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Abstract

This study addresses the problem of learning an extended summary
causal graph from time series. The algorithms we propose fit within the
well-known constraint-based framework for causal discovery and make use
of information-theoretic measures to determine (in)dependencies between
time series. We first introduce generalizations of the causation entropy
measure to any lagged or instantaneous relations, prior to using this mea-
sure to construct extended summary causal graphs by adapting two well-
known algorithms, namely PC and FCI. The behaviour of our method is
illustrated through several experiments.

1 Introduction

Time series arise as soon as observations, from sensors, for example, are col-
lected over time. They are present in various forms in many different domains,
as healthcare (through, e.g., monitoring systems), Industry 4.0 (through, e.g.,
predictive maintenance and industrial monitoring systems), surveillance sys-
tems (from images, acoustic signals, seismic waves, etc.) or energy management
(through, e.g. energy consumption data) to name but a few. We are interested
in this study in analyzing time series to detect the causal relations that exist be-
tween them. In other words, we aim to build a causal graph from observational
data1. In such graphs, nodes represent variables, in our case the time series or
their evaluation onto timepoints, and arrowheads represent the direction of the
causal relation, from causes to effects. Different types of causal graphs can be
considered for time series: full-time causal graphs which cover all time instants,
window causal graphs (Figure 1 (a)) which only cover a fixed number of time
instants, summary causal graphs (Figure 1 (b)) which directly relate variables
without any indication of time [Assaad et al., 2022].

1We use here the term observational data to refer to observed data on which one cannot
intervene.
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Figure 1: Example of a window causal graph (a), a summary causal graph (b)
and an extended summary causal graph (c).

Considering a full-time causal graph is not realistic for long time series; fur-
thermore, when causal relations are consistent through time, a property known
as causal stationarity, full-time causal graphs reduce to window causal graphs,
the size of the window being given by the largest time gap γ between causes
and effects. This said, it is difficult for an expert to provide a window causal
graph because it is difficult to determine which exact time instant is the cause of
another. It is of course easier for an expert to propose a summary causal graph.
However, such a summary hides the temporal relations between variables in the
sense that a causal relation (excluding self causes) can either be instantaneous
or relate time series at different time instants. To address this problem, we
consider in this study extended summary causal graphs (Figure 1 (c)) in which
past instants are conflated in a past slice and present instants represented in a
present slice. Extended summary causal graphs can represent two types of rela-
tions2: from the past (represented for a time series Xp by Xp

t−) to the present
(represented for a time series Xp by Xp

t ) and instantaneous relations in the
present slice.

Potential effects in extended summary graphs are variables in the present
slice, whereas potential causes are variables in both the past and present slices,
as illustrated in Figure 1 (c). Lastly, as the underlying full-time graph is
acyclic, both window causal graphs and extended summary causal graphs are
also acyclic. This is not necessarily the case for summary causal graphs.

Previous studies have investigated methods to build window causal graphs
from observational data, from which extended summary causal graphs and sum-
mary causal graphs can be directly deduced [Entner and Hoyer, 2010, Hyvärinen
et al., 2010, Nauta et al., 2019, Runge et al., 2019, Runge, 2020]. However, this
process is costly as one needs to explicitly identify all causal relations between

2As such, they are similar to the two time-slice Bayesian networks [Koller and Friedman,
2009].
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any two pairs of time series. Furthermore, methods directly aiming at build-
ing (extended) summary graphs may be more robust to noise and finally more
precise for these particular graphs. In addition, there are several situations
in which one is mainly interested in the (extended) summary graphs as these
graphs provide a simple, yet operational, view on the causal relations that exist
between time series. Lastly, as argued before, contrary to (extended) summary
causal graphs, window causal graphs may be difficult to analyze by experts.

Our goal here is to provide efficient procedures to directly build extended
summary causal graphs. We do so by exploiting the causal relations in the
window causal graphs without explicitly stating them. More explicitly, our
contributions are two-fold:

1. first, we introduce a new information measure referred to as greedy cau-
sation entropy that can help in detecting if a past slice of a time series
is independent or conditionilly independent of the present slice of another
time series;

2. then, we combine this measure with a PC-based algorithm [Spirtes et al.,
2000] for causal discovery with no hidden common causes, and with a
FCI variant [Spirtes et al., 2000, Zhang, 2008] for causal discovery with
hidden common causes. In both cases, the orientation rules are adapted
to extended summary causal graphs.

The remainder of the paper is organized as follows: Section 2 presents the
related work; the greedy causation entropy is introduced in Section 3 and the
causal discovery algorithms in Section 4. Section 5 describes the experiments
conducted to evaluate our proposal and Section 6 concludes the paper.

2 Related Work

Granger Causality is one of the oldest methods proposed to detect causal rela-
tions between time series. However, in its standard form [Granger, 1969], it is
known to handle a restricted version of causality that focuses on linear relations
and causal priorities as it assumes that the past of a cause is necessary and suf-
ficient for optimally forecasting its effect. This approach has nevertheless been
improved since then [Granger, 2004, Arnold et al., 2007] through, e.g, the use of
variable selection tools. Recently, Granger causality has been explored through
an attention mechanism within convolutional networks [Nauta et al., 2019] to
handle non linear relations and, in special cases, hidden common causes.

In a different line, approaches based on Structural Equation Models assume
that the causal system can be defined by a set of equations that explain each
variable by its direct causes and an additional noise. Causal relations are in this
case discovered using footprints produced by the causal asymmetry in the data.
For time series, the most popular algorithms in this family are VarLiNGAM
[Hyvärinen et al., 2008], which is an extension of LiNGAM through autoregres-
sive models, and TiMINo [Peters et al., 2013], which discovers a causal relation-
ship by looking at independence between the noise and the potential causes.

3



The main drawbacks of these approaches are the need of a larger sample size
to achieve a performance comparable to other classes of methods, as well as
the simplifying assumptions made on the relations between causes and effects
[Malinsky and Danks, 2018].

Score-based approaches [Chickering, 2002] search over the space of possible
graphs trying to maximize a score that reflects how well the graph fits the data.
Recently, a new score-based method called Dynotears [Pamfil et al., 2020] was
presented to infer a window causal graph from time series. However, it was
shown that this method aim at finding sparse structural equation models that
best explain the data, without any guarantee on the corresponding DAG [Kaiser
and Sipos, 2021].

Constraint-based approaches, based on the PC algorithm by Spirtes et al.
[2000], are certainly one of the most popular approaches for inferring causal
graphs. Several algorithms, adapted from non-temporal causal graph discovery
algorithms, have been proposed in this family for time series, among which oCSE
by Sun et al. [2015] and PCMCI by Runge et al. [2019], Runge [2020] which aims
to infer a window causal graph and uses standard mutual information to assess
whether two variables are causally related or not. Other variants such as tsFCI
by Entner and Hoyer [2010], SVAR-FCI by Malinsky and Spirtes [2018], and
LPCMCI by Gerhardus and Runge [2020] focus on hidden common causes. Our
work fits within this family, but we focus here on the extended summary causal
graph and introduce a specific entropy measure for that purpose.

The application of information theoretic measures to temporal data raises
several problems due to the fact that time series can be shifted in time and may
have strong internal dependencies. Many studies have attempted to re-formalize
mutual information for time series: Galka et al. [2006] decorrelated observations
by whitening data (which may have severe consequences on causal relations);
Schreiber [2000] represents the information flow from one state to another with
an asymmetric transfer entropy measure; Frenzel and Pompe [2007], inspired
by Kraskov et al. [2004], represented time series by vectors that are assumed to
be statistically independent; the Time Delayed Mutual Information proposed
in Albers and Hripcsak [2012] aims at addressing the problem of non uniform
sampling rates. The measure we propose bears some similarity with transfer en-
tropy as it is also asymmetric; it is however suited to discover extended summary
graphs as it can consider potentially complex relations between timestamps in
different time series through the use of windows.

3 Greedy causation entropy

Assuming a relaxed version of temporal priority, which states that effects do not
occur before their causes, and consistency throughout time or causal stationarity,
which states that all causal relations remain constant throughout time, we con-
sider the following general form for the functional causal model of any potential
effect Xq:
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∀t, Xq
t = f(Cqt (Xp1), · · · , Cqt (Xpq ), ξqt ), (1)

where f denotes any real-valued multivariate function and ξqt represent the
noise terms which are serially and mutually independent of each other and are
independent from all the causes of Xq

t . C
q
t (X

p), for Xp a cause of Xq
t , represents

the past and present instants (i.e., time instants before t or equal to t) of Xp

which are direct causes of Xq
t ; it can be written as:

Cqt (Xp) = {Xp
t−γ1

, · · · , Xp
t−γKr

},

where Kr ∈ Z+ and γ1, · · · , γKr
are integers such that γ1 > · · · > γKr

≥ 0.
As past instants of a time series can be causes of its present instant, Xq can of
course be a cause of itself.

The general functional model of Eq. 1 shows that the causal relation between
a cause Xp and its effect Xq is captured through the relation between Xq

t and its
direct causes in Xp. If one measures (in)dependence with mutual information,
denoted I in the remainder, then one can conclude that Xp does not directly
cause Xq if one has, ∀K ∈ Z∗, ∀{γ1, · · · , γK} s.t. 0 ≤ γK < · · · < γ1:

I(Xq
t ;X

p
t−γ1

, · · · , Xp
t−γK

) = 0.

The above statement can of course be extended by conditioning on any subset
of past instants of any set of time series.

The computation of the above mutual information for allK > 0 and {γ1, · · · , γK}
can be time consuming as, for a given potential effect Xq and potential cause
Xp, its complexity is O(2γCI), where γ is the maximum gap between a cause
and its effect and CI the complexity of the computation of the mutual infor-
mation. It furthermore requires O(2γCI) independence tests to assess whether
the mutual information values obtained differ from 0 or not. Fortunately, the
following property shows that one can still efficiently identify independence be-
tween Xp and Xq by considering the window in Xp starting at t−γ and ending
at t, denoted t−γ : t.

Property 1 Let γ denote the maximum gap between a cause and its effect. The
following two propositions are equivalent:

(a) I(Xq
t ;X

p
t−γ1

, · · · , Xp
t−γK

) = 0, ∀K ≥ 1, ∀γ1 > · · · > γK ≥ 0,

(b) I(Xq
t ;X

p
t−γ:t) = 0.

The same equivalence holds for the conditional mutual information, using any
conditional set.

Proof Using the chain rule of mutual information, one has for all K > 0 and
Γ = {γ1, · · · , γK} such that 0 ≤ γK < · · · < γ1:

I(Xq
t ;X

p
t−γ:t) =I(X

q
t ;X

p
t−γ1

, · · · , Xp
t−γK

)

+ I(Xq
t ;X

p
(t−γ:t)\Γ|X

p
t−γ1

, · · · , Xp
t−γK

),
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where Xp
(t−γ:t)\Γ represents all time instants in Xp

t−γ:t but t − γ1, · · · , t − γK .

As mutual information is always positive, one can see that the left-hand side of
the above equality is greater than or equal to the first term in the right-hand
side of the equality, which shows that (b)⇒ (a). Furthermore, as (a) is true for
all K and Γ, (a)⇒ (b). □

Using the mutual information in (b) reduces the complexity of computing
I(Xq

t ;X
p
t−γ1

, · · · , Xp
t−γK

) for all K and all subsets of K past instants in Xp to
O(CI) and a single independence test.

The extended summary graph differentiates past and present instants of
a time series, such that each time series is represented by two variables, as
illustrated in Figure 1(c). The relations between time series in the present
slice correspond to instantaneous relations. The standard (conditional) mutual
information, I(Xq

t ;X
p
t ), with complexity O(CI), can be readily used to assess

whether variables in the present slice are (conditionally) causally related or not,
where the conditional set might be in the present or past slices. We will see
below how to orient edges identified in the present slice.

To assess whether there exist causal relations between variables in the past
and potential effect in the present slices, we make use of the following greedy
causation entropy3 which is based on Prop. 1 and is asymmetric to reflect the
specific role of the cause and the effect. Relations between variables in the past
and present slices are naturally oriented by temporal priority.

Definition 1 With the same notations as before, the greedy causation entropy,
denoted by GCE, from the time series Xp to the time series Xq is defined by:

GCE(Xp → Xq) = I(Xq
t ;X

p
t−γ:t−1). (2)

Denoting by XPr a set of m time series {XPr1 , · · · , XPrm
t } in the present slice

and by XPa a set of l time series {XPa1
t− , · · · , XPal

t− } in the past slice, the con-
ditional greedy causation entropy furthermore takes the form:

GCE(Xp → Xq|XPa, XPr) (3)

=I(Xq
t ;X

p
t−γ:t−1|X

Pa1
t− , · · · , XPal

t− , XPr1
t , · · · , XPrm

t ).

Because of Prop. 1, one can conclude that past instants of Xp do not directly
causeXq iff there existsXPr = {XPr1

t , · · · , XPrm
t } andXPa = {XPa1

t− , · · · , XPal
t− },

with m, l ≥ 0, such that GCE(Xp → Xq|XPa, XPr) = 0. In the following, for
simplification purposes, we will not differentiate in the conditioning time series
in the present and past slices and will simply write GCE(Xp → Xq|XR). Lastly,
note that for determining (in)dependencies in the present slice, we directly rely
on the standard (conditional) mutual information.

3.1 Estimation

We rely on the k-nearest neighbor method [Frenzel and Pompe, 2007] for the esti-
mation of standard mutual information. We present its adaptation to GCE(Xp →

3We call it greedy because it considers all past instants (up to γ) without trying to filter
them.
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Xq|XR) for XR a set of m time series {Xr1 , · · · , Xrm}. First, the distance we
consider between two pairs of observations i and j is the supremum distance:

d((Xq
t , X

p
t−γ:t−1)i, (X

q
t , X

p
t−γ:t−1)j)

= max

(
|(Xq

t )i − (Xq
t )j |, max

1≤ℓ≤γ
|(Xp

t−ℓ)i − (Xp
t−ℓ)j |

)
.

Let us denote by ϵik/2 the distance from (Xq
t , X

p
t−γ:t−1, X

R)i to its k-th

neighbor, and n1,3i , n2,3i and n3i the numbers of points with distance strictly
smaller than ϵik/2 for the examples (Xq

t , X
R)i, (Xp

t−γ:t−1, X
R)i and (XR)i.

The estimate of the greedy causation entropy is then given by:

ĜCE(Xp;Xq | XR)

= ψ(k) +
1

n

n∑
i=1

ψ(n3i )− ψ(n
1,3
i )− ψ(n2,3i ),

where ψ denotes the digamma function.

4 Causal discovery for extended summary graphs

We make use of the PC algorithm to construct extended summary graphs from
observational time series. The first step in PC consists in constructing a skeleton
that relates causes and effects. Once this is done, the skeleton is oriented. We
extend this to data with hidden common causes using an extension of the FCI
algorithm.

4.1 Skeleton construction

One first constructs an extended summary graph in which there is an edge from
all time series in the past slice to all time series in the present slice and all time
series in the present slice are connected to one another (not oriented). Each
edge between Xp in the past slice to Xq in the present slice is then removed
if GCE(Xp → Xq) = 0. The same is done for the edges in the present slice
using the usual mutual information. One then checks, for the remaining edges,
whether the two time series are conditionally independent (the edge is removed)
or not (the edge is kept). Starting from a single time series connected to Xp

or Xq, the set of conditioning time series is gradually increased till either the
edge between Xp and Xq is removed or all time series connected to Xp and
Xq have been considered, in both directions. The conditional version of GCE
is used for edges between the past and present slices, whereas the conditional
mutual information is used for edges in the present slice. In this procedure, we
use the same strategy as the one used in PC-stable [Colombo and Maathuis,
2014] which consists in sorting time series according to their GCE or mutual
information scores and, when an independence is detected, in removing all other
occurrences of the time series. This leads to an order-independent procedure.
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4.2 Orientation under causal sufficiency

We first assume that the set of observed time series is causally sufficient [Spirtes
et al., 2000], that is all common causes of all time series are observed.

As noted before, the orientation of the edges between the past and present
slices is straightforward. It is based on the temporal priority principle which
states that an effect cannot precede a cause. All these edges are thus oriented
from the past to the present. We then try to orient as many edges as possible in
the present slice by using standard PC rules which are applied recursively till no
more edges can be oriented. The origin of causality and propagation of causality
make use of both time series in the past and present slices as colliders can involve
time series in the present and in the past slices. We give below the form the PC
rules take in our case, where Sepset(p ↔ q) denotes the separation set of Xp

and Xq according to the conditional mutual information and Sepset(p → q)
the separation set of Xp and Xq according to GCE:

PC-Rule 0 (Origin of causality)

(i) In an unshielded triple Xp
t −Xr

t −X
q
t , if X

r
t /∈ Sepset(p↔ q), then Xr

t is
an unshielded collider: Xp

t → Xr
t ← Xq

t .

(ii) In an unshielded triple Xq
t− → Xq

t −X
p
t , if X

q
t /∈ Sepset(q → p), then Xq

t

is an unshielded collider: Xq
t− → Xq

t ← Xp
t .

PC-Rule 1 (Propagation of causality) In an unshielded triple Xp
t → Xr

t −
Xq

t (resp. Xp
t− → Xr

t −X
q
t ), if X

r
t ∈ Sepset(p↔ q) then orient the unshielded

triple as Xp
t → Xr

t → Xq
t (resp. Xp

t− → Xr
t → Xq

t ).

PC-Rule 2 If there exist a direct path from Xp
t to Xq

t and an edge between Xp
t

and Xq
t , then orient Xp

t → Xq
t .

PC-Rule 3 Orient Xp
t −X

q
t as Xp

t → Xq
t whenever there are two paths Xp

t −
Xr

t → Xq
t and Xp

t −Xs
t → Xq

t .

As we are using here the standard PC rules, and under the faithfulness
assumption [Spirtes et al., 2000], we have the following theorem, the proof of
which directly derives from results on PC [Spirtes et al., 2000].

Theorem 1 (Theorem 5.1 of Spirtes et al. [2000]) Let the distribution of
V be faithful to a DAG G = (V,E), and assume that we are given perfect con-
ditional independence information about all pairs of variables (Xp, Xq) in V
given subsets XR ⊆ V \{Xp, Xq}. Then the skeleton constructed previously fol-
lowed by the above orientation rules represents the CPDAG of of the extended
summary causal graph G.

Proof Property 1 and GCE allow one to consider past instants of a given time
series as a single meta-variable and to compute, through Eq. 3, conditional
mutual information measures between such meta-variables and variables in the

8



present slice. We are using d-separation and PC on these (meta-)variables; thus
Theorem 5.1 applies when assuming that the data distribution of the (meta-
)variables is faithful to the extended summary graph. □

The above theorem states that the construction procedure we have followed is
correct and gives the completed partially directed acyclic graph (CPDAG) which
corresponds to Markov equivalence class of the true causal graph [Andersson
et al., 1997, Chickering, 2002]. The overall process is referred to as PCGCE and
given in Algorithm 1.

Algorithm 1 PCGCE

Require: X a d-dimensional time series of length T , γ ∈ N the maximum
number of lags, α a significance threshold
Initialization: Construct a partially oriented extended summary graph G =
(V = {Vt, Vt−}, E) with 2d nodes such that ∀Xp

t , X
q
t ∈ Vt, X

p
t − Xq

t and
∀Xp

t− ∈ Vt−, X
q
t ∈ Vt, X

p
t− → Xq

t

n = 0
while ∃Xq

t ∈ V s.t. card(Adj(Xq
t ,G)) ≥ n+ 1 do

D = list()
for Xq

t ∈ Vt s.t. card(Adj(Xq
t ,G)) ≥ n+ 1 do

for Xp
t∗ ∈ Adj(Xq

t ,G) such that t∗ ∈ {t, t−} do
for all subsets XR ⊂ Adj(Xq

t ,G) \ {X
p
t∗} such that card(X(R)) = n

do
if t∗ = t then
yq,p,t,R = I(Xp;Xq | XR)

else
yq,p,t−,R = GCE(Xp → Xq | XR)

append(D, {Xq
t , X

p
t∗ , X

R, yq,p,t∗,R}))
Sort D by increasing order of y
while D is not empty do
{Xq

t , X
p
t∗ , X

R, y} = pop(D)
if Xp

t∗ ∈ Adj(Xq
t ,G) and XR ⊂ Adj(Xq

t ,G) then
Compute z the p-value of y using a statistical independence test
if z > α then
if t∗ = t then
Remove edge Xp

t −X
q
t from G

else
Remove edge Xp

t− → Xq
t from G

Sepset(pt∗ , qt) = Sepset(qt, pt∗) = XR

n=n+1
for each triple in G do apply PC-Rule 0
while an edge can be oriented do
for each triple in G do apply PC-Rules 1, 2, 3

Return the extended summary causal graph G
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4.3 Extension to hidden common causes

When there exist unobserved variables that cause two variables of interest (i.e.,
hidden common causes), an extended summary graph is not suitable to represent
causal relations, and one needs to resort to maximal ancestor graphs (MAGs)
and extended summary MAGs. An extended summary MAG behaves as the
usual MAG [Richardson and Spirtes, 2002] for time series in the present slice.
In addition, there is a double arrow between a time series in the past slice and
a time series in the present slice of two time series if there exists at least one
hidden common cause between instants of the two time series.

The PC algorithm is not appropriate to deal with hidden common causes.
Instead, one should use the FCI algorithm introduced in Spirtes et al. [2000]
which infers a PAG (partial ancestral graph), which can contain up to six types
of edges: undirected (−), single arrow (→ or ←), double arrow (←→) corre-
sponding to a hidden common cause, undirected on one side and undetermined
on the other (−◦ or ◦−), directed on one side and undetermined on the other
(◦→ or ←◦), and undetermined on both sides (◦−◦). In what follows, a ∗ is used
to represent any of these types. We extend here the version of the algorithm
presented in Zhang [2008] to time series and extended summary causal graphs.

From the skeleton obtained in Section 4.1, unshielded colliders are detected
using the following rule:

FCI-Rule 0 (Origin of causality)

(i) In an unshielded triple Xp
t ∗−◦Xr

t ◦−∗X
q
t , if X

r
t /∈ Sepset(p↔ q), then Xr

t

is an unshielded collider: Xp
t ∗→ Xr

t ←∗X
q
t .

(ii) In an unshielded triple Xq
t−∗→ Xq

t ◦−∗ X
p
t , if X

q
t /∈ Sepset(q → p), then

Xq
t is an unshielded collider: Xq

t−∗→ Xq
t ←∗X

p
t .

From this, we construct the Possible-Dsep sets, defined as follows:

Definition 2 Let Xr
t∗ denote a time series in either the past or present slice.

Xr
t∗ is in the Possible-Dsep set of Xp

t− and Xq
t (resp. Xp

t and Xq
t ) if and only if

Xr
t∗ is different from Xp

t− (resp. Xp
t ) and X

q
t and there is an undirected path U

between Xp
t− (resp. Xp

t ) and X
r
t∗ such that for every subpath < Xw

t∗ , X
s
t∗ , X

v
t∗ >

of U , either Xs
t∗ is a collider on the subpath, or Xw

t∗ and Xv
t∗ are adjacent in

the PAG.

As elements of Possible-Dsep sets in a PAG play a role similar to the ones of
parents in a DAG, additional edges are removed by conditioning on the elements
of the Possible-Dsep sets, using the same strategy as the one given in Section 4.1.
All edges are then unoriented and the FCI-Rule 0 is again applied as some of the
edges of the unshielded colliders originally detected may have been removed by
the previous step. Then, as in FCI, we apply the rules 1, 2, 3 and 4 introduced
in Spirtes et al. [2000], and the rules 8, 9 and 10 introduced in Zhang [2008].
We do not included Rules 5, 6 and 7 from Zhang [2008] as these rules deal with
selection bias, a phenomenon that is not present in the datasets we consider.
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Including these rules in our framework is nevertheless straightforward. The
overall process, is referred to as FCIGCE.

5 Experiments

We propose first an extensive analysis on simulated data, generated from ba-
sic causal structures; then we perform an analysis on a widely used simulated
benchmark, namely FMRI (Functional Magnetic Resonance Imaging) which is
often considered as a ”realistic” benchmark.

Data: The artificial datasets correspond to seven extended summary causal
graphs, extracted from window causal graphs, among which five are causally
sufficient (4̊tt=0, 4tt>0, 4̊tt>0, 4tt≥0, 4̊tt≥0) presented in Table 2a and two are non

causally sufficient (7t2ht>0, ˚7t2ht>0) presented in Table 2b. Causally sufficient
structures comprise four observed times series whereas non causally sufficient
structures contain seven observed time series and two hidden time series. The
generating process of all datasets is the following: for all q, for all t > 0,

Xq
t = aqqt−1X

q
t−1 +

∑
p

apqt−lf(X
p
t−l) + 0.1ξqt ,

where 0 ≤ l ≤ 24, ajqt ∼ U([−1;−0.1] ∪ [0.1; 1]) for all 1 ≤ j ≤ d, ξqt ∼
N (0, 1) and f is a non linear function chosen at random in {absolute value, tanh,
sine, cosine}. From this, we generate datasets with different characteristics to
illustrate the behaviour of different causal discovery methods. For all datasets,
we consider time series with 1000 timestamps.

In the remainder, the notation 4t or 7t represents the number of time series
in the dataset, ◦ above means that the time series is self causal, 2h means
that there are two hidden common causes in the dataset, and the subscripts
t = 0, t > 0 and t ≥ 0 mean that all causal relations are instantaneous, with
a strictly positive lag and with a positive lag. In 4̊tt=0, all causal relations
between different time series are instantaneous and all time series are caused
by their own past (aqqt−1 > 0 and apqt−l = 0). In 4tt>0 and 7t2ht>0, all causal
relations have a lag l > 0 and none of the time series is caused by its own past
(aqqt−1 = 0 and apqt−l > 0). In 4̊tt>0 and 7̊t2ht>0, all causal relations have a lag
l > 0 and all time series are caused by their own past (aqqt−1 > 0 and apqt−l > 0).
In 4tt≥0, causal relations are either instantaneous or have a lag l > 0 and none
of the time series is caused by its own past. Finally, in 4̊tt≥0, causal relations
are either instantaneous or have a lag l > 0 and all time series are caused by
their own past. For each structure and for each setting, we generate 10 different
datasets over which the performance of each method is averaged.

The FMRI (Functional Magnetic Resonance Imaging) benchmark contains
BOLD (Blood-oxygen-level dependent) datasets for 28 different underlying brain

4For datasets with positive lags, l is randomly chosen in {1; 2}; thus, for roughly half of
the edges, the lag is 2.
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(a) Structures corresponding to the artificial datasets without hidden common causes.
A→ B means that A causes B.

X1
t−

X2
t−

X3
t−

X4
t−

X5
t−

X6
t−

X7
t−

X1
t

X2
t

X3
t

X4
t

X5
t

X6
t

X7
t

7t2ht>0

X1
t−

X2
t−

X3
t−

X4
t−

X5
t−

X6
t−

X7
t−

X1
t

X2
t

X3
t

X4
t

X5
t

X6
t

X7
t

˚7t2ht>0

(b) Structures corresponding to the artificial datasets with hidden common causes.
A → B means that A causes B and A ←→ B represents the existence of a hidden
common cause between A and B.

Figure 2: Structures corresponding to the artificial datasets. The notation 4t or
7t represents the number of time series in the dataset, ◦ above means that the
time series is self causal, 2h means that there are two hidden common causes
in the dataset, and the subscripts t = 0, t > 0 and t ≥ 0 mean that all causal
relations are instantaneous, with a strictly positive lag and with a positive lag.

networks5 [Smith et al., 2011]. BOLD FMRI measures the neural activity of
different regions of interest in the brain based on the change of blood flow. There
are 50 regions in total, each with its own associated time series. Since not all
existing methods can handle 50 time series (such as PCMCI using conditional

5Original data: https://www.fmrib.ox.ac.uk/datasets/netsim/index.html
Preprocessed version: https://github.com/M-Nauta/TCDF/tree/master/data/fMRI
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mutual information and the associated permutation test), datasets with more
than 10 time series are excluded. Furthermore, as the reference causal relations
in the FMRI benchmark can only be represented by a summary causal graph, we
compare all methods based on the summary causal graph they infer (this graph
is directly deduced from the window causal graph or the extended summary
causal graph for methods inferring these types of graphs).

Methods: All the methods retained can either infer a window causal graph,
from which one can deduce the corresponding extended summary causal graph,
or a summary causal graph with no instantaneous relations so that the extended
summary causal graph can also be deduced (this is the case for oCSE and
MVGCL presented below).

Among constraint-based methods, in addition to the proposed PCGCE and
FCIGCE, we retained the well-known PCMCI6 [Runge et al., 2019, Runge, 2020]
which infers a window causal graph as well as oCSE [Sun et al., 2015], relying
on our implementation, which infers an extended summary causal graph with-
out instantaneous relations. For all those methods, the mutual information is
estimated using the k-nearest neighbour method with k fixed to 10; a signifi-
cance local permutation test [Runge, 2018] with kperm = 5 is furthermore used
to assess whether the mutual information values differ from 0 or not. For non
causally sufficient structures, we retained, in addition to FCIGCE, the state-of-
the-art tsFCI7 method [Entner and Hoyer, 2010] on which we use tests of zero
correlation or zero partial correlation. The significance level of the test used
is set to 0.05 for methods on causally sufficient structures (PCGCE, PCMCI,
oCSE) and to 0.1 for methods on non causally sufficient structures (FCIGCE,
tsFCI).

Among noise-based approaches, we retained the well-known VarLiNGAM
8 method [Hyvärinen et al., 2010], in which the regularization parameter in
the adaptive Lasso is selected using the Bayesian Information Criterion (no
statistical test is performed as we directly use the value of the statistics). From
the Granger family, we retained the standard lasso-based multivariate Granger
(GCMVL) [Arnold et al., 2007], which we re-implemented, and the recently
proposed TCDF9 [Nauta et al., 2019] with a kernel of size 4, a dilation coefficient
set to 4, one hidden layer, a learning rate of 0.01, and 5000 epochs. Lastly,
we retained, from score-based approaches, the recently proposed Dynotears10

method [Pamfil et al., 2020], the hyperparameters of which are set to their
recommended values (λW = λA = 0.05 and αW = αA = 0.01).

For all the methods, we set the hyperparameter γ to 5. A Python routine
to use all the above methods is available at https://github.com/ckassaad/
PCGCE.

Evaluation Measures: To assess the quality of causal inference, we use
two different measures:

6https://github.com/jakobrunge/tigramite
7https://sites.google.com/site/dorisentner/publications/tsfci
8https://github.com/cdt15/lingam
9https://github.com/M-Nauta/TCDF

10https://github.com/quantumblacklabs/causalnex
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• Fp ̸=q: the F1-score regarding causal relations between two different time
series;

• Fp=q : the F1-score regarding causal relations between a time series and
itself.

Table 1: Results for simulated data without hidden common causes. The mean
and the standard deviation of the F1 score are reported and the best results are
in bold. Double-bars are used for grouping methods according to the class they
belong to.

Constraint-based Noise-based Score-based Granger-based
Perf. PCGCE oCSE PCMCI VarLiNGAM Dynotears TCDF MVGCL

4̊tt=0
Fp ̸=q 0.62± 0.17 − 0.60± 0.12 0.32± 0.13 0.04± 0.12 0.00± 0.00 −
Fp=q 0.81± 0.12 − 0.87± 0.12 0.92± 0.07 0.37± 0.21 0.18± 0.24 −

4tt>0 Fp ̸=q 0.71± 0.13 0.31± 0.21 0.67± 0.16 0.00± 0.00 0.16± 0.19 0.00± 0.00 0.52± 0.11

4̊tt>0
Fp ̸=q 0.81± 0.18 0.78± 0.17 0.81± 0.12 0.00± 0.00 0.16± 0.19 0.04± 0.12 0.53± 0.09
Fp=q 0.94± 0.06 0.82± 0.11 0.97± 0.05 0.98± 0.04 0.47± 0.15 0.35± 0.27 −

4tt≥0 Fp ̸=q 0.63± 0.13 − 0.69± 0.08 0.24± 0.21 0.14± 0.18 0.04± 0.12 −

4̊tt≥0
Fp ̸=q 0.54± 0.26 − 0.57± 0.20 0.19± 0.12 0.07± 0.15 0.04± 0.12 −
Fp=q 0.82± 0.11 − 0.94± 0.07 0.98± 0.04 0.37± 0.21 0.24± 0.30 −

Table 2: Results for realistic data. The mean and the standard deviation of the
F1 score are reported and the best results are in bold. Double-bars are used for
grouping methods according to the class they belong to.

Perf. PCGCE oCSE PCMCI VarLiNGAM Dynotears TCDF MVGCL

FMRI Fp ̸=q 0.31± 0.2 0.16± 0.19 0.22± 0.18 0.49± 0.28 0.34± 0.13 0.06± 0.12 0.35± 0.08

Results: Table 1 summarizes the results of the different methods on causally
sufficient simulated data. Overall, regarding causal relations between different
time series (which are not linear due to the generation process retained), for all
tested structures, PCGCE and PCMCI come out on top. In particular, PCGCE
has the highest Fp ̸=q in the structures 4̊tt=0 and 4tt>0, followed by PCMCI and
PCMCI has the highest Fp ̸=q in the structures 4tt≥0 and 4̊tt≥0, followed by
PCGCE. In the structure 4̊tt>0 both methods PCGCE and PCMCI obtain the
same Fp ̸=q. oCSE is not evaluated on the structures 4tt=0, 4tt≥0 and 4̊tt≥0 since
it cannot deal with instantaneous relations. However, for other structures, oCSE
yields a low Fp ̸=q compared to other constraint-based methods (PCGCE and
PCMCI), especially for the structure 4tt>0. For non constraint-based methods,
MVGCL (which, as oCSE, cannot be evaluated on 4tt=0, 4tt≥0 and 4̊tt≥0) comes
out best. On the other hand, Dynotears, VarLiNGAM and TCDF have poor
performance. The results obtained with Dynotears, VarLiNGAM and MVGCL
are expected as these methods are designed for linear relations (i.e., in our
case, self causes); in addition, VarLiNGAM is not capable of handling Gaussian
noise. Regarding Fp=q, VarLiNGAM performs best for all structures followed
by PCMCI and then by PCGCE. The difference in the results of VarLiNGAM in
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Fp ̸=q and Fp=q is simply due to the fact that we considered non linear relations
between two different time series but linear relations when the causal relations
are within the same time series.

Table 2 summarizes the results obtained on the FMRI dataset using Fp ̸=q as
the reference summary causal graph on this dataset does not contain self causes.
As for simulated data, among constraint-based methods, PCGCE performs best
with a Fp ̸=q significantly higher than the performance of PCMCI and oCSE.
However, overall, for this dataset, non constraint-based methods, except TCDF,
obtain better results. This suggests that the faithfulness assumption on which
constraint-based methods rely, is not satisfied on this dataset.

Table 3: Results for simulated data with hidden common causes. The mean
and the standard deviation of the F1 score are reported and the best results are
in bold. Double-bars are used for grouping methods according to the class they
belong to.

Perf. FCIGCE tsFCI TCDF

7t2ht>0 Fp ̸=q 0.57± 0.1 0.52± 0.1 0.02± 0.1

˚7t2ht>0
Fp ̸=q 0.33± 0.1 0.36± 0.1 0.07± 0.1
Fp=q 0.83± 0.1 0.99± 0.1 0.19± 0.2

Lastly, we compare FCIGCE, tsFCI and TCDF on the two non causally
sufficient structures described above in Table 3. For the first structure FCIGCE
and tsFCI have the highest performance, FCIGCE being above tsFCI. For the
second structure, tsFCI has the highest performance on both Fp ̸=q and Fp=q,
followed by FCIGCE. TCDF performs poorly on both structures. We conjecture
here that FCIGCE suffers from the use of a complete window when computing
GCE, which can lead to less stable experimental results when the dataset is
complex.

Time complexity: PC-based causal discovery algorithms (with instanta-
neous causal relations) have the following complexity, in terms of the number
of independence tests [Spirtes et al., 2000], on window causal graphs: (d(γ +
1))2(d(γ + 1) − 1)k−1/(2(k − 1)!), where d represents the number of time se-
ries considered. Algorithms adapted to time series, as PCMCI Runge [2020],
rely on the assumption of temporal priority and consistency throughout time
to reduce the number of tests. Our proposed method benefits from a smaller
number of tests compared to PC and PCMCI if γ > 1. In the worst case, its
complexity is: 4d2(2d− 1)k−1/(k− 1)!. However, our method needs to perform
additional independence tests compared to oCSE as oCSE does not consider
instantaneous causal relations. Figure 3 provides the computation computation
of each constraint-based method on the causally sufficient structures. As one
can note, PCGCE is slightly less efficient than oCSE and more efficient than
PCMCI.

Limitations and perspectives: Since a cause in the past slice may contain
up to γ − 1 dimensions, PCGCE can suffer when γ increases, especially when
the number of observations is fixed. To illustrate this, we reran the experiment
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Figure 3: Time computation of constraint based algorithms on causally sufficient
structures. oCSE is not computed on 4tt=0 as it does not consider instantaneous
relations.

for the structure 4̊tt≥0 with γ set to 20. As expected, the F-scores (Fp ̸=q and
Fp=q) of PCGCE decrease to 0.11 ± 0.17 and 0.8 ± 0.12, while other methods
were able to maintain more or less the same F-scores (PCMCI: 0.57± 0.18 and
0.94 ± 0.06, VarLiNGAM: 0.19 ± 0.12 and 0.97 ± 0.06, Dynotears: 0.07 ± 0.14
and 0.37± 0.21, TCDF: 0.0± 0.0 and 0.04± 0.12).

To overcome the limitations of PCGCE when γ increases, one may think of
relying on a dimension reduction technique on the past slice (e.g., using auto-
encoders) or to bootstrap the variables (with a minimal ratio with respect to
the sample size). This is however beyond the scope of this paper and will be
explored in future work.

6 Conclusion

We have addressed in this study the problem of inferring an extended summary
causal graph from observational time series using a constraint-based approach.
We argue here that extended summary graphs are a privileged representation
for causal graphs; they are easier to be analyzed by experts and are more com-
plete than summary causal graphs as they do not conflate past and present
instants of time series. To deal with extended summary graphs, we have first
proposed a greedy causation entropy measure which generalizes causation en-
tropy to lags greater than one and to instantaneous relations. This measure,
together with standard mutual information for instantaneous relations, is used
to assess whether two time series are causally related or not. We have then
shown how to adapt standard PC-based and FCI-based algorithms for extended
summary graphs in time series, for (non) causally sufficient structures. Ex-
periments conducted on different benchmark datasets and involving previous
state-of-the-art proposals showed that the methods we have introduced pro-
vides a good trade-off between efficiency and effectiveness compared to other
constraint-based methods.
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Preliminary experiments suggest that the proposed method may loose ac-
curacy when the time lag is important. Several strategies can nevertheless be
proposed to overcome this problem, strategies that we intend to explore in the
future.
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