
HAL Id: hal-03816158
https://hal.science/hal-03816158

Submitted on 15 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fixed-Parameter Algorithm for Scheduling Unit
dependent Tasks with Unit Communication Delays

Ning Tang, Alix Munier Kordon

To cite this version:
Ning Tang, Alix Munier Kordon. A Fixed-Parameter Algorithm for Scheduling Unit dependent Tasks
with Unit Communication Delays. Euro-Par 2021 - 27th International European Conference on Par-
allel and Distributed Computing, Aug 2021, Lisbon, Portugal. pp.105-119, �10.1007/978-3-030-85665-
6_7�. �hal-03816158�

https://hal.science/hal-03816158
https://hal.archives-ouvertes.fr

A Fixed-Parameter Algorithm for Scheduling
Unit dependent Tasks with Unit Communication

Delays

Ning Tang[0000−0002−1388−8788] and Alix Munier Kordon[0000−0002−2170−6366]

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
Ning.Tang@lip6.fr, Alix.Munier@lip6.fr

Abstract. This paper considers the minimization of the makespan for
a set of dependent tasks with unit duration and unit communication de-
lays. Given an upper bound of the makespan, release dates and deadlines
of the tasks can be computed. Time windows are defined accordingly. We
prove that our scheduling problem is fixed-parameter tractable; the pa-
rameter is the maximum number of tasks that are schedulable at the
same time considering time windows.
A fixed-parameter algorithm based on a dynamic programming approach
is developed and proved to solve this optimization problem. This is, as far
as we know, the first fixed-parameter algorithm for a scheduling problem
with communication delays.

Keywords: scheduling · communication delays ·makespan · fixed-parameter
algorithm.

1 Introduction

This paper tackles a basic scheduling problem with communication delays de-
fined as follows: a set T = {1, 2, . . . , n} of n tasks is to be executed on an
unlimited number of machines (sometimes also called as processors). Each ma-
chine can process at most one task at a time and each task is processed once.
Tasks have a unit execution processing time and are partially ordered by a prece-
dence graph G = (T ,A). Let ti be the starting time of the task i. For any arc
(i, j) ∈ A, the task i must finish its execution before the task j starts execut-
ing, i.e. ti + 1 ≤ tj . If tasks i and j are assigned to different processors, a unit
communication delay must be added after the execution of the task i, to send
data to task j and thus ti + 2 ≤ tj . The problem is to find a feasible schedule
that minimizes the makespan; it is referred to P |prec, pi = 1, cij = 1|Cmax using
standard notations [12].

The development of fixed-parameter algorithms for NP-complete problems
is a way to get polynomial-time algorithms when some parameters are fixed [7,
9]. More formally, a fixed-parameter algorithm solves any instance of a prob-
lem of size n in time f(k) · poly(n), where f is allowed to be a computable
superpolynomial function and k the associated parameter.

2 N.Tang, A.Munier-Kordon

Mnich and van Bevern [14] surveyed main results on parameterized complex-
ity for scheduling problems and identified 15 open problems. However, there is no
result of parameterized complexity for scheduling problems with communication
delays.

The purpose of this paper is to present the first fixed-parameter algorithm
for the problem P |prec, pi = 1, cij = 1|Cmax. We observe that, to any upper
bound C of the minimum makespan, feasible release dates ri and deadlines di
can be associated for any task i ∈ T considering the precedence graph G.

The parameter considered for our algorithm is the pathwidth, denoted by
pw(C), and corresponds to the maximum number of tasks minus one that can
be executed simultaneously if we only consider the intervals {(ri, di), i ∈ T }.

The pathwidth pw(C) can be interpreted as a simple measure of the paral-
lelism of the instance considered for a fixed makespan C. One can observe that
pw(C) is the pathwidth of the interval graph associated with the set of intervals
{(ri, di), i ∈ T } [4].

We prove in this paper that the scheduling problem with communication

delays P |prec, pi = 1, cij = 1|Cmax can be solved in time O(n3 · pw(C) · 24pw(C))
using a dynamic programming approach. A multistage graph where paths model
feasible schedules is partially built until a complete feasible schedule is obtained.
Our algorithm is inspired from the work of Munier [15] which developed a fixed-
parameter algorithm for the problem P |prec, pi = 1|Cmax.

This paper is organised as follows. Section 2 presents related work. Section 3
defines the problem and the notations. It also recalls the modeling of our problem
using an integer linear program. Section 4 presents some important dominance
properties considered to characterize the structure of the solutions. Section 5 is
dedicated to the description of the algorithm and its validity proof. The com-
plexity of our algorithm is studied in Section 6. Section 7 is our conclusion.

2 Related work

The scheduling problem P |prec, pi = 1, cij = 1|Cmax with a limited number of
processors was first introduced by Rayward-Smith [18]. Basic scheduling prob-
lems with communication delays were intensively studied since the 1990s due to
the importance of applications, see. the surveys [6, 11, 21, 10].

Hoogeveen et al. [13] have shown that a polynomial-time algorithm without
duplication exists for solving the problem P |prec, pi = 1, cij = 1|Cmax when
the makespan is bounded by 5, but it is NP-complete when the makespan is
bounded by 6. This problem was also proved to be polynomial-time solvable for
some special classes of graphs such as trees [5], series-parallel graphs [16] and
generalized n-dimensional grid task graphs [3].

Many authors considered scheduling problems with communication delays for
a limited number of processors. An exact dynamic programming algorithm of
time complexity O(2w(G).n2w(G)) was developed by Veltman [22] for P |prec, pi =
1, cij = 1|Cmax. The parameter w(G) is the width of the precedence graph G

A Fixed-Parameter Algorithm for Scheduling with Communication Delays 3

defined as the size of its largest antichain. This algorithm can clearly be con-
sidered for solving the problem without limitation of the number of machines
by setting the number of machines equal to the number of tasks. We can ob-
serve that it is not a fixed-parameter algorithm. Zinder et al. [24] have developed
an exact branch-and-bound algorithm which converges to an optimal schedule
for the problem P |prec, pi = 1, cij = 1|Cmax. For the more general problem
P |prec, cij |Cmax, Sinnen et al. in [20] have developed an enumerative A? algo-
rithm coupled with pruning methods. Orr and Sinnen [17] have developed an
original techniques to reduce the space of exploration and to speed up branch-
and-bound methods.

Several authors also considered integer linear programming formulations (ILP
in short) to solve exactly scheduling problems with communications delays and
a limited number of processors. Davidović et al. in [8] tackled the scheduling
problems for a fixed network of processors; communications are proportional to
both the amount of exchanged data between pairs of dependent tasks and the
distance between processors in the multiprocessor architecture. They developed
two formulations and they compared them experimentally. Later, Ait El Cadi et
al. [2] improved this approach by reducing the size of the linear program (num-
ber of variables and constraints) and by adding cuts; they compared positively
to the previous authors. Venugopalan and Sinnen in [23] provided a new ILP
formulation for the usual problem P |prec, cij |Cmax and comparison with [8] for
several classes of graphs and fixed number of processors.

Extensions of usual problems with communication delays were extensively
studied. For example, the survey of Giroudeau and Koenig [11] considered a
hierarchical communication model where processors are grouped into clusters.
Shimada et al. [19] developed two heuristic based methods to consider both
malleable tasks and communications delays for executing a program on an ho-
mogeneous multi-core computing system. Ait-Aba et al. [1] provided complexity
results for an extension of the basic communication model for scheduling prob-
lems on an heterogeneous computing systems with two different resources.

3 Problem definition and notations

In this section, we first recall that our scheduling problem can be modelled using
an integer linear program. The computation of release dates and deadlines of
tasks are expressed depending on the precedence graph and a fixed upper bound
of minimum makespan C. The associated pathwidth is defined, and a necessary
condition for feasible schedules is provided. They will be both considered in next
sections for our fixed-parameter algorithm.

3.1 Problem definition

An instance of our scheduling problem P |prec, pi = 1, cij = 1|Cmax is defined by
a directed acyclic graph G = (T ,A). For each task i ∈ T , let Γ+(i) (resp. Γ−(i))

4 N.Tang, A.Munier-Kordon

be the set of successors (resp. predecessors) of i, i.e. Γ+(i) = {j ∈ T , (i, j) ∈ A}
and Γ−(i) = {j ∈ T , (j, i) ∈ A}.

Our scheduling problem can easily be modelled by a integer linear program P
defined below. For any task i ∈ T , we note ti the starting time of the execution of
task i. For any arc e = (i, j) ∈ A, we note xij the communication delay between
the tasks i and j. We set xij = 0 if the task j is executed just after the task
i on the same processor; in this case, there is no communication delay between
them. Otherwise, xij = 1.

(P)



minC
∀e = (i, j) ∈ A, ti + 1 + xij ≤ tj (1)
∀i ∈ T , ti + 1 ≤ C (2)
∀i ∈ T ,

∑
j∈Γ+(i) xij ≥ |Γ+(i)| − 1 (3)

∀i ∈ T ,
∑
j∈Γ−(i) xji ≥ |Γ−(i)| − 1 (4)

∀i ∈ T , ti ∈ N
∀e = (i, j) ∈ A, xij ∈ {0, 1}

Variables are the starting times ti,∀i ∈ T of the tasks, the communication
delays xij ,∀(i, j) ∈ A and the makespan C. Inequalities (1) express precedence
relations and communication delays between tasks executions. Inequalities (2)
define the makespan. Inequalities (3) express that any task has at most one
successor performed at its completion time on the same processor. Similarly,
inequalities (4) express that any task has at most one predecessor performed
just before its starting time on the same processor.

Any feasible schedule σ(G) corresponds to a feasible solution of P and is
thus defined by two vectors: starting times tσ ∈ N|T | and communication delays
xσ ∈ {0, 1}|A|.

Now, one can observe that x is the decision variable of P , and thus from a
practical point of view, we can consider the starting time t ∈ (R+)n. Anyway,
we will limit in this paper starting times to non negative integer values.

Let us consider for example the precedence graph presented by Figure 1a
for T = {1, 2, . . . , 8}. Figure 1b presents an associated feasible schedule σ(G)
of makespan 5. Associated starting times and communication delays are respec-
tively tσ = (0, 0, 1, 2, 2, 3, 3, 4) and xσ = (xσ13, x

σ
14, x

σ
15, x

σ
25, x

σ
36, x

σ
46, x

σ
57, x

σ
58) =

(0, 1, 1, 0, 1, 0, 0, 1).

3.2 A necessary condition on feasible schedules

A time window (ri, di) associated to the task i ∈ T is given by a release date
ri ∈ N and a deadline di ∈ N such that the task i must be completed during the
time interval (ri, di), i.e. ti ≥ ri and ti + 1 ≤ di.

Let us suppose that the predecessors j1, . . . , jp of any task i ∈ T are num-
bered in decreasing order of the release times, i.e. rj1 ≥ rj2 ≥ · · · ≥ rjp . Then,

A Fixed-Parameter Algorithm for Scheduling with Communication Delays 5

1 2

3 4 5

6 7 8

(a) A precedence graph G = (T ,A).

1

2

3 4

5

6

7

8

(b) An optimum schedule for the prece-
dence graph G = (T ,A) of Figure 1a.

Fig. 1: A precedence graph G = (T ,A) and an associated optimum schedule.

the release date ri can be calculated recursively as follows:

ri =


0 if |Γ−(i)| = 0

rj1 + 1 if |Γ−(i)| = 1 or (|Γ−(i)| > 1 and rj1 > rj2)

rj1 + 2 if |Γ−(i)| > 1 and rj1 = rj2 .

(1)

Now, let C be an upper bound of the minimum makespan for the graph G =
(T ,A). Deadlines of tasks can similarly be computed as follows. Let us suppose
that the successors k1, k2, . . . , kq of any task i ∈ T are numbered in the increasing
order of the deadlines, i.e. dk1 ≤ dk2 ≤ · · · ≤ dkq . The deadline di can be
calculated by the following recursive function:

di =


C if |Γ+(i)| = 0

dk1 − 1 if |Γ+(i)| = 1 or (|Γ+(i)| > 1 and dk1 < dk2)

dk1 − 2 if |Γ+(i)| > 1 and dk1 = dk2 .

(2)

Clearly, for any schedule σ(G) of makespan bounded by C, tσi ∈ [ri, di). For
any value α ∈ {0, . . . , C−1}, we note Xα as the set of tasks that can be scheduled
at time α following release times and deadlines, i.e. Xα = {i ∈ T , ri ≤ α, α+1 ≤
di}. We also denote by Zα the set of tasks than must be completed at or before
time α+ 1, i.e. Zα = {i ∈ T , di ≤ α+ 1}. The pathwidth of G associated to the
length C is the defined as pw(C) = maxα∈{0,...,C−1}(|Xα| − 1).

Figure 2a shows the release time and deadline of tasks from the graph pre-
sented by Figure 1a with the upper bound of the makespan C = 6. Figure 2b
shows the associated sets Xα and Zα for α ∈ {0, 1, . . . , 5}. For this example,
pw(C) = |X3| − 1 = 5.

Let us consider that σ(G) is a feasible schedule of makespan C ≤ C. For
every integer α ∈ {0, . . . , C − 1}, we set T σα = {i ∈ T , tσi = α}. The following
lemma will be considered further to reduce the size of the tasks sets built at each
step of our algorithm.

Lemma 1. Let σ(G) be a feasible schedule of G. For any α ∈ {0, . . . , C − 1},
α⋃
β=0

T σβ − Zα ⊆ Xα ∩Xα+1.

6 N.Tang, A.Munier-Kordon

tasks 1 2 3 4 5 6 7 8

ri 0 0 1 1 2 3 3 3

di 3 3 5 5 4 6 6 6

(a) Release times ri and deadlines di of all
tasks from Figure 1a for C = 6.

α Xα Zα
0 {1, 2} ∅
1 {1, 2, 3, 4} ∅
2 {1, 2, 3, 4, 5} {1, 2}
3 {3, 4, 5, 6, 7, 8} {1, 2, 5}
4 {3, 4, 6, 7, 8} {1, 2, 3, 4, 5}
5 {6, 7, 8} {1, 2, 3, 4, 5, 6, 7, 8}

(b) Sets Xα and Zα, α ∈ {0, . . . , 5}.

Fig. 2: Release times, deadlines, and sets Xα and Zα, α ∈ {0, . . . , 5} for the
instance presented by Figure 1a and C = 6.

Proof. Since σ(G) is feasible, for any α ∈ {0, . . . , C − 1}, T σα ⊆ Xα and thus,

∀i ∈
α⋃
β=0

T σβ , ri ≤ α. Moreover, each task i /∈ Zα satisfies di ≥ α+ 2.

Thus, for any task i ∈
α⋃
β=0

T σβ − Zα, [α, α+ 2] ⊆ [ri, di]. Therefore
α⋃
β=0

T σβ −

Zα ⊆ Xα ∩Xα+1, and the lemma is proved. ut

For our example presented by Figure 2 and α = 3, we have Z3 = {1, 2, 5}
and X3 ∩ X4 = {3, 4, 6, 7, 8}. For the schedule showed in Figure 1, we have
3⋃

β=0

T σβ = {1, 2, 3, 4, 5, 6, 7}. We observe that
3⋃

β=0

T σβ −Z3 = {3, 4, 6, 7} ⊆ X3∩X4.

4 Dominance properties

In this section, we express two properties of optimal schedules, which can narrow
the search space.

4.1 Coherent schedules

We can associate to any execution time vector tσ ∈ Nn of a feasible schedule a
communication vector xσ, where each element xσi ∈ {0, 1} in xσ is of maximum
value. The schedule obtained is said to be coherent, as defined as follows:

Definition 1 (Coherent schedule). A schedule σ(G) is coherent if for any
arc e = (i, j) ∈ A, if tσi + 2 ≤ tσj , then xσij = 1.

Next Lemma is a consequence of the ILP formulation of our scheduling prob-
lem:

Lemma 2 (Coherent schedule property). Let σ(G) be a feasible schedule of
G. Then, there exists a coherent feasible schedule σ′(G) with tσ

′

i = tσi ,∀i ∈ T .

Proof. Let us suppose that σ(G) is a non-coherent feasible schedule. Then, we
build a schedule σ′(G) by setting:

A Fixed-Parameter Algorithm for Scheduling with Communication Delays 7

1. for every task i ∈ T , tσ
′

i = tσi ;

2. for every arc (i, j) ∈ A, if tσ
′

i + 2 > tσ
′

j , then xσ
′

ij = 0, otherwise, xσ
′

ij = 1.

We show that σ′(G) is feasible. Let us consider an arc e = (i, j) ∈ A. Two
cases are considered:

1. if tσi + 2 > tσj , then xσij = 0 = xσ
′

ij and tσ
′

i + 1 ≤ tσ
′

j , the constraint is thus
fulfilled by σ′(G).

2. Now, if tσi + 2 ≤ tσj , we get xσ
′

ij = 1 ≥ xσij and tσ
′

i + 1 + xσ
′

ij ≤ tσ
′

j is true.

Moreover, for every arc (i, j) ∈ A, xσ
′

ij ≥ xσij . Thus σ′(G) is a coherent feasible
schedule and we proved the lemma. ut

4.2 Preferred sons

Let us consider that σ(G) is a feasible coherent schedule of makespan C ≤ C.

For every integer α ∈ {0, . . . , C − 1}, we set Wα =
α⋃
β=0

T σβ and Bα = T σα . The

set Wα contains all the tasks that are performed during the interval [0, α + 1],
and Bα contains all the tasks that are executed at time α. We show hereafter
that, if a task i ∈ T has one or more successors schedulable at time tσi +1 (called
the preferred sons of i), then we can always impose that exactly one of them is
executed at time tσi + 1 on the same processor as the task i.

Definition 2 (Preferred sons). For every integer α ∈ {0, . . . , C − 1}, a task
j ∈ T is a preferred son of a task i ∈ Bα if j is a successor of i that is
schedulable at time α+1. The set of the preferred sons of i with respect to Wα

and Bα is defined as PSWα,Bα(i) = {j ∈ Γ+(i), Γ−(j) ⊆ Wα and Γ−(j) ∩ Bα =
{i}}.

Definition 3 (Preferred sons property). A coherent feasible schedule σ(G)
satisfies the preferred sons property if, for every integer α ∈ {0, . . . , C −
1}, each task i ∈ Bα such that PSWα,Bα(i) 6= ∅ has exactly one preferred son
executed at time α+ 1.

Let us consider as example the precedence graph and the feasible schedule
presented by Figure 1. For α = 0, W0 = B0 = {1, 2}, PSW0,B0

(1) = {3, 4} and
PSW0,B0

(2) = ∅. Thus, we can enforce that exactly one task in {3, 4} would be
executed at time 1.

Lemma 3. Let σ(G) be a coherent feasible schedule. There exists a correspond-
ing coherent feasible schedule σ′(G) that satisfies the preferred sons property and
such that for any task i ∈ T , tσ

′

i ≤ tσi .

Proof. We can suppose without loss of generality that tasks are scheduled by
σ(G) as soon as possible following the communication delay vector xσ of σ(G),
i.e. ∀i ∈ T , tσi = max(0,maxj∈Γ−(i)(t

σ
j + 1 + xσji)).

8 N.Tang, A.Munier-Kordon

Let us suppose that σ(G) does not verify the preferred sons property. Let then
α ∈ {0, . . . , C−1} be the first instant for which the property is not fulfilled, and
i? ∈ Bα a corresponding task with PSWα,Bα(i?) 6= ∅. We show that, for every
task j ∈ Γ+(i?), xσi?j = 1.

– Since i? is performed at time α, i? cannot have two successors scheduled at
time α + 1. So, every task j ∈ PSWα,Bα(i?) satisfies tσj ≥ tσi? + 2 and by
coherence of σ(G), xσi?j = 1.

– Now, any task j ∈ Γ+(i?) − PSWα,Bα(i?) is not schedulable at time α + 1,
thus tσj ≥ tσi? + 2 and by coherence of σ(G), xσi?j = 1.

Now, any task j ∈ PSWα,Bα(i?) has all its predecessors in Wα, thus ∀k ∈
Γ−(j), tσk +2 ≤ tσi? +2 ≤ tσj , and by coherence of σ(G), xσkj = 1. We build another
coherent schedule σ′(G) as follows:

1. We first choose a task j? ∈ PSWα,Bα(i?). We then set xσ
′

i?j? = 0 and for each

arc e = (k, `) ∈ A− {(i?, j?)}, xσ′k` = xσk`.

2. We set ∀i ∈ T , tσ
′

i = max(0,maxj∈Γ−(i)(t
σ′

j + 1 + xσ
′

ji)).

For every task i ∈ T , tσ
′

i ≤ tσi . Now, we get
∑
`∈Γ+(i?) x

σ′

i?` =
∑
`∈Γ+(i?)−{j?} x

σ′

i`+

xσ
′

i?j? = |Γ+(i?)| − 1. Similarly, we get
∑
`∈Γ−(j?) x

σ′

`j? =
∑
`∈Γ−(j?)−{i?} x

σ′

`j? +

xσ
′

i?j? = |Γ−(j?)| − 1, and thus xσ
′

is feasible.
Each task i? is considered at most once and thus this transformation is done

at most n times. So, it gives a feasible coherent schedule that satisfies the pre-
ferred sons property without increasing the makespan, thus the lemma holds. ut

4.3 Limitation of the feasible schedules set

The following theorem is a simple consequence of Lemma 2 and 3.

Theorem 1. Let σ(G) be a feasible schedule. Then, there exists a feasible coher-
ent σ′(G) that satisfies the preferred sons property and such that, for each task
i ∈ T , tσ

′

i ≤ tσi .

5 Presentation of the algorithm

This section provides our fixed-parameter algorithm. We start with the descrip-
tion of the multistage graph. We present then our algorithm and we show its
correctness.

5.1 Description of the multistage graph

Let us consider a precedence graph G = (T ,A) and an upper bound C of the
makespan. We build an associated multistage graph S(G) = (N,A) with C stages
which maximum paths represent all the feasible schedules following the condition
of Theorem 1.

A Fixed-Parameter Algorithm for Scheduling with Communication Delays 9

Nodes of S(G) Elements of N are partitioned into C stages. For any value
α ∈ {0, . . . , C − 1}, Nα is the set of nodes at stage α. A node p ∈ N is a couple
(W (p), B(p)), where B(p) ⊆ W (p) ⊆ T . If p ∈ Nα, tasks from W (p) have to
be completed at time α+ 1, while those from B(p) are scheduled at time α. N0

contains only one node p0 with B(p0) = {i ∈ T , Γ−(i) = ∅} and W (p0) = B(p0).
Observe that, for any value α ∈ {0, . . . , C − 1}, all tasks from Zα must be

completed at time α + 1, thus for any node p ∈ Nα, Zα ⊆ W (p). Moreover, by
Lemma 1, W (p)− Zα ⊆ Xα ∩Xα+1.

Arcs of S(G) For any α ∈ {0, 1, . . . , C − 2} and (p, q) ∈ Nα × Nα+1, the arc
(p, q) ∈ A if there exists a feasible schedule such that tasks from W (q) are all
completed at time α+ 2 with tasks from B(q) executed at time α+ 1 and those
from B(p) at time α. The nodes p and q satisfy then the following conditions:

A.1 Since p is associated to a partial schedule of q, W (p) ∪ B(q) = W (q) and
since tasks can only be executed once, W (p) ∩B(q) = ∅.

A.2 Any task i ∈ B(q) must be schedulable at time α+1, thus all its predecessors
must belong to W (p). Then, B(q) ⊆ {i ∈ Xα+1, Γ

−(i) ⊆W (p)}.
A.3 Any task i ∈ B(q) cannot have more than one predecessor scheduled at time

α, thus B(q) ⊆ {i ∈ Xα+1, |Γ−(i) ∩B(p)| ≤ 1}.
A.4 Any task i ∈ Xα+1 −W (p) for which all its predecessors are completed at

time α must be scheduled at time α+ 1. Thus, if Γ−(i) ⊆W (p)−B(p), then
i ∈ B(q).

A.5 For any task i ∈ B(p), if PSW (p),B(p)(i) ∩Xα+1 6= ∅, then by Definition 2,
these successors of i are schedulable at time α + 1. Following Theorem 1,
we impose that exactly one among them is executed at time α on the same
processor than i and thus |PSW (p),B(p)(i) ∩ B(q)| = |Γ+(i) ∩ B(q)| = 1.
Otherwise, if PSW (p),B(p)(i)∩Xα+1 = ∅, no successor of i can be scheduled
at time α+ 1 which corresponds to |Γ+(i) ∩B(q)| = 0.

Remark 1. The preferred sons of a task i ∈ T were initially defined with respect
to two sets of tasks Wα and Bα built from a feasible schedule. Here, for any
node p ∈ Nα, the definition of PS is extended to consider the sets W (p) and
B(p) simply by assuming that tasks from W (p) (resp. B(p)) are those which are
completed at time α+ 1 (resp. performed at time α).

Figure 3 is the multistage graph associated with the precedence graph of
Figure 1a and C = 6. We observe that the path (p0, p

1
1, p

1
2, p

1
3, p

1
4) corresponds to

the schedule shown in Figure 1b. On the same way, the path (p0, p
0
1, p

0
2, p

0
3, p

0
4)

corresponds to the schedule shown by Figure 4.

5.2 Description of the algorithm

Algorithm 1 builds iteratively the multistage graph S(G) = (N,A). This algo-
rithm returns false if there is no feasible schedule of makespan bounded by C,
otherwise it returns the optimum makespan. For any set of tasks X ⊆ T , let
P(X) be the power set of X, i.e. the set of all subsets of X including the empty

10 N.Tang, A.Munier-Kordon

p0 = ({1, 2}, {1, 2})

p11 = ({1, 2, 3}, {3})p01 = ({1, 2, 4}, {4})

p02 = ({1, 2, 3, 4, 5}, {3, 5}) p12 = ({1, 2, 3, 4, 5}, {4, 5})

p13 = ({1, 2, 3, 4, 5, 6, 7}, {6, 7})p03 = ({1, 2, 3, 4, 5, 6, 8}, {6, 8})

p14 = ({1, 2, 3, 4, 5, 6, 7, 8}, {8})p04 = ({1, 2, 3, 4, 5, 6, 7, 8}, {7})N4

N3

N2

N1

N0

Fig. 3: The multistage graph associated with the precedence graph of Figure 1a
and C = 6.

1

2

4 3

5

6

7

8

Fig. 4: An optimum schedule corresponding to the path (p0, p
0
1, p

0
2, p

0
3, p

0
4) of Fig-

ure 3.

ones. This algorithm is composed by three main sections. Lines 1−6 correspond
to the initialization step. Lines 7− 9 build all the possible nodes. Lines 10− 17
build the arcs and delete all the non connected nodes.

5.3 Validity of the algorithm

Lemma 4. Any feasible schedule σ(G) of makespan C ≤ C corresponds to a
path of S(G) ending with a node p with W (p) = T .

Proof. Let suppose that σ(G) is a feasible schedule of makespan C ≤ C. By
Theorem 1, we can suppose that σ(G) is coherent and satisfies the preferred sons
property. We can also suppose that σ(G) is an as-soon-as-possible schedule, i.e.
for any task i ∈ T , tσi = max(0,maxi∈Γ−(j)(t

σ
j + 1 + xji)).

Let us consider the sequence qα = (W (qα), B(qα)) defined as W (qα) =⋃α
β=0 T σβ and B(qα) = T σα for α ∈ {0, . . . , C − 1}.

For α = 0, W (q0) = T σ0 = {i ∈ T , tσi = 0} = {i ∈ T , Γ−(i) = ∅} = W (p0)
and thus q0 = p0.

Since σ(G) is feasible, for every value α ∈ {0, . . . , C−1}, T σα ⊆ Xα. According
to Lemma 1,

⋃α
β=0 T σβ − Zα ⊆ Xα ∩ Xα+1. So the node qα = (W (qα), B(qα))

has been built at stage α.
We prove then that, for every value α ∈ {0, . . . , C − 2}, (qα, qα+1) ∈ A.

– W (qα+1) =
⋃α+1
β=0 T σβ =

⋃α
β=0 T σβ ∪ T σα+1 = W (qα) ∪ B(qα+1). Moreover,

W (qα) ∩B(qα+1) =
⋃α
β=0 T σβ ∩ T σα+1 = ∅. Thus, A.1 is verified.

A Fixed-Parameter Algorithm for Scheduling with Communication Delays 11

Algorithm 1: Optimum makespan C ≤ C if it exists, false otherwise.

Input: A precedence graph G = (T ,A), an upper bound of the makespan C
Output: Optimum makespan C ≤ C if it exists, false otherwise

1 for i ∈ T do
2 Calculate ri and di

3 for α ∈ {0, 1, . . . , C − 1} do
4 Calculate Xα and Zα

5 The set of arcs A = ∅
6 Let N0 = {p0} with B(p0) = {i ∈ T , Γ−(i) = ∅} and W (p0) = B(p0)

7 for α ∈ {1, 2, . . . , C − 1} do
8 Build the sets P(Xα ∩Xα+1) and P(Xα)
9 Nα = {p = (W,B),W = Y ∪ Zα, Y ∈ P(Xα ∩Xα+1), B ∈ P(Xα), B ⊆W}

10 for α ∈ {0, 2, . . . , C − 2} do
11 for (p, q) ∈ Nα ×Nα+1 do
12 if conditions A.1, A.2, A.3, A.4, A.5 are met for (p, q) then
13 A = A ∪ {(p, q)}
14 if W (q) = T then
15 return α+ 2

16 Delete all the vertices p ∈ Nα+1 without predecessor

17 return False

– Since σ(G) is feasible, tasks from B(qα+1) are schedulable at time α+ 1 and
thus, properties A.2 and A.3 are verified.

– Since σ(G) is an as-soon-as-possible schedule, property A.4 is fulfilled.
– Lastly, since σ(G) satisfies the preferred sons property, A.5 is fulfilled.

We conclude that (q0, q1, . . . , qC−1) is a path of S(G). Moreover, since σ(G) is of
makespan C, W (qC−1) = T , and thus the lemma is verified. ut

Lemma 5. Let C ≤ C and (p0, p1, . . . , pC−1) a path of S(G) with W (pC−1) =
T . Then, for each task i ∈ T , there exists a unique value α ∈ {0, . . . , C − 1}
such that i ∈ B(pα).

Proof. According to the definition of S(G), W (p0) ⊂ W (p1) ⊂ · · · ⊂ W (pC−1).
Moreover, by assumption, W (pC−1) = T . Thus, for each task i ∈ T , there is a
unique α ∈ {0, . . . , C − 1} with i ∈ W (pα) and i /∈ W (pα−1). Since W (pα−1) ∪
B(pα) = W (pα), we get i ∈ B(pα). ut

Lemma 6. Every path (p0, p1, . . . , pC−1) of S(G) with C ≤ C and W (pC−1) =
T is associated to a feasible schedule of makespan C.

Proof. Let (p0, p1, . . . , pC−1) be a path of S(G) with C ≤ C and W (pC−1) = T .
A schedule σ(G) of makespan C is defined as follows:

– By Lemma 5, for any task i ∈ T , there exists a unique value α ∈ {0, . . . , C−
1} with i ∈ B(pα). Thus, we set tσi = α.

12 N.Tang, A.Munier-Kordon

– For any arc (i, j) ∈ A, we set xσij = 1 if tσj > tσi + 1, otherwise xσij = 0.

We prove that the schedule σ(G) satisfies the equations of the integer linear
program P , and thus is feasible.

According to the condition A.2 , we get Γ−(i) ⊆ W (pα−1), so tσj + 1 ≤
tσi ,∀(j, i) ∈ A. Following the definition of xσ, we observe that equations (1) are
true.

Now, by definition of σ(G), tσi ≤ C − 1,∀i ∈ T and thus equations (2) are
validated.

According to the condition A.5 , for any task i ∈ B(pα), α ∈ {0, . . . , C − 2}

C.1 If PSW (pα),B(pα)(i) ∩Xα+1 6= ∅, then there is exactly one task j? ∈ Γ+(i) ∩
B(pα+1), i.e. such that tσj? = α+ 1 = tσi + 1. The task j? is thus the unique
successor of i for which xσij? = 0 and ∀j ∈ Γ+(i) − {j?}, xσij = 1. Thus,
∀i ∈ T ,

∑
j∈Γ+(i) x

σ
ij = |Γ+(i)| − 1.

C.2 If PSW (pα),B(pα)(i) ∩Xα+1 = ∅, then no successor of i is scheduled at time
α+ 1, thus ∀j ∈ Γ+(i), xσij = 1 and

∑
j∈Γ+(i) x

σ
ij = |Γ+(i)|.

Therefore, equations (3) are checked. Lastly, according to the condition A.3 , any
task i ∈ B(pα+1) cannot have more than one predecessor in B(pα), thus i has at
least one predecessor j? such that xσj?i = 0. Therefore, ∀i ∈ T ,

∑
j∈Γ−(i) x

σ
ji ≥

|Γ−(i)| − 1 and equations (4) are validated. We conclude that σ(G) is a feasible
schedule, and the lemma is proved. ut

Theorem 2 (Validity of Algorithm 1). Algorithm 1 returns the minimum
makespan C of a feasible schedule if C ≤ C, false otherwise.

Proof. Let us suppose first that our algorithm returns C ≤ C, then the minimum
path from p0 to a node p with W (p) = T is of length C. By Lemma 6 this path
is associated to a feasible schedule of makespan C and thus this schedule is
optimal.

Now, let us suppose that such a path does not exist; in this case, Algorithm 1
returns false. By Lemma 4, there is no feasible schedule of makespan C ≤ C and
the theorem is proved. ut

6 Complexity analysis

We prove in this section that Algorithm 1 is a fixed-parameter algorithm.

Lemma 7. Let us denote by n the number of tasks and pw(C) the pathwidth of
the interval graph built with the upper bound C of the minimum makespan. The

number of nodes |N | of the multistage graph S(G) = (N,A) is O(n ·22pw(C)) and

the number of arcs |A| is O(n · 24pw(C)).

Proof. According to Algorithm 1, each node p ∈ Nα is such that p = (W (p), B(p))
with W (p) = Y (p) ∪ Zα and Y (p) ⊆ Xα ∩ Xα+1. The number of possibilities
for Y (p) is thus bounded by 2|Xα∩Xα+1| ≤ 2|Xα|. Now, since B(p) ⊆ Xα, the

A Fixed-Parameter Algorithm for Scheduling with Communication Delays 13

number of possibilities for B(p) is bounded by 2|Xα|. Then, the number of nodes
in Nα for α ∈ {0, . . . , C − 1} is bounded by 22|Xα|.

By definition of the pathwidth, the value |Xα| is bounded by pw(C)+1, thus

the number of nodes |Nα| is O(22pw(C)). Now, since C ≤ n, the number of nodes

|N | is O(n · 22pw(C)). Moreover, the size of Nα ×Nα+1 for α ∈ {0, . . . , C − 1} is

O(24pw(C)), thus the whole number of arcs |A| is O(n · 24pw(C)), and we get the
lemma. ut

Lemma 8. For any α ∈ {0, . . . , C − 2}, the time complexity of checking the
conditions A.1 to A.5 for a couple of nodes (p, q) ∈ Nα×Nα+1 is O(n2 ·pw(C)).

Proof. The time complexity for checking the condition A.1 is O(n). For the
condition A.2 , we need to build the set {i ∈ Xα+1, Γ

−(i) ⊆W (p)}. If we denote
by m the number of arcs of G, building this set requires to enumerate all the
successors of tasks in Xα+1, which is in time complexity equal to O(m). Since
m ≤ n2, the time complexity for checking the condition A.2 is thusO(n2·pw(C)).
For the same reasons, time complexity for checking the conditions A.3 and
A.4 is also O(n2 · pw(C)). For condition the A.5 , the time complexity of the
computation of the preferred sons of a task i ∈ B(p) is also O(n2), and thus
checking this condition also takes O(n2 · pw(C)), and the lemma holds. ut

Theorem 3 (Complexity of Algorithm 1). The time complexity of Algo-

rithm 1 is O(n3 · pw(C) · 22pw(C)), where pw(C) is the pathwidth of the interval
graph associated to the time windows [ri, di], i ∈ T .

Proof. The time complexity of the computation of the release dates and deadlines
(lines 1 − 2) and the sets Xα and Zα for α ∈ {0, . . . C} (lines 3 − 4) is O(n2)
since C is bounded by n. The time complexity for building N at lines 7 − 9 is

O(n·22pw(C)) by Lemma 7. Following Lemma 7 and 8, the complexity of building

arcs of S(G) in lines 10−17 is O(n3 ·pw(C)·24pw(C)), thus the theorem holds. ut

7 Conclusion

We have shown in this paper that the problem P |prec, pi = 1, cij = 1|Cmax is
fixed-parameter tractable. The parameter considered is the pathwidth associated
with an upper bound C of the makespan. For this purpose, we have developed a

dynamic programming algorithm of complexity O(n3 · pw(C) · 24pw(C)). This is,
as far as we know, the first fixed-parameter algorithm for a scheduling problem
with communication delays.

This work opens up several perspectives. The first one is to test experimen-
tally the efficiency of this algorithm, and to compare it to other exact methods
such as integer linear programming or dedicated exact methods [20, 17]. A second
perspective is to study the extension of this algorithm to more general problems
in order to get closer to applications and to evaluate if these approaches can be
considered to solve real-life problems.

14 N.Tang, A.Munier-Kordon

References

1. Ait Aba, M., Munier Kordon, A., Pallez, G.: Scheduling on two unbounded re-
sources with communication costs. In: Euro-Par 2019: Parallel Processing - 25th
International Conference on Parallel and Distributed Computing, Göttingen, Ger-
many, August 26-30, 2019, Proceedings. pp. 117–128 (2019)

2. Ait El Cadi, A., Ben Atitallah, R., Hanafi, S., Mladenovic, N., Artiba, A.: New
MIP model for multiprocessor scheduling problem with communication delays.
Optimization Letters p. 15 (2014)

3. Andronikos, T., Koziris, N., Papakonstantinou, G., Tsanakas, P.: Optimal schedul-
ing for UET/UET-UCT generalized n-dimensional grid task graphs. J. Parallel
Distrib. Comput. 57(2), 140–165 (1999)

4. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11, 1–21 (1992)

5. Chrétienne, P.: A polynomial algorithm to optimally schedule tasks on a virtual
distributed system under tree-like precedence constraints. European Journal of
Operational Research 43(2), 225–230 (1989)

6. Chrétienne, P., Picouleau, C.: Scheduling with communication delays: A survey,
pp. 65–90 (1995)

7. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer Publishing Com-
pany, Incorporated, 1st edn. (2015)

8. Davidović, T., Liberti, L., Maculan, N., Mladenovic, N.: Towards the optimal so-
lution of the multiprocessor scheduling problem with communication delays. In:
MISTA conference (2007)

9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity (2013)

10. Drozdowski, M.: Scheduling for Parallel Processing. Springer (2009)

11. Giroudeau, R., Koenig, J.C.: Scheduling with communication delays. In: Levner,
E. (ed.) Multiprocessor Scheduling, chap. 4. IntechOpen, Rijeka (2007)

12. Graham, R.L., Lawler, E., Lenstra, J., Rinnooy Kan, A.: Optimization and ap-
proximation in deterministic sequencing and scheduling: a survey. In: Hammer, P.,
Johnson, E., Korte, B. (eds.) Discrete Optimization II, Annals of Discrete Mathe-
matics, vol. 5, pp. 287 – 326. Elsevier (1979)

13. Hoogeveen, J., Lenstra, J., Veltman, B.: Three, four, five, six, or the complexity of
scheduling with communication delays. Operations Research Letters 16(3), 129 –
137 (1994)

14. Mnich, M., Van Bevern, R.: Parameterized complexity of machine scheduling: 15
open problems. Computers & Operations Research 100 (2018)

15. Munier Kordon, A.: A fixed-parameter algorithm for scheduling unit dependent
tasks on parallel machines with time windows. Discrete Applied Mathematics 290,
1–6 (2021)

16. Möhring, R.H., Schäffter, M.W.: Scheduling series–parallel orders subject to 0/1-
communication delays. Parallel Computing 25(1), 23 – 40 (1999)

17. Orr, M., Sinnen, O.: Optimal task scheduling benefits from a duplicate-free state-
space. Journal of Parallel and Distributed Computing 146 (2020)

18. Rayward-Smith, V.: UET scheduling with unit interprocessor communication de-
lays. Discrete Applied Mathematics 18(1), 55–71 (1987)

19. Shimada, K., Taniguchi, I., Tomiyama, H.: Communication-aware scheduling for
malleable tasks. In: 2019 International Conference on Platform Technology and
Service (PlatCon). pp. 1–6 (2019)

A Fixed-Parameter Algorithm for Scheduling with Communication Delays 15

20. Sinnen, O.: Reducing the solution space of optimal task scheduling. Computers &
Operations Research 43, 201–214 (2014)

21. Veltman, B., Lageweg, B., Lenstra, J.: Multiprocessor scheduling with communi-
cation delays. Parallel Computing 16(2), 173 – 182 (1990)

22. Veltman, B.: Multiprocessor scheduling with communication delays. Ph.D. thesis,
Eindhoven University of Technology (1993)

23. Venugopalan, S., Sinnen, O.: ILP formulations for optimal task scheduling with
communication delays on parallel systems. IEEE Transactions on Parallel and Dis-
tributed Systems 26(1), 142–151 (2015)

24. Zinder, Y., Su, B., Singh, G., Sorli, R.: Scheduling UET-UCT tasks: Branch-and-
bound search in the priority space. Optimization and Engineering 11, 627–646
(2010)

