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Submodular functions in additive combinatorics problems for

group actions and representations

Vincent Beck and Cédric Lecouvey

October 15, 2022

Abstract

We establish analogues in the context of group actions or group representations of some classical

problems and results in addtive combinatorics of groups. We also study the notion of left invariant

submodular function defined on power sets which plays a central role in our proofs.

1 Introduction

Consider a multiplicative groupG acting on the left on a non empty setX . When A and Y are respectively
finite nonempty subsets of G and X what can be said about the cardinality |A · Y | of the set A · Y =
{a · y | (a, y) ∈ A × Y } ? Here a · y means the image of y under the action of a. When X = G and the
action considered is the action by left multiplication (thus a · y = ay the product of the two elements
in the group G), this question relates to additive (or here multiplicative) combinatorics on groups and
there exists in the literature numerous results yielding lower and upper bounds for the cardinality of the
Kronecker product set AY (see for example [16] and [19]). Among them, Kneser’s theorem is a corner
stone claiming that in any abelian group

|GAY |+ |AY | ≥ |A|+ |Y |

where GAY = {g ∈ G | gAY = AY } is the stabilizer of the product set AY . This theorem does not
remain true for non abelian groups even it is not immediate to find a simple counterexample. Therefore,
if we consider GA·Y = {g ∈ G | g · (A · Y ) = A · Y }, the inequality

|GA·Y |+ |A · Y | ≥ |A|+ |Y | (1)

does not hold in the general left action context. In contrast, it is very easy to find a counterexample by
considering the action of the symmetric group Sn on the set {1, . . . , n} (see Example 2.1).

Although Kneser’s theorem does not have an immediate generalization in the group action context,
we shall see in this paper that it is nevertheless possible to obtain interesting analogues of various other
results in this setting, most of them being inspired by results or tools coming from additive combinatorics
for non abelian groups. Among them is the notion of submodular function defined on subsets of G or
subsets of X . In fact, we will often obtain two different families of statements by fixing Y and letting A
running on P(G) (the power set of G) or fixing A and letting Y running on P(X) (the power set of X).
This is for example the case for Theorems 5.6 and 5.9 which both are declinations of the same theorem
proved by Tao in [20] for product sets in general groups. Even if the context of group action studied
in this paper presents some analogies with the combinatorics of groups (i.e. the case of an action by
multiplication), it is worth mentioning that there are important differences. Maybe the most important
comes from the fact that the multiplication in a group can be performed on the left and on the right
whereas a group action is only one-hand sided. This makes many classical tools like the Dyson or Diderrich
transforms on subsets of groups (see for example [16] and [3]) irrelevant for group actions.
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The present paper can also be regarded as a contribution of the general project to extend methods
developed in additive combinatorics of groups to more general contexts. In the linear context, where the
cardinalities of sets are replaced by the dimensions of vectors spaces, this was initiated in [8] for field
extensions and developed in particular in [4],[12], [1] (for fields and division rings) and in [2] and [15] (for
associative algebras). As far as we are aware, the group action setting presented in this paper was first
considered very more recently in [13] and [14] in connection with the notion of approximate groups. Our
approach here, based on tools coming from group theory and on the notion of submodular function, is
different. Most often, we are also able to state linear analogues of our results where group actions on
finite sets are replaced by finite-dimensional group representations.

Let us now describe more precisely the content of the paper. Section 2 is devoted to a general overview
of additive combinatorics type problems in the context of group actions and group representations. In
particular, we explain how the problem of determining lower and upper bounds for the previous cardinality
|A · Y | can theoretically be reduced to the classical group setting when sufficiently many information on
the orbit decompositions and the stabilizers of the elements is available. This is for example the case for
free actions. We also consider the particular case of a faithful action which gives a direct counterexample
to the inequality (1). Nevertheless in general, this reduction is not easy to perform and does not yield
statements so simple and elegant as in the group setting. The further sections give examples of such
results. Section 3 focuses on the notion of submodular function with various defining sets relevant for our
group action and group representation context. We define in particular a natural analogue of the classical
graph cut submodular function. Section 4 relies on Hamidoune’s notions of fragments and atoms (see [7])
also developed by Tao in [20]. In particular Proposition 4.3 gives informations on the structure of atoms
associated to a left regular submodular function defined on P(X). In Section 5, we state and prove the
analogues of theorems by Hamidoune, Tao and Petridis in our group action and group representation
setting which are at the heart of this paper. In Section 6, we establish complementary results more in
the spirit of the paper [13] by Murphy. Finally in Section 7, we give an analogue of a theorem by Ruzsa
for the action of a product set AB in the group G on a subset Y of X .

AMS classification: 05E15, 12E15, 11P70.
Keywords: group action, group representation, submodular functions, Kneser’s theorem, Plünnecke-
Ruzsa’s inequalities.

2 Additive combinatorics problems in the context of group ac-

tions and representations

2.1 Group actions and representations

In the sequel we considerG a discrete group andX a set on which G acts. As usual, for any (g, x) ∈ G×X ,
we shall denote by g · x the element of X corresponding to the action of g on x. Let us write

Gx = {g ∈ G | g · x = x}

for the stabilizer of x in G. For any subset Y ⊂ X and any g ∈ G, set g · Y = {g · y | y ∈ Y }. Let

GY = {g ∈ G | g · Y = Y }

be the stabilizer of Y in G. Observe that for any fixed g ∈ G, the map

{

X → X
x 7−→ g · x

(2)

is bijective. In particular, for any finite subset Y ⊂ X , we have |g · Y | = |Y | , that is the sets g · Y and
Y have the same cardinality.
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For any subset A ⊂ G and Y ⊂ X , define

A · Y = {a · y | (a, y) ∈ A× Y }.

In the sequel, we will study lower and upper bounds for the cardinality |A · Y | when A and Y are supposed
finite. In the particular caseX = G andG acts on itself by left translation, we recover the classical problem
in additive combinatorics of determining lower and upper bounds for Minkowski products of finite subsets
of an ambient group.

It will also be interesting to replace the set X by its linear analogue, that to consider a representation
(ρ, V ) of the group G instead of an action of G on X . Recall that a representation (ρ, V ) is a morphism
of groups

ρ : G → GL(V )

where V is a finite-dimensional vector space over a given field k. This can essentially be though as a
linear action of G on the vector space V and we will write g · v the action of any element g ∈ G on any
vector v ∈ V . We thus have for any (λ1, λ2) ∈ k2 and any (v1, v2) ∈ V 2

g · (λ1v1 + λ2v2) = λ1(g · v1) + λ2(g · v2).

For any subset Z in V , we denote by 〈Z〉 the k-subspace of V generated by the vectors in Z. We then
write for short dim(Z) instead of dim(〈Z〉). Given any k-subspace W of V and any subset A of G, the
set

A ·W = 〈a · v | (a, v) ∈ A×W 〉.

We will study its dimension dim(A ·W ) in terms of dim(W ) and |A|.

2.2 Orbit decomposition method for a group action

In this paragraph, we will assume that the set X is finite. Given an element x in X , we denote by
Ox = {g · x | g ∈ G} its orbit . Let us fix x1, . . . , xr in X so that

X =
r
⊔

i=1

Oxi

is the disjoint union of the orbits Oxi
, i = 1, . . . , r. It is classical that for any i = 1, . . . , r the map

φi :

{

G/Gxi
→ Oxi

gGxi
7−→ g · xi

is well-defined and bijective. Assume now that we have fixed a representative g[i] in each left coset gGxi

of G/Gxi
. Also for any subset S in G, write |S|i for the cardinality of the set of cosets {gGxi

| g ∈ S}
which is the same as the cardinality of the set S[i] = {g[i] | g[i] ∈ S}.

For any subset Y ⊂ X , write Yi = Y ∩Oxi
. Then, we have for any subset A ⊂ G

A · Y =
r
⊔

i=1

A · Yi.

Finally, for any i = 1, . . . , r, we get by setting Bi = {g[i] | gGxi
∈ φ−1

i (Yi)} the equalities |Yi| = |Bi| ,
|A · Yi| = |ABi|i and

|A · Y | =
r

∑

i=1

|ABi|i .

Therefore, the problem of studying the cardinality of |A · Y | can be formally reduced to the problem of
studying first each product sets ABi in the group G and next the number |ABi|i of left cosets attained
by the elements of ABi. Since we have

|ABi|

|Gxi
|
≤ |ABi|i ≤ |ABi| , i = 1, . . . , r
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we get
r

∑

i=1

|ABi|

|Gxi
|
≤ |A · Y | ≤

r
∑

i=1

|ABi|

which theoretically reduces the question to classical estimations of product sets in groups which is largely
addressed in the literature. In particular, when the action is simply transitive (that is when there is
only one orbit and each stabilizer is trivial), both problems are equivalent. When the action is free (each
stabilizer is trivial) we just get

|A · Y | =
r

∑

i=1

|ABi|

so that the study of |A · Y | can be performed from the group setting up to the determination of the orbits
of the action of G on X . Nevertheless, in the general case, in addition to the orbit decomposition, this
method imposes to have many information on the different stabilizers, their associated left cosets and the
maps φi, i = 1, . . . , r and do not yield statements so simple and elegant as in the group setting. In the
sequel, we will see that it is in fact possible to overcome the orbit decomposition method to get in the
group action setting results of comparable complexity to their group setting analogues.

2.3 Dual problem

Assume that the group G acts on the set X and consider a finite subset Z in X . Let

DZ = {(A, Y ) ∈ P(G)× P(Y ) | A · Y = Z}.

Observe first that ({1} × Z) belongs to DZ which is thus nonempty. For the left action of an abelian
group G on itself, Kneser’s theorem (1) can be interpreted as an upper bound for the sum |A|+ |Y | when
(A, Y ) runs over DZ

max
(A,Y )∈DZ

(|A|+ |Y |) ≤ |GZ |+ |Z| .

In the general case, it is thus natural to ask for a subset UZ in G depending only on Z and such that

max
(A,Y )∈DZ

(|A|+ |Y |) ≤ |UZ |+ |Z| .

In the sequel, we will study the more tractable following situation. Fix the subsets Y ⊂ X,A0 ⊂ G and
Z = A0 · Y. Next consider the set

κY (Z) = {g ∈ G | g · Y ⊂ Z} ⊃ A0.

Clearly, for any g ∈ κY (Z), we have GZg ⊂ κY (Z). Hence, the set κY (Z) is a disjoint union of right
cosets of GZ \G. Then we get

max
A⊂G|A·Y=Z

|A|+ |Y | ≤ |κY (Z)|+ |Y | ≤ |κY (Z)|+ |Z|

since |Z| = |A · Y | ≥ |Y | and A ⊂ κY (Z). The first bound is sharp because κY (Z) · Y = Z. In general,
the set κY (Z) is not a subgroup (or a translated of a subgroup of G). We will see in Section 5 how the
study of affine maps of the form |A| 7−→ λ |A| + |Y | (instead of |A| 7−→ |A| + |Y |) where λ is a positive
real permits to make appear bounds related to subgroups of G more in the spirit of Kneser’s theorem.

2.4 Faithful action

Recall that the action of G on X is said faithful when the group homomorphism






G → S(X)

g 7−→

{

X → X
x 7−→ g · x

4



is injective. Here S(X) is the group of bijections of X . When X is finite, we can then assume that
X = {1, . . . , n} and G is then a subgroup of Sn the symmetric group on {1, . . . , n}. Thus, if we consider
Y ⊂ {1, . . . , n} and A ⊂ G ⊂ Sn, we get

A · Y =
⋃

σ∈A

σ(Y ).

Example 2.1 Assume Y = {1, . . . , k}, G = Sn and consider n > ℓ ≥ k. Let A0 be the set of permuta-
tions σ ∈ Sn such that σ({1, . . . , k}) ⊂ {1, . . . , ℓ}. One easily checks that

|A0| =
ℓ!

(ℓ− k)!
(n− k)!.

Now, observe that A0 · Y = {1, . . . , ℓ} and the stabilizer SA0·Y of A0 · Y thus has cardinality

|SA0·Y | = ℓ!× (n− ℓ)!.

We so get

|A0 · Y |+ |SA0·Y | ≥ |Y |+ |A0| ⇐⇒ ℓ+ ℓ!× (n− ℓ)! ≥ k+
ℓ!

(ℓ − k)!
(n− k)! ⇐⇒

ℓ− k

ℓ!(n− ℓ)!
≥

(

n− k

n− ℓ

)

− 1

which can only hold when ℓ = k for otherwise

ℓ− k

ℓ!(n− ℓ)!
< 1 and

(

n− k

n− ℓ

)

− 1 ≥ 1.

In particular, when ℓ > k, the inequality (1) does not hold. When k = ℓ, the set A0 is a group isomorphic
to the direct product Sk ×Sn−k and we get A0 · Y = Y with SA0·Y = A0 in which case (1) becomes an
equality.

3 Submodular functions

3.1 Background

Consider a set S (in the sequel S could be a group G or the set X on which G acts). Let P(S) be the
power set of S.

Definition 3.1 The map f : P(S) → R is said submodular when

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B) (3)

for any subsets A and B in P(S).

The submodular function f is said

• increasing when f(A) ≤ f(B) for any subsets A ⊂ B ⊂ S,

• symmetric when f(S \A) = f(A) for any subset A ⊂ S.

Very often, we shall consider submodular functions defined on the set Pfin(S) of finite subsets in S
rather than on P(S). When S is finite, one can check that f is submodular if and only if for any subsets
A1 ⊂ A2 of P(S) and any s ∈ S \A2, we have

f(A1 ∪ {s})− f(A1) ≥ f(A2 ∪ {s})− f(A2). (4)

Now, consider V a vector space over the field k. For any S ⊂ V , write 〈S〉 for the k-vector space
generated by S in V .
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Definition 3.2 The map f : P(V ) → R is said k-submodular when it is submodular and for any subset
S of V , we have

f(S) = f(〈S〉),

that is, f is constant on all the generating subsets of a given k-subspace of V .

Let us now introduce examples of submodular functions relevant for our purposes.

3.2 Group action and graph cut type submodular function

Let G be a finite group acting on the finite set X . For any subset Y ⊂ X , set

EY = {(g, y) ∈ G× Y | g · y /∈ Y }.

Consider the cut function

f :

{

P(X) → Z≥0

Y 7−→ |EY |
(5)

Proposition 3.3 The previous function f is submodular and nonnegative. Moreover, for any g ∈ G and
any Y ∈ V , we have f(g · Y ) = f(Y ).

Proof. Consider Y1 and Y2 subsets of X such that Y1 ⊂ Y2 and y0 ∈ X \ Y2. Then

EY1∪{y0} = {(g, y) ∈ G× Y1 | g · y /∈ Y1} \ {(g, y) ∈ G× Y1 | g · y = y0}
⊔

{(g, y0) | g · y0 /∈ Y1 ∪ {y0}}.

This gives
f(EY1∪{y0}) = f(EY1

) + |{(g, y0) | g · y0 /∈ Y1 ∪ {y0}}| − |Gy0
| |Oy0

∩ Y1| .

Similarly, we have

f(EY2∪{y0}) = f(EY2
) + |{(g, y0) | g · y0 /∈ Y2 ∪ {y0}}| − |Gy0

| |Oy0
∩ Y2| .

Now, the assumption Y1 ⊂ Y2 implies the set inclusions

{(g, y0) | g · y0 /∈ Y2 ∪ {y0}} ⊂ {(g, y0) | g · y0 /∈ Y1 ∪ {y0}} and Oy0
∩ Y1 ⊂ Oy0

∩ Y2.

This gives
f(EY1∪{y0})− f(EY1

) ≥ f(EY2∪{y0})− f(EY2
)

and f is submodular by (4). Moreover, the function f is clearly nonnegative. Finally, for any Y ⊂ X
and any g0 ∈ G the map

χg0 :

{

EY → Eg0·Y

(g, y) 7−→ (g0gg
−1
0 , g0 · y)

is a bijection which implies that f(g0 · Y ) = f(Y ) as desired.

Remark 3.4 When the action of G on X is free, it can be represented by an oriented graph Γ = (X,E)
with set of vertices X and set of arrows x → x′ when there exists g ∈ G such that x′ = g ·x. Observe that
such an element g is then unique by assumption. Then the previous function f becomes the cut function
of Γ which is classical in graph theory and known to be submodular.
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3.3 Action on a fixed set or subspace

As before assume G acts on X and fix Y a finite subset of X . Let Pfin(G) be the subset of finite subsets
in G. Then the map

fY :

{

Pfin(G) → Z≥0

A 7−→ |A · Y |

is increasing submodular. Indeed, we have for any finite subsets A and B

(A ∩B) · Y ⊂ (A · Y ) ∩ (B · Y ) and (A ∪B) · Y = (A · Y ) ∪ (B · Y ).

Similarly, when (ρ, V ) is a linear representation of G and W a fixed subspace of V , the map

φW :

{

Pfin(G) → Z≥0

A 7−→ dim(A ·W )

is increasing submodular because

〈(A ∩B) ·W 〉 ⊂ 〈A ·W 〉 ∩ 〈B ·W 〉 and 〈(A ∪B) ·W 〉 = 〈A ·W 〉+ 〈B ·W 〉.

3.4 Action of a fixed subset in a group

When G acts on X and A is a fixed finite subset of G, we can alternatively consider the map

fA :

{

Pfin(X) → Z≥0

Y 7−→ |A · Y |

defined on the set Pfin(X) of finite subsets of X . This gives yet a submodular function since for any Y, Z
in Pfin(X), we have

A · (Y ∩ Z) ⊂ (A · Y ) ∩ (A · Z) and A · (Y ∪ Z) = (A · Y ) ∪ (A · Z).

Also, if we have a representation (ρ, V ) of G we can define similarly the map

φA :

{

Pkfin(X) → Z≥0

Y 7−→ dim(A · Y )

where 〈A·Y 〉 is the k-vector space generated by A·Y and Pkfin(V ) is the set of subsets Y of V contained in
a finite-dimensional subspace. This gives a k-submodular function since we have dim(A·Y1) = dim(A·Y2)
for any two subsets Y1 and Y2 in Pkfin(X) such that 〈Y1〉 = 〈Y2〉.

3.5 Combinations of submodular functions

The following property is easy to check.

Proposition 3.5 The set of nonnegative submodular functions defined from a set S is a cone: given f
and g nonnegative submodular on P(S) and (λ, µ) ∈ R≥0, the map

λf + µg

is yet submodular nonnegative.

Now assume f is submodular (f is not assumed nonnegative here) and u is a modular map defined
on P(S), that is satisfying

u(A ∪B) + u(A ∩B) = u(A) + u(B).

Then, we also get the following proposition.
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Proposition 3.6 For any real λ ∈ R, the map f − λu is submodular on P(S).

Proof. Consider A and B subsets of S. We have

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (6)

because f is submodular and

λu(A ∪B) + λu(A ∩B) = λu(A) + λu(B)

by definition of the map u. By subtracting the last inequality to (6), we get the submodularity of f −λu.

Remark 3.7 The two previous propositions remain true if the notion of submodular functions defined
on P(S) is replaced by that of k-submodular functions defined on P(V ) where V is a k-vector space.

Example 3.8 We resume the notation of the previous section.

1. When G acts on X and Y ⊂ X is a fixed finite subset of X or (ρ, V ) is a representation of G and
Y ⊂ V is a fixed subset of V such that dim(Y ) is finite, the maps

cY :

{

Pfin(G) → R

A 7−→ |A · Y | − λ |A|
and γY :

{

Pfin(G) → R

A 7−→ dim(A · Y )− λ |A|

are submodular for any real λ.

2. When G acts on X or (ρ, V ) is a representation of G and A is a fixed finite subset of G, the maps

dA :

{

Pfin(X) → R

Y 7−→ |A · Y | − λ |Y |
and δA :

{

Pkfin(V ) → R

Y 7−→ dim(A · Y )− λdim(Y )

are respectively submodular and k-submodular for any real λ (recall here that Pkfin(V ) is the set of
subsets Y of V contained in a finite-dimensional subspace).

4 Fragments and atoms

4.1 Definitions and general properties

In this paragraph, we fix a submodular function f defined on P(S) such that m = minY 6=∅∈Pfin(S) f(Y )
exists. Then a fragment for f is a nonempty finite subset Y of S such that f(Y ) = m. An atom for f is
a fragment of minimal cardinality. Observe that there exists at least one fragment and one atom by the
hypotheses on f . Moreover, by definition, all the atoms have the same finite cardinality.

Lemma 4.1 Assume A1 and A2 are two atoms of the submodular function f . Then A1 = A2 or A1∩A2 =
∅.

Proof. Assume A1 ∩ A2 is not empty. Since f is a submodular function on Pfin(S), we can write

f(A1 ∩ A2) + f(A1 ∪ A2) ≤ f(A1) + f(A2) = 2m

by using that A1 and A2 are atoms. We have f(A1 ∩ A2) ≥ m and f(A1 ∪ A2) ≥ m since m =
minY 6=∅∈Pfin(S) f(Y ), we get f(A1 ∩ A2) = f(A1 ∪ A2) = m. Hence both A1 ∪ A2 and A1 ∩ A2 are
fragments for f . Now, observe that A1 ∩ A2 ⊂ A1. Thus by minimality of the cardinality of an atom,
we have |A1 ∩ A2| = |A1| and therefore A1 ∩ A2 = A1 which means that A1 ⊂ A2. But A1 and A2 have
same cardinality since they are atoms. So A1 = A2.
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4.2 Left invariant submodular functions on groups

Let G be a group and f : Pfin(G) → R a submodular function. It is said left invariant when f(gA) = f(A)
for any g ∈ G and any finite subset A ⊂ G.

Proposition 4.2 Assume f is submodular and left invariant such that m = minA 6=∅∈Pfin(G) f(A) exists.
Then, there exists a unique atom H for f containing 1. Moreover H is a finite subgroup of G, the atoms
of G are the left cosets gH with g ∈ G and they yield a partition of G.

Proof. The existence of an atom is obtained as in the previous paragraph. Now, if A is an atom, since it
is nonempty, we get that a−1A is also an atom for any a ∈ A because f(a−1A) = m. Then H = a−1A is
an atom containing 1. Let H ′ be another atom containing 1. Then H ∩H ′ is nonempty, thus by Lemma
4.1, we must have H = H ′ which proves that there exists indeed a unique atom H containing 1. Given
h ∈ H , we show similarly that h−1H is an atom containing 1 so that h−1H = H. Therefore, for any
h, h′ ∈ H we get that h−1h′ belongs to H which shows that H is a subgroup of G (finite by definition of
f). Let A be an atom for H . Then, for any a ∈ A, the atom a−1A coincide with H because it contains
1. Thus, A = aH is a left coset of H . It is then well-known that the left cosets of H yields a partition of
G.

4.3 Left invariant submodular functions for group actions

Assume that G acts on the set X and consider f : Pfin(X) → R a submodular function such that
m = infY 6=∅∈Pfin(X) f(Y ) exists. The function f is said left invariant if for any g ∈ G and any Y ⊂ X ,
we have f(g · Y ) = f(Y ). In this case, we get by Lemma 4.1 that for any atom Y0 and any g ∈ G

g · Y0 is an atom such that g · Y0 = Y0 or g · Y0 ∩ Y0 = ∅.

Let A be the set of atoms for f . We thus get an action of the group G on the set of atoms A. Now given
any element y0 in the atom Y0, we obtain the inclusion Gy0

⊂ GY0
of the stabilizers of y0 and Y0 for the

action of G on X . Indeed, for any g ∈ Gy0
, we have y0 = g · y0 ∈ g · Y0 and also y0 ∈ Y0. Therefore

g · Y0 ∩ Y0 6= ∅ and g · Y0 = Y0 which means that g belongs to GY0
. Observe also that if y0 belongs to the

atom Y0, then any element g · y0 also belongs to an atom (because g · y0 belongs to g · Y0). We will call
the set

C(X) =
∐

Y0∈A

Y0

the core of X . The action of G on X restricts to an action on C(X) and thus, the set C(X) is a disjoint
union of orbits for the action of G on X . Moreover, for any such orbit O and any atom Y0, we have

O ∩ Y0 = ∅ or O ∩ Y0 = {g · y | g ∈ GY0
/Gy0

} with y0 ∈ O ∩ Y0

that is O ∩ Y0 is empty or parametrized by the elements of the coset GY0
/Gy0

with y0 ∈ O ∩ Y0 since
Gy0

is then a subgroup of GY0
. In particular, if the action of G on X is assumed to be transitive, we

have a unique orbit, C(X) = X and the atoms form a partition of X . Let us summarize the previous
observations.

Proposition 4.3 Assume that G acts on the set X and f : Pfin(X) → R is a left invariant submodular
function such that m = infY 6=∅∈Pfin(X) f(Y ) exists. We have the following properties.

1. The group G acts on the set A of atoms for f .

2. The action of G restricts to the core C(X) of X, defined as the disjoint union of the atoms for f
which is thus also a disjoint union of orbits for the action of G on X.

3. For any atom Y0 and any orbit O, the intersection O∩Y0 is empty or parametrized by the elements
of the coset GY0

/Gy0
with y0 ∈ O ∩ Y0.

9



4. When the action of G on X is transitive, C(X) = X, each element of X belongs to one atom.

Example 4.4 For each action of a finite group G on the finite set X, one can consider the cut function f
as defined in (5). By Proposition 3.3, it is nonnegative submodular and left invariant. Also the minimum
of f is equal to zero and is attained in any subset Y such that g ·y ∈ Y for any g ∈ G and any y ∈ Y . This
means that the fragments of f are the disjoint union of orbits and the atoms are the orbits of minimal
cardinality. The core is the disjoint union of the orbits with minimal cardinality.

Example 4.5 Here is another example in which atoms are the orbits with minimal cardinality; the
submodular function considered is the function dA of Example 3.8 and Subsection 4.4. Fix σ ∈ Sn,
consider X = {1, . . . , n} and A = 〈σ〉. As suggested in Section 2.2, X can be written as X = X1⊔· · ·⊔Xr

where the Xi are the orbits of X under the action of A. In this case, dA(Y ) =
∑

j,Xj∩Y 6=∅ |Xj | − λ|Y |.

Among the subset Z of X meeting non trivially exactly the same Xi as Y , dA(Z) is minimal precisely
when Z = ∪j,Xj∩Y 6=∅Xj. In this case, dA(Z) = (1 − λ)|Z|. Thus, for λ < 1, the fragments and atoms
coincide and are the Xj with minimal cardinality. When λ = 1, every union of orbits is a fragment and
the atoms are the Xj with minimal cardinality.

4.4 Behavior of the atoms for the submodular function dA

The function dA defined in Example 3.8 on Pfin(X) by dA(Y ) = |A · Y |−λ |Y | is submodular nonnegative
for any λ ∈ [0, 1] and left invariant when G is abelian (see § 5.3). In contrast to the previous examples,
the corresponding atoms and cores depend on λ and on the definition of the action. Our goal in this
paragraph is to show that, roughly speaking, the cardinality of fragments is bounded by |A| for small
values of λ whereas, for values of λ close to 1 and when the action is free, the cardinality of fragments
become larger than |A|.

More precisely, assume that λ < 1/|A|. Then every fragment Y for dA verifies |Y | ≤ |A|. Indeed if we
assume |Y | ≥ |A|+ 1, we get for any y ∈ Y

dA(Y ) = |A · Y | − λ|Y | ≥ (1− λ)|Y | ≥ (1 − λ)(|A| + 1) = |A| − λ+ 1− λ |A| > |A| − λ ≥ dA({y})

because |A · {y}| ≤ |A|. This thus gives the contradiction dA({y}) < dA(Y ).
Now assume that the action of G on X is free and A ⊂ G is such that |X | ≥ |A|. Consider µ ≤ 1 and

any subset Y of X such that |Y | < µ|A|. For any λ ∈ [0, 1] such that

|X | − |A|

|X | − µ|A|
≤ λ ≤ 1

we get for the function dA corresponding to λ

dA(Y ) = |A · Y | − λ|Y | ≥ |A| − λ|Y | > |A| − µλ|A|.

Here we use that our action is free to insure that |A · Y | ≥ |A|. By observing that

λ ≥
|X | − |A|

|X | − µ|A|
⇐⇒ |A| − µλ|A| ≥ (1 − λ)|X |

and dA(X) = (1−λ)|X |, we get that Y cannot be a fragment. In particular, when µ > 1− 1
|A| , we obtain

that the fragments are of cardinality at least |A| for any function dA such that

λ ≥
|X | − |A|

|X | − µ|A|
≥

|X | − |A|

|X | − |A|+ 1
.

Thus, atoms and fragments indeed strongly depend on λ and are in general not easy to determine
explicitly.
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4.5 Left invariant k-submodular functions and group representations

When (ρ, V ) is a linear representation of G, we can proceed similarly for any left invariant k-submodular
function f : Pkfin(V ) → R such that m = inf0<dim〈Y 〉<+∞ f(Y ) exists. We define a fragment as a k-
vector subspace W of V which is not reduced to {0} and such that f(W ) = m. By definition of the
k-submodular function f , we can replace W by any of its generating set Y since f(Y ) = f(W ). An atom
for f will be a fragment with minimal dimension. The function f is said left invariant if for any g ∈ G
and any subspace W of V , we have f(g · W ) = f(W ). all the atoms have the same dimension and we
have a linear analogue of Lemma 4.1 whose proof is similar.

Lemma 4.6 Assume W1 and W2 are two atoms of f . Then W1 = W2 or W1 ∩W2 = {0}.

5 Generalizations of results in additive group theory

We resume the definition of the submodular functions cY , γY , dA, δA of Example 3.8. In any cases, recall
that we consider an action of the discrete group G on a set X (or a linear action on a vector space V ).
The functions cY , γY , Y ⊂ X are defined on Pfin(G) from a fixed finite subset of X or V whereas the
functions dA and γA are defined on Pfin(X) or Pkfin(V ) from a finite fixed subset A ⊂ G. Also, all these
functions attain their minimum on their restrictions to nonempty subsets as soon as they are nonnegative
because their images are discrete subsets of R≥0.

5.1 Group action context and submodular functions cY

Let us start with an observation which is not relevant in the context of additive group theory but crucial
in our group action context. Consider the map

qY :

{

Pfin(G) \ {∅} → Q>0

A 7−→ |A·Y |
|A|

Then it might happen that
µ = inf

A∈Pfin(G)\{∅}
qY (A) = 0. (7)

This will be in particular the case if GY is an infinite subgroup of G since subsets A in GY may have
arbitrary large cardinalities whereas |AY | = |Y | is then fixed. In the opposite direction, we will always
have µ > 0 when

1. there exists an element y0 ∈ Y such that Gy0
= {1} and then µ ≥ 1 (this is in particular true if we

consider the action by left translation of G on itself),

2. or the group G is finite and then µ ≥ |Y |
|G| because we always have |A · Y | ≥ |Y | and Y is fixed.

To overcome this difficulty, we need in general the assumption

µ = inf
A∈Pfin(G)\{∅}

|A · Y |

|A|
> 0. (8)

Example 5.1

1. When the action is free (for example in the case of the left translation of G on itself), we have
|A · Y | ≥ |A| so that µ ≥ 1.
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2. For the action of the symmetric group Sn on {1, . . . , n}, when |A · Y | = ℓ, we get with the notation
of Example 2.1

inf
A 6=∅∈Pfin(Sn)||A·Y |=ℓ

|A · Y |

|A|
=

|A0 · Y |

|A0|
=

ℓ
ℓ!

(ℓ−k)! (n− k)!

which is minimal for ℓ = n and then

µ =
n

n!
=

1

(n− 1)!
.

3. Assume G is finite and acts on itself by conjugation. If we consider Y a subset of Z(G) the center
of G, we get A · Y = Y for any subset A ⊂ G. Then

µ = inf
A∈P(G)\{∅}

|A · Y |

|A|
=

|Y |

|G|
.

4. We get similarly µ = |Y |
|G| as soon as Y is a set of fixed elements under the action of G.

Remark 5.2 Assume G is finite and the infimum µ in (8) is attained for the subset A0 ⊂ G, that is

µ = |A0·Y |
|A0|

> 0. Since we have GY · Y = Y for the stabilizer GY of Y , the set A0 is a disjoint union of

left GY -cosets. In particular, GY is finite.

Under the assumption µ > 0, for any λ ∈ [0, µ], the function cY defined on Pfin(G) by cY (A) =
|A · Y | − λ |A| is submodular. Moreover, we have

cY (A) = |A · Y | − λ |A| ≥ |A · Y | − µ |A| ≥ 0

and cY is nonnegative. Observe that
cY (A) ≥ (µ− λ) |A| .

Also for any g ∈ G
cY (gA) = |gA · Y | − λ |gA| = cY (A)

thus the map cY is also left invariant. We get the following theorem.

Theorem 5.3 Consider a subset Y ⊂ X and set

µ = inf
A∈Pfin(G)\{∅}

|A · Y |

|A|
.

Then

• either µ = 0,

• or for any λ ∈ [0, µ], there exists a finite subgroup H of G containing GY such that

|A · Y | ≥ λ |A|+ |H · Y | − λ |H | ≥ λ |A|+ |Y | − λ |H | (9)

for any subset A in G.

Proof. Assume µ > 0 and set as usual m = minA 6=∅∈Pfin(G) cY (A). The case λ = 0 is trivial (take
H = GY and remark that GY is finite by a previous remark). Consider λ ∈]0, µ] and A0 ∈ Pfin(G) such

that µ = |A0·Y |
|A0|

. Then, for any A ∈ Pfin(G), we have

cY (A) = |A · Y | − λ |A| ≥ |A0 · Y | − λ |A0| ≥ (µ− λ) |A0| ≥ 0
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so that cY is a nonnegative submodular function. By Proposition 4.2, there thus exists a unique atom H
for cY containing 1 which is a subgroup of G. Assume there exists g ∈ GY such g /∈ H . Then

cY (H ∪ {g}) = |(H ∪ {g}) · Y | − λ |H ∪ {g}| = cY (H)− λ < cY (H)

and H ∪ {g} is nonempty. This contradicts the fact that H is an atom. Thus, we must have GY ⊂ H .
Also since H is an atom, we have for any finite subset A in G

cY (A) = |A · Y | − λ |A| ≥ |H · Y | − λ |H | = cY (H)

which gives
|A · Y | ≥ λ |A|+ |H · Y | − λ |H | .

Remark 5.4

1. Observe that when µ = 0, the inequality (9) still holds since it reduces to |A · Y | ≥ |Y |.

2. When Y contains an element with trivial stabilizer, we have µ ≥ 1 and the theorem generalizes
Hamidoune’s one when G acts on itself by left translation.

3. Note that we must have H = {1} when G is torsion free because H is a finite subgroup of G.

The theorem also has a dual interpretation in the spirit of § 2.3. Consider a finite subset Y in X such
that such that µ > 0.

Corollary 5.5 For any λ ∈]0, µ] and any finite subset A0 in G there exists a subgroup H of G containing
GY such that

λ max
A⊂G|A·Y=A0·Y

|A|+ |Y | ≤ λ |H |+ |A0 · Y | .

In another direction, we can also get the following analogue of a Theorem by Tao and Petridis (see
[19]) in our group action context.

Theorem 5.6 Consider A a finite subset of G and Y a finite subset of X. Assume that

|A · Y | ≤ α |A|

with α ∈ R≥0. Then, there exists a nonempty subset B in A such that

|CB · Y | ≤ α |CB|

for any finite subset C of G.

Proof. Define the map qA,Y such that

qA,Y :

{

P(A) \ {∅} → Q>0

C 7−→ |C·Y |
|C|

and its minimum µ (which indeed exists since P(A) is finite). Let B ⊂ A such that µ = |B·Y |
|B| . Now

let us consider the function cY defined on Pfin(G) by cY (C) = |C · Y | − µ |C|. We have seen that he
function cY is submodular and left invariant. We also have here cY (B) = 0 and for any C ⊂ A we get
cY (C) ≥ cY (B) = 0. Nevertheless, cY is not nonnegative on Pfin(G) in general. Now for any nonempty
finite subset S of G and any g ∈ G, we can write

cY (B ∪ g−1S) + cY (B ∩ g−1S) ≤ cY (B) + cY (g
−1S) ≤ cY (S)

13



because cY (B) = 0 and cY (g
−1S) = cY (S). We also have cY (B ∩ g−1S) ≥ 0 because B ∩ g−1S ⊂ B ⊂ A

which implies that cY (B ∪ g−1S) ≤ cY (S) for any g ∈ G and any S ∈ Pfin(G). By left invariance, this
gives

cY (gB ∪ S) ≤ cY (S) (10)

for any g ∈ G and any S ∈ Pfin(G).
Now, let us consider a subset C of G such that C = {g1, g2, . . . , gm} and C♭ = {g1, g2, . . . , gm−1}. We

get for any S′ ∈ Pfin(G)

cY (CB ∪ S′) = cY (gmB ∪ (C♭B ∪ S′)) ≤ cY (C
♭B ∪ S′)

by applying (10) with g = gm and S = C♭B ∪ S′. By an easy induction on m we finally obtain

cY (CB ∪ S′) ≤ cY (S
′)

for any S′ ∈ Pfin(G). In particular for S′ = ∅, we get

cY (CB) ≤ 0 ⇐⇒ |CB · Y | − µ |CB| ≤ 0 ⇐⇒ |CB · Y | ≤ µ |CB|

since cY (∅) = 0. We conclude by observing that µ = minC⊂A,C 6=∅
|C·Y |
|C| ≤ |A·Y |

|A| ≤ α.

5.2 Group representation context and submodular functions γY

If we consider a representation (ρ, V ) of G and a finite-dimensional k-subspace W = k〈Y 〉 in V , we can
get an analogue of Theorem 5.3. The proof uses the same arguments and is thus omitted here.

Theorem 5.7 Consider a subset Y ⊂ X and set

µ = inf
A 6=∅∈Pfin(G)

dim(A · Y )

|A|
.

Then

• either µ = 0

• or for any λ ∈ [0, µ], there exists a finite subgroup H of G containing GY such that

dim(A · Y ) ≥ λ |A|+ dim(H · Y )− λ |H | ≥ λ |A|+ dim(Y )− λ |H |

for any subset A in G.

We also have an analogue of Theorem 5.6.

Theorem 5.8 Consider A a finite subset of G and W a finite-dimensional k-subspace of V . Assume
that

dim〈A · Y 〉 ≤ α |A|

with α ∈ R≥0. Then, there exists a nonempty subset B in A such that

dim〈CB · Y 〉 ≤ α |CB|

for any finite subset C of G.
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5.3 Group action context and submodular functions dA

Recall that for any fixed finite subset A in G and any λ ≥ 0, the submodular function dA is defined on
Pfin(X) by dA(Y ) = |A · Y | − λ |Y |. Observe, the function dA is not left invariant in general as defined
in § 4.3 but this is nevertheless the case when G is assumed abelian. Indeed, we then have for any g ∈ G

dA(g · Y ) = |A · (g · Y )| − λ |g · Y | = |gA · Y | − λ |g · Y | = |A · Y | − λ |Y | = dA(Y )

because we have |gA · Y | = |A · Y | and |g · Y | = |Y | by (2). The function dA is not nonnegative for any
λ ≥ 0 but it is the case when λ ∈ [0, 1] because we have for any A ⊂ G and any Y ⊂ X the inequalities
|A · Y | ≥ |Y | ≥ λ |Y |.

We get the following theorem.

Theorem 5.9 Assume G is abelian. Consider A a finite subset of G and Y a finite subset of X. Assume
that

|A · Y | ≤ α |Y |

with α ∈ R≥0. Then, there exists a nonempty subset Z in Y such that

|AC · Z| ≤ α |C · Z|

for any finite subset C of G.

Proof. Define the map qY,A such that

qY,A :

{

Pfin(Y ) \ {∅} → Q>0

S 7−→ |A·S|
|S|

and its minimum µ. Let Z ⊂ Y such that µ = |A·Z|
|Z| . Now let us consider the function dA defined on

Pfin(X) by dA(S) = |A · S|−µ |S|. The function dA is submodular and left invariant because G is abelian.
We have dA(Z) = 0 and for any S ⊂ Y we get dA(S) ≥ 0. Here again, the function dA is not nonnegative
on Pfin(X) in general. Now for any nonempty finite subset S of X and any g ∈ G, we can write

dA(Z ∪ g−1S) + dA(Z ∩ g−1S) ≤ dA(Z) + dA(g
−1S) ≤ dA(S)

because dA(Z) = 0 and dA(g
−1S) = dA(S). We also have dA(Z ∩ g−1S) ≥ 0 because Z ∩ g−1S ⊂ Z ⊂ Y

which implies that dA(Z ∪ g−1S) ≤ dA(S) for any g ∈ G and any S ∈ Pfin(X). By left invariance, this
gives

dA(gZ ∪ S) ≤ dA(S) (11)

for any g ∈ G and any S ∈ Pfin(X).
Now, let us consider a subset C of G such that C = {g1, g2, . . . , gm} and C♭ = {g1, g2, . . . , gm−1}. We

get for any S′ ∈ Pfin(X)

dA((C · Z) ∪ S′) = dA((gm · Z) ∪ ((C♭ · Z) ∪ S′)) ≤ dA((C
♭ · Z) ∪ S′))

by applying (11) with g = gm and S = (C♭ · Z) ∪ S′. By induction on m we finally obtain

dA((C · Z) ∪ S′) ≤ dA(S
′)

for any S′ ∈ Pfin(X). In particular for S′ = ∅, we get since dA(∅) = 0

dA(C · Z) ≤ 0 ⇐⇒ |A · (C · Z)| − µ |C · Z| ≤ 0 ⇐⇒ |AC · Z| ≤ µ |C · Z| .

We conclude by observing that µ = minS⊂Y,S 6=∅
|A·S|
|S| ≤ |A·Y |

|Y | ≤ α.

Under the same hypotheses as in the previous theorem, we get the following interesting corollary.
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Corollary 5.10 Assume G is abelian and |A · Y | ≤ α |Y |. Then, there exists a nonempty subset Z in Y
such that for any integer n ≥ 1 we have

|An · Z| ≤ αn |Z| .

Proof. By applying the theorem, we get a subset Z of Y such that |AC · Z| ≤ α |C · Z| for any finite
subset C of G. In particular, with C = {1}, this gives |A · Z| ≤ α |Z|, that is the corollary for n = 1.
Now consider an integer n ≥ 2 and assume by induction that we have

∣

∣An−1 · Z
∣

∣ ≤ αn−1 |Z| . We then
get

|An · Z| =
∣

∣A · An−1 · Z
∣

∣ ≤ α
∣

∣An−1 · Z
∣

∣ ≤ αn |Z|

where the first inequality is obtained by using the theorem with C = An−1 and the second one is the
induction hypothesis.

5.4 Group representation context and submodular functions δA

Here again, we have a group representation version of the results in § 5.3 when (ρ, V ) is a representation
of G.

Theorem 5.11 Assume G is abelian. Consider A a finite subset of G and W = k〈Y 〉 a finite-dimensional
k-subspace of V . Assume that

dim(A · Y ) ≤ α dim(Y )

with α ∈ R≥0. Then, there exists a k-subspace Z 6= {0} in W such that

dim(AC · Z) ≤ α dim(C · Y )

for any finite subset C of G.

Corollary 5.12 Assume G is abelian and dim〈A · Y 〉 ≤ α dim〈Y 〉. Then, there exists a k-subspace
Z 6= {0} in 〈Y 〉 such that for any integer n ≥ 1 we have

dim(An · Z) ≤ αn dim〈Z〉.

6 Symmetry sets and simple upper bounds

Assume that the group G acts on the set X and consider a finite nonempty subset Y of X . The notion
of symmetry set was introduced by Murphy in [13]. Consider a real α ∈]0, 1], the symmetry set of Y in
G for α is defined as

Symα(Y ) = {g ∈ G | |g · Y ∩ Y | ≥ α |Y |}.

We also introduce the weak stabilizer of Y as

ΓY = {g ∈ G | g · Y ∩ Y 6= ∅} =
⋃

α∈]0,1]

Symα(Y ).

One immediately checks that 1 ∈ ΓY and g ∈ Symα(Y ) if and only if g−1 ∈ Symα(Y ). Also, if G acts
on itself by left translation and A ⊂ G, we have ΓA = AA−1. Observe also that Sym1(Y ) = GY is the
stabilizer of Y in G. In general we always have GY ⊂ Symα(Y ) for any α ∈]0, 1] and more generally
Symα(Y ) ⊂ Symα′(Y ) for α′ ≤ α. Therefore the sequence of subsets (Symα(Y ))α∈[0,1] decreases from G
to GY when α increases in ]0, 1]. The set

{

|g · Y ∩ Y |

|Y |
| g ∈ ΓY

}

⊂ Q>0

is discrete and not empty. Thus it admits a minimum α0 and we then have ΓY = Symα0
(Y ).
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When (ρ, V ) is a linear representation of G such that V 6= {0}, we define similarly for any k-subspace
W 6= {0} of V

Symα(W ) = {g ∈ G | dim g ·W ∩W ≥ α dimW}.

ΓW = {g ∈ G | g ·W ∩W 6= {0}}.

We yet have 1 ∈ Symα(W ) and g ∈ Symα(W ) if and only if g−1 ∈ Symα(W ).

In this section, we examine what information can be extracted when assumption are done on the

cardinality ratio |A·Y |
|Y | (or the dimension ratio dim(A·Y )

dim(Y ) ). This problem was addressed in detail by Murphy

in [13] for group actions setting. Let us start by recalling the first result of [13] and state its linear version.

Proposition 6.1

1. Assume that |A · Y | = |Y |. Then H = 〈A−1A〉1 is a subgroup of GY and Y decomposes into
H-orbits.

2. Assume that dim〈A · W 〉 = dimW . Then H = 〈A−1A〉 is a subgroup of GW . When k has char-
acteristic zero and H is finite, the k-space W decomposes into irreducible representations for the
group H

Proof. 1: For any a ∈ A, we have 1 ∈ a−1A and a−1A · Y = Y because Y ⊂ a−1A · Y and
∣

∣a−1A · Y
∣

∣ =
|A · Y | = |Y |. This shows that A−1A · Y = Y and thus the desired inclusion 〈A−1A〉 ⊂ GY . Since H is a
subgroup of GY , it acts on Y which yields the decomposition in H-orbits.

2: We get similarly A−1A ·W = W and the decomposition of W in irreducible representations for the
finite group H follows from the semisimplicity of its representation theory in characteristic zero.

We now examine simple cases where the hypotheses of the previous proposition are relaxed. In the
following α is a fixed real in ]0, 1].

Lemma 6.2 1. Assume A ⊂ G and Y ⊂ X are finite and nonempty and such that |A · Y | ≤ (2−α) |Y |.
Then A−1A ⊂ Symα(Y ).

2. Assume A ⊂ G and W is a finite dimensional k-subspace of V such that dim〈A·W 〉 ≤ (2−α) dimW .
Then A−1A ⊂ Symα(W )

Proof. 1: Consider a, b in A. Since we have |a · Y | = |b · Y | = |Y | , a · Y ⊂ A · Y , b · Y ⊂ A · Y and
|A · Y | ≤ (2 − α) |Y | , we must have |(a · Y ) ∩ (b · Y )| ≥ α |Y |. We thus obtain

∣

∣(b−1a · Y ) ∩ Y
∣

∣ ≥ α |Y |
and the desired inclusion A−1A ⊂ Symα(Y ).

2: This works similarly: given a, b in A, we must have (a ·W ) ∩ (b ·W ) 6= {0} and thus a−1b belongs
to Symα(W ).

Given a subset S of G, 〈S〉 be the subgroup of G generated by the elements in S.

Proposition 6.3

1. Assume A ⊂ G and Y ⊂ X are nonempty and such that
∣

∣A−1 · Y
∣

∣ ≤ 3−α
2 |Y |. Then (AA−1)2 is

contained in Symα(Y ).

2. Assume A ⊂ G and W is a k-subspace of V such that dim〈A−1 ·W 〉 ≤ 3−α
2 dimW . Then (AA−1)2

is contained in Symα(W ).

1Here 〈A−1A〉 means the subgroup of G generated by A−1A.
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Proof. 1: Consider u = ab−1 in AA−1 with a, b in A. We have

∣

∣(a−1 · Y ) ∩ (b−1 · Y )
∣

∣ =
∣

∣a−1 · Y
∣

∣+
∣

∣b−1 · Y
∣

∣−
∣

∣(a−1 · Y ) ∪ (b−1 · Y )
∣

∣ ≥

2 |Y | −
∣

∣A−1 · Y
∣

∣ ≥
1 + α

2
|Y |

where the second inequality follows from the inclusions a−1 · Y ⊂ A−1 · Y and b−1 · Y ⊂ A−1 ·Y together
with the hypothesis

∣

∣A−1 · Y
∣

∣ ≤ 3−α
2 |Y |. We thus get

|Y ∩ u · Y | ≥
1 + α

2
|Y | .

For any v ∈ AA−1, we get similarly

∣

∣v−1 · Y ∩ Y
∣

∣ = |Y ∩ v · Y | ≥
1 + α

2
|Y | .

This implies that both sets Y ∩ u · Y and v−1 · Y ∩ Y intersect non trivially in Y and

∣

∣u · Y ∩ v−1 · Y ∩ Y
∣

∣ ≥ |Y ∩ u · Y |+
∣

∣v−1 · Y ∩ Y
∣

∣− |Y | ≥ α |Y | .

Therefore we obtain that |vu · Y ∩ Y | ≥ α |Y | and the product vu of any two elements u, v in AA−1

belongs to Symα(Y ). In particular, by taking v = 1 ∈ AA−1, we get that AA−1 is contained in Symα(Y ).
2: The proof can be easily adapted to the context of a the linear representation V of G.

Remark 6.4

1. When G acts on itself by left translation and Y = A, we have ΓA = AA−1 and the hypothesis
∣

∣A−1 · Y
∣

∣ < 3
2 |Y | implies that 〈AA−1〉G ⊂ AA−1, that is AA−1 is itself a subgroup of G. Indeed,

for some α, (AA−1)2 ⊂ Symα(Y ) ⊂ ΓA = AA−1.

2. If we assume |A · Y | < 3
2 |Y |, we get similarly that (A−1A)2 is contained ΓY .

Assertion 1 of the previous remark suggests the following corollary of Proposition 6.3.

Corollary 6.5 Assume that A ⊂ G and Y ⊂ X are nonempty and that there exists α ∈]0, 1[ such that

Symα(Y ) ⊂ AA−1 and
∣

∣A−1 · Y
∣

∣ ≤
3− α

2
|Y | .

Then AA−1 is a subgroup of G.

Proof. By Proposition 6.3, we get (AA−1)2 ⊂ Symα(Y ) ⊂ AA−1. Therefore, AA−1 is a finite subgroup
of G.

We can also use Theorem 5.3 to generalize the previous results.

Theorem 6.6 Consider a discrete group G acting on X. Let A, Y be nonempty finite subsets respectively
of G and X such that |A| ≥ |Y |. Assume that

µ = inf
S 6=∅∈Pfin(G)

|S · Y |

|S|
> 0 and there exists ε > 0 such that |A · Y | ≤ (2− ε)µ |Y | .

Then, there exists a finite subgroup H of G such that Y is contained in the disjoint union H · Y of
H-orbits with

|H | ≤ (
2

ε
− 1) |Y | and |H · Y | ≤ µ(

2

ε
− 1) |Y | .
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Proof. Set λ = µ(1− ε
2 ). By definition of µ and by considering the submodular nonnegative left invariant

function cY defined in Example 3.8, we must have

cY (S) = |S · Y | − λ |S| ≥ (µ− λ) |S| ≥ µ
ε

2
|S| ≥ 0 (12)

for any finite subset S ⊂ G. Now, we can write by using the hypotheses |A · Y | ≤ (2 − ε)µ |Y | and
|A| ≥ |Y |

cY (A) = |A · Y | − µ(1−
ε

2
) |A| ≤ (2− ε)µ |Y | − µ(1 −

ε

2
) |Y | = µ(1−

ε

2
) |Y | . (13)

Let H be the unique atom for cY containing 1. By Theorem 5.3, we know that H is a finite subgroup of
G and cY (H) ≤ cY (A). We must have by (12) and (13)

|H | ≤
2

εµ
cY (H) ≤

2

εµ
cY (A) ≤ (

2

ε
− 1) |Y |

as desired.
We also get

cY (H) = |H · Y | − µ(1−
ε

2
) |H | ≤ cY (A) ≤ µ(1−

ε

2
) |Y | .

Therefore
|H · Y | ≤ µ(1 −

ε

2
) |H |+ µ(1 −

ε

2
) |Y | .

Since µ = infS∈Pfin(G)\{∅}
|S·Y |
|S| and H ∈ Pfin(G) \ {∅}, we should have µ |H | ≤ |H · Y | which gives

|H · Y | ≤ (1−
ε

2
) |H · Y |+ µ(1−

ε

2
) |Y | .

By gathering the occurrences of |H · Y |, we finally obtain and the announced upper bound for |H · Y |

|H · Y | ≤ µ(
2

ε
− 1) |Y | .

7 Action of a product subset of G on a subset of X

Assume that G acts on the set X . We now address the question of determining an upper bound of AB ·Y
when A,B are nonempty finite subsets of G and Y a finite subset of X . This is an action group version
of Theorem 9.2 in [18].

Theorem 7.1 With the previous notation we have

|AB · Y |2 ≤ |AB| |B · Y |max
b∈B

{|Ab · Y |}. (14)

In particular, when the elements of A commute with those of B we have

|AB · Y |2 ≤ |AB| |B · Y | |A · Y | .

Proof. We proceed by induction on |B|. When B = {b}, we obtain

|Ab · Y |2 ≤ |Ab| |b · Y |max
b∈B

{|Ab · Y |}

by observing that |Ab · Y | ≤ |Ab| |Y | and |b · Y | = |Y |. Now assume |B| > 1, set m = maxu∈B{|Au · Y |}
and fix b ∈ B such that m = |Ab · Y |. Write B = B′ ∪ {b}. Set A = {a1, . . . , ar} and Y = {y1, . . . , ys}.
We have AB = AB′ ∪ Ab. There exists a subset A♭ of A such that

AB = AB′ ⊔

a∈A♭

ab.
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Similarly, there exists a subset Y ♭ of Y such that

B · Y = (B′ · Y )
⊔

y∈Y ♭

b · y.

We get

AB · Y = (AB′ · Y )
⋃

a∈A♭

(ab · Y ) = (AB′ · Y )
⋃

a∈A♭

(aB · Y ) = (AB′ · Y )
⋃

a∈A♭

(aB′ · Y )
⋃

a∈A♭

⋃

y∈Y ♭

(ab · y).

Since we have
⋃

a∈A♭

(aB′ · Y ) ⊂ AB′ · Y , we have in fact

AB · Y = (AB′ · Y )
⋃

a∈A♭

⋃

y∈Y ♭

(ab · y).

By the previous decomposition, there exists X ⊂ A♭ × Y ♭ such that

AB · Y = (AB′ · Y )
⊔

(a,y)∈X

(ab · y).

Set α = |X |, β =
∣

∣A♭
∣

∣ and γ =
∣

∣Y ♭
∣

∣. Since |AB · Y | = |AB′ · Y | + α , the desired inequality (14) is
equivalent to

(|AB′ · Y |+ α)2 ≤ (|AB′|+ β)(|B′ · Y |+ γ)m. (15)

By the induction hypothesis, we have

|AB′ · Y |
2
≤ |AB′| |B′ · Y |m. (16)

because maxu∈B′{|Au · Y |)} ≤ maxu∈B{|Au · Y |)} = m. We have
⊔

(a,y)∈X

(ab · y) ⊂ Ab · Y and therefore

α ≤ m. Since X ⊂ A♭ × Y ♭, we have also α ≤ βγ. We get α2 ≤ mβγ. By multiplying in (16), this gives

α2 |AB′ · Y |
2
≤ |AB′| |B′ · Y |m2βγ.

Therefore

α |AB′ · Y | ≤ m
√

γ |AB′| × β |B′ · Y | ≤ m
γ |AB′|+ β |B′ · Y |

2
.

So
2α |AB′ · Y | ≤ mγ |AB′|+mβ |B′ · Y | .

Combining this last inequality with α2 ≤ mβγ and (16), we finally get

(|AB′ · Y |+ α)2 = |AB′ · Y |
2
+ 2α |AB′ · Y |+ α2 ≤

m |AB′| |B′ · Y |+mγ |AB′|+mβ |B′ · Y |+mβγ = (|AB′|+ β)(|B′ · Y |+ γ)m

as desired.
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