Imputation as Service Using Support Vector Regression: Application to a Photovoltaic System in Algeria - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Imputation as Service Using Support Vector Regression: Application to a Photovoltaic System in Algeria

Mohamed Taki Eddine Seddik
  • Fonction : Auteur
  • PersonId : 1175023
Ouahab Kadri
Mohamed Rida Abdessemed
  • Fonction : Auteur

Résumé

This paper aims to test the most common imputation methods' effectiveness and choose the most appropriate methods for our data model. In the experimental study, we applied imputation to missing data using the imputation methods: fFill, bFfil, Drop, and Support Vector Regression (SVR). An easy and practical means of comparison is used to evaluate the effectiveness of imputation methods. Therefore, the classification quality criterion is used, and column reference graphs are used because they have a statistically significant relationship. The SVR imputation method was very reliable, and it helped us make a reasonable classification.
Fichier principal
Vignette du fichier
1st_-MSE_June-2022_paper_961 (1).pdf (534.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03815846 , version 1 (15-10-2022)

Identifiants

  • HAL Id : hal-03815846 , version 1

Citer

Mohamed Taki Eddine Seddik, Ouahab Kadri, Mohamed Rida Abdessemed. Imputation as Service Using Support Vector Regression: Application to a Photovoltaic System in Algeria. 1st National Conference of Materials sciences And Engineering, (MSE'22), Jun 2022, Khenchela, Algeria. ⟨hal-03815846⟩
93 Consultations
62 Téléchargements

Partager

More