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Abstract
The cerebellum is classically associated with fine motor control, motor learning, and timing of actions. However, while its 
anatomy is well described and many synaptic plasticity have been identified, the computation performed by the cerebellar cor-
tex is still debated. We, here, review recent advances on how the description of the functional synaptic connectivity between 
granule cells and Purkinje cells support the hypothesis that the cerebellum stores internal models of the body coordinates. 
We propose that internal models are specific of the task and of the locomotor context of each individual.
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Introduction

One of the major role of the cerebellum in sensorimotor 
adaptation is to learn to predict the future in order to adjust 
or correct the course of our actions [1–3]. To do this, many 
studies demonstrated that the cerebellum stores internal 
models of the motor apparatus, which  combine motor com-
mands with the current body state in order to predict an 
expected sensory feedback [4–7]. The comparison between 
the actual and the expected sensory feedback defines a pre-
diction error that allows for correction, re-adjustment of the 
internal models, and ultimately promotion of behavioral 
adaptation. At the microcircuit level, the adapted behavior 
would correspond to modified network dynamics under-
pinned by a re-organization of the excitatory and inhibitory 
synaptic inputs at different cerebellar connections. Synergies 
of synaptic plasticity can ensure re-adaptation to a constantly 
changing environment. Therefore, the description of the 
functional synaptic organization (i.e., the connectivity maps)
under normal or perturbed conditions should help under-
stand how cerebellar internal models enable sensorimotor 

adaptation. After introducing the topography of cerebellar 
climbing and mossy fiber inputs, we will discuss how con-
nectivity maps between granule cells (GC) and Purkinje 
cells (PC) can shed light on internal models implementa-
tion in the cerebellum.

Climbing fibers define sagittal functional 
microzones

The cerebellar cortex receives two major excitatory inputs, 
the climbing (CF) and the mossy fibers (MF), which are 
both  topographically organized [8–11]. A given group of 
neighboring PCs is contacted by CFs originating in a dis-
crete region of the inferior olive and conveying information 
from the same receptive fields, defining a functional unit 
called microzone [12–15]. Since olivary cells are coupled 
by gap junctions and fire together, this pathway leads to syn-
chronized activation of PCs from the same microzone [16]. 
Microzones were therefore defined as parasagittal zones 
of the cerebellar cortex composed of a group of PCs, the 
molecular layer interneurons (MLI) in the vicinity and the 
GCs located underneath  [8, 9, 17]. Since PCs project to a 
specific group of nuclear neurons from which a subgroup 
project back to olivary cells, microzones constitute the corti-
cal part of an olivo-cerebellar module processing informa-
tion related to a defined area of the body [8]. Microzone 
boundaries can be identified by a family of neurochemical 
markers, which are specifically expressed in sagittal bands of 
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PCs [15, 17] (Fig. 1A). When these markers are labeled, the 
cerebellar cortex looks like a zebra displaying positive and 
negative bands; hence, they are collectively called zebrins 
[17]. Many studies have also demonstrated that microzones 
have anatomical and functional regional differences leading 
to a large diversity of information processing in individual 
microzones [18–22]. Therefore, an exhaustive functional 
description of the synaptic communication between micro-
zones is necessary to understand how they collectively influ-
ence motor coordination.

The mossy fiber to Purkinje cell pathway: 
an anatomy favoring internal model 
implementation

As opposed to the strict sagittal orientation of the CF inputs, 
MF inputs, which contact GCs, project to many different GC 
layer areas in a given lobule sending the same information 
into multiple microzones [11, 25]. Indeed, in vivo electro-
physiological micro-mappings of the GC layer demonstrated 
that MF receptive fields in the GC layer have a fractured and 
redundant somatotopy [26]. Furthermore, many pre-cerebel-
lar nuclei carrying distinct modalities project MFs to the GC 
layer of the same microzone 27, 11. In the anterior lobe, for 
example, lobule IV and V receive MFs from the spinocer-
ebellar tract (e.g., DSCT, dorsal spinocerebellar tract) and 
the external cuneate conveying proprioceptive information 
from the hindlimbs and the forelimbs, respectively, as well 

Fig. 1   GC-PC connectivity maps. A, left. PCs (green) are recorded 
using patch-clamp and filled with biocytin for reconstruction and 
positioning (zebrin bands labeled in red). RuBi-Glutamate is uncaged 
using patterned blue light illumination, while GC-PC postsynaptic 
currents are recorded. The maximum of each GC column is used to 
determine a 1D pattern of connectivity for each PC (see C). Note the 
patchy organization of connected sites.   Right, examples of excitatory 
postsynaptic currents evoked by glutamate photolysis in correspond-
ing sites. B, correlation between postsynaptic currents recorded in 
neighboring PCs indicating that they have similar connectivity maps. 
C, median of the 1D connectivity maps (z- scored) across animals 
(n = 18), illustrating that some specific GC layer  columns are con-
nected to midline PCs in many animals. Z-score < 3 corresponds to 
silent sites (i.e., illuminated GC layer of 41 × 41 x ~ 100 µm eliciting 

current < 15 pA in the recorded PC). Note local and distal hotspots 
of GC-PC connections. A, B and C Adapted from [23]. D, Strategy 
to map synaptic connections in neural networks and correlate it to 
animal behavior. Panel 1, animals training in different locomotor con-
texts. Panel 2, extraction of behavioral features related to sensorimo-
tor adaptation for each mouse (e.g., distance traveled in a wheel or 
gait symmetry in a corridor). Panel 3, GC-PC synaptic connectivity 
maps description in a specific area of the cerebellum involved in the 
behavior. Panel 4, determination of the structure of these maps using 
mathematical algorithms from graph theory. Panel 5, the structure of 
the maps and the behavioral parameters of each mouse are used to 
build a classifier that can predict animal behavior from the synaptic 
map. The classifier is validated by testing its efficiency on a different 
set of data. Adapted from [24]
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as from the pontine nuclei, which carry information from the 
cerebral cortex such as motor plans and motor commands 
[28]. Therefore, individual GCs can integrate multimodal 
information [26, 29] but see [30] that combine both motor 
plans or commands and sensory feedback. GC axons, the 
parallel fibers (PF), which travel across multiple microzones, 
make excitatory synapses onto both local and distant PCs 
and molecular interneurons (MLI) located at millimeters 
from the incoming microzone [31, 32]. Within a given lob-
ule, PFs likely control the PC population code via  direct 
excitation and  indirect inhibition in a wide array of micro-
zones.[33–35]. Moreover, many experiments demonstrated 
that the GC-PC connection is a major site of information 
storage in the cerebellar cortex through CF-dependent plas-
ticity: GC-PC synapses are depressed when CF and PFs are 
active in conjunction and potentiated when only PFs are 
activated [36, 37].

The organization of MF inputs into the GC layer expands 
encoding possibilities and is in agreement with the long-
standing Marr–Albus–Ito hypothesis, suggesting that expan-
sion recoding in the GC layer enables pattern separation of 
similar MF inputs [38–42]. Moreover, the convergence of 
sensorimotor inputs from the spinal cord and cortico-pontine 
inputs suggests that the GC layer can compute motor com-
mands as well as sensory context or feedback, a prerequi-
site configuration for the implementation of forward internal 
models. Indeed, in vivo PC recordings during movement 
have shown that modulation of PC discharge can lead or 
lag movement onset [2, 43, 44]. Recent experiments have 
demonstrated that in a operant task in which monkeys have 
to follow a cursor on a screen PC discharge can predict the 
position error of the hand by a few hundred milliseconds 
ahead and compute in return the visual feedback shortly after 
the movement [6] (see also [3, 45]). Since the modulation 
of PC discharge relies on the combined activity of GCs and 
MLIs, these results suggest that the cerebellar cortex stores 
an internal model of this skilled movement. In a different 
task, in which mice move a handle to get a reward, GCs 
encode a predicted reward, suggesting that internal models 
are not only sensorimotor engrams [46]. Therefore, under-
standing how the cerebellar cortex encode sensorimotor 
information and store internal models requires determining 
how the GC-(MLI)-PC pathway is functionally organized.

Interrogating the spatial organization 
of the GC‑PC connection

Glutamate uncaging combined with patch-clamp recordings 
can be used on acute brain slices [47–49]. This approach 
allows the systematic excitation of single or small groups 
of presynaptic cells [50, 51] while monitoring the resulting 
synaptic inputs in the target cell soma (Fig. 1A). Uncaged 

glutamate excites mostly dendritic or somatic receptors 
preventing the direct excitation of neighboring axons as 
opposed to electrical or optogenetic stimulation. When glu-
tamate uncaging is combined with a system enabling spe-
cific and localized restricted illumination (laser scanning or 
patterned light illumination), the spatial organization of the 
presynaptic cells as well as their synaptic weights on the 
target cell can be reconstructed [23, 24, 52, 53] (Fig. 1A, 
B). Hence, each recording yields a single connectivity map. 
This method is particularly well adapted to the study of the 
GC-PC connectivity maps as PCs from identified micro-
zones can be targeted using transgenic mice expressing fluo-
rescent zebrin markers [54]. Therefore,  the use of caged-
glutamate photostimulation and whole-cell patch clamp of 
PCs in identified zebrin bands allows the description of spe-
cific connectivity maps across different animals and eventu-
ally different behavioral conditions [23, 24].

Spatially organized GC‑PC connectivity 
maps as an implementation of internal 
models

Many in vitro and in vivo experiments demonstrated that 
while direct stimulation of PF beams can activate PCs along 
the beam, GC or MF activation actually modulate specific 
groups of PCs [55–58]. In vivo recordings of tactile recep-
tive fields showed that in a given microzone GC layer, Golgi 
cells and MLIs are excited by the same area of the body, 
suggesting that incoming MF inputs lead to the activation 
of most cell types [14, 56, 59]. Conversely, PCs are excited 
by specific MF inputs targeting GCs in distant microzones, 
illustrating a functional selection of GC-PC synapses [23, 
60]. Indeed, in two seminal studies, Jorntell and Ekerot [59, 
61] demonstrated in vivo that PCs sharing the same PF beam 
are excited by different and specific receptive fields, but 
upon repeated high frequency PF stimulation PCs respond to 
all. Altogether, these results suggest the existence of a priori 
nonfunctional—or silent—GC-PC synapses (e.g., depressed 
by the CF-dependent LTD) that are potentiated—or awak-
ened—via activity-dependent plasticity. This hypothesis was 
confirmed in vitro, using paired recordings and photostimu-
lation studies in acute slices, showing that while PCs are 
always connected to local (i.e., underneath) GCs, a selection 
of distant hotspots of connected GC patches is interleaved 
with GCs making silent or nonfunctional synapses [23, 24, 
62] (Fig. 1A, C). Silent synapses were also recently observed 
during development and in adult rodents [24, 63].

By repeating photostimulation and establishing excita-
tory GC-PC and GC-MLI connectivity maps in an identified 
set of microzones across many mice, several other opera-
tional rules were described [23, 24]: (1) neighboring PCs 
have a similar patchy connectivity map defining clusters of 
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PCs spatially organized (Fig. 1A, B). While PC clusters are 
related to zebrin band, they overlap with zebrin bounda-
ries, suggesting that a finer functional organization may 
coexist with zebrin band topography [17]. (2) MLIs from 
an identified microzone have different connectivity maps 
than local PCs, but they are similarly organized with local 
and distal patches of connected GCs. (3) Although func-
tional connectivity is highly variable between animals, some 
specific areas of the synaptic maps are conserved between 
individuals, highlighting specific association between micro-
zones through GC-PC synapses (Fig. 1C). (4) Connectiv-
ity maps are plastic and can be modified by protocols of 
PF stimulation, which lead to a reorganization of the map 
with potentiated or depressed GC sites, suggesting that they 
are sensitive to activity of the MF-GC-PC network. GC-PC 
maps were also recorded after mice underwent locomotor 
adaptation in different locomotor context [24]: a transient 
locomotor impairment (i.e., recovery following unilateral 
alteration of the sciatic nerve) or a training in a wheel for 
three weeks. These specific locomotor contexts induced 
both a sustainable increase in overall synaptic weights of 
GC-PC connections synapses and a specific reorganization 
of the connectivity maps. Moreover, using mathematical 
algorithms based on graph theory, we demonstrated that a 
synaptic connectivity map from a given mouse is correlated 
with the unique behavioral performance of this mouse in 
a simple task such as walking on a corridor or running in 
a wheel (Fig. 1D). These results suggest that GC-PC con-
nectivity maps are specific engrams (i.e., internal models) 
of behavioral adaptation, allowing encoding of movement 
features in a context-specific manner throughout individual 
motor learning.

Patchy organization of GC‑PC maps 
and “sparse” coding in the cerebellar cortex

Altogether, these operational rules underlying microzonal 
communication in the cerebellar cortex are likely at the core 
of cerebellar computation [8]. The description of synaptic 
connectivity maps in cerebellar lobules could shed light on 
the combination of microzones that control a given adapted 
behavior. We postulate that local MF inputs in recipient 
microzones set a minimal framework of activated PCs while 
the patchy organization of GC-PC synaptic maps allows 
the spatial and temporal combination of an extended array 
of microzones by PFs. Such organization may reconcile 
Marr–Albus–Ito [38] and adaptive filter [39, 64] theoretical 
models with the recent studies describing GC activity using 
in vivo two-photon imaging [44, 65, 66]. In these theoreti-
cal models, a sparse coding strategy at the MF-GC synapses 
is a prerequisite for the expansion-recoding hypothesis and 

few GCs should be activated by a specific combination of 
MF inputs.

This assumption might appear in contradiction with the 
dense activation of GCs observed using two-photon imaging 
of genetically encoded calcium indicators in behaving mice or 
zebrafishes [44, 65, 66]. They demonstrated that large areas of 
the GC layer seem simultaneously active at specific moment of 
the task and correlated with sensorimotor or predictive reward 
inputs. Anatomical, physiological, and technical issues may 
explain this apparent discrepancy. MFs carrying information 
from a given body part target specific areas of the GC layer 
making many rosettes in a restricted area. This arrangement 
favors the aforementioned patchy organization of the GC-PC 
functional connectivity and may explain why two-photon 
imaging identified patches of dense GC activity. Nevertheless, 
since the majority of GC-PC synapses are silent [23, 24, 62], 
GC-PC connectivity can still be sparse. Moreover, short-term 
plasticity at the MF-GC synapses expands temporal integration 
in GCs from tens to hundreds of milliseconds [67], suggesting 
that in a given GC patch targeted by a combination of multi-
modal MFs, GC discharges may be split into a wide range of 
temporal patterns yielding GC population decorrelation. As 
explained in [40], this mechanisms may enable pattern separa-
tion even if GCs are densely activated. In two-photon GCamP6 
imaging experiments, these patterns cannot be temporally dis-
criminated and are merged into a single giant patch of simulta-
neously activated GCs. Heterogeneity of short-term plasticity 
was also described recently at the GC-MLI and GC-MLI-PC 
connection [33, 68], indicating that the temporal expansion 
performed by the GC layer is amplified in the molecular layer. 
Therefore, the spatial organization of the MF-GC-PC connec-
tions combined with the spread in the temporal integration 
window enables pattern discrimination and PCs to encode 
thousands of different patterns of information as suggested in 
the Marr–Albus–Ito hypothesis [69].

To conclude, patchy connectivity maps at the GC-MLI-PC 
connections may underlie the communication between specific 
microzones in the cerebellar cortex. Graph network properties 
of GC-PC connectivity maps suggest that context-dependent 
and task-specific internal models are encoded at the GC-PC 
synapses. Next step will be to describe how the feedforward 
inhibition influences connectivity maps and intermodular 
communication. Unraveling the rules governing the coordi-
nation between microzones will shed light on how the cerebel-
lar cortex controls the output stage of the cerebellum. As an 
appealing perspective, it will be important to describe how 
the MF-GC-MLI pathway correlates microzones using geneti-
cally encoded voltage sensitive indicators combined with two-
photon imaging. Knowing the combination of microzones and 
their sequence of activation in a specific behavior will help 
designing and refining cerebellar stimulation protocols to com-
pensate for cerebellar dysfunction in pathological models [70].
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