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Approval voting allows every voter to cast a ballot of approved alternatives and
chooses the alternatives with the largest number of approvals. Due to its simplicity
and superior theoretical properties, it is a serious contender for use in real-world
elections. We support this claim by giving eight characterizations of approval voting.
All our results involve the consistency axiom, which requires choices to be consistent
across different electorates. In addition, we consider strategyproofness, agreement with
majority opinions, independence of cloned alternatives, and invariance under removing
inferior alternatives. We prove our results by reducing them to a single base theorem,
for which we give a simple and intuitive proof.

1. Introduction

Around the world, when electing a leader or a representative, plurality is by far the most common
voting system: each voter casts a vote for a single candidate, and the candidate with the most
votes is elected. In pioneering work, Brams and Fishburn (1983) proposed an alternative system:
approval voting. Here, each voter may cast votes for an arbitrary number of candidates, and
can thus choose whether to approve or disapprove of each candidate. The election is won by the
candidate who is approved by the highest number of voters. Approval voting allows voters to be
more expressive of their preferences, and it can avoid problems such as vote splitting, which are
endemic to plurality voting. Together with its elegance and simplicity, this has made approval
voting a favorite among voting theorists (Laslier, 2011), and has led to extensive research literature
(Laslier and Sanver, 2010).

Political scientists have conducted field experiments to evaluate the performance of approval
voting in major political elections. Two large-scale experiments are due to Laslier and Van der
Straeten (2004, 2008) during the 2002 French presidential election and Alós-Ferrer and Granić
(2012) during the 2008 state election and 2009 federal election in Germany. They report that
voters reacted well to approval voting and cast very few invalid ballots. In both instances, the
experiments indicate that the election results would have been significantly different under approval
voting as compared to the current voting method (plurality with runoff in France and a variant of
plurality voting in Germany). In particular, Alós-Ferrer and Granić (2012) found that parties that
are perceived as small tend to receive more support under approval voting, presumably because
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voters cast ballots strategically under plurality voting to avoid “wasting their vote” on a party
that has no chance at winning the election.

Approval voting combines two ideas: a simple yet expressive ballot format, and an aggregation
method for deciding on a winner given the submitted ballots. Let us consider these two components
in turn. First, we discuss situations where using approval ballots is appropriate, and then we give
reasons why approval voting is the best aggregation method given approval ballots.

Dichotomous Preferences and Approval Ballots Voters are said to have dichotomous preferences
if every voter’s preferences are given by a partition into approved alternatives and disapproved
alternatives, such that the voter is indifferent between all approved alternatives and indifferent
between all disapproved alternatives, but strictly prefers each approved alternative to each
disapproved alternative. Dichotomous preferences are natural when it is only relevant whether an
alternative or candidate meets certain requirements or not, such as in the following examples.

(i) A group of co-workers aims to schedule a time slot for a meeting. Each of them prefers the
slots for which she is available to those where she is unavailable, but is otherwise indifferent.

(ii) A hiring committee selects a candidate for performing a clearly defined task. Each member
of the committee assesses the candidates and prefers those deemed capable of performing
the task to the remaining ones, but is otherwise indifferent.

(iii) A company decides on an IT service provider. Each division prefers all providers who offer
the services they require to all remaining providers, but is otherwise indifferent.

Dichotomous preferences can also arise on behavioral grounds. If it is costly or computationally
impractical for a voter to evaluate the alternatives precisely, she may resort to a rough classification
into acceptable and unacceptable alternatives. Dichotomous preferences have been considered in
the present context of voting (Bogomolnaia et al., 2005), but also for matching (Bogomolnaia and
Moulin, 2004) and auction theory (Malik and Mishra, 2021).1 As in the latter case, dichotomous
preferences can be a starting point for a theoretical analysis when the problem is inaccessible on
larger preference domains.

Approval ballots are a natural ballot format when preferences are dichotomous. For a start, there
is an obvious one-to-one correspondence between approval ballots and dichotomous preferences.
It identifies every dichotomous preference with its set of most-preferred alternatives, and, thus,
gives voters a well-defined sincere strategy. For a more formal argument, recall that, by the
revelation principle, every social choice function that is implementable by a dominant strategy
incentive-compatible mechanism is implementable through a direct mechanism that asks voters
for their preferences. Identifying dichotomous preferences with approval ballots shows that this
ballot format is fully expressive when restricting to strategyproof mechanisms and when assuming
dichotomous preferences. A classic result by Brams and Fishburn (1978) shows that approval
voting is strategyproof under weak assumptions about how the voters’ preferences extend from
alternatives to sets of alternatives.
The task of aggregating approval ballots also arises in situations where the ballots do not

represent dichotomous preferences. Recall our example (i) above, where a group of co-workers
aims to schedule a time slot for a joint meeting. Suppose that instead of each worker reporting
their acceptable slots to a scheduling tool, the company uses an automated tool with access to
each worker’s calendar and treats all free slots as acceptable. The software then selects a slot
based on the individual availabilities. For this application, the approval ballot format arises from

1In auction theory, some authors have considered single-minded bidders which (assuming free disposal) value
a bundle at 1 if it contains a given object and at 0 otherwise (see, e.g., Milgrom and Segal, 2017). Hence,
single-mindedness is a special case of dichotomous preferences.
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Fishburn (1979) anon. neutr. consist.2 faithfulness9 cancellation12,13

Alós-Ferrer (2006) consist.2 faithfulness9,17 cancellation12,13

Fishburn (1978) anon. neutr.16 consist.2 disjoint equality12

Theorem 1 consist.2 faithfulness16 disjoint equality12

Theorem 2 anon.1 neutr.3,4,15 consist.2 non-trivial10 strategyproofness9,5

Theorem 3 consist.6 continuity7 choose Condorcet winners5

Theorem 4 neutr.14 consist.6 continuity7 avoid Condorcet losers5

Theorem 5 neutr.16 consist.8 continuity7 respect unanimous majorities5

Theorem 6 anon.1 consist.2 faithfulness9,10 independence of clones5

Theorem 7 anon.1 neutr.3 consist.2 faithfulness9,10 independence of losers5

Theorem 8 anon.1 neutr.3 consist.2 independence of dominated alt.5

Theorem 9 anon.1 consist.8 reversal symm.5 independence of never-approved alt.11

Table 1: List of results characterizing AV . Superscripts indicate the labels of examples in Ap-
pendix B showing that the specified axiom cannot be dropped. The first three rows show
known results. Axioms without a superscript in these rows are redundant.

the problem structure and voters cannot strategize. Hence, studying ballot aggregation functions
can also be interesting when ballots are not interpreted as dichotomous preferences.
Finally, one can justify approval ballots axiomatically. Ceron and Gonzalez (2021) consider

social choice rules where voters submit abstract signals, corresponding to a potentially very rich
ballot space. They consider rules that satisfy consistency and notions of anonymity and neutrality.
Then they prove that a condition called “no single voter overrides” (which requires that adding a
single new voter cannot cause a disjoint choice set) makes the restriction of the signal space to
approval ballots essentially without loss of generality. Notably, approval voting does satisfy all
these conditions.

Characterizations of Approval Voting Once we have decided to use approval ballots in an
election, the aggregation method might appear to be obvious. While the standard method
(electing the alternative that was approved on the highest number of ballots) is certainly natural,
there are many other conceivable ways of counting approval ballots. For example, we could use a
type of cumulative voting, where each voter has a unit weight which is split uniformly among the
approved alternatives. Or we might impose a maximum on the number of alternatives that can
be approved by a voter, counting ballots that approve too many alternatives as invalid. Or we
could declare as winners all alternatives that are Pareto undominated according to the reported
approval ballots.
We claim that all alternative aggregation methods fail some of the properties that are often

advanced in favor of approval voting, such as its robustness to strategic misrepresentation, its
clone-proofness, or its consistent behavior when merging election results of different districts. We
provide exhaustive support for this claim by proving a sequence of axiomatic characterizations.
Each row of Table 1 corresponds to a result showing that approval voting is the unique aggregation
function satisfying the axioms in the row. Taken together, these results provide axiomatic support
for the common intuition that approval voting is the uniquely best way to aggregate approval
ballots in single-winner elections.
Our results follow a long line of papers that have axiomatically characterized approval voting,

starting with the early work of Fishburn (1978, 1979). Those characterizations depend on technical
axioms that have limited intuitive appeal. For example, Fishburn (1979) uses “cancellation”,
which requires that if every candidate is named on the same number of ballots, then the rule
should declare a tie between all candidates. Fishburn (1978) uses “disjoint equality”, which
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prescribes that for two voters with disjoint approval ballots, the ballot aggregation function should
declare a tie between all candidates in the union of their ballots. In place of these axioms, our
characterizations use properties like strategyproofness, clone-proofness, or avoidance of Condorcet
losers, which we think are easier to defend.

Technically, the common basis for all our characterizations is the consistency axiom introduced
by Young (1974, 1975), which requires that the ballot aggregation function makes consistent
choices across different sub-electorates.2 Imagine, for example, that a nation is split into several
states, and suppose that there exists a candidate who wins in every state (when counting only the
ballots cast in that state). Consistency requires that, when counting all ballots nationwide, the
ballot aggregation function elects exactly those candidates who win in every state individually.
This axiom applies to ballot aggregation functions defined for varying numbers of voters, and
thus we operate in a framework with variable electorates. Consistency is known to be the driving
force in many characterizations of scoring-based rules in social choice theory (see, e.g., Young,
1975; Young and Levenglick, 1978; Myerson, 1995). In contrast to some other characterization
results based on consistency, our proofs use only elementary mathematics.3 The appeal of direct
and elementary proofs is not merely aesthetic; this property allows our characterizations to be
used to explain the election outcome to voters: given a specific profile of approval ballots, one
can automatically produce a short (polynomial-length) proof showing that the axioms imply that
exactly the winners of approval voting need to be elected in the given profile.4

We will not prove our characterization results from scratch each time. Instead, we will prove
them by reduction to a single base theorem (except for Theorem 3), which characterizes approval
voting as the unique rule satisfying consistency, faithfulness, and disjoint equality. This base
theorem strengthens the result of Fishburn (1978, 1979) by avoiding the use of any symmetry
arguments based on neutrality. (The simple proof is very short and may be of interest for teaching
purposes.) We then prove the remaining characterizations by showing that a ballot aggregation
function satisfying the axioms will also satisfy faithfulness and disjoint equality, and hence we are
done by invoking the base theorem. We take care to ensure that all our results are axiomatically
tight. In Appendix B, we construct 17 example rules which show that none of the axioms can be
dropped or significantly weakened.

After establishing the base theorem, we consider strategic incentives. We characterize approval
voting using its well-known property of not being susceptible to strategic misrepresentation of
preferences. Our characterization makes weak assumptions about the voters’ preferences over
sets of alternatives (following Kelly, 1977), though we show that approval voting in fact satisfies
significantly stronger strategyproofness notions. We then turn to axioms that require a rule to
follow the will of a majority of the voters, and show that approval voting can be characterized
either using the fact that it never elects a Condorcet loser, or that it only elects candidates
with majority support in cases where more than half the voters submit the same approval ballot.
Finally, we characterize approval voting by its resistance to the spoiler effect, which is familiar
from plurality voting where the presence of a weak candidate can change the winner by ‘splitting
the vote’. We formalize resistance to the spoiler effect in four different ways – independence of
adding or removing certain alternatives – and show that each characterizes approval voting.
In Section 7, we discuss other works on characterizing approval voting. Of particular note

is Fishburn’s (1979) paper, which shows that neutrality and consistency characterize a class

2Some authors refer to “consistency” as “reinforcement” (see, e.g., Moulin, 1988a,b; Young, 1988; Myerson, 1995).
3For example, Young (1975), Fishburn (1979), and Myerson (1995) use separating hyperplane theorems for their
characterizations of scoring-based functions and Pivato (2013) uses results from group theory for a generalization
of Myerson’s result.

4The result of Theorem 2 is explainable in this way when strengthening non-triviality to faithfulness. The results
of Theorems 4 and 5 use a simple limit argument, and so would require a stronger logic than in other cases.
Previously, Cailloux and Endriss (2016) showed that the Borda rule can be similarly explained in terms of the
axioms of Young’s (1974) characterization (see also Peters et al., 2020; Boixel et al., 2022).
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of scoring rules. Fishburn then shows that the only scoring rule satisfying disjoint equality or
strategyproofness is approval voting. We obtain these results more directly, without reasoning
about scoring rules. In Appendix A, we state omitted proofs.

2. The Model

Let X be a finite set of alternatives and A be the set of non-empty subsets of X. A preference
relation on X is a complete, reflexive, and transitive relation on X. It is dichotomous if it has
at most two indifference classes. Thus, every dichotomous preference relation can be identified
with the set R ∈ A of alternatives in the indifference class of most-preferred alternatives. We
say a voter with dichotomous preferences R approves the alternatives in R and disapproves the
alternatives in X \R.

The set of admissible ballots is also A. A ballot profile P is a function from the ballot set A to
the non-negative integers such that

∑
A∈A P (A) > 0. We interpret P (A) as the number of voters

whose ballot is A. The approval score P [a] of an alternative a is the number of voters whose ballot
includes a, so P [a] =

∑
A∈A:a∈A P (A). Often, it will be useful to identify elements of A with

single-voter ballot profiles. For example, P +A is the profile resulting from P by adding one voter
with ballot A; similarly, the profile P + kA is obtained by adding k voters with ballot A to P . For
a permutation π on X, the profile π(P ) has P (A) voters with ballot π(A) for every ballot A.

A ballot aggregation function f maps each profile P to a set of winning alternatives f(P ) ∈ A.
Typically, f(P ) will be a singleton, but f may sometimes declare several alternatives to be tied.
Our definition of ballot profiles entails that ballot aggregation functions are anonymous, since
they cannot distinguish between voters submitting the same ballot.5

We recall some axioms for ballot aggregation functions from the literature. A ballot aggregation
function satisfies each of the following axioms if the corresponding property holds for all profiles
P, P ′, ballots A,B, alternatives a, and permutations π.

f(π(P )) = π(f(P )) (neutrality)

f(P ) ∩ f(P ′) = f(P + P ′) whenever f(P ) ∩ f(P ′) ̸= ∅ (consistency)

f(A) = A (faithfulness)

f(P ′ + kP ) = {a} whenever f(P ) = {a}, for some k (continuity)

f(A+B) = A ∪B whenever A ∩B = ∅ (disjoint equality)

f(P ) = X whenever P [a] = P [b] for all a, b ∈ X (cancellation)

The continuity axiom is also known as the overwhelming majority axiom (Myerson, 1995). It
is sometimes defined as only requiring a ∈ f(P ′ + kP ) for some k but this is equivalent to our
definition in the presence of consistency (add another copy of P ).

We are interested in the ballot aggregation function called approval voting (AV ), which chooses
all alternatives with maximal approval score. It is elementary to check that AV satisfies all of
the axioms above. We will also refer to the trivial function TRIV selecting all alternatives in all
profiles, and the function −AV selecting all alternatives with minimal approval score. A ballot
aggregation function is non-trivial if it is not TRIV .

3. Base Theorems

We begin by proving our base theorem: approval voting is the only ballot aggregation function
satisfying consistency, disjoint equality, and faithfulness. We will use this base theorem to obtain

5One can verify that the characterizations in Sections 3 and 5 continue to hold when allowing non-anonymous
ballot aggregation functions. In other results, anonymity is a necessary assumption (see Appendix B).
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the results in Sections 4–6. Fishburn (1978) proves the same result with neutrality in place of
faithfulness (see also Fishburn, 1979, Theorem 5). Another characterization of Fishburn (1979)
uses neutrality, consistency, and cancellation. Here, too, it is possible to prove the analogous
result with faithfulness instead of neutrality, and Alós-Ferrer (2006) gives a simple proof.6 For our
purposes, a base theorem with disjoint equality is more useful than one with cancellation. The
first two sections in Table 1 give an overview of these results. Lemma 1 in Appendix A shows how
the results of Fishburn (1978) and Alós-Ferrer (2006) can be obtained from Theorem 1.
Our proof proceeds as follows. Given an arbitrary profile, consider an approval winner, say a,

and an alternative chosen by a rule that satisfies the axioms, say b. Based on these two alternatives,
we construct an auxiliary profile in which the rule also chooses b. Adding this profile to the
starting profile yields a larger profile in which (by consistency) our rule still chooses b. Moreover,
it can only choose a if it also did so in the starting profile. Decomposing the large profile in a
different way shows that the rule has to choose both a and b. Hence, it indeed had to choose a in
the starting profile, and so it has to choose all approval winners. Showing that it cannot choose
any additional alternatives is similar.

Theorem 1. AV is the only ballot aggregation function satisfying consistency, disjoint equality,
and faithfulness.

Proof. Let P be a profile. If some alternative is approved by all voters, i.e.,
⋂

A∈A:P (A)⩾1A ≠ ∅,
then faithfulness and consistency imply that f(P ) =

⋂
A∈A:P (A)⩾1A = AV (P ) and we are done.

We call such a profile P a consensus profile.
Now consider the case that P is not a consensus profile. Let a ∈ AV (P ) and b ∈ f(P ). We

will show that a ∈ f(P ) and b ∈ AV (P ). If a = b this is obvious, so assume that they are
distinct. Let P [a/b] be the number of voters in P who approve a (and possibly other alternatives)
but not b, and let P [b/a] be the number of voters in P who approve b (and possibly other
alternatives) but not a. Moreover, let P [·/ab] be the number of voters in P who approve neither
a nor b. Since P is not a consensus profile, at least one voter has to disapprove a, and so
P [a/b]+P [b/a]+P [·/ab] ⩾ P [b/a]+P [·/ab] > 0. Let P ′ be the profile on P [a/b]+P [b/a]+P [·/ab]
voters such that

P ′({a}) = P [b/a], P ′({b}) = P [a/b], and P ′({a, b}) = P [·/ab].

In the following, we will consider the profile P + P ′, and decompose it in two ways.
In the first decomposition, we pair each voter in P (except those approving both a and b) with

a voter in P ′ who approves a disjoint set of candidates:

P + P ′ =
∑
A∈A

a∈A,b ̸∈A

P (A) · (A+ {b}) +
∑
A∈A

b∈A,a ̸∈A

P (A) · (A+ {a}) +
∑
A∈A
a,b ̸∈A

P (A) · (A+ {a, b}) +
∑
A∈A
a,b∈A

P (A) ·A.

This pairing allows us to apply disjoint equality to each term of the first three sums, and we see
that f elects both a and b in each of them. By faithfulness, we obtain the same conclusion for the
terms of the fourth sum. Consistency implies that a, b ∈ f(P + P ′).
In the second decomposition, we pair each {a}-voter in P ′ with a {b}-voter in P ′. Since

a ∈ AV (P ), we have P [a/b] ⩾ P [b/a], so each {a}-voter can be matched:

P + P ′ = P + P [b/a] · ({a}+ {b}) + (P [a/b]− P [b/a]) · {b}+ P [·/ab] · {a, b}.

Considering each term of the sum on the right-hand side separately, we see that f elects b in each
of them: b ∈ f(P ) by assumption, f({a}+ {b}) = {a, b} by disjoint equality, and f({b}) = {b}
and f({a, b}) = {a, b} by faithfulness.

6In a survey article, Xu (2010, Theorem 5.3.2) points out that the proof of Alós-Ferrer (2006) can be adapted to
give a characterization with disjoint equality, though this adaptation implicitly requires using a stronger version
of disjoint equality that applies to both two-voter and three-voter profiles.
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If a ̸∈ f(P ) then consistency applied to the second decomposition implies that a ̸∈ f(P + P ′), a
contradiction to a, b ∈ f(P + P ′). If b ̸∈ AV (P ), then P [a] > P [b] and thus P [a/b]− P [b/a] > 0,
so that the third term in the sum does not vanish. Hence by consistency f(P + P ′) = {b}, again
contradicting a, b ∈ f(P +P ′). So a ∈ AV (P ) implies a ∈ f(P ), and b ∈ f(P ) implies b ∈ AV (P ).
Hence f(P ) = AV (P ).

Remark 1. Theorem 1 also holds for the weakening of disjoint equality that only requires f(A+B) ⊇
A ∪B for all disjoint ballots A and B. The proof can be copied almost verbatim.

The goal of the results in the following sections is to replace disjoint equality and cancellation by
axioms of one of three types: resistance to strategic misrepresentation of preferences, majoritarian
properties (such as never electing Condorcet losers), and independence properties that ensure
coherence across different agendas (such as independence of unchosen alternatives). Theorem 1
will be useful throughout, since we will prove the subsequent characterizations by reducing them
to this basic result.

4. Strategyproofness

In this section, we study when ballot aggregation functions incentivize voters to cast their ballots
sincerely. The sincere ballot for a voter with dichotomous preferences is to cast the ballot of
alternatives she approves.7 Since ballot aggregation functions return sets of alternatives, the
incentives of voters depend on their preferences over sets. We thus use preference extensions from
dichotomous preferences over alternatives to (possibly partial) preferences over sets of alternatives.
First, we consider Kelly’s extension, which leads to coarse preferences over sets. We show that
approval voting is the only ballot aggregation function satisfying consistency and neutrality for
which voters can never gain by casting an insincere ballot. Second, we show that for a finer
extension, called Fishburn’s extension, it is a weakly dominant strategy under approval voting for
voters to cast their ballots sincerely.

Consider a voter who approves the set R of alternatives. According to Kelly’s (1977) extension,
she weakly prefers the set Y ∈ A over Z ∈ A if she weakly prefers every alternative in Y to every
alternative in Z (see also Brandt, 2015; Brandt et al., 2022). For her dichotomous preferences, this
happens if either Y consists only of approved alternatives or if Z does not contain any approved
alternatives. Note that under this criterion, many pairs of sets will not be comparable. Denoting
by ≿K

R the resulting partial preferences over sets, we have

Y ≿K
R Z if and only if Y ⊆ A or Z ∩A = ∅.

A ballot aggregation function f is called Kelly-manipulable if for some voter with approval set
R, there is a ballot profile P with f(P +A) ≻K

R f(P +R) for some non-sincere ballot A ∈ A. In
particular, reporting the sincere ballot is not a best response at P . In this case, reporting the
insincere ballot A ensures that either all winning alternatives are approved instead of having some
disapproved alternatives in the winning set, or at least one approved alternative is in the winning
set rather than only disapproved alternatives.

Kelly (1977) called these “clear manipulations” since no matter which tie-breaking mechanism
is invoked to select a final outcome from choice sets, manipulating is always at least as good as
truth-telling and strictly better for some tie-breaking mechanism. Another interpretation is based
on expected utilities. Suppose approved alternatives have utility 1 and disapproved alternatives

7Brams and Fishburn (1978) consider linear preferences over alternatives and call a ballot sincere if it is the upper
contour set of some alternative. Alós-Ferrer and Buckenmaier (2019) extend sincerity to weak preferences in
two ways. They call a ballot sincere if it is “upward closed” (any alternative strictly preferred to an alternative
on the ballot is also on the ballot) and strongly sincere if it is the upper contour set of some alternative. For
dichotomous preferences, our notion of sincerity equals their strong sincerity.
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have utility 0. Suppose further that ties among winning alternatives are broken by some lottery
with positive probability for each winning alternative, but that this lottery is unknown to the
voters. Then a voter can Kelly-manipulate if and only if reporting some insincere ballot has
higher expected utility than truth-telling for all possible tie-breaking lotteries. Brandt et al. (2022)
elaborate on this interpretation in detail.

It is not hard to see that AV is never Kelly-manipulable (see Proposition 1 below). By contrast,
when preferences are not dichotomous, Brandt (2015) showed that every social choice correspon-
dence which is a Condorcet extension is Kelly-manipulable. In Theorem 2, we characterize AV
using Kelly-manipulability. Based on his discussion of scoring rules, Fishburn (1979, Theorem 10)
obtains a similar characterization using a more restrictive notion of manipulability, though his
proof does not require the extra strength.

Theorem 2. AV is the only non-trivial ballot aggregation function satisfying consistency and
neutrality that is not Kelly-manipulable.

Proof. We prove that any such f satisfies faithfulness and disjoint equality. Theorem 1 then
implies f = AV .8

First we show faithfulness. Neutrality implies that f(A) ∈ {X,A,X \A} for all ballots A. If
f(A) = A for all A, then f satisfies faithfulness and there is nothing left to show. If f(A) = X
for all A, consistency implies that f(P ) = X for all profiles P , i.e., f = TRIV , which is contrary
to the assumption that f is non-trivial. If there is a ballot A such that f(A) = X \ A, then
a voter who approves A can Kelly-manipulate by reporting the ballot X at the empty profile
since f(X) = X and X ≻K

A (X \ A). In the remaining case, there are ballots A,B such that
f(A) = A and f(B) = X. If |B| > |A|, let B′ ⊆ B be a ballot with |B′| = |A|. By neutrality,
f(A) = A implies f(B′) = B′. So a voter who approves B can Kelly-manipulate by reporting
B′ at the empty profile since B′ ≻K

B X, which is a contradiction. Thus, by neutrality, there is
k ∈ {2, . . . ,m − 1} such that f(A) = A for all A with |A| ⩾ k and f(A) = X for all A with
|A| ⩽ k − 1. Let A be a ballot such that |A| = k − 1 ⩽ m − 2 and a, b ∈ X \ A be two distinct
alternatives. Then, f(A) = X, f(A ∪ {a}) = A ∪ {a}, and f(A ∪ {b}) = A ∪ {b}. Hence, by
consistency, f(A∪{a}+A) = A∪{a} and f(A∪{a}+A∪{b}) = A. Thus, a voter who approves
A can Kelly-manipulate by reporting A ∪ {b} at the profile A ∪ {a}, since A ≻K

A A ∪ {a}.
Second we show disjoint equality. To this end, let A,B be two disjoint ballots. We first show that

f(A+B) ⊆ A∪B. Assume for contradiction that this is not the case, i.e., f(A+B) \ (A∪B) ̸= ∅.
Let b ∈ B, c ∈ f(A+B) \ (A ∪ B), and C = B \ {b} ∪ {c}. By faithfulness, we have f(C) = C.
Then, consistency implies that f(A + B + C) = f(A + B) ∩ C. Hence, b ̸∈ f(A + B + C) and
c ∈ f(A+B + C). Since |B| = |C| and A ∩B = A ∩ C = ∅, this contradicts neutrality.

So neutrality implies f(A+B) ∈ {A ∪B,A,B}. Assume for contradiction that f(A+B) = A.
(The case f(A + B) = B is analogous.) Let a ∈ A and b ∈ B. Neutrality and the fact that
f(A+{b}) ⊆ A∪{b} imply that f(A+{b}) ∈ {A∪{b}, A, {b}}. Since f(A+B)∩B = ∅, it follows
that f(A + {b}) ∩ B = ∅, as otherwise the voter who approves B can Kelly-manipulate at the
profile A by reporting {b}. Hence, f(A+ {b}) = A. Faithfulness implies that f({a, b}) = {a, b}.
Thus, by consistency, f(A+ {b}+ {a, b}) = A∩{a, b} = {a}. Then f({a}+ {b}+ {a, b}) = {a}, as
otherwise a voter who approves {a} can Kelly-manipulate at the profile {b}+ {a, b} by reporting
A. This contradicts neutrality.
In summary, we have that f satisfies consistency, disjoint equality, and faithfulness, and so

f = AV by Theorem 1.

8By invoking Fishburn’s (1978) characterization instead of Theorem 1, it would suffice to show that f satisfies
disjoint equality. However, our proof for disjoint equality uses faithfulness, so we would still need to establish
faithfulness.
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Remark 2. Our definition of manipulability only considers unilateral deviations. If we strengthen
it to allow for deviations by groups of voters, AV turns out to be Kelly-manipulable. For example,
in the profile P = {a}+ {b}+2{c}, AV chooses {c}. If the voters with ballots {a} and {b} report
{a, b} instead, we obtain the profile P ′ = 2{a, b} + 2{c} for which AV returns {a, b, c}. Hence,
there exists a manipulation for two voters who approve {a} and {b}, respectively, where they
obtain some approved alternative instead of only disapproved alternatives. Examples where voters
obtain only approved alternatives instead of some disapproved alternative can be constructed
likewise. Thus, from Theorem 2, we see that every non-trivial ballot aggregation function satisfying
consistency and neutrality is Kelly-manipulable by a group of voters.9

We used a weak definition of incentive-compatibility in Theorem 2, requiring that an insincere
ballot can never make the output unambiguously better. This notion does not rule out that, for
example, an insincere ballot adds some approved alternatives to the output while removing some
(but not all) disapproved alternatives. We now consider Fishburn’s extension, which is a refinement
of Kelly’s extension. That is, it assumes that voters can compare more sets of alternatives. We
prove that truth-telling is a weakly dominant strategy for these preferences under AV .

Consider a voter who approves the set R of alternatives. Assume that the voter weakly prefers
the set Y ∈ A to Z ∈ A if she weakly prefers every alternative in Y \ Z to every alternative in
Y ∩ Z to every alternative in Z \ Y . Denoting by ≿F

R the resulting partial preferences over sets,
we have

Y ≿F
R Z if and only if


Y ⊂ R, or

Z ∩R = ∅, or
Y \ Z ⊆ R and (Z \ Y ) ∩R = ∅.

Fishburn (1972) motivated this preference extension as arising as the preferences of an expected
utility maximizing voter when ties between alternatives are broken as follows. Suppose there is a
fixed prior probability distribution with full support over the alternatives, which is unknown to
the voters. Ties are broken by conditioning this distribution on the set of winning alternatives.
Then an agent prefers one set to another according to Fishburn’s extension if and only if the
former has higher expected utility than the latter for any prior distribution.

We say that a ballot aggregation function f is Fishburn-strategyproof if truth-telling is a weakly
dominant strategy for Fishburn’s extension. That is, for all profiles P and all ballots A ∈ A,
f(P + R) ≿F

R f(P + A). Thus, either the sincere ballot yields only approved alternatives, the
insincere ballot yields only disapproved alternatives, or, if neither of those holds, the insincere
ballot can only remove approved alternatives and add disapproved alternatives.
For non-dichotomous preferences, this notion of strategyproofness is unduly restrictive.10

However, under dichotomous preferences, AV satisfies it. This can be deduced from the theory
developed by Brams and Fishburn (1978, Theorem 4); here, we give a direct proof.

Proposition 1. AV is strategyproof for Fishburn’s extension.

Proof. Consider a profile P , a dichotomous preference R, and a ballot A. Assume that neither
AV (P +R) ̸⊆ R nor AV (P +A)∩R ̸= ∅. For a ∈ AV (P +R)∩ (X \R) and b ∈ AV (P +A)∩R,
we have

(P +R)[a] ⩽ (P +A)[a] ⩽ (P +A)[b] ⩽ (P +R)[b] ⩽ (P +R)[a].

Hence, (P+R)[a] = (P+A)[b] for all a ∈ AV (P+R) and b ∈ AV (P+A), meaning that the approval
score of approval winners is the same in both profiles. So AV (P +R)∩ (X \R) ⊆ AV (P +A) and
AV (P +A)∩R ⊆ AV (P +R), which is the third case in the definition of Fishburn’s extension.

9Brandt et al. (2022, Remark 2) show that the ballot aggregation function returning all Pareto undominated
alternatives is never Kelly-manipulable by a group of voters. However, it violates consistency.

10For example, it is incompatible with anonymity and Pareto optimality (Brandt et al., 2022, Theorem 1).
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Alós-Ferrer and Buckenmaier (2019) consider sincere ballots under approval voting when voters
have arbitrary transitive preferences over the alternatives. They show that voters always have a
(strongly) sincere ballot that is a best-response against the other voters’ ballots assuming that the
preference extension satisfies three conditions. The first, known as condition (R) from Brams and
Fishburn (1978), requires that adding alternatives to a set that are preferred to all alternatives,
and removing alternatives from a set that are less preferred than all remaining alternatives both
constitute weak improvements. The other two conditions consider deletion and replacement of
alternatives. As Alós-Ferrer and Buckenmaier (2019) note, for dichotomous preferences, these two
conditions are implied by condition (R). Hence, for dichotomous preferences, casting the unique
(strongly) sincere ballot is a weakly dominant strategy for every voter. Since Fishburn’s extension
satisfies condition (R), the result of Alós-Ferrer and Buckenmaier (2019) implies Proposition 1.

In the rest of the paper, we study properties of ballot aggregation functions based on majorities
of voters and invariance under removing inferior alternatives. In many cases, these axioms are
adaptations to the domain of dichotomous preferences of axioms originally discussed in the context
of strict ordinal preferences (linear orders). Thus, these axioms are well-grounded when ballots
represent sincere dichotomous preferences. However, the formal axioms do not depend on an
assumption of dichotomous preferences and can also be sensible when studying ballot aggregation
functions in other contexts.

5. Majoritarian Properties

In many democratic contexts, an important goal of voting is to uncover the will of a majority.
If the preferences of a majority of voters share a certain feature, then this should be reflected
in the collective decision. A classic example of this desideratum is the Condorcet criterion of
choosing a Condorcet winner whenever it exists. Other properties in a majoritarian spirit are
never choosing a Condorcet loser and choosing a majority winner whenever it exists. We will give
a characterization of AV for each of these three properties.

When preferences are dichotomous, the majority relation is transitive (Inada, 1969) and coincides
with the relation obtained by ordering alternatives according to their approval score. The maximal
elements of the majority relation are the approval winners under sincere voting and preferred to
every other alternative by a weak majority of voters (so they are weak Condorcet winners). If
there is a unique approval winner, it is a Condorcet winner. Thus, AV is a Condorcet extension
in that it uniquely chooses the Condorcet winner when one exists.11

Let us say that a ballot aggregation function f chooses Condorcet winners if whenever a is the
Condorcet winner in P , then a ∈ f(P ). Note that this axiom does not necessarily require that
f(P ) = {a}, so it is weaker than being a Condorcet extension. Still, it can be used to characterize
AV .

Theorem 3. AV is the only non-trivial ballot aggregation function that satisfies consistency,
continuity, and chooses Condorcet winners.

Theorem 3 strengthens a result of Fishburn (1979, Theorem 6), who proved that AV is the only
non-trivial ballot aggregation function that satisfies neutrality, consistency, continuity, and that
chooses a weak Condorcet winner. The latter axiom (which Fishburn (1979) calls semi-Condorcet)
is stronger than the one we use: it requires that in each profile, f selects at least one weak
Condorcet winner. Fishburn (1979) posed the question whether neutrality can be dropped from
this result, and our proof shows that it can.

Unlike our other theorems, we do not prove Theorem 3 by reducing it to our base theorem, but
prove it from scratch. Interestingly, consistency and choosing Condorcet winners suffice to show

11In the context of voting with linear orders, no rule that chooses the weak Condorcet winners when they exist
satisfies consistency (Young and Levenglick, 1978, Theorem 2).
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that the winners have to be a subset of the approval winners. Continuity is used to show that all
approval winners are selected.

In a profile P , an alternative a is a Condorcet loser if for every other alternative b, more voters
prefer b to a than prefer a to b. A ballot aggregation function avoids Condorcet losers if it never
chooses a Condorcet loser: a ̸∈ f(P ). This is weaker than Condorcet consistency, and hence AV
satisfies it. Some refinements of AV satisfy it as well (see Example 3 in Appendix B), and thus
AV is not characterized by consistency, neutrality, and avoidance of Condorcet losers. We can
pin down AV uniquely by adding continuity. Together, the four axioms characterize AV . In the
context of voting with linear orders, the same axioms characterize Borda’s rule (combining results
of Smith, 1973 and Young, 1975).

Theorem 4. AV is the only ballot aggregation function that satisfies consistency, neutrality,
continuity, and avoids Condorcet losers.

Proof. We show that any such ballot aggregation function satisfies faithfulness and cancellation
and then apply the result of Alós-Ferrer (2006) (also proven in Lemma 1(ii) in Appendix A).
Faithfulness is easy to see from neutrality and avoiding Condorcet losers. Assume for contradiction
that f does not satisfy cancellation. So there is a profile P such that P [a] = P [b] for all alternatives
a, b and f(P ) ̸= X. Let a ∈ f(P ). We now construct a profile Pa such that all alternatives have
the same approval score in Pa and f(Pa) = {a}. To this end, let Πa = {π ∈ Π(X) : π(a) = a} be
the set of all permutations on X that hold a fixed and Pa =

∑
π∈Πa

π(P ) the profile obtained by
summing up all permutations of P for permutations in Πa. By neutrality, a ∈ f(π(P )) for all π
and so

f(Pa) =
⋂

π∈Πa

f(π(P )) =
⋂

π∈Πa

π(f(P )) = {a},

where the first equality follows from repeated application of consistency, the second equality from
neutrality of f , and the third equality from the assumption that f(P ) ̸= X. Then, continuity
implies that there is k ∈ N such that f(X \ {a}+ kPa) = f(Pa) = {a}. However, a is a Condorcet
loser in the profile X \ {a} + kPa, which contradicts the assumption that f avoids Condorcet
losers.

A ballot aggregation function respects unanimous majorities if whenever more than half of the
voters in a profile P submit the same ballot A, then at least one alternative from A is a winner
(possibly among other alternatives not from A). Notice that in such cases every alternative not
in A is disapproved by a majority of voters. AV satisfies this property, and will in fact return
a subset of A. For voting with linear orders, a similar axiom (sometimes known as majority
consistency) characterizes the plurality scoring rule (Lepelley, 1992, see also Sanver, 2002).

Theorem 5. AV is the only non-trivial ballot aggregation function that satisfies consistency,
neutrality, continuity, and respects unanimous majorities.

6. Independence Properties for Variable Agendas

The plurality rule is commonly criticized as suffering from the “spoiler effect”, whereby the
presence of weak candidates causes an otherwise strong candidate to lose, by “splitting the vote”.
This kind of problem affects many voting rules besides plurality rule but is arguably largely avoided
by approval voting. To make this claim formal, it is useful to adopt a setting where the set of
alternatives (the agenda) may vary, so that we can reason about the effect of adding or removing
alternatives. In this section, we consider a variety of independence conditions for varying agendas
that are satisfied by approval voting. These conditions capture various senses in which approval
voting is robust against the introduction of weak or redundant (“clone”) candidates, and hence is
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immune to the spoiler effect. In addition, these axioms can be seen as ensuring that collective
choices are rationalizable, and they can be interpreted as preventing certain manipulations by
someone with agenda-setting power.

Let us formally set up the variable-agenda model. We reinterpret X as the set of all potential
alternatives. The set of agendas P(X) consists of all non-empty subsets of X. Given an agenda
Y ∈ P(X), the corresponding ballot set AY contains all non-empty subsets of Y . As before,
a profile P on an agenda Y is a function from AY to the non-negative integers such that∑

A∈AY
P (A) > 0. The restriction of a profile P on agenda Y to agenda Z ⊆ Y , written PZ , is

defined by PZ(B) =
∑

A∈AY : A∩Z=B P (A) for all Z ∈ AZ . A ballot aggregation function fY on
an agenda Y maps a profile on Y to a subset of Y . A ballot aggregation function f = (fY )Y ∈P(X)

specifies a ballot aggregation function for each agenda. All axioms defined earlier hold if they
hold within each agenda. We will sometimes abuse notation by applying fZ to a profile P on a
larger agenda Y ⊇ Z. In such cases, P is to be understood as its restriction PZ to Z.
In the context of linear orders, Tideman (1987) noticed that under many common voting

rules, the winner can change when some candidate is ‘cloned’ by introducing new candidates
that each voter ranks in an adjacent position to the original candidate. Few voting rules can
avoid this behavior. However, in the context of approval ballots instead of linear orders, AV is
a ballot aggregation function that does avoid it. To define an appropriate version of Tideman’s
axiom for dichotomous preferences, we say that two alternatives a, b are clones of each other in a
profile P if every voter is indifferent between a and b, or in other words either approves both a
and b or disapproves both. A ballot aggregation function f satisfies independence of clones if,
whenever a and b are clones in P , then fY \{b}(P ) = fY (P ) ∩ (Y \ {b}) and b ∈ fY (P ) if and only
if a ∈ fY \{b}(P ). Thus, adding a clone b of an alternative a to a profile has no effect on whether
other alternatives are chosen or not, and b is chosen if and only if a was chosen in the original
profile.

It turns out that consistency, independence of clones, and faithfulness characterize AV . In fact,
using a more technical argument (omitted here), one can show that the only rules that satisfy
consistency and independence of clones are AV , −AV , and TRIV . Thus, faithfulness is only
required to rule out −AV and TRIV .

Theorem 6. AV is the only ballot aggregation function satisfying consistency, independence of
clones, and faithfulness if |X| ⩾ 4.

The next axiom prevents a losing alternative from spoiling the election. Taken from choice
theory, it prescribes that removing unchosen alternatives from the agenda should not change the
choice set (see, e.g., Chernoff, 1954; Aizerman and Aleskerov, 1995; Brandt and Harrenstein, 2011).
Formally, a ballot aggregation function f satisfies independence of losers if fY (P ) = fZ(P ) for all
profiles P and agendas Z ⊆ Y with fY (P ) ⊆ Z. Independence of losers prevents, for example, a
candidate who has no chance at winning from influencing the election by withdrawing from the
election. Because removing losers does not change the approval scores of other candidates, AV
satisfies this property, and AV can be characterized by consistency, neutrality, faithfulness, and
independence of losers. When dropping faithfulness, at the expense of a more technical proof, one
can show that AV , −AV , and TRIV are the only rules that satisfy these axioms.

Theorem 7. AV is the only ballot aggregation function satisfying consistency, neutrality, faith-
fulness, and independence of losers.

Proof. Take any such ballot aggregation function f and some agenda Y ∈ P(X). We will omit
the subscript Y for f within this proof. We show that f satisfies disjoint equality and apply
Theorem 1.

Let A,B be two disjoint ballots and a ∈ A and b ∈ B. Neutrality implies that f(A + B) ∈
{X,A ∪ B,A,B,X \ B,X \ A}. First assume for contradiction that f(A + B) ̸⊆ A ∪ B and
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let c ∈ f(A + B) \ (A ∪ B). By faithfulness, we have f({c}) = {c}. Hence, by consistency,
f(A+B+{c}) = {c}. Independence of losers implies that f(A+B+{c}) = f{a,b,c}({a}+{b}+{c}) =
{c}, which contradicts neutrality. So we have f(A+B) ∈ {A ∪B,A,B}.

Second, consider the case f(A+B) = A. From the previous case and neutrality, we know that
f({a}+ {b}) = {a, b}. Hence, by consistency, f(A+B+ {a}+ {b}) = {a}. Independence of losers
implies that f(A+B + {a}+ {b}) = f{a,b}({a}+ {b}+ {a}+ {b}) = {a}, which again contradicts
neutrality. Similarly, we get a contradiction if f(A+B) = B. Hence, f(A+B) = A ∪B is the
only possibility, and thus f satisfies disjoint equality.

To decide whether removal of an alternative is allowed to change the outcome, independence of
losers references the choice set of the ballot aggregation function under consideration. Alternatively,
we can look for a more objective approach to identify inferior alternatives whose removal should
not change the election outcome. We will consider two such notions. The first requires that the
removal of a Pareto dominated alternative does not change the set of winners. The second is
weaker and only requires that removing an alternative which is not approved by any voter does
not change the outcome.
An alternative y is Pareto dominated in a profile P if there exists an alternative x such that

every voter in P who approves y also approves x, and there is a voter in P who approves x but
not y. This is the standard definition if ballots represent sincere dichotomous preferences. A ballot
aggregation function satisfies independence of Pareto dominated alternatives if fZ(P ) = fY (P )
for all agendas Y and Z and profiles P on Y such that Z ⊆ Y and all alternatives in Y \ Z are
Pareto dominated in P . In conjunction with consistency and neutrality, this characterizes AV . In
the context of linear orders, these axioms characterize the plurality scoring rule (Richelson, 1978;
Ching, 1996; Öztürk, 2020).

Theorem 8. AV is the only ballot aggregation function satisfying consistency, neutrality, and
independence of Pareto dominated alternatives.

A weakening of the independence axiom of Theorem 8 is independence of never-approved
alternatives, which prescribes that fY (P ) = fZ(P ) for all agendas Y and Z and profiles P on Y such
that Z ⊆ Y and no voter in P approves any alternative in Y \ Z. Under dichotomous preferences,
these alternatives are least-preferred by all voters, and are thus certainly Pareto dominated. As
Example 5 in Appendix B shows, AV is not the only rule satisfying this weaker independence
condition together with the other axioms in Theorem 8. However, AV is characterized when adding
an axiom often called reversal symmetry: if all voters switch to approving the complement of their
ballot, then all chosen alternatives should become unchosen alternatives (unless all alternatives
were chosen in the original profile). For a ballot A ̸= Y , we denote by Ac the complement of A in
Y , i.e., Ac = Y \A; for A = Y , Ac = Y . Similarly, P c is the profile where P c(Ac) = P (A) for all
ballots A ∈ AY . Then reversal symmetry requires that f(P ) ∩ f(P c) = ∅ whenever f(P ) ̸= X. In
the context of linear orders, these axioms characterize the Borda scoring rule (Morkelyunas, 1982,
see also Saari and Barney, 2003).

Theorem 9. AV is the only ballot aggregation function satisfying consistency, reversal symmetry,
and independence of never-approved alternatives.

Proof. Fix some agenda Y . We show that fY satisfies faithfulness and disjoint equality and then
invoke Theorem 1 to conclude fY = AV Y .
For faithfulness, fix some ballot A. Then independence of never-approved alternatives implies

f(A) = fA(A) = A. For agenda A, A = Ac, and so fA(A) = fA(A
c). Then reversal symmetry

implies fA(A) = A, which shows faithfulness.
For disjoint equality, let A,B be two disjoint ballots and P = A + B. Independence of

never-approved alternatives implies f(P ) = fA∪B(P ). For agenda A ∪ B, P = P c, and so
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fA∪B(P ) = fA∪B(P
c). Then reversal symmetry implies fA∪B(P ) = A ∪B, which shows disjoint

equality.

7. Related Characterizations of Approval Voting

The literature on axiomatic characterizations of approval voting and variants thereof goes well
beyond what we have discussed above.
Using variants of the axioms in Theorem 1, Sertel (1988) shows that AV is the only ballot

aggregation function that satisfies anonymity, weak unanimity (faithfulness), weak consistency
(consistency where one of the profiles is a single-voter profile), and strong disjoint equality. The
latter property requires that if a ballot A contains none of the winners for a profile P , then the
winners for the profile P +A are the winners for P and alternatives in A whose approval score in
P is one less than the maximal approval score.

Fishburn (1979) uses neutrality, continuity, and consistency to characterize the class of scoring
rules on the domain of approval ballots. A scoring rule is specified by a vector (s1, . . . , sm) ∈
Rm assigning a score to each ballot cardinality. Given a profile P , the score of x ∈ X is∑

A∈A : x∈A s|A| · P (A). The scoring rule returns the set of alternatives with the highest score. For

example, AV is the scoring rule (1, . . . , 1); cumulative voting is the scoring rule (1, 12 ,
1
3 , . . . ,

1
m);

and plurality voting is the scoring rule (1, 0, . . . , 0) (which ignores all non-singleton ballots).
Without the continuity axiom, Fishburn obtains the class of composite scoring rules, where each
score si is specified by a vector in Rm (rather than a number in R), and we compare vectors
in Rm lexicographically. An example of such a rule is approval voting, with ties broken in
favor of candidates who have the highest plurality score. Fishburn’s result is closely related to
Young’s (1975) characterization of scoring rules when ballots are linear orders over alternatives, and
the characterizations of scoring rules by Myerson (1995) and Pivato (2013) in an abstract setting.
Notably, Fishburn’s characterization (which uses a separating hyperplanes argument) works even
on restricted domains where only certain cardinalities of approval ballot are allowed (e.g., approve
at most three alternatives). In contrast, other characterizations of approval voting using direct
proofs (including the ones in this paper) require that all cardinalities are allowed. An exception
is a paper by Leach and Powers (2019) who show that the approval voting characterization of
Alós-Ferrer (2006) also holds for many cardinality-restricted domains.

Theorem 10 of Fishburn (1979) shows that AV is the only scoring rule for which sincerely
reporting one’s ballot is the only undominated strategy, where dominance is defined similarly to
Kelly’s extension. A related result by Vorsatz (2008) shows that AV is the only non-manipulable
scoring rule on approval ballots for a notion of non-manipulability that is slightly weaker than
Kelly’s. Alcalde-Unzu and Vorsatz (2009) characterize the class of size AV rules, which are scoring
rules where the score of a ballot weakly decreases in the number of approved alternatives. In
addition to anonymity, neutrality, consistency, and a continuity axiom, they assume congruity
(adding a voter who disapproves a losing alternative does not make it a winner) and contraction
(removing alternatives from a voter’s ballot does not add new winners unless all winners are
removed).

Vorsatz (2007) considers ballot aggregation functions for variable sets of voters and alternatives.
The choices for variable sets of alternatives have to be rationalizable by a transitive relation (cf.
Sen, 1977) and indifferent voters do not influence the choice from two-alternative sets. He shows
that AV is the only such ballot aggregation function that is anonymous, neutral, non-manipulable
(as in Vorsatz, 2008), and strictly monotonic, where the latter requires that ties on two alternative
sets are resolved if one alternative gains additional support. Sato (2019) shows that this result
even holds for a fixed set of voters, i.e., without the condition that relates different electorates
to each other. Moreover, he characterizes approval voting using anonymity, neutrality, (a slight
weakening of) strict monotonicity, and a stronger notion of non-manipulability. Neither of these
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conditions connects different agendas, so the result holds even for a fixed agenda.
In the framework of Vorsatz (2007), Massó and Vorsatz (2008) characterize weighted AV , where

the approval score of an alternative is multiplied by its weight, which is exogenously given and
fixed across ballot profiles. Their result requires anonymity, consistency, and two properties that
put bounds on the ratios of the weights.

Sato (2014) and Alcalde-Unzu and Vorsatz (2014) characterize approval voting using a variable-
agenda property stronger than some of the properties we have considered in Section 6: if the set of
feasible alternatives shrinks, then we need to select precisely those previously winning alternatives
that are still feasible, should any exist.
Baigent and Xu (1991) consider rules that aggregate choice functions into a collective choice

function, i.e., a function that specifies the collective choice from each subset of alternatives. Here
the approval score of an alternative corresponds to the number of voters who choose it. If the
aggregation rule yields collective choice functions satisfying neutrality, positive responsiveness
(additional support for a chosen alternative makes it the unique choice), and independence of
symmetric substitutions (the collective choice only depends on the vector of approval scores), then
it has to be approval voting.

8. Discussion

We have provided eight characterizations of approval voting based on the consistency axiom in
combination with other appealing properties. These results are strong arguments for using approval
voting once we accept the premise that voters have dichotomous preferences. Crucially, all our
results hinge on consistency. In the context of political elections, making consistent choices across
sub-electorates prevents severe instances of gerrymandering and is thus particularly important.
On a more technical note, many consistency-based results in social choice theory reason over

an unbounded number of voters, e.g., when employing convex separation theorems on the set
of fractional preference profiles. By contrast, some of our proofs allow us to derive bounds on
the number of voters. For example, if a ballot aggregation function satisfies all assumptions of
Theorem 1 on a set of n voters and all its subsets, then it has to be approval voting on subsets
of up to n/2 voters. The proofs of Theorems 4 and 5 do not yield such bounds, since continuity
requires arbitrarily large electorates.

The examples in Appendix B show that no axiom can be dropped from any of our characteriza-
tions. For Theorems 7 and 8, we use the ballot aggregation function choosing the lexicographically
first approval winner, AV lex , as an example that neutrality cannot be dropped. However, AV lex is
a refinement of AV , and thus identical to it whenever the approval winner is unique. We leave as
an open question whether there is a ballot aggregation function satisfying all axioms of Theorems 7
or 8 except for neutrality, and that is not a subset of approval voting.
Lastly, in this paper we have considered the case of choosing a set of winning alternatives.

However, approval-based rules are also natural candidates for choosing rankings, committees, or
lotteries over alternatives. For example, Lackner and Skowron (2021) study approval-based rules
for electing committees. Further study of other output types seems promising.
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APPENDIX

A. Omitted Proofs

Lemma 1. For a ballot aggregation function f , the following implications hold.

(i) Consistency, disjoint equality, and neutrality imply faithfulness

(ii) Consistency, faithfulness, and cancellation imply disjoint equality

Proof. (i) Let A be a ballot. Neutrality implies that f(A) ∈ {X,A,X \ A}. If A = X, the
first and the second option coincide and the third option is impossible, since choice sets
have to be non-empty. Otherwise, assume for contradiction that f(A) ∈ {X,X \ A} and
let b ∈ f(A) \ A. If A = {a} neutrality implies that f({b}) is either X \ {b} or X. Since
|X| ⩾ 3, f({a}) ∩ f({b}) ̸= ∅ and thus consistency implies f({a}) ∩ f({b}) = f({a}+ {b}),
which is either X \ {a, b} or X, both of which contradict disjoint equality.

For all remaining A, we have f(A) ∩ f({b}) ̸= ∅, since f({b}) = {b} by the previous case.
Then consistency implies {b} = f(A)∩ f({b}) = f(A+ {b}), which again contradicts disjoint
equality.

(ii) By Theorem 1 and Remark 1, it suffices to show that f(A + B) ⊇ A ∪ B for all disjoint
ballots A,B. Let C = X \ (A ∪ B). Cancellation implies that f(A ∪ B + C) = X and
f(A+B + C) = X. So we have

f(A+B) = f(A+B) ∩ f(A ∪B + C)

= f(A+B +A ∪B + C)

= f(A ∪B) ∩ f(A+B + C) = A ∪B,

where the second and third equality follow from consistency and the last equality follows
from faithfulness.

Lemma 1, in combination with Theorem 1, can be used to derive the characterizations of
Alós-Ferrer (2006) and Fishburn (1978) as listed in Table 1. For the latter result, our proofs
avoid the implicit use of anonymity by Fishburn (1978). In the proof of Lemma 1(ii), note that
cancellation was only used for two and three voters with disjoint ballots (see also footnote 6).
A related result was obtained by Ninjbat (2012) who showed that the only ballot aggregation
functions satisfying consistency, neutrality, and cancellation are AV , −AV , and TRIV .

Theorem 3. AV is the only non-trivial ballot aggregation function that satisfies consistency,
continuity, and chooses Condorcet winners.

Proof. The proof proceeds in three stages: first we show that Condorcet winners have to be chosen
uniquely whenever they exist; second that only approval winners can be chosen; and third that
exactly the approval winners are chosen.
We start by constructing a relation E ⊆ X × X on alternatives, where (a, b) ∈ E if for all

profiles P , a ∈ f(P ) implies b ∈ f(P ). The following claim will turn out useful to derive properties
of this relation:

Claim 1. If b is a Condorcet winner in a profile P and a ∈ f(P ), then (a, b) ∈ E.
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Proof of Claim 1. Assume for contradiction that (a, b) ̸∈ E. By definition of E, there is profile P ′

such that a ∈ f(P ′) and b ̸∈ f(P ′). Since b is a Condorcet winner in P , we can find an integer
k large enough so that b is a Condorcet winner in the profile P ′ + kP . (For example, any k
larger than the number of voters in P ′ works.) Because f chooses Condorcet winners, this gives
b ∈ f(P ′ + kP ). By consistency, we have f(kP ) = f(P ) and so a ∈ f(P ′) ∩ f(kP ). Thus we can
apply consistency again to get

f(P ′) ∩ f(kP ) = f(P ′ + kP ).

From this we get b ̸∈ f(P ′ + kP ), since b ̸∈ f(P ′), which is a contradiction.

Now we deduce some properties of E. Clearly, it is reflexive and, since logical implication is
transitive, it is transitive. Moreover, E is symmetric. Suppose that (a, b) ∈ E. Let P be a profile
where a is a Condorcet winner. Since f chooses Condorcet winners, a ∈ f(P ), and since (a, b) ∈ E,
b ∈ f(P ). Then by Claim 1, (b, a) ∈ E. So E is an equivalence relation and partitions alternatives
into equivalence classes.
To proceed, we distinguish three cases. If E = X ×X, it puts all alternatives into the same

equivalence class and f is the trivial rule: choice sets are non-empty, and if any alternative is in the
choice set, all alternatives have to be chosen by definition of E. This contradicts our assumption
that f is non-trivial.
If E = {(a, a) : a ∈ X}, then by Claim 1, Condorcet winners have to be chosen uniquely

whenever they exist.
In all other cases, there are alternatives a, b, c such that a and b belong to the same equivalence

class and c belongs to a different one. In particular, a is chosen whenever b is chosen and vice versa.
Moreover, if either a or b is a Condorcet winner in a profile P , then c is not chosen. Otherwise we
would have (c, a) ∈ E or (c, b) ∈ E by Claim 1, which cannot be since c is in a different equivalence
class than a and b. Thus, for the profiles P = 3{a}+2{c} and P ′ = 3{b}+2{c}, the following hold:
a ∈ f(P ) since f chooses Condorcet winners; thus b ∈ f(P ) and c ̸∈ f(P ); likewise, a, b ∈ f(P ′)
and c ̸∈ f(P ′). Then by consistency, f(P + P ′) = f(3{a}+ 3{b}+ 4{c}) = f(P ) ∩ f(P ′) and so
a, b ∈ f(P + P ′) and c ̸∈ f(P + P ′). However, c is a Condorcet winner in P + P ′, contradicting
that f chooses Condorcet winners. So we conclude that only the second case is possible, i.e.,
Condorcet winners have to be chosen uniquely whenever they exist.
Second we show that f has to choose a subset of approval winners for all profiles. Assume

for contradiction that for some profile P , f(P ) contains an alternative a that is not in AV (P ).
Let b ∈ AV (P ) and P ′ = 2{a} + {b}. Then b is a Condorcet winner in the profile 2P + P ′,
since (2P + P ′)[b] = 2P [b] + 1, (2P + P ′)[a] = 2P [a] + 2 ⩽ 2(P [b] − 1) + 2 = 2P [b], and
(2P + P ′)[c] = 2P [c] ⩽ 2P [b] for all c ̸= a, b, since b ∈ AV (P ). Recall that Condorcet winners
have to be chosen uniquely whenever they exist. So f(2P +P ′) = {b}. Moreover, a is a Condorcet
winner in the profile P ′ and thus f(P ′) = {a}. As observed earlier, consistency implies that
f(P ) = f(2P ). Since a ∈ f(P ) by assumption and f(P ′) = {a}, consistency thus implies
f(2P + P ′) = f(2P ) ∩ f(P ′) = f(P ) ∩ f(P ′) = {a}, which is a contradiction. We conclude that
f(P ) ⊆ AV (P ) for all profiles P .
Third we show that f(P ) = AV (P ) for all P . We have already solved the case of a unique

approval winner in the first part. If there are exactly two approval winners in P and f only chooses
one of them, say AV (P ) = {a, b} and f(P ) = {a}, then by continuity, f({b}+kP ) = {a} for some
integer k. But b is a Condorcet winner in the profile {b}+ kP and so f({b}+ kP ) = {b}, which
is a contradiction. Now, for arbitrary P , assume for contradiction that a ∈ f(P ) ⊆ AV (P ) and
b ∈ AV (P ) \ f(P ). From the case of two approval winners we know that f({a, b}) = {a, b}. In the
profile P+{a, b} only a and b are approval winners, and so f(P+{a, b}) = AV (P+{a, b}) = {a, b}.
Applying consistency we get

f(P + {a, b}) = f(P ) ∩ f({a, b}) = {a},
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since b ̸∈ f(P ), which is a contradiction. We conclude that f(P ) = AV (P ).

Theorem 5. AV is the only non-trivial ballot aggregation function that satisfies consistency,
neutrality, continuity, and respects unanimous majorities.

Proof. We show that any such ballot aggregation function satisfies faithfulness and disjoint equality
and then apply Theorem 1. For brevity, in this proof we will call respect for unanimous majorities
the majority condition.

First we prove faithfulness. Let A be some ballot. Neutrality and the majority condition imply
that f(A) ∈ {X,A}. If f(A) = X for all ballots A, then by consistency, f = TRIV , which is
contrary to the assumption. So there is some ballot A such that f(A) = A. For c ∈ X \ A, we
have that f({c}) ∈ {X, {c}}. If f({c}) = X, then consistency implies that f(A + 2{c}) = A,
which contradicts the majority condition. So by neutrality, f({c}) = {c} for all alternatives c.
Now let A be an arbitrary ballot and assume for contradiction that f(A) = X. For c ∈ X \A, we
have f({c}) = {c} and so consistency implies f(2A+ {c}) = {c}, which contradicts the majority
condition. Thus, f(A) = A and f satisfies faithfulness.
Second we prove disjoint equality. Let A,B be two disjoint ballots. Neutrality implies that

f(A+B) ∈ {X,A,B,A∪B,X \A,X \B,X \ (A∪B)}. We will exclude all possibilities except for
f(A+B) = A∪B. Assume for contradiction that f(A+B) contains some c ∈ X\(A∪B). Moreover,
let a ∈ A. Faithfulness implies that f(A \ {a} ∪ {c}) = A \ {a} ∪ {c}. Consistency then implies
f(A+B+A \ {a}∪ {c}) = f(A+B)∩ (A \ {a}∪ {c}). In particular, c ∈ f(A+B+A \ {a}∪ {c})
and a ̸∈ f(A+B+A\{a}∪{c}). This contradicts neutrality, since the profile A+B+A\{a}∪{c}
is symmetric with respect to a and c, so that either both of them or neither of them has to be
chosen. Thus, f(A + B) ∈ {A ∪ B,A,B}. The remainder of the proof excludes the latter two
possibilities. It proceeds along three increasingly general cases.

Case 1: A = {a} and B = {b} for two alternatives a, b. By the previous analysis and neutrality,
remains f({a}+ {b}) = {a, b} as the only possibility.
Case 2: Arbitrary cardinality A and B = {b} for some alternative b. If f(A + {b}) = {b},

continuity implies that f(A+k(A+ {b})) = {b} for some integer k, which contradicts the majority
condition. If f(A+{b}) = A, consistency and Case 1 imply that for a ∈ A, f(A+{b}+{a}+{b}) =
{a}. Then, continuity implies that f({b} + k(A + {b} + {a} + {b})) = {a} for some integer k,
which contradicts the majority condition. Thus, f(A+ {b}) = A ∪ {b}.

Case 3: Arbitrary cardinality A,B. If f(A + B) = B, choose some b ∈ B. Case 2 implies
that f(A + {b}) = A ∪ {b}. So f(A + B + A + {b}) = {b}. Then continuity implies that
f(A+ k(A+B +A+ {b})) = {b} for some k, which contradicts the majority condition. The case
f(A+B) = A is analogous. Thus, f(A+B) = A ∪B remains as the only possibility.

Theorem 6. AV is the only ballot aggregation function satisfying consistency, independence of
clones, and faithfulness if |X| ⩾ 4.

Proof. Take any such ballot aggregation function f and some agenda Y ∈ P(X). We will omit
the subscript Y for f within this proof. We show that f satisfies disjoint equality and then apply
Theorem 1.

Let A,B ∈ AY be two disjoint ballots and C = Y \ (A ∪ B). In the two-voter profile A+ B
all alternatives in A are clones of each other and likewise all alternatives in B and in C. So
independence of clones implies that for each of these sets, either all alternatives are chosen or
none, i.e., f(A+B) ∈ {Y,A ∪B,A,B,C}.
We show that in addition, A is chosen if and only if B is chosen. So assume that A ⊆ f(A+B),

let a ∈ A, b ∈ B, and c ∈ C, and consider the agenda {a, b, c}. (If A ∪ B = Y , omit c in
what follows.) Independence of clones implies that a ∈ f{a,b,c}(A + B) = f(A + B) ∩ {a, b, c}.
Let x ∈ X \ {a, b, c}, which exists since |X| ⩾ 4, and consider the profile {a, x} + {b} on
the agenda {a, b, c, x}. Independence of clones implies x ∈ f{a,b,c,x}({a, x} + {b}). Further
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applications of independence of clones imply that x ∈ f{b,c,x}({x}+{b}), x ∈ f{a,b,c,x}({x}+{a, b}),
x ∈ f{a,c,x}({x} + {a}), b ∈ f{a,b,c,x}({b, x} + {a}), and b ∈ f{a,b,c}({b} + {a}). So we get
b ∈ f{a,b,c}(A+B) = f(A+B) ∩ {a, b, c} and thus, B ⊆ f(A+B).
The remaining possibilities are f(A + B) ∈ {Y,A ∪ B,C}. Assume for contradiction that

f(A + B) ∩ C ̸= ∅. Faithfulness implies f(C) = C. Applying consistency to A + B and the
one-voter profile C yields f(A+ B + C) = f(A+ B) ∩ f(C) = C. Essentially the same line of
reasoning as in the previous paragraph shows that f(A+B + C) = Y , which is a contradiction.
Thus f(A+B) = A ∪B, and so f satisfies disjoint equality.

Theorem 7. AV is the only ballot aggregation function satisfying consistency, neutrality, faith-
fulness, and independence of losers.

Proof. Take any such ballot aggregation function f and some agenda Y ∈ P(X). We will omit
the subscript Y for f within this proof. We show that f satisfies disjoint equality and then apply
Theorem 1.
To this end, let A,B be two disjoint ballots and a ∈ A and b ∈ B. Neutrality implies that

f(A+B) ∈ {X,A∪B,A,B,X \B,X \A}. First assume for contradiction that f(A+B) ̸⊆ A∪B
and let c ∈ f(A+ B) \ (A ∪ B). By faithfulness, we have f({c}) = {c}. Hence, by consistency,
f(A+B+{c}) = {c}. Independence of losers implies that f(A+B+{c}) = f{a,b,c}({a}+{b}+{c}) =
{c}, which contradicts neutrality. So we have f(A+B) ∈ {A ∪B,A,B}.

Second, consider the case f(A+B) = A. From the previous case and neutrality, we know that
f({a}+ {b}) = {a, b}. Hence, by consistency, f(A+B+ {a}+ {b}) = {a}. Independence of losers
implies that f(A+B + {a}+ {b}) = f{a,b}({a}+ {b}+ {a}+ {b}) = {a}, which again contradicts
neutrality. Similarly, we get a contradiction if f(A+B) = B. Hence, f(A+B) = A ∪B remains
as the only possibility and so f satisfies disjoint equality as desired.

Theorem 8. AV is the only ballot aggregation function satisfying consistency, neutrality, and
independence of Pareto dominated alternatives.

Proof. Fix some agenda Y . We show that fY satisfies disjoint equality and then invoke Fish-
burn’s (1978) result to conclude fY = AV Y . The subscript Y will be omitted in the rest of
the proof. Let A,B be two disjoint ballots. Observe that in the profile A + B all alternatives
in X \ (A ∪ B) are Pareto dominated by alternatives in A ∪ B. So independence of Pareto
dominated alternatives implies f(A+B) = fA∪B(A+B) ⊆ A∪B. Then it follows from neutrality
that f(A + B) ∈ {A,B,A ∪ B}. Without loss of generality, we may assume for contradiction
that f(A + B) = A. For a ∈ A and b ∈ B, neutrality and independence of Pareto dominated
alternatives imply f({a} + {b}) = f{a,b}({a} + {b}) = {a, b}. Then it follows from consistency
that f(A+B + {a}+ {b}) = {a}. In the profile A+B + {a}+ {b}, all alternatives except a and
b are Pareto dominated by either a or b. Thus, by independence of Pareto dominated alternatives,
{a} = f(A+B + {a}+ {b}) = f{a,b}({a}+ {b}+ {a}+ {b}), which contradicts neutrality.

B. Independence of Axioms

In each of our characterizations, the axioms used are independent: when dropping any one of
the axioms, other rules satisfy the remaining axioms. To show this, we give a lengthy list of
example rules below that satisfy particular combinations of axioms. Most of these examples are
technical in nature, and not in themselves interesting. To see which example can be used to prove
independence in a specific result, refer to Table 1.
In these examples, a scoring rule is a ballot aggregation function f which is specified by a

scoring system g : A × X → N where for a ballot A ∈ A and alternative a ∈ X, the ballot
assigns g(A, a) points to a. Then f selects the alternatives with the highest number of points:
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f(P ) = argmaxa∈X
∑

A∈A P (A)g(A, a). Scoring rules satisfy consistency and continuity (Fishburn,
1979; Myerson, 1995). We can also consider composite scoring rules which allow for two levels of
scores g : A×X → N2, where pairs of integers are compared lexicographically. We write a+ bε
for the pair (a, b). Composite scoring rules satisfy consistency but may fail continuity. A plurality
ballot is a singleton ballot; the plurality score of an alternative a is P ({a}), the number of singleton
ballots for a. A veto ballot is a ballot of cardinality |X|−1. Some of our examples “ignore” certain
voters; in cases where all voters are ignored those rules output X, a tie between all alternatives.

Example 1. The rule that is like AV but counts voter 1 double.

This rule is not anonymous, but it satisfies neutrality, consistency, faithfulness, Fishburn-strategyproofness,
independence of clones, reversal symmetry, independence of losers, of dominated alternatives, and of
never-approved alternatives. That the rule satisfies these axioms is easily deduced from the fact that
AV satisfies them.

Example 2. The rule PO selecting all Pareto optimal alternatives.

This rule fails consistency, since PO(a+ c) = {a, c} and PO(b+ c) = {b, c}, but PO(a+ b+ c+ c) =
{a, b, c}. However, PO satisfies anonymity, neutrality, disjoint equality, cancellation, independence of
clones, independence of losers, and independence of dominated alternatives, and is not manipulable
for Kelly’s extension.

Example 3. The rule AV lex selecting the lexicographically first approval winner.

This rule fails neutrality, but it satisfies anonymity, consistency (if a is the lexicographically first
approval winner in both P and P ′, then AV (P ) and AV (P ′) intersect, and so AV (P + P ′) =
AV (P ) ∩AV (P ′) because AV satisfies consistency, and a is the lexicographically first element of the
latter set), Fishburn-strategyproofness (since AV satisfies Fishburn-strategyproofness and lexicographic
tie-breaking is consistent across choice sets), independence of losers and of dominated alternatives
(since AV satisfies these properties).

Example 4. The constant rule always selecting {x} for some fixed x ∈ X.

This rule fails neutrality, but satisfies anonymity, consistency, and Fishburn-strategyproofness.

Example 5. The plurality rule ignoring all non-singleton ballots.

This rule is manipulable for Kelly’s extension since f({a} + {b, c}) = {a} where the second voter
can manipulate to f({a} + {b}) = {a, b}. It fails to respect unanimous majorities and fails to
avoid Condorcet losers since f({a} + {b, c} + {b, c}) = {a}. It fails independence of clones since
f({a} + {b}) = {a, b} but f({a} + {b, c}) = {a}. It fails independence of losers and of dominated
alternatives, since f({a} + {a, b} + {c}) = {a, c} but f({a} + {a} + {c}) = {a}. It fails reversal
symmetry since f({a}+ {b, c}) = {a} but f({b, c}+ {a}) = {a}. However, it is anonymous, neutral,
and satisfies consistency and continuity because it is a scoring rule. It also satisfies independence of
never-approved alternatives, since if we delete a never-approved alternative, the set of voters with a
singleton ballot does not change.

Example 6. The rule CNL selecting all alternatives that are not Condorcet losers.

This rule fails consistency, since f({a}+ {b}) = {a, b} and f({a}+ {c}) = {a, c} but f({a}+ {a}+
{b} + {c}) = {a, b, c}. The rule is neutral, it avoids Condorcet losers by definition, and it satisfies
continuity (since if a is the Condorcet loser in profile P , then a is the Condorcet loser in P ′ + kP for
sufficiently large k, so a ̸∈ f(P ′ + kP )).

Example 7. The rule selecting the approval winners with highest plurality score.

This rule fails continuity, since if P = {b} and P ′ = {a} + {a, b} + {b, c}, then f(P ) = {a}, but
f(P + kP ′) = {b} for all k. The rule is anonymous, neutral, it satisfies consistency (since it is a
composite scoring rule), and it avoids Condorcet losers and respects unanimous majorities (since it
returns a subset of the approval winners).

Example 8. The rule selecting the approval winners, considering only those ballots that occur
most frequently in the profile.
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This rule fails consistency since f({a, b}+{a, c}) = {a} and f({a, b}) = {a, b}, but f({a, b}, {a, b}, {a, c}) =
{a, b}. It is anonymous and neutral. It respects unanimous majorities, since a ballot that is reported
by a majority is a (uniquely) most-frequent ballot. It satisfies continuity since for any profiles P and
P ′, we have for large enough k that f(P ′ + kP ) = f(P ), since the most-frequent ballots in P become
the most-frequent ballots in P ′ + kP for large enough k. It satisfies independence of never-approved
alternatives, since removing a never-approved alternative does not change any approval sets, and does
not change which ballots are most-frequent.

Example 9. The rule −AV returning the alternatives with lowest approval score.

Example 10. The rule TRIV returning all alternatives.

Example 11. The rule like AV, but counting plurality and veto ballots double.

This rule fails independence of never-approved alternatives, since f{a,b,c,d}({a, b}, {c}) = {c} but
f{a,b,c}({a, b}, {c}) = {a, b, c}. It is anonymous, satisfies consistency (since it is a scoring rule), and
satisfies reversal symmetry (since AV satisfies reversal symmetry, and reversing a profile preserves
voter weights).

Example 12. The rule like AV, but counting veto ballots double.

This rule fails disjoint equality and cancellation in 2-voter profile, since f({a}+X \ {a}) = X \ {a}.
It satisfies consistency (being a scoring rule), and faithfulness. It also satisfies cancellation in 3-voter
profiles since if A,B,C are disjoint ballots, then none of A,B,C can be a veto ballot (we disallow
empty ballots here).

Example 13. The scoring rule where a ballot A gives |A|(|X| − |A|) points to each approved
alternative.

This rule fails cancellation on 3-voter profiles because for |X| ⩾ 4, we have f({a}+ {b}+X \ {a, b}) =
X \ {a, b} because a and b have |X| − 1 points each and other alternatives have (|X| − 2) · 2 > |X| − 1
points each. However, this rule satisfies consistency (since it is a scoring rule), faithfulness, and
cancellation on 2-voter profiles (since if A∪B = X and A∩B = ∅, then |A|(|X|−|A|) = |B|(|X|−|B|),
and so A and B give the same number of points to each approved alternative, and hence f(A+B) = X).

Example 14. The rule that is like AV, except that the ballot {a} gives 1 point to a (as usual),
and 0.5 points to b and c each.

This rule fails neutrality. Assume |X| ⩾ 4. The rule satisfies consistency and continuity (since it is a
scoring rule). The rule also avoids Condorcet losers. Note that each alternative’s score under f is at
least that alternative’s approval score, and they are equal except possibly for b and c. Let P be a
profile with a Condorcet loser ℓ, where ℓ ̸= b and ℓ ̸= c. Then ℓ’s score is ℓ’s approval score. Take
d ∈ X \ {ℓ, b, c}. Then d’s score is d’s approval score, so d’s score is strictly higher than ℓ’s score, since
ℓ is the unique Condorcet loser. Hence ℓ ̸∈ f(P ). Let P be a profile where b is the Condorcet loser (in
particular, c majority-beats b), yet b ∈ f(P ). Delete all ballots {a} from P to obtain P ′. In P ′, c still
majority-beats b. Since f behaves like AV on P ′, c has strictly more points than b in P ′. But since
the {a}-ballots give the same number of points to b and c, c must have had strictly more points than
b in P , contradicting that b ∈ f(P ); so b ̸∈ f(P ). Symmetrically, we have c ̸∈ f(P ) whenever c is the
Condorcet loser in P .

Example 15. The rule where each voter gives 1 + ϵ points to approved alternatives, and 1 point
to a if a is not approved (where ϵ is infinitesimally small).

An alternative description of this rule is: if the ballots of all voters intersect (a consensus profile), then
return that intersection. Otherwise, return {a}. This rule is not neutral, but it satisfies faithfulness.
Being a composite scoring rule, it satisfies consistency. It is also Fishburn-strategyproof: in a consensus
profile, for each voter, a subset of approved alternatives is selected, so the sincere ballot is a weakly
dominant strategy for Fishburn’s extension. If {a} is returned, then a voter can only change this
by approving alternatives that all other voters approve, but the new set of winners will be weakly
dominated by {a} for Fishburn’s extension.
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Example 16. The rule that is like AV, except that the ballot approving a gives 2 points to a and
1 point to every other approved alternative, and ballots disapproving a give −1 points to a and 1
point to each approved alternative.

This rule fails faithfulness since f({a, b}) = {a}, and it fails neutrality by the same example. The
rule is anonymous, satisfies consistency and continuity (since it is a scoring rule), disjoint equality
(since for disjoint A and B, either neither approves a so f(A+B) = A ∪B, or exactly one of them
approves a, whence a gets 2 +−1 = 1 points, and every other alternative in A ∪ B gets 1 point as
well, so f(A + B) = A ∪ B), and respects unanimous majorities (suppose in profile P , ballot A is
reported by more than half of the voters. If a ̸∈ A, then each alternative in A has score at least P (A)
and all alternatives not in A have a lower score. If a ∈ A, then each alternative in A other than a has
score at least P (A), alternative a has score 2P (A) −

∑
B∈A : a̸∈B P (B) > P (A) because a minority

disapproves a, and alternatives outside A have score less than P (A). In either case f(P ) ⊆ A).

Example 17. The rule where each ballot assigns +1 points to approved alternatives and −1
points to disapproved alternatives, except that ballots approving a but disapproving b give +2
points to a and −2 points to b, and that ballots approving b but disapproving a give +2 points to
b and −2 points to a.

This rule fails faithfulness and fails neutrality, since f({a, c}) = {a}. Since it is a scoring rule, it
satisfies anonymity, consistency, and continuity. It satisfies cancellation, since in a profile in which all
approval scores are equal, we have P [a/b] = P [b/a] (in the notation of the proof of Theorem 1), and
so under this rule all alternatives get 0 points in total.
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