masses of belief will be
partially redistributed by evidential clustering rule to reas-
sign xi to different clusters under the corresponding specific
dynamic sub-framework Mi (|Mi| > 1). After prelimi-
nary credal partition based on belief shift, we consider that
there are n1 (0 < n1 < n) imprecise objects in the set
Xim = (x1, ...,xn1

) ∈ Rp×n1 and n2 (0 < n2 < n)
precise objects in the set Xpr = (x1, ...,xn2

) ∈ Rp×n2 ,
n1 + n2 = n. For the imprecise object xi ∈ Xim, it well be
reassigned under the new edited dynamic framework Fi ⊂ 2Ω

with 2|Mi| − 1 elements under the TBF. The credal partition
mij ≜ mi(Aj) ∈ R2|Mi|−1 with the j-th focal element Aj in
Fi, i.e. Aj ∈ Fi, is provided for each imprecise object xi (i =
1, ..., n1). For example, for the imprecise object xi, if Mi =
{ω1, ω3, ω5} with |Mi| = 3 after belief shift, then we have
Fi = {{ω1}, {ω3}, {ω5}, {ω1, ω3}, {ω1, ω5}, {ω3, ω5},Mi}.

In a credal partition [37]- [39], the dataset converges to c
clusters and related meta-clusters by alternating iterations of
the center matrix and the mass of belief matrix. Although the
real (final) cluster centers have been obtained by belief shift,
we cannot use them to iterate the masses of belief directly
since it is unreasonable to use one fixed center to represent
the class with arbitrary shape and size. For example, when
dealing with imbalanced data, these centers tend to assign
the objects in the majority classes to the minority classes [1].
Here we provide specific simulation centers for related clusters
supervised by Fi when reassigning each imprecise object xi.
We can further explain this by an example, as shown in Fig. 3,
with a 2-class dataset Ω = {ω1, ω2}.
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Fig. 3. Illustration of the simulated cluster centers based on
imbalanced data.

In Fig. 3, the black pentagrams represent the cluster centers
of {ω1} and {ω2} after belief shift, and the objects specifically
assigned to different clusters are precise objects while the
objects O1, O2 and O3 are imprecise objects. We can see

that the center of meta-cluster {ω1, ω2} marked as purple
pentagram is obtained by calculating the mean of {ω1} and
{ω2} in a credal partition. However, the center is located in
the cluster {ω1}, which is obviously unreasonable and runs
counter to our intuitive perception. In this case, if we use the
unreasonable meta-cluster center directly, those objects like
O4 that originally belong to the cluster {ω1} will be assigned
to the meta-cluster {ω1, ω2} and the objects like O1 will be
assigned to the cluster {ω2}. In fact, the meta-cluster center
should be located in the midpoint of the edges.

To address such issues, the simulated cluster centers based
on KNNs are calculated to assign each imprecise object
partially. Here the neighbors are defined as K2 objects, yk,
k = 1, ...,K2, based on Eq. (6). That is, we should find
K2 neighbors from each singleton cluster included in Mi

to simulate the corresponding center. Then, the simulated
singleton cluster centers are employed to calculate the related
meta-cluster centers. That is, we adaptively provide specific
cluster centers included in Fi for each imprecise object xi.
For example, the imprecise object O1 finds different neighbors
included in the black dashed circle in clusters {ω1} and {ω2}
respectively, as shown in Fig. 3. The black triangle represents
the simulated center obtained by the mean of neighbors, and
the midpoint marked as the green triangle is the meta-cluster
center for O1. We can intuitively see that the meta-cluster
center obtained by simulated centers is located at the halfway
of {ω1} and {ω2}, which is more reasonable than the center
marked as the purple pentagram. Based on these, the singleton
cluster center vil is defined by:

vil =
1

K2

K2∑
k=1

yl
k, l = 1, ..., c (15)

where yl
k (k = 1, ...,K2) represents the k-th neighbor in the

cluster {ωl} ⊂ Xpr. Besides, the meta-cluster center is the
mean of that of the related singleton cluster centers.

As a result, based on the simulated center matrix V , the
evidential clustering rule to update the mass of belief for the
object xi is defined by:

mij =
D

−2/(β−1)
ij∑

j|Aj∈Fi

D
−2/(β−1)
ij

(16)

subject to

JBSC(M,V ) =

n1∑
i=1

∑
j|Aj∈Fi

mβ
ijD

2
ij (17)

and

D2
ij =


d2ij , if |Aj | = 1∑
ωl∈Aj

γ−1d2
il+d2

ij

|Aj |+1 , if |Aj | > 1
(18)

where dij is the Euclidean distance between xi and the
center of cluster Aj ; dil represents the distance from xi to
the singleton cluster centers in Aj such that |Aj | > 1. n1

is the number of imprecise objects. The tuning parameter
β, such that β > 1, is a weighting exponent [37] and γ
is the threshold to control the number of objects in meta-
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clusters [38]. We can find that the distance between the object
xi and the meta-cluster Aj with |Aj | > 1 depends not only
on the distance from xi to the meta-cluster center, but also on
the distance between xi and the centers of all the singleton
clusters included in Aj . If interesting, please refers to Eq. (11)
in Section C of the supplementary file.

Different from CCM [38], however, we do not consider
noise clustering here because we have solved this problem well
in the preliminary credal partition. Since the simulated cluster
centers are reliable, only one update is needed to produce
the masses of belief that each imprecise object xi belongs to
different clusters. This can decrease the computation brought
by the iterative process while ensuring rationality. By doing
so, each imprecise object in the set Xim is credal redistributed
again based on the evidential clustering rule. Part of objects
is reassigned to singleton clusters in the process, which
means that these objects are precise ones with exact cluster
information. By contrast, the rest are reassigned to related
meta-clusters to characterize imprecision caused by fuzziness
of knowledge. This prudent decision-making can characterize
the uncertainty and imprecision between clusters with arbitrary
shapes and sizes, which may be critical in some applications.
By the way, the pseudo-code is presented in Algorithm 1 to
show how BSC works and illustrate its basic principle clearly.

Algorithm 1 Belief shift clustering

Require: Dataset: X = {x1, ...,xn}; Given the parameters:
K1,K2, α, β, γ.

Ensure: Cluster decision results.
Step 1
Search the neighbors for all objects using Eq. (8);
Calculate (Beli(C)) for all objects using Eqs. (9)-(11);

for i = 1 to n
repeat

Each object is employed to belief shift using Eq. (12);
until Satisfy the judgment condition of Eq. (13).

end
Assign the outlier using Eqs. (14)-(16);
Assign precise and imprecise objects using |Mi| and Ti;
Step 2
for i = 1 to n1

Calculate simulated cluster centers using Eq. (17);
Calculate the meta-cluster centers based on the simulated

singleton cluster centers;
Reassign each imprecise object again using Eq. (18).

end
Return: Output the results.

C. Tuning of parameters

In BSC, some parameters including α, γ, β,K1,K2 play a
very important role, and they should be selected in advance
to implement the proposed BSC method. α is the outlier
adjustment factor, which controls the number of objects re-
garded as the noise. In applications, α is tuned accordig to
the used datasets. In general, the bigger α causes the more

objects assigned to the noise cluster, and we recommend that
α ∈ [0, 0.6] and take α = 0.3 as the default. The weighting
factor γ can be used to control the number of objects in meta-
clusters. The smaller γ is, the fewer objects are assigned to
meta-clusters, which will increase the number of misclassified
objects. Whereas, γ is not the bigger the better since a
big value of γ will lead to high imprecision. Therefore, the
selection of γ should be based on the imprecision rate that one
can accept. Some works (e.g. CCM [38]) have discussed the
influence of this parameter on clustering results and provided
the ranges in applications. Similar to CCM, we recommend
γ ∈ [0.5, 2.5] and generally take γ = 1 as the default.
The tuning parameter β is a weighting exponent. Similar to
FCM [5] and ECM [37], β = 2 is used as the default. K1 is
the number of not only the neighbors that are used to provide
the pieces of evidence for the object being a cluster, but also
the neighbors that the objects are looking for in the process
of belief shift. The value of K1 should not be too small since
it may cause the object to fall into the local maximum belief
degree during belief shift. Whereas some clusters with very
close data distribution may not be able to correctly distinguish
if too large K1 value is set. Here the value of K1 is determined
by the number n of objects in the dataset, and we find that
K1 ∈ [0.01n, 0.2n] can be used as the default in most cases
according to numerous experiments. K2 is the number of
neighbors that are used to get simulated cluster centers of
different clusters, and it does not need to take too large. Thus,
we recommend a common default value, i.e. K2 = 7. Both K1

and K2 are the open parameters, and we try to optimize them
based on other technologies in the future.

IV. EXPERIMENT APPLICATIONS

We have done four experiments to evaluate the performance
of the proposed BSC method with respect to K-means [4], DB-
SCAN [28], MC [1], DPC [15], MS-type [25], U-SENC [32]
and BPEC [2]. Experiment 1 and Experiment 2, based on
particular synthetic datasets, are used to illustrate the use of
BSC and the limitations of other methods. Experiment 3 with
real images is presented to evaluate the effectiveness of the
proposed BSC method in image segmentation. Experiment 4
is used to reveal the potential of BSC in image classification
with face datasets. All parameters are defaults except the
ones we adjust. The detail is presented in Section F of the
supplementary file.

The error rate and impression rate are used as performance
indexes of different methods [38]- [39]. The error rate, denoted
as Re (In %), is calculated by Re = Te/T . Te is the number
of clustering errors, and T is the number of objects under
test. The imprecision rate, denoted as Ri (In %), is calculated
by Ri = Ti/T . Ti is number of objects assigned to the
meta-clusters. Additionally, the Credal Rand Index (CRI) [52]
based on TBF, regarded as the evidential version of the
widely used performance index called Adjusted Rand Index
(ARI) [53], is employed to measure the closeness of the credal
partition and the truth. In general, CRI provides the overall
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performance of different methods when clustering different
datasets, defined by:

CRI = (M,M∗) =

∑
i<j plij(s)

r∗ijplij(¬s)1−r∗ij

n(n− 1)/2
(19)

where M represents the evidential partition, and M∗ is the true
hard partition. n is the number of objects in the dataset. r∗ij = 1
if the i-th and j-th object truly belong to the same cluster,
and r∗ij = 0, otherwise. Particularly, CRI and ARI are equal
when comparing the closeness of the hard partition to the truth.
In this paper, the performance index is uniformly denoted as
“CRI”. The higher the CRI value, the better the performance
of the method. We define ωi ≜ {ωi} and ωk,...,t ≜ {ωk, ..., ωt}
in the figures for notation conciseness.

A. Experiment 1

In this experiment, we employ a synthetic dataset named
SD15 to validate the effectiveness of BSC and reveal the
limitations of hard partitions, including MC, DPC, and MS-
type in clustering data with high overlap and noise.
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(a) Original data.
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(b) Probability distribution.

Fig. 4. The basic information of the SD15 dataset.

The SD15 is from [54] and contains 5000 data points in
15 classes. In addition, we give 3 noisy points marked by
black dots in the top left corner of SD15. The SD15 is
shown in Fig. 4(a) while Fig. 4(b) reveals the probability
distribution. Various colors mark the data points included in
different clusters. All the attributes are normalized into [0,1] by
the min-max rule introduced in [2] to eliminate the influence
of differences in various dimensions. Here, we set Eps = 0.03
and MinPts = 40 in DBSCAN. We choose f = 0.02 in DPC,
r = 0.08 in MS-type, and K1 = 80 in BSC, respectively.

We can see from Fig. 4(a) that these 15 classes are partly
overlapped on their borders, and the points in these areas are
difficult to be classified. Figs. 5(a)-(f) show the clustering
results of K-means, DBSCAN, MC, DPC, MS-type and U-
SENC. We can see that the points in these overlapping areas
are all assigned to singleton clusters by these methods and
most of them are misclassified. It is worth noting that the
noisy points marked with black dots are far from the other
points, and they cannot be detected by K-means, MC, DPC,
and U-SENC but assigned to singleton clusters. Although
DBSCAN can distinguish the three noisy points, it assigns too
many objects that initially belong to singleton clusters to the
noise cluster. In particular, MS-type yields a singleton cluster
for the noisy data, but it also does not assign these special

points correctly due to the probability framework’s limitations
that do not introduce the noise cluster. Fig. 5(g) shows the
trajectory of the belief shift in BSC. The trajectories of the
objects are marked as red lines, and they finally coverage
to the 15 points with the highest belief degrees marked by
blue dots. Fig. 5(h) shows the preliminary credal partition
of BSC for the points based on belief shift. The 3 noisy
points are only searched by a few in the belief shift process
since they are far from others. By contrast, as a neighbor,
the points searched multiple times by others and searched
by only one cluster can be directly assigned to specific
clusters. Whereas the points, marked as gray and searched
by multiple clusters in the process, are imprecise points, and
most of them lie in overlapping areas of different clusters. The
final clustering results of BSC are shown in Fig. 5(i). BSC
provides masses of belief of the imprecise objects associated
with singleton clusters to characterize the uncertainty in the
results. Some of these objects are assigned to singleton clusters
marked by points with different colors if they have the highest
support degrees belonging to these clusters. By contrast, BSC
assigns some imprecise objects lying in overlapping areas to
proper meta-clusters marked by crosses with different colors.
By doing so, BSC can effectively reduce the errors and
characterize imprecision between different clusters. Therefore,
BSC exhibits the lowest error rate and highest value of CRI
concerning comparison methods.

B. Experiment 2

This experimentreveals the limitations of the typical BPEC
method. Here we only show partial results. We investigate
the performance of BSC and BPEC in clustering a 4-class
dataset named SD4 that contains not only overlapping areas
in different clusters but also has arbitrary shapes and sizes in
the space. The dataset consists of 3300 data points with two
dimensions. The points arise from a mixture of four bivariate
Gaussian densities are given in Table I, where µi is the means
vector and Σi is the covariance matrices. Ni represents the
number of data points in different classes.

Table I: The basic information of the SD4 dataset

Data Indexes {ω1} {ω2} {ω3} {ω4}
µi [2.5, 5]T [7.5, 5]T [5, 7]T [5, 1.5]T

SD4 Σi

(
1 0
0 0.05

) (
1 0
0 0.05

) (
0.05 0
0 0.5

) (
1 0
0 2

)
Ni 500 500 300 2000

Fig. 6(a) intuitively shows the distribution of the points
in this dataset, and the probability distribution is given by
Fig. 6(b). Here Eps = 0.35 and MinPts = 20 are set in
DBSCAN. We take K = 70, α = 3, ∆ = 5 in BPEC and
K1 = 200 in BSC, respectively.

Fig. 6(c), (f) shows the results of BPEC and BSC on
the SD4 dataset. They can carefully assign the points in
overlapping areas of different classes to appropriate meta-
clusters. Both of these methods can characterize the uncer-
tainty and imprecision of these points and reduce the risk of
errors. As a result, we can see that BSC yields a lower error
rate and imprecision rate than BPEC. Although BPEC can
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(a) K-means (Re = 27.42%, CRI = 0.6223).
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(b) DBSCAN (Re = 38.94%, CRI = 0.2647).
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(c) MC (Re = 24.45%, CRI = 0.6159).
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(d) DPC (Re = 14.69%, CRI = 0.7226).
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(e) MS-type (Re = 16.41%, CRI = 0.6950).
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(f) U-SENC (Re = 14.41%, CRI = 0.7275).

(g) Trajectory of belief shift in BSC.
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(h) Preliminary credal partition in BSC.
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(i) BSC (Re = 11.29%, Ri = 7.06%, CRI =
0.9338).

Fig. 5. The results of different methods on the SD15 dataset.

also provide the credal partition, it assigns a part of points
belonging to the majority class to the minority classes in
dealing with such a dataset. For example, some points in the
class {ω4} are assigned to {ω1} and {ω2}, since the methods
like BPEC based on symmetric distance only consider the
symmetry of points in the space and don’t take into account
the distribution or the number of points in different classes.
Thus, in this case, the center of meta-clusters tends to shift to
the singleton class with majority points so that we may obtain
unreasonable clustering results. By contrast, BSC simulates
cluster centers using neighbors at the boundary of different
classes, effectively decreasing the negative impact of clusters
with arbitrary shapes and sizes. In addition, the results of other

methods with experimental analysis are given in Section G of
the supplementary file. In addition, due to space limitations, we
will further discuss the differences and connections between
BSC and existing typical TBF-based clustering methods in
Section L of the supplementary file.

C. Experiment 3

In this experiment, a medical image and a natural image are
employed to demonstrate the effectiveness of BSC in image
segmentation. We obtain a true color dermoscopic image
(invasive malignant melanoma) of 66 × 86 pixels, named
DI2, from the EDRA Interactive Atlas of Dermoscopy [55], as
shown in Fig. 7(a). It consists of two classes, including lesion
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Table II: The results of different methods on the DI2 and NI2 datasets

Data Indexes K-means DBSCAN MC DPC MS-type BPEC U-SENC BSC
Re(%) 4.81 29.86 4.61 3.91 6.93 3.11 4.62 2.24

DI2 Ri(%) / / / / / 3.46 / 2.40
CRI 0.8080 -0.0087 0.8201 0.8554 0.7255 0.9031 0.8205 0.9476
Re(%) 4.33 25.15 5.76 4.83 3.85 2.85 24.89 2.63

NI2 Ri(%) / / / / / 3.50 / 3.17
CRI 0.8156 -0.0399 0.7464 0.7878 0.8313 0.9106 0.2358 0.9235
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(a) Original data.
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(b) Probability distribution.
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(c) BPEC (Re = 3.79%, Ri =
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(f) BSC (Re = 1.03%, Ri=2.12%,
CRI = 0.9571).

Fig. 6. The results of BPEC and BSC on the SD4 dataset.

and non-lesion, and Fig. 7(c) shows the ground truth. The
distribution of the pixels is shown in Fig. 7(b). The blue and
red points with three dimensions, including R, G, and B value,
represent the pixels of the lesion and non-lesion according to
the ground truth, respectively. Here, we set Eps = 0.05 and
MinPts = 40 in DBSCAN. We choose f = 0.02 in DPC
and r = 150 in MS-type. K = 2000, α = 3, ∆ = 500 and
K1 = 1000 are set in BPEC and BSC, respectively.

We can see from Fig. 7(a) that the lesion edge is ambigu-
ous and the distribution of the pixels given in Fig. 7(b). It
intuitively reveals some pixels distributed in the overlapping
area of different classes. These pixels correspond to the lesion

(a) Original image.
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(b) Data distribution.

(c) Ground truth. (d) Result by BSC.

Fig. 7. The medical image and the result of BSC.

edge, and they are challenging to be distinguished accurately.
The segmentation results of comparison methods are shown
in Section H of the supplementary file. We can see from the
results of K-means, DBSCAN, DPC, MC, MS-type, and U-
SENC that some pixels in the lesion edge are assigned to
the specific cluster (i.e. lesion or non-lesion), and most of
them are misclassification. The parameters have a significant
impact on the performance of DBSCAN, and it has poor
performance on this dataset with these parameters. Although
MS-type is latter than MC and DPC, it is worse than them
in this dataset since the performance is strongly affected by
the initial cluster centers. Interestingly, we can also observe
from Fig. 7(h),(d) that BPEC and BSC cautiously assign the
pixels in lesion edge to the meta-cluster composed of the lesion
and non-lesion under the TBF. That is, the pixels in this area
are indistinguishable. However, the error rate and imprecision
rate of BSC are lower than that of BPEC, and the overall
performance of BSC is superior to comparison methods.
The reason is that BSC has the advantage of characterizing
uncertainty and imprecision between clusters with arbitrary
shapes and sizes under the TBF.

Doing so can reduce the risk of error and characterize the
imprecision between different clusters. We also obtain a goose
floating on the lake (named NI2) with 60 × 90 pixels from
the Berkeley Segmentation Dataset [56]. The analysis of this
natural gray image is given in Section H of the supplementary
file. The clustering results of different methods based on these
two images are given in Table II.
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(a) Original data. (b) Result by BSC.

Fig. 8. The FI5 dataset and the result of BSC on this database.

D. Experiment 4
In this experiment, the Olivetti Face Database [15], a

widespread benchmark for machine learning, is applied to
further evaluate the potential of the BSC in unsupervised
image classification. The image data, called FI5, contains
five people, each of whom has 10 face pictures with different
shooting angles and expressions. The original data of these
faces are shown in Fig. 8(a), where the faces of the same
color belong to the same class, i.e. the same person. Here we
set Eps = 5 and MinPts = 3 in DBSCAN. We take f = 0.2
in DPC and r = 9 is set in MS-type. K = 8, α = 3, ∆ = 10
in BPEC and K1 = 6, α = 0.1 are taken in BSC, respectively.
The other parameters are default3.

The clustering results of comparison methods are shown in
Section I of the supplementary file4. We intuitively see that
women’s faces are identified accurately by these methods.
However, for four other people, K-means, DBSCAN, MC,
DPC, and MS-type misclassify them since some faces are not
distinguished. For example, the faces of the fourth and fifth
people are very similar, and these methods (MC, DPC, and
MS-type) assign them to singleton clusters, which increases
the risk of errors. Additionally, K-means and DBSCAN are
very early clustering methods and provide bad performance
on this dataset. MS-type is worse than MC and DPC since
it is mainly suitable for low dimensional datasets while the
dimension of FI5 is high. We also see from Fig. 8(b),(f) that
BPEC and BSC can produce the credal partitions to reduce
errors. However, it is worth noting that BPEC assigns two
faces marked by black of the fourth person to meta-cluster
composed of the second and the fifth person. That is, BPEC
argues that the two faces are difficult to distinguish between
the second and the fifth person, which is unreasonable and
results in worse performance than MC, DPC, and MS-type on
this dataset. By contrast, BSC can effectively characterize the
uncertainty and imprecision between singleton clusters with
arbitrary shapes and sizes. Thus, it can recognize the first

3Here we take K2 = 5 since BSC needs to obtain different neighbors from
various clusters of the precise objects to yield simulated cluster centers.

4The scale of FI5 is small, and there is no result of U-SENC on this
dataset since it mainly focuses on clustering extremely large-scale datasets.

three people accurately. For two faces marked by cyan of the
fifth people, BSC argues that they are hard to be distinguished
between the fourth and the fifth people only using the current
information. This is a prudent decision that can effectively
reduce the error rates and fit what we reasonably expect.
These imprecise images in meta-clusters can be eventually
distinguished using some other techniques or with extra in-
formation sources. The clustering results of different methods
are shown in Table III, and the results verify that BSC has
potential in image classification. Additionally, some UCI real-
world databases (available at http://archive.ics.uci.edu/ml/) are
employed to evaluate the performance of BSC compared with
other methods. These contents are included in Section I of the
supplementary file.

V. DISCUSSION

The involved parameters. The 7-class dataset with arbi-
trary shapes and sizes is employed here to investigate the im-
pact of parameters (α,K1,K2, γ) on the performance of BSC.
The clustering results with three α values, i.e. α ∈ [0, 0.4, 0.6],
are shown in Fig. 9(a)-(c), where the exact singleton clusters
and proper meta-clusters marked by points and crosses with
different colors, respectively. The black points represent the
noise (outlier), and the number of noise with α from 0 to
0.6 is given by Fig. 9(d). The value of α corresponds to the
x-coordinate, and the y-coordinate represents the number of
noise. Interestingly, we can intuitively observe that BSC could
assign all points to proper clusters without noise if we take
a very small α, e.g. α = 0, as shown in Fig. 9(a). As α
increases, of course, those objects far from the clusters will
be gradually assigned as noise, which is consistent with our
intuitive perception. If we take a big α, e.g. α = 0.6, some
objects that are far from the clusters are regarded as noise, as
shown in Fig. 9(c). We can also see that with the continuous
increase of α, objects will increasingly be assigned as noise.
Fig. 9 (d) reveals that the parameter α can effectively adjust
the number of noise in BSC, and it depends on the number of
noise that we can accept. The clustering results of BSC with
various K1 and K2 are given in Figs. 10-11. We can see that
the Re, Ri, CRI values vary very little with different values
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Table III: The results of different methods on the FI5 dataset

Data Indexes K-means DBSCAN MC DPC MS-type BPEC BSC
Re(%) 30.00 50.00 20.00 22.00 26.00 32.00 14.00

FI5 Ri(%) / / / / / 0 4.00
CRI 0.6986 0.3894 0.7278 0.5571 0.6251 0.7701 0.9343

of the parameters K1 and K2, which confirms its robustness
to these two parameters. Particularly, we can see from Fig. 12
that the error rate Re of BSC gradually decreases with the
parameter γ changes from 0.5 to 2.5, while the imprecision
rate Ri increases. This indicates that γ can reasonably adjust
the degree of the imprecision and help to reduce the error
rate. In applications, the parameter γ could correspond to a
suitable compromise between the error rate and imprecision
rate, and it depends on the imprecision rate that we can accept.
In addition, the value of CRI is still stable even if γ is
taken as different values, which also verifies the robustness
and effectiveness of BSC.
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(b) Result of BSC with α = 0.4.

-6 -4 -2 0 2 4 6 8
0

2

4

6

8

10

12

(c) Result of BSC with α = 0.6.
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Fig. 9. The effect of α on the proposed BSC method.

The complexity and other typical methods. We also
discuss the complexity analysis of the proposed BSC method
and investigate the execution time in seconds of BSC and other
comparison methods on different UCI datasets. The detail is
presented in Section J of the supplementary file. In addition,
the differences and correlations between fuzzy-based methods,
density-based methods, typical TBF-based clustering methods
and the proposed BSC method are discussed in Sections K and
L of the supplementary file.

The application of BSC in relational data. In this paper,
the proposed BSC method mainly focuses on object data, and
numerous experiments have verified its effectiveness. Different
from object data, relational data (e.g. network data) only
gives pairwise similarities or dissimilarities, and it has been
widely applied to numerous applications, such as document
classification [57], computational biology [58] and graph
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Fig. 10. (a) Re and Ri values of BSC with different K1. (b)
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Fig. 11. (a) Re and Ri of BSC with different K2. (b) CRI
of BSC with different K2.

Learning [59]. Some evidential clustering methods based on
TBF have been developed for relational data. For example, a
relational data-oriented method named EVCLUS is introduced
in [41], extending TBF to clustering analysis for relational
data. A median evidential c-means (MECM) clustering method
is presented in [39], redefining the distance from the object
to meta-clusters in ECM. In this way, MECM can apply to
community detection. Inspired by these methods, BSC also has
the potential for relational data. In future work, for example,
we will try to apply BSC to graph clustering.

VI. CONCLUSION

In this paper, we propose a belief shift clustering (BSC)
method to characterize the uncertainty and imprecision be-
tween the clusters with arbitrary shapes and sizes in the space,
which can be regarded as the evidential version of mean shift
or mode seeking under the TBF. In fact, all studies that include
imprecise results, including our proposed BSC method, can
be considered as prudent decision-making. Once an object
is assigned to a meta-cluster, it indicates that this object
cannot be precisely identified based on current knowledge.
If this object is forced to be assigned to a singleton cluster,
it may significantly increase the risk of error. In this case,
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Fig. 12. (a) Re and Ri values of BSC with different γ. (b)
The CRI value of BSC with different γ.

we need additional information to aid in further identification
of these imprecise objects. Therefore, the results of the BSC
can be considered as the first decision in applications. It
aims to narrow down the number of objects identified and
the potential solutions of imprecise objects. After obtaining
imprecise objects, we can focus on acquiring new partial
knowledge to identify them precisely. Although this would
be costly, it is essential in some cases.
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Supplementary file

A. Some TBF-based clustering methods

A collection of mass function m(.) for n objects is called
credal partition [2]. It allows the object to be assigned to
a singleton cluster thereby representing the exact informa-
tion or meta-cluster composed of multiple singleton clusters
thereby characterizing uncertainty and imprecision [37]-[42].
For example, Masson and Denœux first propose an evidential
c-means (ECM) [37], regarded as the evidential version of
the fuzzy c-means (FCM) [5] and noise clustering (NC) [13],
which allows the object to be in any singleton clusters and
any sets of some clusters, i.e. meta-cluster, with different
masses of belief. An improved credal c-means (CCM) method
is proposed in [38] to make ECM deal with the case when the
centers of different clusters are very close. In previous work,
we also propose a dynamic evidential clustering (DEC) in [39]
to reduce the complexity of these typical TBF-based methods.
Whereas these clustering methods based on the symmetric
distance (FCM-like) may also not be suitable for the clusters
with arbitrary shapes and sizes in the space. For example, if
they are employed to deal with imbalanced data, the center of
the meta-cluster tends to shift to the majority classes, which
may result in unreasonable results [1]. Since the proposed BSC
method is inspired in part by these methods such as ECM [37]
and CCM [38], we also briefly review these two representative
methods in Sections B and C of this supplementary file.

B. Brief review of evidential c-means (ECM)

Evidential c-means (ECM) is regarded as the evidential
version of the fuzzy c-means (FCM) and noise clustering (NC)
to characterize uncertainty and imprecision between different
clusters, and it will be briefly introduced as follows.

Let us consider a dataset X including n objects with p
attributes over the frame of discernment Ω = {ω1, ..., ωc}.
For the specific object xi ∈ X , i = 1, ..., n, the mass of belief
mij ≜ mi(Aj) is associating the object xi with an element
Aj of the power-set 2Ω. Particularly, Aj ⊆ Ω, Aj ̸= ∅, i.e. Aj

can be any singleton cluster or meta-cluster included in 2Ω.
The cluster center v̄j associated to Aj can be computed by:

v̄j =
1

|Aj |

c∑
l=1

sljvl (1)

subject to

slj =

{
1, if {ωl} ∈ Aj ;
0, otherwise.

(2)

where |Aj | denotes the cardinality of Aj and vl represents the
cluster center of {ωl} ∈ Ω.

In ECM, the mij value depends on the distance dij between
the object xi and the cluster center v̄j of Aj , i.e. the higher
distance dij leads to lower mij . ECM looks for the matrix M

of the credal partition and the matrix V of cluster centers by
minimizing the following objective function:

JECM (M,V ) =

n∑
i=1

∑
Aj⊆Ω,Aj ̸=∅

|Aj |αmβ
ijd

2
ij +

n∑
i=1

δ2mβ
i∅

(3)
subject to ∑

Aj⊆Ω,Aj ̸=∅

mij +mi∅ = 1. (4)

where the noise (outlier) threshold, denoted as δ, represents
the distance between any object xi (i = 1, ..., n) and the
noise cluster. mi∅ represents the mass of belief that the object
assigned to the noise cluster and it can be adjusted by the
threshold δ. A bigger threshold δ will lead to a lower mass
of belief mi∅, and the object may be far away from the other
objects if it is assigned to the noise cluster.

The object function JECM is then minimized by the
Lagrange multipliers to provide the matrix M of the credal
partition and the matrix V of cluster centers, defined by:

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij∑

Ak ̸=∅
|Ak|−α/(β−1)d

−2/(β−1)
ik +δ−2/(β−1)

, if Aj ̸= ∅;

mij = 1−
∑

Aj ̸=ϕ

mij , if Aj = ∅.

(5)
where dij represents the distance between the xi and the center
of Aj . The exponent α controls the degree of penalization. β
is a weighting exponent and generally set β = 2 as default.

The centers of the clusters are given by the rows of the
matrix Vc×p, given by:

Vc×p = H−1
c×cBc×p; (6)

subject to

Blq =

n∑
i=1

xiq

∑
ωl∈Aj

|Aj |α−1
mβ

ij ; (7)

Hlk =

n∑
i=1

∑
{ωl,ωk}⊆Aj

|Aj |α−2
mβ

ij . (8)

where Blq (l ∈ [1, c], q ∈ [1, p]) and Hlk (l ∈ [1, c],
k ∈ [1, c]) represent the elements in the matrices Bc×p and
Hc×c, respectively.

ECM repeatedly updates the matrix M of the credal par-
tition and the matrix V of cluster centers until the deviation
between the two consecutive matrix V cluster centers after
t iterations is less than the value of the threshold ε, i.e.
∥Vt − Vt−1∥ < ε.
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C. Brief review of credal c-means clustering (CCM)

Compared with ECM, the mass of belief that the object
xi assigned to the meta-cluster in CCM depends not only
on the distance from xi to the meta-cluster center but also
the distance between xi and the singleton clusters included in
the meta-cluster. The CCM can avoid the unreasonable result
provided by ECM in clustering the datasets with special dis-
tributions. Additionally, ECM considers all the meta-clusters
in the power-set 2Ω. In such a case, it will bring a high com-
putational complexity if the dataset contains a large number of
clusters. Moreover, the CCM also sets a threshold tc ∈ [2, 2Ω]
to eliminate some meta-clusters with big cardinality to reduce
the computational complexity, especially in the datasets with
abundant clusters. In this case, the set of the selected available
clusters SΩ is given by SΩ = {Aj , |Aj | < tc} in CCM.

Based on the above principles, the objective function JCCM

of CCM is defined by:

JCCM (M,V ) =

n∑
i=1

∑
j/Aj∈SΩ

mβ
ijD

2
ij , (9)

subject to ∑
j/Aj∈SΩ

mij = 1. (10)

and

D2
ij =


δ2, if |Aj | = ∅;
d2ij , if |Aj | = 1;∑
Al∈Aj

d2
il+γd2

ij

|Aj |+γ , if |Aj | > 1.

(11)

where dij is the Euclidean distance between xi and the center
of the cluster Aj . dil represents the distance from xi to the
centers of singleton clusters in the meta-cluster Aj such that
|Aj | > 1. γ is the weighting factor of the distance between the
object and the meta-cluster center, and it is used to control the
imprecision rate. The bigger the value of γ is, the more objects
will be assigned to the meta-clusters, and it is generally taken
γ ∈ [0.5, 3]. The weighting exponent β = 2 is the default.

The Lagrange multipliers method is used to minimize the
function JCCM (M,V ) to obtain the matrix M of the credal
partition and the matrix V of cluster centers, defined by:

mij =
D

−2/(β−1)
ij∑

k|Ak∈SΩ

D
−2/(β−1)
ik

(12)

The centers of the cluster are given by the rows of the matrix
Vc×p, given by:

Vc×p = H−1
c×cBc×nXn×p; (13)

subject to

Bli = mβ
il +

∑
Al∈Aj

mβ
ij

1+γ
|Aj |+γ ;

Hll =
n∑

i=1

mβ
il +

n∑
i=1

∑
Al∈Aj

mβ
ij

1+ γ

|Aj |2
|Aj |+γ ;

Hlq =
n∑

i=1

∑
{Al,Aq}∈Ak

mβ
ij

γ
|Ak|2(|Ak|+γ)

, l ̸= q.

(14)

where Bli (l ∈ [1, c], i ∈ [1, n]) and Hlq (l ∈ [1, c],
q ∈ [1, c]) represent the elements in the matrix Bc×n and
Hc×c, respectively.

CCM repeatedly updates the matrix M of the credal parti-
tion and the matrix V of cluster centers, and the termination
condition is the same as that of ECM.

D. Basics of Mean shift

Mean shift (MS) is first introduced by Fukunaga and
Hostetler [19]-[20]. They designed a simple nonparametric
iterative procedure that shifts each object to the average of
the objects included in its neighborhood. We briefly review
the generalized mean shift procedure as follow.

Let us consider that S is a p-dimensional Euclidean space,
and the dataset, named X with X ⊂ S, is a finite set. The
object si ∈ S as the initial cluster center (mode) and the new
cluster center si+1 which si shifts to is given by:

si+1 =

∑
xj∈X

K(xj − si)xj∑
xj∈X

K(xj − si)
(15)

with
K(xj − si) =

{
1, if ∥xj − si∥ ≤ h
0, if ∥xj − si∥ > h

(16)

where h is called the bandwidth and ||.|| represents the
Euclidean distance. K(xj − si) is the unit flat kernel here
and it can also be other kernels (e.g. Gaussian kernel [20]).
The cluster center si shifts to the new cluster center si+1,
denoted as si ← si+1. According to the mean shift vector,
named m(si), it can be concluded by m(si) = si+1 − si.
The MS method repeatedly updates the cluster center si using
Eqs. (15)−(16) until the deviation between the estimations of
two consecutive cluster centers is less than the value of the
threshold ε, i.e. ∥si+1 − si∥ < ε. In the process of iterations,
each object will be searched by other ones that coverage to
one or more clusters. The object is searched by one or multiple
clusters, and it will be assigned to the cluster that searches it
the most times. The flowchart of mean shift (MS), as shown
in Fig. 1, illustrates its basic principle intuitively.

E. Some knowledge of the proposed BSC method

The flowchart of preliminary adaptive credal partition by
belief shift is shown in Fig. 2.

F. Parameters in experiments

All parameters are defaults except the ones we adjust to
make the experiments intuitive and concise. Specifically, DB-
SCAN mainly contains two parameters Eps and MinPts that
are used to assign each object to noise or a singleton cluster.
Inspired by [28], the K-distance graph method is employed
to obtain the Eps value, and the MinPts value such that
MinPts ⩾ 3. In DPC, the parameter f is used to determine
the cutoff distance and recommended f ∈ [0.01, 0.02]. MS-
type has the parameter r that represents the bandwidth. The
higher (lower) the difference between attributes, the bigger
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Fig. 1. Illustration of the principle of mean shift procedure.

(smaller) r is given. In BPEC, there are three mainly parame-
ters K,α,∆. K represents the number of neighbors that used
to conclude the degree of belief and a large value of K is
preferable for most datasets. The parameter α, similar to that
in ECM [37], refers to the weighting exponent for cardinality,
such that α ⩾ 0. ∆ is used to assign noise and is equal to a
constant smaller than the minimal delta associated to noise in
the decision graph.

G. Experiment 2
Fig. 7(a)-(f) shows the clustering results of different meth-

ods on the SD4 dataset. From Fig. 7(a), we can see that
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Fig. 2. Illustration of the principle of preliminary adaptive
credal partition.

K-means has poor performance because it assigns a part
of objects belonging to the majority class to the minority
classes, which makes clusters have relatively uniform sizes.
In Fig. 7(b), DBSCAN assigns some objects that originally
belong to singleton clusters into noise cluster, which brings
error partition. The results of MC, DPC and MS-type are given
in Fig. 7(c)-(e). Although they can effectively cluster such a
dataset, they cannot assign the objects distributed in the over-
lapping areas. From Fig. 7(f), we can see that U-SENC mainly
focuses on the scalability and robustness of spectral clustering
for extremely large-scale datasets with limited resources. It
also provides poor performance in assigning the objects in
overlapping areas of different clusters.
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(a) K-means (Re = 8.55%, CRI =
0.7607).
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(b) DBSCN (Re = 6.61%, CRI =
0.8608).
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(c) MC (Re = 3.70%, CRI = 0.8890).
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(d) DPC (Re = 1.21%, CRI = 0.9653).
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(e) MS-type (Re = 2.94%, CRI =
0.9206).
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(f) U-SENC (Re = 2.00%, CRI =
0.9552).

Fig. 7. The clustering results of different methods on the SD4 dataset.

H. Experiment 3

Fig. 8 shows the segmentation results of the comparison
methods on the (DI2) dataset. Here we also employ a natural
gray image of 60 × 90 pixels, named NI2, a goose floating on
the lake, to estimate the performance of different methods, as
shown in Fig. 8+ (a). This image consists of the goose and the
background, and Fig. 8+ (c) shows the ground truth. We give
the distribution of the gray value of each pixel in this image, as
shown in Fig. 8+ (b). The x-coordinate represents the number
of different pixel and y-coordinate is the gray value from 0
to 255. The pixels in goose and background are marked by
blue and red points, respectively. Here we set Eps = 170 and
MinPts = 0.1 in DBSCAN. We take f = 0.02 in DPC and
the bandwidth r = 120 in MS-type. K = 1500, α = 5, ∆ =
500 and K1 = 1700 are set in BPEC and BSC, respectively.

Fig. 8+ reports the clustering results of different methods
based on the NI2 dataset. From Fig. 8+ (a)-(b), we can
observe that some pixels are indistinguishable for the goose
and background depending only on the gray values. For
example, the reflection in the water is very similar to the goose,
and it is challenging to assign these pixels. Some of these
pixels are forced to be wrongly assigned to the goose cluster
by K-means, DBSCAN, MC, DPC, MS-type and U-SENC,
whereas BPEC and BSC can effectively reduce the error by
assigning these pixels to the meta-cluster. Additionally, the
clustering results of different methods are given in Table
2 in the manuscript, where BSC yields lower error rates,
acceptable imprecision rates, and higher CRI . It indicates that

the performance of BSC is superior to other methods.

I. Experiment 4
Fig. 9 reports the clustering results of the comparison

methods on the Olivetti Face Database (FI5).
In this experiment, we evaluate the performances of BSC

compared with other methods based on the UCI databases
(available at http://archive.ics.uci.edu/ml/). Table 4 reports the
basic information of these datasets including the number of
clusters (#Clus.), attributes (#Attr.), instances (#Inst.) and the
number of objects in different classes.

The main parameters of DBSCAN, DPC, MS-type, and
BPEC are given in Table 5 and the other parameters in this
experiment are default. Here the cluster label of these datasets
doesn’t contain noise and we take proper ∆ in BPEC and
α = 0 in BSC, respectively. That is, the clustering results
of different methods do not include noise. The clustering
results of different methods are shown in Table 6. From the
experimental results, we can see that the error of BSC is
obviously lower than that of other methods in most cases, and
the imprecision rates are within an acceptable range, which
can truly reflect that BSC is superior to other methods.

J. Complexity analysis

Let us consider a dataset X including n objects over the
frame of discernment Ω = {ω1, ..., ωc}. The computational
complexity of BSC mainly comes from the calculation of
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Table 4: Basic information of the UCI datasets

Datasets #Clus. #Attr. #Inst. {ω1} {ω2} {ω3} {ω4} {ω5} {ω6}
Appendicitis(Ap) 2 7 106 21 85 / / / /
Biodeg(Bi) 2 41 1055 356 699 / / / /
Spambase(Sp) 2 56 4597 1813 2788 / / / /
Facebook(Fa) 2 9 6622 2334 4288 / / / /
Hill valley (Hv) 2 100 606 311 295 / / / /
Abalone(Ab) 3 7 600 233 239 128 / /
Seeds(Se) 3 7 210 70 70 70 / / /
Contraceptive(Co) 3 8 1473 629 333 511 / / /
Sensor (Sen) 4 24 5456 826 2097 2205 328 / /
Urban land cover (Ulc) 5 147 464 116 61 106 59 122 /
Red wine quality (Rwq) 6 11 1599 10 53 681 638 199 18

Table 5: Selection of the parameters in different methods

Methods DBSCAN DPC MS-type BPEC BSC
Indexes Eps MinPts f r K α ∆ K1

Ap 1 13 0.5 0.55 50 2 30 10
Bi 2.5 12 0.02 70 100 2 200 400
Sp 0.5 50 0.02 12000 200 2 5000 2000
Fa 0.2 110 0.02 0.6 100 2 500 400
Hv 2 20 0.02 1.2 50 5 50 33
Ab 1 60 0.02 3 30 6 30 60
Se 1 20 0.02 2 20 3 30 20
Co 0.8 12 0.02 7 30 2 30 200
Sen 0.5 30 0.02 2 100 2 600 350
Ulc 2 9 0.02 2.4 30 4 60 15
Rwq 2 15 0.02 0.23 120 2 500 40

Table 6: Clustering results of different methods with the UCI datasets (Re/Ri in %)

Datasets Indexes K-means DBSCAN MC DPC MS-type BPEC U-SENC BSC
Re 18.87 19.81 24.53 13.21 20.75 19.81 31.13 12.26

Ap Ri / / / / / 2.83 / 2.83
CRI 0.3348 0.0000 0.2410 0.4194 -0.0139 0.7127 0.0481 0.7795
Re 41.14 34.31 37.63 33.84 34.60 41.99 38.20 32.13

Bi Ri / / / / / 2.09 / 13.65
CRI 0.0037 -0.0055 -0.0268 -0.0009 -0.0081 0.6121 0.0544 0.7138
Re 36.41 40.90 37.11 35.81 39.37 33.41 39.06 28.52

Sp Ri / / / / / 4.74 / 7.50
CRI 0.0394 -0.0096 0.0077 0.0450 0.0005 0.5927 0.0039 0.6426
Re 33.16 34.22 34.32 34.76 35.23 35.91 33.80 33.13

Fa Ri / / / / / 0.50 / 3.47
CRI 0.0364 0.0202 0.0158 0.0450 0.0003 0.5492 0.0259 0.5700
Re 48.51 48.68 48.02 48.68 49.50 47.52 47.69 47.03

Hv Ri / / / / / 1.98 / 3.80
CRI 0.0001 0.0000 0.0006 0.0009 0.0007 0.5191 0.0006 0.5261
Re 50.67 60.67 55.00 54.50 60.17 57.17 58.17 52.17

Ab Ri / / / / / 5.00 / 0
CRI 0.0741 -0.0058 0.0455 0.0985 -0.0008 0.5896 0.0152 0.5570
Re 10.95 33.33 18.10 11.43 13.33 8.57 12.38 7.62

Se Ri / / / / / 6.19 / 7.62
CRI 0.7103 0.2838 0.5702 0.7027 0.6592 0.8242 0.6825 0.9027
Re 59.88 56.89 61.10 59.06 60.56 57.98 61.78 56.96

Co Ri / / / / / 7.26 / 6.65
CRI 0.0257 0.0037 0.0236 0.0099 0.0186 0.6861 0.0185 0.6244
Re 60.03 59.97 59.82 62.02 59.59 55.96 55.96 54.22

Sen Ri / / / / / 0.00 / 16.42
CRI 0.0562 -0.0015 0.0563 0.0232 0.0000 0.5936 0.0691 0.8441
Re 69.61 73.71 65.09 64.44 52.16 31.25 67.03 24.35

Ulc Ri / / / / / 0.00 / 8.62
CRI 0.0495 0.0000 0.0795 0.0277 0.3873 0.7485 0.0702 0.7969
Re 70.98 59.16 70.36 61.85 63.29 65.35 76.17 58.66

Rwq Ri / / / / / 1.63 / 15.95
CRI -0.0020 0.0173 0.0166 0.0342 0.0779 0.6853 0.0064 0.7862
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Table 7: Execution time of different methods (In seconds)

Datasets K-means DBSCAN MC DPC MS-type BPEC U-SENC BSC
Ap 0.1356 0.0511 0.0832 0.8196 0.0580 0.4885 0.9462 0.1662
Bi 0.1682 0.1482 0.2320 3.4225 0.1383 0.4944 5.0269 0.4538
Sp 0.3324 3.6204 1.2315 4.2871 0.6112 2.0783 13.8553 6.5877
Fa 0.1957 2.4191 1.3657 11.7816 6.5137 2.0067 13.6544 13.2586
Hv 0.2240 0.2150 0.3156 1.2701 0.2515 2.5780 5.5430 4.8632
Ab 0.1442 0.1687 0.1489 0.8970 0.1291 1.2620 2.1973 0.1606
Se 0.1346 0.0334 0.1529 0.8311 0.0557 0.6525 1.2732 0.1354
Co 0.1465 0.1289 0.3182 1.0405 0.3574 1.9261 5.3182 0.4992
Sen 0.3116 2.7066 2.5923 6.6450 2.9639 4.4734 11.9310 8.1370
Ulc 0.2248 0.1394 0.5450 1.3616 0.7835 2.3256 2.4134 2.2083
Req 0.1932 0.2118 0.9816 8.0237 2.0427 0.5940 6.5836 1.1436

Euclidean distances between objects to find neighbors. In
the first step, each object needs to search the KNNs from
X to compute its degree of belief. Thus, the computational
complexity of this process is O(n2). In the second step,
there are n1 imprecise objects are credal redistributed by
the evidential clustering rule. For the query object xi, it
needs to search different KNNs from clusters included in its
dynamic sub-framework Mi (|Mi| > 1) thereby simulating
the singleton cluster centers. One can consider that there are
ni objects in these singleton clusters, and the computational

complexity of this process is O(
n1∑
i=1

ni). Therefore, the total

computational complexity of BSC is O(n2 +
n1∑
i=1

ni).

In addition, to compare the computational complexity with
other methods, we investigate the execution time in seconds of
BSC and other comparison methods on different UCI datasets.
The execution time in seconds of BSC and other comparison
methods on the different datasets are shown in Table 7. We
can see that the execution time of BSC is higher than some
methods since it needs to calculate a large number of distances
between objects to obtain the neighbors K1 and K2 in the
two steps. However, the BPEC and U-SENC methods take
a long time on training and optimizing models, so the BSC
method runs considerably faster than them in most cases.

In applications, the proposed BSC method is more suitable
for cases where high accuracy is required, whereas efficient
computation is not a vital requirement.

K. The BSC method v.s. Fuzzy and density-based methods

We compare the differences and correlations between fuzzy-
based methods, density-based methods, and the proposed BSC
method here. 1) It is well known that fuzzy-based methods,
such as FCM, can provide a membership matrix that contains
all objects’ behavior to all clusters. This advantage is hard
to reach by other types of clustering methods, which also
provides the possibility for subsequent analysis of objects. For
example, the obtained fuzzy data about objects can be further
analyzed in the scene including clustering and data fusion.
However, similar to K-means, most fuzzy-based methods are
considered partition-based methods. Clusters are groups of
data characterized by a small distance to the cluster center. An
objective function, typically the sum of the distance to a set of
putative cluster centers, is optimized until the best candidates
are found [15]. In this case, these methods cannot detect
nonspherical clusters because objects are always assigned
to the nearest centers. 2) Unlike fuzzy-based methods, it is
argued that density-based methods, such as DBSCAN and
mean shift, can easily detect clusters with arbitrary shape and

(e) K-means. (f) DBSCAN. (g) MC. (h) DPC.

(i) MS-type. (j) BPEC. (k) U-SENC.

Fig. 8. The clustering results of different methods on the DI2 dataset.
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(a) Original image. (b) Data distribution. (c) Ground truth. (d) K-means.

(e) DBSCAN. (f) MC. (g) DPC. (h) MS-type.

(i) BPEC. (j) U-SENC. (k) BSC.

Fig. 8+. The clustering results of different methods on the NI2 dataset.

size. However, once objects are assigned to different specific
clusters, we cannot obtain uncertain and imprecise information
about the objects (especially those in the overlapping or inter-
mediate areas of different clusters) as we can with fuzzy-based
methods. 3) The proposed BSC method in this paper combines
the advantages of fuzzy-based and density-based methods. It
aims to characterize the uncertainty and imprecision between
clusters with arbitrary shapes and sizes. Specifically, we first
assign each object as the noise, precise object, or imprecise
object based on the notion of “belief shift”. This step can be
considered an inheritance of the advantages of density-based
methods because arbitrary clusters can be easily detected by
doing so. Then, we employ the evidential clustering rule to
reassign imprecise objects to singleton clusters or associated
meta-cluster. In this step, each imprecise object will get the
behavior to the associated singleton or meta-clusters, i.e. mass
function m(·). In fact, evidential clustering is considered the
evidential version of FCM and NC, and m(·) is viewed as
the improvement of membership function u(·). Therefore,
the proposed BSC method also combines the advantage of
fuzzy-based methods. The difference is that BSC provides
uncertainty and imprecision for all imprecise objects, while
fuzzy-based methods only analyze the uncertainty for all
objects. However, the proposed BSC also has a few potential
issues in applications. For example, the BSC needs many
distance (similarity) calculations in each step to be time-
consuming. Thus, it is suitable for prudent decision-making,
whereas efficiency is unnecessary. Therefore, in the future, we

will combine some more reasonable KNNs procedures [29],
[30] with improving execution efficiency.

L. The BSC method v.s. Typical TBF-based methods

Here we compare the differences and correlations between
BSC and other typical TBF-based methods. These methods
have the advantages of characterizing uncertainty and im-
precision between clusters. However, similar to fuzzy-based
methods, most typical TBF-based methods are only considered
partition-based methods. In other words, they cannot detect
nonspherical clusters because objects are always assigned
to the nearest centers. By contrast, the proposed BSC is
considered the evidential version of mean shift under the
TBF, so it has the advantage of density-based methods and
can detect clusters with arbitrary shapes and sizes. Moreover,
the BSC reassigns imprecise objects by a specific dynamic
sub-framework with corresponding simulated centers rather
than the fixed cluster centers used by most typical TBF-based
methods, effectively avoiding the “uniform effect”.

Based on the above analysis, the 7-class dataset with arbi-
trary shapes and sizes as shown in Fig. 10(a) is employed
to investigate the performance of BSC compared to other
typical TBF-based methods including ECM [37], CCM [38],
EVCLUS [41] and BPEC [2]. In Fig. 10(a), various colors
mark the data points included in different clusters, and noisy
points are marked by black. Here, we set α = 2 and γ = 1
in ECM and CCM, respectively. We choose K = 500, α = 2,
∆ = 5 in BPEC. K = 250 is set in BSC. The other parameters
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(c) K-means. (d) DBSCAN.

(e) MC. (f) DPC.

(g) MS-type. (h) BPEC.

Fig. 9. The clustering results of different methods on the FI5 dataset.

are defaults. The clustering results are reported in Fig. 10(b)-
(f), where the singleton clusters and meta-clusters are marked
by points and cross with different colors, respectively. We
can see that these typical TBF-based methods cannot detect
nonspherical clusters and noisy points. Moreover, they fail
to assign the imprecise objects to reasonable meta-clusters
since the centers of meta-clusters are incorrect. By contrast,
the proposed BSC can effectively distinguish noisy points
and different clusters with arbitrary shapes and sizes. It can
also reasonably characterize the uncertainty and imprecision
between arbitrary clusters, exhibiting better performance than

other typical TBF-based methods.

M. Definition and proofs

Here we provide some definitions and proofs related to
Eqs. (7)-(9). We first give some basic concepts as follows.

In the TBF, given a frame of discernment Φ = {C, C},
where C means that the object is a cluster center while
C denotes that the object is not a cluster center, we have
2Φ = {∅, {C}, {C}, {C, C}}. The meta-cluster {C, C} repre-
sents total ignorance (unknown), that is, we do not know



9

-6 -4 -2 0 2 4 6 8
0

2

4

6

8

10

12

(a) The 7-class dataset.
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(b) EVCLUS (Re = 24.43%,
Ri=8.97%, CRI = 0.3736).
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(c) ECM (Re = 24.40%, Ri=17.28%,
CRI = 0.8479).
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(d) CCM (Re = 31.48%, Ri=5.59%,
CRI = 0.8300).
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(e) BPEC (Re = 16.87%,
Ri=11.80%, CRI = 0.5773).
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(f) BSC (Re = 1.41%, Ri=3.01%,
CRI = 0.8512).

Fig. 10. The clustering results of different methods on the 7-class dataset.

whether the object is a cluster center or not. Here we take
the subset Θ = {{C}, {C, C}}, as a new frame of discernment
to describe the object as the cluster center (C) or unknown
(C). For short, we define U = {C, C}. This definition includes
both {C} and {C}, and can obtain Eq. (9) based on the DS
rule using Eqs. (7)-(8) quickly, as shown in the proof process.

Furthermore, we provide a detailed derivation and proof
process about the degree of belief Beli(A), which corresponds
to the process of Eq. (8) to Eq. (9). Here U means total
unknown, which means that the object may or may not be
a cluster center, i.e. C ∩ U = C. For the object xi, its
k-th neighbor xik provides a piece of evidence mik(C) that
supports it as a cluster center. Thus, the mass function mik(U)
on C is defined as mik(U) = 1 − mik(C). Thus, the degree
of belief Beli(C) that the object xi is a center is regarded as
the opposite mass of simultaneous K1 unknown events (i.e.
mik(U)). Thereby, we can obtain the following proposition.

Proposition 1: The degree of belief Beli(C) is defined

mathematically by:

Beli(C) = 1−
K1∏
k=1

(mik(U))

= 1−
K1∏
k=1

(1−mik(C))
(17)

Next, we prove Beli(C) = mi(C).

Proof: The mass function mi(U) of the object xi as a total
unknown (U) is given by:

mi(U) =
⊕

k∈[1,K1]

mik(U)

= mi1(U)
⊕

mi2(U)
⊕
· · ·

⊕
miK1(U)

= mi1(U)×mi2(U)× · · · ×miK1
(U)

=
K1∏
k=1

(mik(U))

=
K1∏
k=1

(1−mik(C))

(18)

Hence, we can obtain the mass function mi(C) that the
object xi as a cluster center by taking the opposite of mi(U),
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and denoted as:

mi(C) = 1−
K1∏
k=1

(1−mik(C)) (19)

Now, we can find that Beli(C) = mi(C), of course, and
Beli(U) = mi(U), which completes the proof.


