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ON RATIONALLY CONTROLLED ONE-RULE INSERTION SYSTEMS

Michel Latteux and Yves Roos*

Abstract. Rationally controlled one-rule insertion systems are one-rule string rewriting systems for
which the rule, that is to insert a given word, may be applied in a word only behind a prefix that must
belong to a given rational language called the control language. As for general string rewriting systems,
these controlled insertion systems induce a transformation over languages: from a starting word, one
can associate all its descendants. In this paper, we investigate the behavior of these systems in terms
of preserving the classes of languages: finite, rational and context-free languages. We show that, even
for very simple such systems, the images of finite or rational languages need not be context-free. In the
case when the control language is in the form u∗ for some word u, we characterize one-rule insertion
systems that induce a rational transduction and we prove that for these systems, the image of any
context-free language is always context-free.
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1. Introduction

String rewriting systems are of primordial interest for computational problems. Mainly, the problems that are
investigated for rewriting systems are the accessibility problem, the common descendant problem, the confluence
problem, the termination and uniform termination problem. For several years they have been intensively studied
and several deep results have been obtained. However some intriguing decidability problems remain open even
for very simple rewriting systems. The most known among these problems is certainly the decidability of the
termination of one-rule rewriting systems, a question that remains open for more than thirty years.

Other problems consider rewriting systems as transformation operations on languages: given a rewriting
system S and a word w, S∗(w) is the set of all the descendants of w in the rewriting system S. Thus S induces
a transformation relation S∗ over languages and, from there, one can wonder how these transformations on
languages can interact with the classical families of formal languages [17, 18]. In particular, a natural question
is the following: given two classes of languages C1 and C2, and a family of rewriting systems F , is it true that,
for every system S in F and for every language L in C1, it holds that S∗(L) is in C2. If the property is satisfied
then rewriting systems in F are said to be C1/C2 and, in the case when C1 = C2, we rather say that rewriting
systems in F preserve C1.

In this context, some families of rewriting systems have been identified as preserving rational languages
(C1 = C2 = RAT) like k-period expanding systems [12], deleting systems [9] and match-bounded systems [7] or
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2 M. LATTEUX AND Y. ROOS

preserving context-free languages (C1 = C2 = CF) like systems with inhibitor [14] and inverse match-bounded
systems [8].

Even for very simple rewriting systems, the question whether these systems are C1/C2 for some given classes of
languages C1 and C2 is not always so easy to answer. One-rule rewriting systems are among the simplest rewriting
systems since they are defined by only two words u, v over an alphabet A. Clearly, one-rule rewriting systems
do not always preserve regular languages: the simplest example of such a one-rule (length-preserving) rewriting
system is the system S = {ba 7→ ab} but it has been proved RAT/CF in [5], in the context of a particular class
of rewriting systems called semi-commutations. From this, one could think that one-rule rewriting systems are
at least FIN/CF where FIN is the class of finite languages, but, rather surprisingly, it is not the case: for the
one-rule rewriting system S = {ba 7→ a2b2} it has been proved that S(b2a2) is not a context-free language [10].
Since then, one-rule grid rewriting systems, introduced in [6] have been proved FIN/CF in [10].

In [11], we have considered prefixal one-rule rewriting systems that are systems in the form S = {u 7→ uf}
for some word u and some nonempty word f ; in particular, we have proved that theses systems are FIN/CF.
One can observe that a prefixal one-rule rewriting systems S = {u 7→ uf} may be seen as a controlled rewriting
system [3, 4, 17]: indeed, a controlled rewriting system is a rewriting system S equipped with a given language
L (the control language). In such a system, a rule l 7→ r may be applied on a word w only behind a prefix of
w that must belong to the control language L. When L is the singleton that only contains the empty word,
this corresponds to prefix rewriting as defined in [2] and a prefixal system S = {u 7→ uf} corresponds to the
controlled system defined by the insertion rule {ε 7→ f} where ε is the empty word with the control language
L = A∗u where A is the used alphabet. Since such a system is completely defined by the word f to insert and
the control language L, we denote by IL|f the corresponding system and I∗L|f its associated transformation on
languages. In this paper, we focus on one-rule controlled insertion systems IL|f when the control language L is
rational.

After some preliminaries given in Section 2, we give some basic properties of controlled one rule insertion
systems in Section 3. In particular we characterize when such systems are deterministic, codeterministic or
unambiguous. Then we give some sufficient conditions on controlled one rule insertion systems in order to
preserve rational or context-free languages in the case when the control language is rational. We finish Section 3
by introducing the notion of maximal control of a word for insertion for some alphabet A, denoted by Cmax(f),
whose definition is that for all languages L it holds that I∗L|f (ε) = I∗A∗|f (ε) if and only if Cmax(f) ⊆ L. We show
that such a maximal control language effectively exists in the case when the root r of the word f is unbordered,
that is if no proper suffix of r is a prefix of r; moreover in this case I∗Cmax(f)|f is codeterministic. On the other hand,

we prove that when the root of f is bordered, there does not exist any language K such that I∗K|f (ε) = I∗A∗|f (ε)
with I∗K|f being codeterministic.

In Section 4 we show that, even in the case of a rational control language and even in the case of a single
insertion rule, it is possible to define a system IL|f such that I∗L|f is not (FIN/CF). More precisely, we define

a system such that for all words w, I∗L|f (w) is not context-free. Moreover, we prove that as soon as a word f

contains at least two distinct letters, there exists a rational language Rf such that for all words w, I∗Rf |f (w) is

not context-free.
This result motivates Section 5 where we consider rationally one-rule insertion systems IR|f with f ∈ a+

for some letter a. We prove that such systems are FIN/RAT but, rather surprisingly, we also prove that these
systems are not RAT/CF by giving two examples where the inserted word f is reduced to a single letter a. For
one of these examples, we exhibit a rational language K such that I∗K|a(b∗) is not context-free.

Section 6 is devoted to rationally controlled one-rule insertion systems in the case when the rational control
language R is defined as R = u∗ for some word u with no constraint on the word to insert f . In particular we
characterize when such a system Iu∗|f leads to a transformation I∗u∗|f that corresponds to a rational transduction
and we prove that these systems preserve context-free languages. To take into account the relations between
the words u and f , we study in particular, for a one-rule insertion system IR|f over an alphabet A the following
language RR|f = {w ∈ A∗ | I∗R|f (w) ∩R 6= ∅} that plays a central role in most of the results of this section.

We conclude in Section 7 by some open questions and some perpectives that deserve to be studied.
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2. Preliminaries

2.1. Notations

Let A be a finite alphabet, A∗ is the free monoid over A and ε is the empty word in A∗. For a word w ∈ A∗,
the length of the word w is denoted by |w| and, for any letter a ∈ A, the number of occurrences of the letter a
in w is denoted by |w|a.

A word w′ is a factor of a word w if there exist two words w1 and w2 such that w = w1w
′w2. We denote by

RF(w) (respectively LF(w)) the set of right factors (respectively left factors) of the word w, that is:

RF(w) = {w′ ∈ A∗ | ∃w′′ ∈ A∗, w = w′′w′},

LF(w) = {w′ ∈ A∗ | ∃w′′ ∈ A∗, w = w′w′′}.

A word u ∈ A∗ is said to be primitive if it is not a proper power of a shorter word, that is u = vn with
v ∈ A∗ implies n = 1 and v = u. The root of a word u ∈ A+ is the unique primitive word ρ such that u = ρn for
some natural number n. Observe that, from the definition, the empty word ε is not primitive. A nonempty set
L ⊆ A∗ is called a code if every equation u1u2 · · ·um = v1v2 · · · vn with ui, vj ∈ L for all i and j implies n = m
and ui = vi for all i. A language L is prefix if it satisfies the condition: for all words w,w′ ∈ L, if w = w′w′′ for
some word w′′ then w′′ = ε. Clearly, a prefix set is a code.

We denote by FIN the family of finite languages, by RAT the family of rational languages and by CF the
family of context-free languages. Abusing notations we identify a rational language with the rational expressions
that describe it for instance (a+ b)∗ with {a, b}∗ or ε+ ab with {ε, ab}.

We denote by D′1
∗

the Dyck language over {a, b}, that is the language D′1
∗

= {w ∈ (a+b)∗ | |w|a = |wb|∧∀x ∈
LF(w), |x|a ≥ |x|b}; it is the set of well balanced words of (a+ b)∗ where a is seen as an open parenthesis and b
is the corresponding closing one. We also denote by D∗1 the language D∗1 = {w ∈ (a+ b)∗ | |w|a = |w|b}.

A rational relation from A∗ to B∗ for some alphabets A and B is a rational subset of A∗ × B∗. A rational
transduction τ : A∗ 7→ B∗, is a mapping from A∗ to 2B

∗
such that its graph is a rational relation from A∗ to B∗.

A well know result of [15] states that any rational transduction is equivalent to the composition of an inverse
morphism, an intersection with a rational language and a morphism. The reader can refer to [1] for detailed
informations on rational transductions.

A language L rationally dominates a language L′, denoted by L  rat L
′, if there exists a rational transduction

τ such that L′ = τ(L). When L  rat L
′ and L′  rat L the two languages are said to be rationally equivalent,

that is denoted by L ≡
rat
L′.

A rewriting system over an alphabet A is a subset S ⊆ A∗ × A∗. Members of S are denoted by u 7→ v. One-
step derivation, denoted by −→, is the binary relation over words defined by : for all words w,w′ in A∗, w −→ w′

iff there exists u 7→ v ∈ S and α, β ∈ A∗ such that w = αuβ and w′ = αvβ. The relation
∗−→, called derivation

relation, is the reflexive and transitive closure of the relation −→ and we denote by
+−→ the transitive closure of

the relation −→ . For a derivation w = w0 → w1 · · · → wn = w′, n is called the length of the derivation. Observe
that we consider in this paper that a derivation w = w0 −→ w1 . . . −→ wn = w′ is completely characterized by the
list of words [w0, . . . , wn] independently from the indexes where the rule is applied at each step of rewriting.

A rewriting system S induces a transformation over languages: for every word w ∈ A∗, we shall denote by

S∗(w) the set S∗(w) = {w′ ∈ A∗ | w ∗−→ w′} and S+(w) the set S+(w) = {w′ ∈ A∗ | w +−→ w′}; then, for
every language L ⊆ A∗, S∗(L) =

⋃
w∈L

S∗(w) and S+(L) =
⋃

w∈L
S+(w). We say that a language L is closed by a

rewriting system S if for all words w ∈ L it holds that S∗(w) ⊆ L.
A rewriting system S over an alphabet A is confluent if for all words w ∈ A∗, u, v ∈ S∗(w) it holds that

S∗(u) ∩ S∗(v) 6= ∅.
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Given two classes of languages C1 and C2, and a family of rewriting systems F , one can wonder whether it
holds that S∗(L) is in C2 for every system S in F and for every language L in C1. If the property is satisfied
then the rewriting systems in F are said to be C1/C2 and, in the case when C1 = C2, we rather say that the
rewriting systems in F preserve C1.

We say that a string rewriting system S is rational if the relation {(w,w′) | w′ ∈ S∗(w)} is a rational relation.
In this case, S∗ is a rational transduction and preserves RAT and CF.

3. Controlled insertion systems

3.1. Definitions

To all pair 〈L, f〉 where f ∈ A+ is a nonempty word and L ⊆ A∗ is a nonempty language called the control
language is associated a controlled one-rule insertion system that is a binary relation over A∗, denoted by IL|f
and defined by (w,w′) ∈ IL|f if w = w1w2, w′ = w1fw2 for some words w1, w2 with w1 ∈ L. In this paper,
we shall identify a controlled one-rule insertion system with its associated relation IL|f and, as said before, we
shall consider the reflexive and transitive closure I∗L|f of the relation IL|f as a transformation over languages:

for all words w ∈ A∗, I∗L|f (w) = {w′ | (w,w′) ∈ I∗L|f} and for all languages K ⊆ A∗, I∗L|f (K) =
⋃

w∈K I∗L|f (w).
So, abusing notations, I∗L|f will represent both this transformation on languages and the set of couple of words

that are in relation. We shall often use the following string rewriting like alternative notation: w −−−→
IL|f

w′ for

(w,w′) ∈ IL|f , w
∗−−−→

IL|f
w′ for w′ ∈ I∗L|f (w) and w

n−−−→
IL|f

w′ when the derivation has length n. When there is no

ambiguity on the insertion system that is used, we will simply denote by w −→ w′, w
∗−→ w′ and w

n−→ w′.

Example 3.1. Let R = ε+aba and f = ab then using the fact that (aba, abaab) ∈ IR|ab and (aba, ababa) ∈ IR|ab,
it can be proved that I∗R|ab(ε) = ε+ ab+ aba(ab+ ba)∗b.

Example 3.2. Let R = a∗ and f = ab, then I∗a∗|ab(ε) = D′1
∗
: indeed, I∗a∗|ab(ε) is clearly included in

I∗(a+b)∗|ab(ε) = D′1
∗
. Conversely, let w ∈ D′1

∗
, we can prove by induction on |w|, the length of w, that

w ∈ I∗a∗|ab(ε): indeed, it is clearly true for w = ε. If w 6= ε, then w = aiabw′ for some natural number i

and some word w′ with aiw′ ∈ D′1
∗
. From the inductive hypothesis, we get aiw′ ∈ I∗a∗|ab(ε) which implies

w = aiabw′ ∈ I∗a∗|ab(ε).
We observe that for all words w in I∗a∗|ab(ε) there exists a unique derivation from ε to w. We shall name

below this property unambiguity and this statement will be generalized in Proposition 6.14 to I∗u∗|f for all words
u and all word f 6= ε.

3.2. Basic properties

Some of the following properties, stated in Proposition 3.4, that are satisfied by controlled insertion systems
are clear and do not need a proof, nevertheless they deserve to be mentioned. In these statements, L and L′ are
any nonempty languages; f and f ′ are any nonempty words and w,w′ are any words all defined over an alphabet
A. We shall use the following properties which are consequences of the Schützenberger-Lyndon Theorem [13]:

Lemma 3.3. Let u and v be words of A∗.

� if uv = vu then there exists some (primitive) word r such that u ∈ r∗ and v ∈ r∗.
� If r is a primitive word and urv ∈ r∗ then u ∈ r∗ and v ∈ r∗.

Proposition 3.4.

1. IL|f = I∗L|f ∩ {(w,w
′) | |w′| = |w|+ |f |}.

2. If I∗L|f = I∗L′|f ′ then f = f ′.

3. If L ⊆ L′ then I∗L|f ⊆ I
∗
L′|f .
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4. I∗L|f = I∗L′|f if and only if L0 ⊆ L′ ⊆ L0r
∗ where r is the root of f and L0 = L \ Lr+.

5. L ( L′ does not imply I∗L|f ( I∗L′|f ′ .

6. If (w,w′) ∈ I∗L|f then for all words α it holds that (wα,w′α) ∈ I∗L|f .

7. (wα,w′α) ∈ I∗L|f for some nonempty word α does not imply (w,w′) ∈ I∗L|f .

8. (w,w′) ∈ I∗L|f does not imply that for all words α, (αw,αw′) ∈ I∗L|f .

9. If (w,w′) ∈ I∗L∗|f then for all words α ∈ L∗, it holds that (αw,αw′) ∈ I∗L∗|f .

10. If LA∗ ∩ L′A∗ = ∅ then I∗L∪L′|f = I∗L|f ∪ I
∗
L′|f .

11. For all g ∈ I∗L∗|f (f) it holds that I∗L∗|g ⊆ I
∗
L∗|f

Proof.

1. Obviously true.
2. Let w be the shortest word in L ∪ L′ and assume w ∈ L. We get (w,wf) ∈ I∗L|f = I∗L′|f ′ . Since w is the

shortest word in L ∪ L′, there is no proper left factor of w in L′, so we get w ∈ L′ and (w,wf ′) ∈ I∗L′|f ′ .
If we assume |f | 6= |f ′| , this would lead to the contradiction I∗L|f (w) 6= I∗L′|f ′(w) so f ′ = f .

3. Obviously true.
4. The condition is necessary: assume I∗L|f = I∗L′|f and let w ∈ L′. Then (w,wf) ∈ I∗L′|f = I∗L|f and from this

follows w = w1w2 for some words w1 and w2 with w1 ∈ L and w1fw2 = w1w2f which implies w2 ∈ r∗ from
Lemma 3.3. Since w1 ∈ L, w1r

∗ ⊆ L0r
∗ so w = w1w2 ∈ L0r

∗. Let now w ∈ L0 then (w,wf) ∈ I∗L|f = I∗L′|f
and we get w = v1v2 for some words v1 and v2 with v1 ∈ L′ and v2 ∈ r∗. Since L′ ⊆ L0r

∗, we get v1 = v′1v
′′
1

with v′1 ∈ L0 and v′′1 ∈ r∗. Now, w = v′1v
′′
1 v2 ∈ L0 implies v′′1 = v2 = ε so w = v1 ∈ L′.

The condition is sufficient: assume L0 ⊆ L′ ⊆ L0r
∗, then I∗L0|f ⊆ I

∗
L′|f ⊆ I

∗
L0r∗|f from 3. We shall prove

I∗L0r∗|f ⊆ I∗L0|f that will imply I∗L0r∗|f = I∗L0|f = I∗L′|f = I∗L|f ; clearly, it is sufficient to prove IL0r∗|f ⊆
IL0|f . Let (w,w′) ∈ IL0r∗|f then w = w1r

iw2 for some w1 ∈ L0 and w′ = w1r
ifw2. From this follows

w′ = w1fr
iw2 so (w,w′) ∈ IL0|f .

5. It is in fact a consequence of 4 in the case when L0 ( L0r
∗: for instance, let A = {a}, L = ε and f = a,

then L0 = ε, L0r
∗ = a∗ and I∗ε|a = I∗a∗|a.

6. Obviously true.
7. Let A = {a}, L = a and f = a. We get (a, aa) ∈ I∗a|a but (ε, a) 6∈ I∗a|a.

8. Let A = {a, b}, L = ε and f = ab. We get (ε, ab) ∈ I∗ε|ab but (b, bab) 6∈ I∗ε|ab.
9. Since L∗ = L∗L∗, we directly get that if (w,w′) ∈ IL∗|f then for all words α ∈ L∗, it holds that (αw,αw′) ∈
IL∗|f which easily implies 9 by induction.

10. Obviously true.
11. Since (ε, g) ∈ I∗L∗|f , it follows from 9 that for all words w ∈ L∗, it holds that (w,wg) ∈ I∗L∗|f . This clearly

implies IL∗|g ⊆ I∗L∗|f .

3.3. Determinism and ambiguity

In the following, L is any nonempty language and f is any nonempty word both defined over an alphabet A.

Definition 3.5. I∗L|f is deterministic if for all words w ∈ A∗ there exists at most one word w′ such that

(w,w′) ∈ IL|f .

And we can state:

Lemma 3.6. I∗L|f is deterministic if and only if L−1L ⊆ r∗ where r is the root of f .

Proof. There exist (w,w1) ∈ IL|f and (w,w2) ∈ IL|f for some distinct words w1 and w2 if and only if w =
u1v1 = u2v2 with u1, u2 ∈ L and u1fv1 6= u2fv2 (so u1 6= u2). Assume |u2| < |u1|; from this follows u1 = u2α
and αv1 = v2 for some word α 6= ε. If we assume αf = fα, then we get u1fv1 = u2αfv1 = u2fαv1 = u2fv2,
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a contradiction. So these words u1 and u2 exist if and only if there exists some α ∈ L−1L with α 6∈ r∗ since
αf 6= fα.

Definition 3.7. I∗L|f is codeterministic if for all words w′ ∈ A∗ there exists at most one word w such that

(w,w′) ∈ IL|f .

With a similar proof to the proof of Lemma 3.6, we can state:

Lemma 3.8. I∗L|f is codeterministic if and only if (Lf)−1(Lf) ⊆ r∗ where r is the root of f .

Definition 3.9. I∗L|f is unambiguous if for all (w,w′) ∈ I∗L|f there exists a unique derivation w = w0 −−−→
IL|f

w1 −−−→
IL|f

. . . −−−→
IL|f

wn = w′.

Proposition 3.10.

1. If L is prefix then I∗L|f is deterministic; the converse does not hold.
2. If I∗L|f is deterministic then it is codeterministic; the converse does not hold.
3. If I∗L|f is codeterministic then it is unambiguous; the converse does not hold.
4. I∗L|f is unambiguous and confluent if and only if it is deterministic.

Proof. 1. The implication L prefix then I∗L|f deterministic is obvious. On the other hand I∗a∗|a is deterministic
but a∗ is not a prefix language.

2. If I∗L|f is deterministic then L−1L ⊆ r∗ from Lemma 3.6. That implies (Lf)−1(Lf) ⊆ r∗: indeed let

w ∈ (Lf)−1(Lf) then there exist w1, w2 ∈ L such that w1f = w2fw. Since L−1L ⊆ r∗, we get w1 = w2r
i

for some natural number i. That implies w2r
if = w2fw so fw = rif and we get w = ri in r∗. On the

other hand, we have seen before that I∗a∗|ab is codeterministic and it is clearly nondeterministic.
3. The implication codeterministic implies unambiguous is clear. Conversely let L = ε+ ab . Then I∗L|a is not

codeterministic since (ba, aba) ∈ IL|a and (ab, aba) ∈ IL|a but it is unambiguous: indeed let w and w′ be
two words such that (w, abw′) ∈ I∗L|a and (w, baw′) ∈ I∗L|a which could lead to a situation of ambiguity for

(w, abaw′). But (w, baw′) ∈ I∗L|a implies w = baw′ that leads to a contradiction because abw′ 6∈ I∗L|a(baw′).
4. If I∗L|f is deterministic then it is confluent, and it is unambiguous from 2 and 3. Conversely, assume that

there exist some words w and w1 6= w2 such that w1, w2 ∈ IL|f (w). Since I∗L|f is confluent, IL|f (w1) ∩
IL|f (w2) 6= ∅ so I∗L|f is ambiguous.

3.4. Rationally controlled insertion systems

When L is a rational language, the one-rule insertion system IL|f is said to be rationally controlled.
In the following proposition, f is any nonempty word.

Proposition 3.11.

1. If F is a finite language then I∗F |f is rational.
2. If R is a rational language and I∗R|f is deterministic then I∗R|f is rational.
3. If R is a rational language that satisfies R = RA∗ then I∗R|f preserves the context-free languages.

4. If R = A∗u for some word u then I∗R|f is FIN/CF.

Proof.

1. If F is finite then IF |f is equivalent to the prefix rewriting system associated with the set of rules {u 7→
uf | u ∈ F}. A prefix rewriting system S is a rewriting system where the rewriting rules can only be
applied on left factors of the words: w −→

S
w′ if w = uα and w′ = vα for some rule u 7→ v ∈ S and some

word α. The relations associated with prefix rewriting systems have been proved rational in [2].
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2. Observe first that, for all languages L and K, it holds that I∗L|f (K) = (K \ LA∗) ∪ I∗L|f (K ∩ LA∗), so it

is sufficient to prove that I∗R|f ∩ (RA∗ × A∗) is rational. If I∗R|f is deterministic then R−1R ⊆ r∗ where

r is the root of f from Lemma 3.6. That implies that for all words w ∈ RA∗, it holds that I∗R|f (w) =

w1I
∗
ε|f (w2) = w1f

∗w2 where w = w1w2 with w1 being the shortest left factor of w that belongs to R.

Indeed, if w2 = w′2w
′′
2 with w1w

′
2 ∈ R, we get w′2 ∈ r∗ which implies w′2f = fw′2. So I∗R|f (w) can be

obtained as s ◦ g(w) with g(w) = w1#w2 where # is a fresh letter, i.e. a new letter that does not belong
to A, and s : A ∪ {#} 7→ A∗ is the rational substitution defined by s(a) = a for all a ∈ A and s(#) = f∗.
Since g is a rational function and s is a rational substitution, we get that I∗R|f = s ◦ g is a rational
transduction.

3. With the same observations as in the proof of 2, we focus on words in RA∗: for all words w ∈ RA∗,
it holds that I∗R|f (w) = w1I

∗
A∗|f (w2) where w = w1w2 with w1 being the shortest left factor of w that

belongs to R. Moreover, I∗A∗|f (w2) = Lfx1Lf · · ·LfxnLf where w2 = x1 · · ·xn, xi ∈ A and Lf = I∗A∗|f (ε).

From this follows I∗R|f (w) can be obtained as I∗R|f (w) = s′ ◦ g′(w) where g′(w) = w1#g′′(w2) with g′′ :

A∗ 7→ (A ∪ {#})∗ being the morphism defined as g′′(a) = a# for all a ∈ A, and s′ : A ∪ {#} 7→ A∗ being
the substitution defined by s′(a) = a for all a ∈ A and s′(#) = Lf . Since g′′ is a morphism, we get that
g′ is a rational function. Moreover Lf is a context-free language since it can clearly be generated by a
context-free grammar. That implies that s′ is a context-free substitution so I∗R|f = s′ ◦ g′ preserves the
context-free languages.

4. This statement has been proved in [11] (Prop. 11).

We observe that if a rational language R is prefix then for all words f , I∗R|f is deterministic hence is rational
from Item 2 of Proposition 3.11.

In the remainder of this section, we shall address the problem to know, given a control language L and a
word f , whether the language I∗L|f (ε) is in fact an uncontrolled language, that is whether I∗L|f (ε) = I∗A∗|f (ε).

To make the notation less cluttered, we will use in the following: LK|f = I∗K|f (ε) for all languages K 6= A∗ and

Lf = I∗A∗|f (ε). Let us also denote LF(f) \ r∗ by F where r is the root of f . Observe that, though F ∗ is not

always closed by left factor, i.e. generally, F ∗ 6= LF(F ∗), it holds that LF(F ∗) \ A∗r ⊆ F ∗: indeed we can first
observe that F = LF(f) \ A∗r = LF(F ) \ A∗r since f ∈ r∗. On the other hand, it holds that LF(F ∗) \ A∗r =
(F ∗LF(F )) \A∗r; moreover r is a primitive word so we get (F ∗LF(F )) \A∗r ⊆ F ∗(LF(F ) \A∗r) ⊆ F ∗.

We can also state the following equality:

Proposition 3.12. Lf = LF∗|f .

Proof. LF∗|f ⊆ Lf from Item 3 of Proposition 3.4. Conversely, we prove that for all words w ∈ Lf it holds that
w ∈ LF∗|f by induction on |w|, the length of the word w. If w = ε or w = f , it is clearly true. Consider now
w = w1fw2 with w1, w2 in A∗ and w1w2 ∈ Lf ∩A+. From the inductive hypothesis, w1w2 = αfβ with α ∈ F ∗
and αβ ∈ LF∗|f . Let us consider two cases:

1. |w1| < |αf |. Set w1 = w′1r
k such that w′1 6∈ A∗r. From this follows w′1 ∈ F ∗ so w1fw2 = w′1r

kfw2 =
w′1fr

kw2 ∈ LF∗|f .
2. |w1| ≥ |αf |. Then w1 = αfβ′ and β = β′w2 for some word β′. Since αβ′w2 = αβ ∈ LF∗|f , we get αβ′fw2 ∈
Lf . Moreover |αβ′fw2| = |w1w2|, so we may apply the inductive hypothesis and we get αβ′fw2 ∈ LF∗|f
which implies αfβ′fw2 = w ∈ LF∗|f .

Observe that the property I∗a∗|ab = I∗(a+b)∗|ab = D′1
∗

that has been proved in Example 3.2 is, as a matter of
fact, a consequence of Proposition 3.12.
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This property states that it is always possible to get some word of Lf from ε with insertions of the word f
only behind some left factor in F ∗. More generally, we introduce the following notion of maximal control of a
word f for insertion:

Definition 3.13. A word f possesses a maximal control for insertion, denoted by Cmax(f) if for all languages
K it holds that LK|f = Lf if and only if Cmax(f) ⊆ K.

It is an open problem to know whether every word possesses a maximal control for insertion. If it is not the
case, is it possible to decide whether a given word possesses a maximal control for insertion? When a word f
possesses a maximal control for insertion Cmax(f), is Cmax(f) always a rational language? We do not know the
answers of these questions. However, we shall prove in Proposition 3.17 the existence of Cmax(f) when there are
no overlaps between distinct occurrences of the root of f , that is when the root of f is unbordered.

Definition 3.14. A word w ∈ A∗ is called bordered if (LF(w) ∩ RF(w)) \ (ε+ w) 6= ∅ else it is unbordered.

In other words w is unbordered if no proper right factor of w is a left factor of w.
We can first state:

Lemma 3.15. Let r be the root of f . If r is bordered then F ∗ = LF(f)∗ else F ∗ = LF(f)∗ \ (A∗fA∗ ∪A∗r).

Proof. Assume r to be bordered. We can factorize r as r = r′mr′ for some words r′ and m with mr′ 6= r′m
since r is a bordered primitive word. From this follows r′m ∈ F and r′ ∈ F so r ∈ F ∗. That implies LF(f) ⊆ F ∗
and we get F ∗ = LF(f)∗.

Assume now r to be unbordered and suppose r ∈ RF(F )F ∗. From r primitive follows r 6∈ RF(F ): indeed if
r ∈ RF(F ) then f = r′rr′′ for some words r′ and r′′ and this implies r′r ∈ r∗ from Lemma 3.3, a contradiction.
From r 6∈ RF(F ) follows that there exists some word z ∈ F ∩ RF(r). Moreover z ∈ LF(r) since z ∈ LF(f)
and |z| < |r|. This leads to the contradiction that r is bordered so F ∗ ∩ A∗r = ∅. From this, we can deduce
F ∗ ∩A∗fA∗ = ∅. Indeed assume f ∈ RF(F )F ∗LF(F ) and set f = xy with x ∈ RF(F )F ∗ and y ∈ LF(F ). Observe
that x 6= ε since |y| < |f |. From F ∗ ∩ A∗r = ∅ follows y 6= ε and y 6∈ F so y ∈ r+ but that implies x ∈ r+

that also contradicts F ∗ ∩ A∗r = ∅. The two properties F ∗ ∩ A∗r = ∅ and F ∗ ∩ A∗fA∗ = ∅ directly imply
F ∗ ⊆ LF(f)∗ \ (A∗fA∗ ∪A∗r).

Conversely, let w ∈ LF(f)∗ \ (A∗fA∗ ∪ A∗r). We prove that w ∈ F ∗ by induction on |w|, the length of the
word w. If w = ε then w ∈ F ∗ else set w = αβ such that β is the longest word in LF(f) ∩ RF(w). Observe that
α ∈ LF(f)∗ and β 6= ε. That implies β ∈ F else it would follow β ∈ r+ that contradicts w 6∈ A∗r. On the other
hand, α 6∈ A∗fA∗ and, if we assume α = α′r for some word α′, it would follow f ∈ LF(rβ) from the definition
of β that contradicts w 6∈ A∗fA∗. From the inductive hypothesis, we get α ∈ F ∗ so w = αβ ∈ F ∗.

Lemma 3.16. Let r be the root of f then Lf is closed by the rewriting system S = {f 7→ ε} if and only if r is
unbordered.

Proof. Assume that r is unbordered, we shall prove that for all words w = w1fw2 ∈ Lf it holds that w1w2 ∈ Lf

by induction on |w|, the length of the word w. If w = f then w1w2 = ε ∈ Lf . Else, since the occurrence of f that
is highlighted in the factorisation w = w1fw2 need not be obtained by insertion, we consider a factorisation
w = αfβ for some words α and β with αβ 6= ε and αβ ∈ Lf . Let us distinguish four cases:

1. w1 = αfβ′ and β = β′fw2 for some word β′: then αβ = αβ′fw2 ∈ Lf . From the inductive hypothesis
follows αβ′w2 ∈ Lf which implies w1w2 = αfβ′w2 ∈ Lf .

2. α = w1fw
′
2 and w2 = w′2fβ for some word w′1: then αβ = w1fw

′
2β. From the inductive hypothesis follows

w1w
′
2β ∈ Lf which implies w1w2 = w1w

′
2fβ ∈ Lf .

3. w1 = αf1 and β = f3w2 with f = f1f2 = f2f3. Since r is unborded, we get that f1, f2 and f3 are in r∗ so
f1 = f3 which implies w1w2 = αf1w2 = αf3w2 = αβ ∈ Lf .

4. α = w1f1 and w2 = f3β with f = f1f2 = f2f3. Since r is unborded, we get f1 = f3 which implies w1w2 =
w1f3β = w1f1β = αβ ∈ Lf .
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Conversely, if r is bordered, then r = r1r2 = r3r1 for some non empty words r1, r2 and r3. In particular
r1 6∈ r∗. This implies that f = r1f1 = f2r1 for some words f1 and f2. Observe first that f1r1 6= f : indeed if we
assume f1r1 = r1f1 = f we get r1 ∈ r∗ by Lemma 3.3, a contradiction. From this follows f1r1 6∈ Lf . We get
f2r1f1r1 ∈ Lf but f2r1f1r1 −−−→

f 7→ε
f1r1 with f1r1 6∈ Lf .

Thanks to Lemmas 3.15 and 3.16, we can state the existence of Cmax(f) when r, the root of f , is unbordered.

Proposition 3.17. Let f ∈ A+ and r be the root of f . Then Cmax(f) = F ∗ if and only if r is unbordered.
Moreover if r is unbordered then I∗F∗|f is codeterministic.

Proof. We first prove the only if part: assume r to be bordered. From r ∈ (LF(r) \ {r})∗ follows f ∈ F ∗. Let
K = F ∗ \ f+. We get LK|f = Lf but K ( F ∗.

We prove now the if part: assume F ∗ ⊆ K for some language K. From Item 3 of Proposition 3.4 follows
LF∗|f ⊆ LK|f ⊆ Lf so we get LK|f = Lf from Proposition 3.12.

Conversely, assume LK|f = Lf . Let w ∈ F ∗, we shall prove w ∈ K by induction on |w|, the length of the
word w. Since f ∈ LK|f , we get ε ∈ K. If w ∈ F+, we can consider w′, the shortest word such that ww′ ∈ Lf

since w ∈ LF(Lf )∗. From Lemma 3.16, w′ 6∈ A∗fA∗. Moreover w′ ∈ rA∗ implies w ∈ A∗r so w′ 6∈ rA∗. Let us
consider now the word wfw′ that belongs to Lf . Since LK|f = Lf , we get wfw′ = xfy for some word x ∈ K
and some word y ∈ A∗. If |x| < |w|, we get w ∈ A∗r and if |x| > |w|, we get w′ ∈ rA∗ so w = x ∈ K which
implies Cmax(f) = F ∗.

In order to prove that I∗F∗|f is codeterministic, we shall prove that F ∗f is a prefix set. Assume w0f = w′0fw
′
1

for some distinct words w0 and w′0 in F ∗. Since F ∗ ∩A∗fA∗ = ∅, we get |w′0f | > |w0| which implies f = f1f2 =
f2f3 for some f1 6= ε with w0 = w′0f1 and w0f = w′0ff3. Since r is unbordered, we get in particular f1 ∈ r+ so
w0 ∈ A∗r, a contradiction with Lemma 3.15. Hence I∗F∗|f is codeterministic.

Proposition 3.17 does not hold anymore when the root of f is bordered: let f = aba, a primitive bordered
word. In this case, it can be proved that Cmax(aba) ( F ∗ = (a+ ab)∗. More precisely, we prove that Cmax(aba) = K
where K = a∗ + (ab)∗ (Lems. 3.18 and 3.19) and that I∗K|aba is unambiguous (Lem. 3.22).

Lemma 3.18. For all words w ∈ Laba \ {ε} it holds that w = γiabaw′ for some natural number i and some
word w′ with γ ∈ {a, ab} and γiw′ ∈ Laba. So LK|aba = Laba.

Proof. First we can prove that for all words w1 and w2 it holds that if w1aabw2 ∈ Laba then w1w2 ∈ Laba.
The proof is an induction on |w1w2| = 3n for some natural number n > 0. If n = 1 then w1aabw2 = aababa
or w1w2 = abaaba so the property is satisfied. If n > 1 then w1aabw2 = αabaβ for some words α and β with
αβ ∈ Laba. Let us consider four cases:

1. |αaba| ≤ |w1|. Then w1 = αabaw′1 for some word w′1 and β = w′1aabw2. From this follows αw′1aabw2 ∈ Laba

and from the inductive hypothesis, we get αw′1w2 ∈ Laba which implies αabaw′1w2 = w1w2 ∈ Laba.
2. w1 = αab and β = abw2. Then w1w2 = αabw2 = αβ ∈ Laba.
3. α = w1a and w2 = aβ. Then w1w2 = w1aβ = αβ ∈ Laba.
4. |abaβ| ≤ |w2|. Then w2 = w′2abaβ for some word w′2 and α = w1aabw

′
2. From this follows w1aabw

′
2β ∈ Laba

and from the inductive hypothesis, we get w1w
′
2β ∈ Laba so w1w

′
2abaβ = w1w2 ∈ Laba.

From this property, we can directly deduce the property (P): Laba is closed by the rewriting system defined by
the rule aaba 7→ a. Symmetrically, we can prove the property (Q): Laba is closed by the rewriting system defined
by the rule abaa 7→ a as a consequence of the property: for all words w1 and w2 it holds that if w1baaw2 ∈ Laba

then w1w2 ∈ Laba.
Let us now consider a word w ∈ Laba \ (ε+ aba). We have |w|a = 2|w|b > |w|b + 1 and w 6∈ (bA∗ ∪ A∗bbA∗)

so w = (ab)iaaw′ for some natural number i and some word w′. Let us consider two cases.
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1. i = 0. Then w = aaw′ for some word w′ ∈ a∗baA∗. From this follows w = akaabaw′′ for some natural
number k and some word w′′ with akaw′′ ∈ Laba from Property (P):

2. i > 0. Then w = (ab)i−1abaaw′ for some word w′ and (ab)i−1aw′ ∈ Laba from Property (Q).

Lemma 3.19. Let R ⊆ A∗.

1. If ai 6∈ R then aiaba(ba)i ∈ Laba \ LR|aba.
2. If (ab)i 6∈ R then (ab)iabaai ∈ Laba \ LR|aba.

Proof. If another occurrence of aba than the occurence that is just after the left factor ai (or the left factor
(ab)i in the second case) is erased then one obtain a word that belongs to bA∗ ∪A∗bbA∗, a contradiction since
Laba ∩ (bA∗ ∪A∗bbA∗) = ∅.

From Lemmas 3.18 and 3.19, we get Cmax(aba) = K: indeed, let R be a language such that K ⊆ R ⊆ (a+ b)∗

then LR|aba = Laba from Lemma 3.18 and Item 3 of Proposition 3.4. Conversely, if a language R satisfies
LR|aba = Laba then K ⊆ R from Lemma 3.19.

The following lemma will be used in the proof of Lemma 3.21. It is more general that needed in the proof
because it will also be used in Section 6.

Lemma 3.20. If u ∈ A∗bd and f ∈ A∗ad for some word d and some distincts letters a and b, then for all words
α ∈ A∗, I∗u∗|f (A∗aα) ∩A∗bα = ∅.

Proof. We prove this property by induction on |α|. If α = ε the existence of a derivation wa
∗−−−→

Iu∗|f
w′b for

some words w and w′ would imply u ∈ A∗a and f ∈ A∗b, a contradiction. Assume now α 6= ε and waα
∗−−−→

Iu∗|f

w′bα. From Lemma 6.2 follows waα = w1w2
∗−−−→

Iu∗|f
uiw2 −−−→

Iu∗|f
uifw2

∗−−−→
Iu∗|f

w′1w2 = w′bα with, in particular,

α = α′w2. If w2 6= ε, it would follow waα′ = w1
∗−−−→

Iu∗|f
ui −−−→

Iu∗|f
uif

∗−−−→
Iu∗|f

w′1 = w′bα′ with |α′| < |α|, in

contradiction with the inductive hypothesis. So we can assume waα
∗−−−→

Iu∗|f
ui −−−→

Iu∗|f
uif

∗−−−→
Iu∗|f

w′bα. Since

I∗u∗|f (A∗ad) = A∗ad, we get waα ∈ A∗bd and w′bα ∈ A∗ad, a contradiction.

Lemma 3.21.

1. For all words w1 6∈ a∗ and for all words w2, it holds that I∗K|aba(w1aaw2) = I∗K|aba(w1)aaw2.

2. For all integers i > 1 and for all words w, it holds that I∗K|aba(aibw) = I∗K|aba(ai)bw

3. For all words β ∈ (a+ b)∗, I∗K|aba((ab)+aβ) ∩A∗bβ = ∅.

Proof.

1. Clearly, I∗K|aba(w1)aaw2 ⊆ I∗K|aba(w1aaw2). Conversely, it is sufficient to prove that for all words

w ∈ IK|aba(w1aaw2), it holds that w = w′1aaw2 with w′1 ∈ IK|aba(w1) that is clearly satisfied since
LF(w1aaw2) ∩ w1aA

∗ ∩K = ∅.
2. Clearly, I∗K|aba(ai)bw ⊆ I∗K|aba(aibw). Conversely, let w′ ∈ IK|aba(aibw) then w′ = abaaibw or w′ =

ajabaakbw with j > 0 and i = j + k. From 1,

I∗K|aba(abaaibw) = I∗K|aba(ab)aaibw ⊆ I∗K|aba(ai)bw

and on the other hand we get

I∗K|aba(ajabaakbw) = I∗K|aba(aj+1)baakbw ⊆ I∗K|aba(ai)bw
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by induction on the length of derivation.
3. Assume αbβ ∈ I∗K|aba((ab)iaβ) for some word α and some natural number i > 0. From Lemma 3.20,

αbβ 6∈ I∗(ab)∗|aba((ab)iaβ) so there exists some word w such that abw ∈ I∗(ab)∗|aba((ab)iaβ) and αbβ ∈
I∗K|aba(aababw). From 2, I∗K|aba(aababw) = I∗K|aba(aa)babw.

Moreover |w| ≥ |aβ| so I∗K|aba(aababw) ⊆ A∗aβ so αbβ cannot belong to I∗K|aba(aababw) and this implies

αbβ 6∈ I∗K|aba((ab)iaβ).

Lemma 3.22. I∗K|aba is unambiguous.

Proof. Assume that I∗K|aba is ambiguous. Then there exists words w,α1, α2, β such that

� w = α1α2β
� α1 ∈ K
� α1α2 ∈ K
� α2 6= ε
� I∗K|aba(w1) ∩ I∗K|aba(w2) 6= ∅ where w1 = α1abaα2β and w2 = α1α2abaβ.

Let us consider two cases:

1. α1α2 ∈ a∗. In this case, w1 = aiabaatβ with t > 0 and w2 = ai+tabaβ. From Item 1 of Lemma 3.21 follows
I∗K|aba(w1) = I∗K|aba(ai+1b)at+1β ⊆ A∗aaβ and from Item 2 of Lemma 3.21 follows

I∗K|aba(w2) = I∗K|aba(ai+t+1)baβ ⊆ A∗baβ

so I∗K|aba(w1) ∩ I∗K|aba(w2) = ∅, a contradiction.

2. α1α2 ∈ (ab)+. We have to consider two sub-cases:
(a) α1 ∈ (ab)∗. In this case, w1 = (ab)iaba(ab)tβ and w2 = (ab)i+tabaβ for some natural numbers i and

t with t > 0. From Item 1 of Lemma 3.21 follows I∗K|aba(w1) = I∗K|aba((ab)iab)a(ab)tβ ⊆ A∗bβ. Now,

since w2 ∈ (ab)+aβ, we get I∗K|aba(w1) ∩ I∗K|aba(w2) = ∅ from Item 3 of Lemma 3.21.

(b) α1 = a. In this case, w1 = aabab(ab)iβ and w2 = (ab)i+1abaβ for some natural number i. From
Item 2 of Lemma 3.21, I∗K|aba(w1) = I∗K|aba(aa)b(ab)i+1β ⊆ A∗bβ. Since, again, w2 ∈ (ab)+aβ, we

get I∗K|aba(w1) ∩ I∗K|aba(w2) = ∅ from Item 3 of Lemma 3.21.

In all cases, we get I∗K|aba(w1) ∩ I∗K|aba(w2) = ∅, a contradiction. So I∗K|aba is unambiguous.

Moreover, Cmax(aba) is also different from R = LF(aba)∗ \ (a + b)∗aba(a + b)∗: if we consider any language
Z satisfying LZ|aba = Laba, then abab must belong to Z. Indeed w = abababaaa ∈ Laba so there exist some
words α and β such that α ∈ Z, αβ ∈ Laba and w = αabaβ. Since, clearly, Laba ∩ bA∗ = Laba ∩ A∗bbA∗ = ∅,
we get babaaa 6∈ Laba and abbaaa 6∈ Laba. Hence α = abab ∈ Z but abab 6∈ R so w = abababaaa ∈ Laba \ LR|aba.
Moreover I∗Z|aba is not codeterministic: indeed, (abab, abababa) ∈ IZ|aba and, since clearly ε must belong to Z,

(baba, abababa) ∈ IZ|aba.
More generally we get Proposition 3.25 that needs the following lemmas:

Lemma 3.23. Let αfβ = xfy with αβ = xy for some words f, α, β, x, y. If |x| < |α| then α ∈ xr+ and y ∈ r+β
where r is the root of f . Moreover, if α ∈ LF(r∗) then α, β, x, y ∈ r∗.

Proof. Since |x| < |α|, there exist some nonempty words α′, y′ such that α = xα′ and y = y′β. Then αβ =
xα′β = xy = xy′β which implies α′ = y′. From this follows xα′fβ = xfα′β so α′ ∈ r+ from Lemma 3.3. Now,
if α ∈ LF(r∗) ∩A∗r then α ∈ r∗ since r is a primitive word and we get β, x, y ∈ r∗.

As a consequence of Lemma 3.23, we get:
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Corollary 3.24. If LK|f = Lf for some language K then F ⊆ K.

Proof. Assume LK|f = Lf and let f1 ∈ F . Then f1ff2 ∈ Lf = LK|f for some word f2. If f1 6∈ K then there
exist some words x ∈ K and y ∈ A∗ such that xy = f1f2 = f and xfy = f1ff2. From Lemma 3.23, it would
follow f1 ∈ xr+ or x ∈ f1r

+ with f1 ∈ r∗ in both cases that contradicts f1 ∈ F .

Now we can prove:

Proposition 3.25. If r, the root of f , is bordered then there does not exist any language K such that LK|f = Lf

with I∗K|f codeterministic.

Proof. If r is bordered then there exists some word f2 ∈ LF(r) \ {ε, r} such that f = f1f2 = f2f3 for some words
f1, f3. Moreover, since f2 6∈ r∗, we get f2f3 6= f3f2 else r would not be primitive. From that also follows f1 ∈ F .
Since F ⊆ K from Corollary 3.24, we get f1 ∈ K. On the other hand, clearly ε ∈ K since f ∈ LK|f . From this
follows (f1f2, f1ff2) ∈ IK|f and (f3f2, ff3f2) ∈ IK|f . Since f1ff2 = f1f2f3f2 = ff3f2 and f1f2 6= f3f2, we get
that I∗K|f is not codeterministic.

4. A non-(FIN/CF) rationally controlled insertion system

The following language K0 = D′1
∗ ∩K where K = {w ∈ (a + b)∗ | ∀x ∈ LF(w), |x|a ≤ 2|x]b + 1} will play

a central role in this section. First, observe that this language is not context-free: indeed K0 ∩ (ab)∗a+b+ =
{(ab)panbn | p ≥ n− 1 ≥ 0} that is not a context-free language. On the other hand, K0 enjoys some easy but
useful properties:

Lemma 4.1.

1. K0 = LF(K0) ∩D∗1,
2. K0K

−1
0 = K0 = K∗0 ,

3. K0 ( K−1
0 K0 = D′1

∗
,

4. RF(K0) = RF(D′1
∗
) = (RF(K0))∗.

Proof. 1 and 2 are consequences of the two equalities: D′1
∗

= LF(D′1
∗
) ∩D∗1 and K = LF(K). For 3, K0 ( D′1

∗

since aabb 6∈ K0; it only remains to prove K−1
0 K0 = D′1

∗
. First, K−1

0 K0 ⊆ (D′1
∗
)−1D′1

∗
= D′1

∗
. Conversely, let

w ∈ D′1
∗

with |w|a = n; we get (ab)nw ∈ K0 which implies w ∈ K−1
0 K0. At last, for 4, RF(D′1

∗
) ⊆ RF(K0)

follows from 3 so RF(K0) = RF(D′1
∗
) and RF(K0) = RF(K0)∗ since RF(D′1

∗
) = RF(D′1

∗
)∗.

Let us denote by R = {w ∈ A∗ | |w|a = 2n, n ≥ 0} and I0 = IR|ab. We have:

Lemma 4.2. I∗0 (ε) = K0, thus I∗0 (ε) is not a context-free language.

Proof.

� I∗0 (ε) ⊆ K0: the inclusion I∗0 (ε) ⊆ D′1 is clear. The proof of the inclusion I∗0 (ε) ⊆ K is an induction on

the length of the derivation from ε: assume ε
∗−→ xy −→ xaby for some words x and y with x ∈ R. From

the inductive hypothesis, |x|a ≤ 2|x|b + 1. Moreover, since x ∈ R, we get that |x|a is even and this implies
|x|a < 2|x|b + 1. From this follows |xa|a ≤ 2|xa|b + 1 and LF(xaby) ⊆ K.

� K0 ⊆ I∗0 (ε): the proof is by induction on the length of w ∈ K0; clearly ε ∈ I∗0 (ε). If w 6= ε, we get w = abw′

for some word w′ ∈ D′1
∗
. Observe that w′ need not belong to K0 like for instance w′ = aabb, so we consider

two cases:
1. w′ ∈ K0. In this case, w = abw′ ∈ I∗0 (ε) from the inductive hypothesis.
2. w′ 6∈ K0. In this case, w′ 6∈ K because w′ ∈ D′1

∗
. Let w′1 be the shortest word such that w = w′1w

′
2

for some word w′2 and |w′1|a − 2|w′1|b > 1. We get w′1 = w′′1a and |w′′1 |a − 2|w′′1 |b = 1 for some word
w′′1 . This implies w′2 = bw′′2 for some word w′′2 because abw′1a 6∈ K and K = LF(K). Observe that
|abw′′1ab|a − 2|abw′′1ab|b = 0 so |w′′2 |a − 2|w′′2 |b = |w|a − 2|w|b ≤ 1. We get w′′2 ∈ K so abw′′1w

′′
2 ∈ K since

K = LF(K) = K∗. On the other hand, abw′′1w
′′
2 clearly belongs to D′1

∗
, so abw′′1w

′′
2 ∈ I∗0 (ε) from the
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inductive hypothesis. Moreover |w′′1 |a is odd since |w′′1 |a− 2|w′′1 |b = 1 so abw′′1 ∈ R and w = abw′′1abw
′′
2 ∈

I∗0 (ε).

As a direct consequence, for every word w ∈ A∗, it holds that there exists some rational language Rw = wR
such that I∗Rw|ab(w) is not a context-free language. One can state a stronger result where the rational control is
independent from the word w.

Observe that K0 is closed by I∗0 : indeed I∗0 (K0) = I∗0 (I∗0 (ε)) = I∗0 (ε) = K0. Like K0, both LF(K0) and
RF(K0) are closed by I∗0 . The equality LF(K0) = I∗0 (LF(K0)) is a particular case of the following property: for
all nonempty languages L and for all nonempty words f , it clearly holds that for all languages K, LF(K) =
I∗L|f (LF(K)). For RF(K0), we can prove:

Lemma 4.3. RF(K0) = I∗0 (RF(K0)).

Proof. We only have to prove I∗0 (RF(K0)) ⊆ RF(K0). To prove this inclusion, it is sufficient to consider a single
step of derivation: let w = xyz ∈ K0 for some words x, y and z with y ∈ R. If xy ∈ R then we get w −→ xyabz
so yabz ∈ RF(K0), else abxy ∈ R and abw −→ abxyabz. Since abK0 ⊆ K∗0 = K0, we get yabz ∈ RF(K0).

For every word w ∈ (a+ b)∗, l(w) is the longest left factor of w that belongs to LF(K0) and r(w) is the longest
right factor of w that belongs to RF(K0). First, we get from Lemma 4.3:

Lemma 4.4. Let w ∈ (a+ b)∗. For all w′ ∈ I∗0 (w), it holds that:

1. either |l(w′)| > |l(w)| or l(w′) = l(w),
2. either |r(w′)| > |r(w)| or r(w′) = r(w).

Proof. The first property is clearly true since LF(K0) = I∗0 (LF(K0)). For the second one, it is sufficient to prove
the property for (w,w′) ∈ I0. Let w = w1r(w); if w′ = w′1abw

′′
1 r(w) for some word w′′1 6= ε and w′1 ∈ R then

r(w′) = r(w). Else w′ = w1w
′
2abw

′′
2 with w′2w

′′
2 = r(w) and we shall prove w′2abw

′′
2 ∈ RF(K0) by considering two

cases:

� |w′2|a is even. In this case, w′2abw
′′
2 ∈ I∗0 (RF(K0)) and we get w′2abw

′′
2 ∈ RF(K0) from Lemma 4.3.

� |w′2|a is odd. Then abw′2abw
′′
2 ∈ I∗0 (RF(K0)) and we get abw′2abw

′′
2 ∈ RF(K0) from Lemma 4.3 so w′2abw

′′
2 ∈

RF(K0).

As a consequence, we get |r(w′)| ≥ |w′2abw′′2 | > |r(w)|.

We also obtain these technical results:

Lemma 4.5. Let w 6∈ LF(K0) and α be the shortest left factor of w that is not in LF(K0). Then

1. If |α|a is odd then α ∈ K0b,
2. if |α|a is even then I∗0 (α−1w) = α−1I∗0 (w).

Proof.

1. Assume α = α′a for some word α′. From the choice of α follows α′ ∈ LF(K0); moreover, since |α|a is
odd, we get that |α′|a is even so α′ab ∈ I∗0 (LF(K0)) = LF(K0) which implies that α = α′a ∈ LF(K0), a
contradiction, hence α = α′b for some word α′. Now, since α′ ∈ LF(K0) and α′b 6∈ LF(K0), we get that
α′ ∈ K, α′ ∈ LF(D′1

∗
) and α′b 6∈ LF(D′1

∗
) so α′ ∈ D′1

∗
which implies α′ ∈ K0.

2. Set w = αβ. The inclusion I∗0 (β) ⊆ α−1(I∗0 (w)) is clear and, conversely, we shall prove by induction on

the length of a derivation αβ
∗−→ αβ′ that β

∗−→ β′. If the length of the derivation is 0 then β = β′, else let
us consider the first step of the derivation: αβ = uv −→ uabv

∗−→ αβ′ for some words u and v. Observe that,
from Lemma 4.4, l(uabv) = l(α) since α 6∈ LF(K0). Let α = α′x with x ∈ A. If we assume |u| ≤ |α′| we get
α′ = uu′ for some word u′. From α′ ∈ LF(K0) follows uabu′ ∈ LF(K0) and this implies |l(uabv)| > |l(α)|, a

contradiction. Hence |u| > |α′| and u = αβ′′ for some word β′′ ∈ A∗. We get αβ = αβ′′v −→ αβ′′abv
∗−→ αβ′.
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From the inductive hypothesis, we get β′′abv
∗−→ β′; moreover, since |α|a is even, we get that |β′′|a is even

so β = β′′v −→ β′′abv which implies β
∗−→ β′.

Symmetrically one can prove:

Lemma 4.6. Let w 6∈ RF(K0) and β be the shortest right factor of w that is not in RF(K0). Then I∗0 (w β−1) =
I∗0 (w)β−1.

Proof. Set w = αβ. The inclusion I∗0 (α) ⊆ I∗0 (w)β−1 is immediate. Conversely, assume w′β ∈ I∗0 (αβ) for some

word w′. If w′ = α, we directly get w′ ∈ I∗0 (w)β−1. Else, αβ = uv −→ uabv
∗−→ w′β. One can consider two cases:

� |u| > |α|. In this case, u = αxβ′ with x ∈ {a, b}, β′ ∈ (a+ b)∗ and β = xβ′v. We get αxβ′v −→ αxβ′abv
∗−→

w′β. Moreover, from the choice of β follows β′v ∈ RF(K0). That implies β′abv ∈ RF(D′
∗
1) = RF(K0), a

contradiction with Lemma 4.4 since |β′abv| = |β|+ 1.

� |u| ≤ |α|. In this case, α = uw′1 for some word w′1 and we have uw′1β −→ uabw′1β
∗−→ w′β. By induction over

the length of the derivations, we get w′ ∈ I∗0 (uabw′1) which implies w′ ∈ I∗0 (α).

We can now state that for all words w, I∗0 (w) rationally dominates K0:

Lemma 4.7. For every word w ∈ (a+ b)∗, I∗0 (w)  rat K0, thus I∗0 (w) is not a context-free language.

Proof. Clearly, it is sufficient to prove that for all words w ∈ A+ there exists some word w′ with |w′| < |w| and
I∗0 (w)  rat I

∗
0 (w′). Since K0 = LF(K0) ∩ RF(K0), we consider three cases:

1. w ∈ K0: in this case, we directly prove I∗0 (ε) = I∗0 (w)w−1. The inclusion K0 = I∗0 (ε) ⊆ I∗0 (w)w−1 is clear.
Conversely, let w′ such that w′w ∈ I∗0 (w). Since w ∈ K0, we get w′w ∈ K0 and, from Item 2 of Lemma 4.1,
we get w′ ∈ K0.

2. w 6∈ RF(K0): then, from Lemma 4.6, I∗0 (α) = I∗0 (w)β−1 where w = αβ with β the shortest right factor of
w that is not in RF(K0). Since β 6= ε, |α| < |w|.

3. w 6∈ LF(K0): Set w = αβ where α is the shortest left factor of w that is not in LF(K0) and let us consider
two cases:
� |α|a is even. In this case, I∗0 (β) = α−1(I∗0 (w)) from Item 2 of Lemma 4.5 and |β| < |w|.
� |α|a is odd. From Item 1 of Lemma 4.5, α = α′b for some word α′ ∈ K0; we get that |α′|a is odd. Let

us consider two subcases:

(a) |β|a > 0. Set β = biaβ′; we get w = α′bi+1aβ′ and, in this case, we prove I∗0 (β′) = (α′bi+1a)−1I∗0 (w).
Since |α′bi+1a|a is even, the inclusion I∗0 (β′) ⊆ (α′bi+1a)−1I∗0 (w) is clear. The converse inclusion
follows from Item 1 of Lemma 4.4: the property implies that no insertion can be done inside the left
factor α′bi+1a.

(b) |β|a = 0. Set β = bia; we get w = α′bi+1 and, in this case, we shall prove I∗0 (ε) = (abw)−1I∗0 (w).

The inclusion I∗0 (ε) ⊆ (abw)−1I∗0 (w) is clear. Conversely, let w = αβ
∗−→ abwγ for some word γ and

let us consider the first step of this derivation. Since |α′|a is odd, we get: w = α′bi+1 = α′1α
′
2b

i+1 −→
α′1abα

′
2b

i+1 ∗−→ abα′1α
′
2b

i+1γ for some words α′1 and α′2 with |α′1|a even and |α′2|a odd. From Item 1 of

Lemma 4.4 follows α′1abα
′
2b

i+1 = abα′1α
′
2b

i+1 and also no insertion in the derivation α′1abα
′
2b

i+1 ∗−→
abα′1α

′
2b

i+1γ can appear inside the left factor α′1abα
′
2b

i+1.

Our aim is now to generalize Lemma 4.7 to cases when the inserted word f of the system is some word
such that |f |a > 0 and |f |b > 0 for some distinct letters a and b. We need the following lemma involving prefix
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morphisms that will also be very useful in Section 6. A morphism h : A∗ 7→ B∗ is prefix if h(A) is a prefix
language.

Lemma 4.8. Let A and B be two alphabets. Let f ∈ A∗, h be a prefix morphism from A∗ to B∗ and L ⊆ A∗ be
a language. Then for all words w ∈ A∗, I∗L′|f ′(w

′) = h(I∗L|f (w)) and I∗L|f (w) = h−1(I∗L′|f ′(w
′)) where f ′ = h(f),

L′ = h(L) and w′ = h(w).

Proof. Let w ∈ A∗, assume w = xy for some words x, y with x ∈ L and consider w′′ = xfy obtained by a single
insertion step in I∗L|f . Since h(x) ∈ h(L), we get h(x)f ′h(y) = h(w′′) ∈ I∗L′|f ′(w

′). Moreover, since h(A) is a

prefix code, we get h−1(h(xfy)) = xfy = w′′ so w′′ ∈ h−1(I∗L′|f ′(w
′)). Conversely, let h(w) = x′y′ for some

words x′, y′ ∈ B∗ with x′ ∈ h(L) and consider w′′′ = x′f ′y′, obtained by a single insertion step in I∗L′|f ′ . Since

x′ ∈ h(L) and h is prefix (so injective), we get w = xy where h−1(x′) = {x} with x ∈ L, h−1(y′) = y and
h−1(w′′′) = {xfy}. Since x ∈ L, we get xfy ∈ I∗L|f (w) so w′′′ ∈ h(I∗L|f (w)) and h−1(w′′′) ⊆ I∗L|f (w).

Finally, by induction on the length of the derivations in I∗L|f and I∗L′|f ′ , we get the equalities I∗L′|f ′(w
′) =

h(I∗L|f (w)) and I∗L|f (w) = h−1(I∗h(L)|h(f)(h(w))).

We observe that the property of being prefix is crucial for morphisms in Lemma 4.8; the result does not
hold in general for an injective morphism. As a consequence of this lemma, we can state the following general
proposition:

Proposition 4.9. Let X be an alphabet and f be some word of X∗ such that |f |a > 0 and |f |b > 0 for some
distinct letters a and b. Then there exists a rational language R′ such that for every word w ∈ X∗, I∗R′|f (w) is
not a context-free language.

Proof. We may assume f = aibf ′ for some strictly positive integer i and some word f ′. Let A = {a, b} and
h : A∗ 7→ X∗ be the prefix morphism defined by h(a) = ai and h(b) = bf ′. Let R = {w ∈ A∗ | |w|a = 2n, n ≥ 0}
and R′ = h(R).

Let w′ ∈ X∗, it can be factorized as w′ = w′1w
′
2 with w′1 being the longest left factor of w′ that is in

h(A)∗. Since h is prefix, there exists a unique word w1 ∈ A∗ such that h(w1) = w′1. We claim that I∗R′|f (w′) =

I∗R′|f (w′1)w′2. Indeed, the inclusion I∗R′|f (w′1)w′2 ⊆ I∗R′|f (w′) is clear and conversely, the inclusion I∗R′|f (w′) ⊆
I∗R′|f (w′1)w′2 can be proved by induction over the length of the derivation by considering a single insertion step:

w′ = xy −→ x h(f) y with x ∈ R′. From this follows x ∈ h(A)∗ so w′1 = xx′ with x′ ∈ h(A)∗. That implies
x h(f) y = x h(f) x′w′2 and x h(f) x′ is the longest left factor of x h(f) y that is in h(A)∗.

Now, from Lemma 4.8, we get I∗0 (w1) = h−1(I∗R′|f (w′1)) that is not context-free from Lemma 4.7. That implies

that I∗R′|f (w′1) cannot be context-free so I∗R′|f (w′) = I∗R′|f (w′1)w′2 is not context-free.

5. Single letter controlled insertion system

In the previous section, Proposition 4.9 needs that |f |a > 0 and |f |b > 0 for some distinct letters a and b in
order to build a rational language R′ such that for every word w ∈ X∗, I∗R′|f (w) is not a context-free language.

Since this proposition does not hold when f ∈ a+ for some letter a, a natural question is to wonder whether
such controlled insertion systems are FIN/CF or RAT/CF. While the answer is positive for the FIN/CF property,1

it is, rather surprisingly, not the case for the RAT/CF property. We start this section by giving two examples of
such non-RAT/CF controlled insertion systems in the case when the inserted word consists in a single occurrence
of a single letter a. The proof and the rational control of the first example are quite simple while for the second
example it is the starting rational language which is as simple as possible.

Lemma 5.1. Let R = R0 ∪R1 ∪R2 with R0 = a∗, R1 = {ai(ba)jb | i+ j is odd} and R2 = {ai(ba)jbpc(ba)kb |
j + k is odd}, then I∗R|a(b∗cb∗) is not a context-free language.

1In fact, we shall even see that the answer is positive for the FIN/RAT property.
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Proof. Let L0 = a∗(ba)∗c(ba)∗ and L1 = {ai(ba)jc(ba)k | i ≥ j ≥ k}. Observe that L1 is not a context-free
language. We shall prove that I∗R|a(b∗cb∗) ∩ L0 = L1 that implies the non-context-freeness of I∗R|a(b∗cb∗).

� L1 ⊆ I∗R|a(b∗cb∗) ∩ L0: let i ≥ j ≥ k be three natural numbers. We get the derivation:

bjcbk −−−→
IR0|a

abjcbk −−−→
IR1|a

a(ba)bj−1cbk −−−→
IR2|a

a(ba)bj−1c(ba)bk−1

∗−−−→
IR|a

ak(ba)kbj−kc(ba)k
∗−−−−−−→

IR0∪R1|a
aj(ba)jc(ba)k

∗−−−→
IR0|a

ai(ba)jc(ba)k.

� I∗R|a(b∗cb∗) ∩ L0 ⊆ L1: let H = A∗baaA∗ with A = {a, b, c}. Clearly I∗R|a(H) = H and H ∩ L0 = ∅. We

shall prove that , for all words w ∈ L2 = {ai(ba)jbpc(ba)kbq | i ≥ j ≥ k}, if w −−−→
IR|a

w′
∗−−−→

IR|a
w′′ ∈ L0 then

w′ ∈ L2.
Assume w = ai(ba)jbpc(ba)kbq with i ≥ j ≥ k, we can distinguish three cases:
1. (w,w′) ∈ IR0|a: in this case, w′ = ai+1(ba)jbpc(ba)kbq is clearly in L2.

2. (w,w′) ∈ IR1|a: since w′ 6∈ H (else w′′ 6∈ L0), we ge’t w′ = aic(ba)j+1bp−1c(ba)kbq. Moreover i + j is
odd so i > j and we get i ≥ j + 1 > k so w′ ∈ L2.

3. (w,w′) ∈ IR2|a: since w′ 6∈ H, we get w′ = ai(ba)jbpc(ba)k+1bq−1 with j + k odd. That implies j > k so
i ≥ j ≥ k + 1 so w′ ∈ L2.

Finally, by induction over the length of the derivation, we get that for all w ∈ L2, if w
∗−−−→

IR|a
w′′ ∈ L0 then

w′′ ∈ L2 ∩ L0 = L1. Now, since b∗cb∗ ⊆ L2 we get I∗R|a(b∗cb∗) ∩ L0 ⊆ L1.

We observe that a similar construction would allow to get an example of a rational control R such that
I∗R|a(b∗a2b∗) is not a context-free language, nevertheless, in the following second example, the starting rational
language is as simple as possible: indeed, we shall see later that single letter controlled insertion systems are
FIN/RAT.

Lemma 5.2. Let R = R0 ∪R1 ∪R2 ∪R3 where R0 = (b6a)∗b6, R1 = a∗, R2 = {ai(b2a)jb2 | i+ j is odd} and
R3 = {ai(b2a)jb4a(b6a)p(b5a)qb5 | j + q is odd}, then I∗R|a(b∗) is not a context-free language.

Proof. Let L0 = a+(b2a)+(b5a)+ and L1 = {ai(b2a)3k(b5a)q | i > k ≥ q > 0}, we shall prove that I∗R|a(b∗)∩L0 =
L1, a non-context-free language.

� L1 ⊆ I∗R|a(b∗) ∩ L0: let i > k ≥ q > 0 be three integers.
We first prove that for all integers t such that 0 ≤ t ≤ q, it holds that

b6k+5q ∗−−−→
IR|a

at+1(b2a)3t(b6a)k−t(b5a)t(b5)q−t

by induction on t.
◦ For the case t = 0, we get b6k+5q ∗−−−→

IR0|a
(b6a)kb5q

∗−−−→
IR1|a

a(b6a)kb5q.

◦ For 0 ≤ t < q, we get at+1(b2a)3t(b6a)k−t(b5a)t(b5)q−t
∗−−−→

IR2|a
at+1(b2a)3t+1b4a(b6a)k−t−1(b5a)t(b5)q−t

∗−−−→
IR3|a

at+1(b2a)3t+1b4a(b6a)k−t−1(b5a)t+1(b5)q−t−1
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∗−−−→
IR2|a

at+1(b2a)3t+3(b6a)k−t−1(b5a)t+1(b5)q−t−1

∗−−−→
IR1|a

at+2(b2a)3t+3(b6a)k−t−1(b5a)t+1(b5)q−t−1.

Setting now t = q in at+1(b2a)3t(b6a)k−t(b5a)t(b5)q−t, we get

b6k+5q ∗−−−→
IR|a

aq+1(b2a)3q(b6a)k−q(b5a)q
∗−−−→

IR2|a
aq+1(b2a)3k(b5a)q

∗−−−→
IR1|a

ai(b2a)3k(b5a)q.

� I∗R|a(b∗) ∩ L0 ⊆ L1: let H = A∗bA∗a(ε+ b+ b3)aA∗ + a+(b2a)∗b∗. It is easily seen that H = I∗R|a(H) and

H ∩ L0 = ∅. From this follows that for every words w and w′ ∈ I∗R|a(w), if w′ is in L0 then w is not in H.

Let L2 = {ai(b2a)j(b4a)t(b6a)p(b5a)qbr | (t = 0∨ t = 1)∧ (∃k, j + 2t = 3k ∧ i+ t > k ≥ q)}. Observe that,
in order to reach some word in L0 from some word of b∗ by I∗R|a, it is necessary to begin with I∗R0|a then
to continue with at most one step with I∗R1|a before using I∗R2|a and I∗R3|a. Moreover, it is easily seen that

for every word w ∈ I∗R|a(a+b∗), if w 6∈ H then it is necessary to first reach a word in the form ai(b6a)jbr

with i > 0 and j > 0, a word that is in L2.
We shall now prove that for any word w = ai(b2a)j(b4a)t(b6a)p(b5a)qbr in L2, for any word w′ that can
be obtained from w by a single step with I∗R|a, it holds that if w′ 6∈ H then w′ ∈ L2. Since I∗R0|a cannot

be used anymore on a word of L2, we can have (w,w′) ∈ IR1|a, (w,w′) ∈ IR2|a or (w,w′) ∈ IR3|a. If
(w,w′) ∈ IR1|a, we clearly get w′ ∈ L2 so we consider the two other cases:
1. (w,w′) ∈ IR2|a. we have again to consider two cases:

(a) if t = 1: in this case w = ai(b2a)jb4a(b6a)p(b5a)qbr with j + 2 = 3k and i + 1 > k ≥ q. Observe
that, since w′ 6∈ H, we cannot insert an a with I∗R2|a in the factor (b2a)j of w. From this follows

w′ = ai(b2a)j+2(b6a)p(b5a)qbr and i+ j is odd. Hence i+ j + 2t = i+ 3k is odd so i+ k is odd and
this implies i 6= k so i > k and w′ ∈ L2.

(b) if t = 0: in this case w = ai(b2a)j(b6a)p(b5a)qbr with j = 3k and i > k ≥ q. Observe that we cannot
have p = 0 else q > 0 since w 6∈ H and this leads to insert an a into the factor (b5a)q that would give
a word that belongs to H. Hence w′ = ai(b2a)j+1(b4a)(b6a)p−1(b5a)qbr with j + 1 + 2 = 3k + 3 and
i+ 1 > k + 1 ≥ q.

2. (w,w′) ∈ IR3|a. In this case w = ai(b2a)jb4a(b6a)p(b5a)qbr with j + 2 = 3k and i+ 1 > k ≥ q. Observe
that we cannot insert an a neither into the factor (b6a)p nor into the factor (b5a)q since it would
give a word of H. From this follows w′ = ai(b2a)jb4a(b6a)p(b5a)q+1br−5 with j + 2 = 3k and i+ 1 > k.
Moreover, from j+ q odd follows j+ 2 + q = 3k+ q odd then k+ q odd. That implies k 6= q so k ≥ q+ 1.

We have proved that for every word w in I∗R|a(b∗), it holds that if I∗R|a(w) ∩ L0 6= ∅ then w ∈ L2, that is

w = ai(b2a)j(b4a)t(b6a)p(b5a)qbr | (t = 0 ∨ t = 1) ∧ (∃k, j + 2t = 3k ∧ i+ t > k ≥ q. Now if w ∈ L0 we get
t = p = r = 0 so j = 3k and i > k ≥ q which implies w ∈ L1.

Lemma 5.3. For all languages L ⊆ A∗ and for all words w ∈ A∗, LF(I∗L|a(w)) = I∗L|a(LF(w)).

Proof. Clearly, if w = w1w2 and w′1 ∈ I∗L|a(w1) then w′1w2 ∈ I∗L|a(w) and we get I∗L|a(LF(w)) ⊆ LF(I∗L|a(w)).

Conversely, let w = xy for some words x and y with x ∈ L. Assume xy −→ xay = w′1w
′
2; we can consider two

cases:

� x = w′1x
′ for some word x′. In this case, w′1 ∈ I∗L|a(LF(w)).

� w′1 = xay′ for some word y′ with y = y′w′2. From this follows xy′ −→ xay′ = w′1 so w′1 ∈ I∗L|a(LF(w)). Now,

by induction on the length of the derivations, we get LF(I∗L|a(w)) ⊆ I∗L|a(LF(w)).

As said before, it has been proved in [2], through a more general result, that I∗R|a is a rational transduction in
the case when R is finite: indeed this case corresponds to the prefix rewriting system associated with the set of
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rules {u 7→ ua | u ∈ R}. A prefix rewriting system S is a rewriting system where the rewriting rules can only be
applied on left factors of the words: w −→

S
w′ if w = uα and w′ = vα for some rule u 7→ v ∈ S and some word α.

We prove here the following more general result that is somehow optimal as stated forward in Proposition 5.7.
In the following, A is an alphabet with a ∈ A and B = A \ {a}. The projection of a word w ∈ A∗ over the

alphabet B is the morphism from A∗ to B∗, denoted by ΠB and defined by for all letters x ∈ B,ΠB(x) = x and
ΠB(a) = ε.

Proposition 5.4. For all rational languages R ⊆ A∗ such that ΠB(R) is finite, for all words f ∈ a∗, I∗R|f is a
rational transduction.

Proof. The proof is an induction over k = max({|w| | w ∈ ΠB(R)}).

� if k = 0, R ⊆ a∗. For all words w ∈ A∗, if R ∩ LF(w) = ∅, we get I∗R|f (w) = {w} else I∗R|f (w) = f∗w so we

can set I∗R|f (w) = {w} ∪ {f∗({w} ∩RA∗)}.
� if k > 0, let Rk = {w ∈ R | |ΠB(w)| = k} and R<k = {w ∈ R | |ΠB(w)| < k}. Observe that I∗R<k|f is

a rational transduction from the inductive hypothesis. On the other hand, for all words w, I∗Rk|f (w) =

{w} ∪ {w′f∗w′′ | w = w′w′′ ∧ w′ is the shortest leftfactor ofw that belongs to Rk) so I∗Rk|f is a rational
transduction. We claim that I∗R|f = I∗R<k|f ◦ I

∗
Rk|f ◦ I

∗
R<k|f , so I∗Rk|f is a rational transduction: indeed, for

all words w, we clearly have I∗R<k|f ◦ I
∗
Rk|f ◦ I

∗
R<k|f (w) ⊆ I∗R|f (w). Conversely, let w = w1 −−−→

IR|f
w2 . . . −−−→

IR|f

wn = w′ for some n > 1.
If for all 0 ≤ i < n, wi 6∈ RkA

∗ then w′ ∈ I∗R<k|f (w). Else let i be the smallest index such that wi ∈ Rk, we

get wi = w′iα and w1 = w′1α with w′1, α ∈ A∗, w′i ∈ Rk ∩ I∗R<k|f (w′1). Moreover, for all words v ∈ RkA
∗ and

v′ ∈ I∗R|f (v), it holds that v′ ∈ I∗R<k|f ◦ I
∗
Rk|f (v) so w′ = wn ∈ I∗R<k|f ◦ I

∗
Rk|f (wi). Since wi ∈ I∗R<k|f (w),

we get w′ ∈ I∗R<k|f ◦ I
∗
Rk|f ◦ I

∗
R<k|f (w).

Corollary 5.5. Let R ⊆ A∗ and K ⊆ A∗ be two rational languages and f ∈ a∗. If ΠB(K) is finite, then
I∗R|f (K) ∈ RAT.

Proof. Let k = max({ΠB(w) | w ∈ K}) and R′ = {w ∈ R | |ΠB(w)| ≤ k}. Clearly I∗R|a(K) = I∗R′|a(K) and,

since ΠB(R′) is finite, we get from Proposition 5.4 that I∗R′|a(K) is a rational language.

Conversely, using Lemma 4.8 and Lemma 5.2, we get:

Corollary 5.6. If K ⊆ B∗ is infinite then there exists a rational language R such that I∗R|a(K) is not a
context-free language.

Proof. Let h : A∗ 7→ (a+ b)∗ be the morphism defined by h(x) = b for all x ∈ B and h(a) = a. For any rational
language R, it holds that I∗R|a(h(w)) = h(I∗h−1(R)|a(w)) from Lemma 4.8 so it remains to prove that for all infinite

languages K ⊆ b∗, there exists R ∈ RAT such that I∗R|a(K) 6∈ CF. We shall first prove that, for all words w ∈ b∗

and for all languages L, it holds that I∗L|a(LF(w)) = LF(I∗L|a(w)). The inclusion I∗L|a(LF(w)) ⊆ LF(I∗L|a(w)) is

clear. Conversely, let w′ ∈ LF(I∗L|a(w)); there exists some word w′′ such that w
n−−−→

IL|a
w′w′′ and we shall prove

by induction on n that w′ ∈ I∗L|a(LF(w)).

If n = 0, w′ ∈ LF(w), else w = αβ −−−→
IL|a

αaβ
n−1−−−→
IL|a

w′w′′ for some words α and β with α ∈ L. From the

inductive hypothesis, there exist two words α′ and β′ such that αaβ = α′β′ with α′
∗−−−→

IL|a
w′. Let us consider

two cases:

� |α| ≥ |α′|: we directly get w′ ∈ I∗L|a(LF(w)).
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� |α| < |α′|: in this case, α′ = αaβ′ and β = β′β′′ for some words β′ and β′′. From this follows w = αβ′β′′

and we get αβ′ −−−→
IL|a

αaβ′ = α′
∗−−−→

IL|a
w′ so w′ ∈ I∗L|a(LF(w)).

Now, let R = R0 ∪ R1 ∪ R2 ∪ R3 where R0 = (b6a)∗b6, R1 = a∗, R2 = {ai(b2a)jb2 | i + j is odd} and
R3 = {ai(b2a)jb4a(b6a)p(b5a)qb5 | j + q is odd}. Let K ⊂ b∗ be an infinite language. We get LF(I∗R|a(K)) =

I∗R|a(LF(K)) = I∗R|a(b∗) that is not a context-free language from Lemma 5.2; this implies I∗R|a(K) 6∈ CF.

As a direct consequence of Corollary 5.5 and Corollary 5.6, we get:

Proposition 5.7. For all languages K ⊆ B∗, the three following statements are equivalent:

1. There exists some rational language R such that I∗R|a(K) is not a context-free language.

2. There exists some rational language R such that I∗R|a(K) is not a rational language.
3. K is infinite.

6. Simple rational control

This section is devoted to rationally controlled one-rule insertion systems in the case when the rational
control language R is defined as R = u∗ for some word u. In particular we shall characterize when such systems
correspond to a rational transduction and we shall prove that these systems preserve context-free languages. We
begin this section with the study of the particular case u ∈ a∗ and f ∈ a+b∗ for some distinct letters a and b.

Proposition 6.1. For all natural numbers t, i and j,

� if 1 ≤ t ≤ i and 1 ≤ j then I∗(at)∗|aibj (ε) ≡
rat
D′1
∗
,

� else I∗(at)∗|aibj (ε) = (aibj)∗.

Proof. Clearly, if t > i or if t = 0 then I∗(at)∗|aibj (ε) = I∗ε|aibj (ε) = (aibj)∗ and if j = 0 then I∗(at)∗|ai(ε) = (ai)∗.

If 1 ≤ t ≤ i and 1 ≤ j then i = st + r for some s > 0 and some r < t. Let h : (a + b)∗ 7→ (a + b)∗ be the
morphism defined by h(a) = at and h(b) = arbj . Since r < t, the morphism h is prefix and we get h(I∗a∗|asb(ε)) =

I∗(at)∗|astarbj (ε) from Lemma 4.8. It remains to prove that for all i > 0 it holds that I∗a∗|aib(ε) ≡rat
D′1
∗
.

Thanks again to Lemma 4.8, respectively using the morphisms g1 : (a+ b)∗ 7→ (a+ b)∗ defined by g1(a) = a
and g1(b) = bi and g2 : (a + b)∗ 7→ (a + b)∗ defined by g2(a) = ai and g2(b) = bi we get the two following
properties:

I∗a∗|aib(ε) ≡rat
I∗a∗|aibi(ε) (6.1)

I∗(ai)∗|aibi(ε) ≡rat
I∗a∗|ab(ε) (6.2)

Moreover, we claim:

I∗a∗|aibi(ε) = I∗a∗|ab(ε) ∩ (a+ bi)∗ (6.3)

Indeed, the inclusion I∗a∗|aibi(ε) ⊆ I∗a∗|ab(ε) ∩ (a + bi)∗ is clear and we can prove the converse inclusion by

induction on the length of a derivation ε
∗−−−−→

Ia∗|ab

w from ε to a word w ∈ (a+ bi)∗: if w = ε then w ∈ I∗a∗|aibi(ε),

else w = akbiw′ for some word w′ and k ≥ i > 0. From this follows ak−iw′ ∈ I∗a∗|ab(ε) ∩ (a+ bi)∗ and, from the

inductive hypothesis, we get ak−iw′ ∈ I∗a∗|aibi(ε) which implies w ∈ I∗a∗|aibi(ε).
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We also have:

I∗(ai)∗|aibi(ε) = I∗a∗|aibi(ε) ∩ (ai + b)∗ (6.4)

Indeed, I∗(ai)∗|aibi(ε) is clearly included into I∗a∗|aibi(ε)∩ (ai + b)∗. We prove the converse inclusion by induction

on the length of a derivation ε
∗−−−−−→

Ia∗|aibi

w from ε to a word w ∈ (ai + b)∗: if w = ε then w ∈ I∗(ai)a∗|aibi(ε), else

ε
∗−−−−−→

Ia∗|aibi

akw′ −−−−−→
Ia∗|aibi

w = akaibiw′

for some word w′ and some natural number k. Moreover, since w ∈ (ai + b)∗, we get ak ∈ (ai)∗ so w ∈
I∗(ai)∗|aibi(a

kw′) and akw′ ∈ (ai + b)∗. From the inductive hypothesis, we get akw′ ∈ I∗(ai)∗|aibi(ε) which implies

w = akaibiw′ ∈ I∗(ai)∗|aibi(ε). Now, we get D′1
∗

= I∗a∗|ab(ε), as seen in Example 3.2, and I∗a∗|ab(ε)  rat I
∗
a∗|aibi(ε)

from (6.3) so D′1
∗  rat I

∗
a∗|aibi(ε).

Conversely, I∗a∗|aibi(ε)  rat I
∗
(ai)∗|aibi from (6.4) and I∗(ai)∗|aibi ≡rat

D′1
∗

from (6.2). That implies

I∗a∗|aibi(ε)  rat D
′
1
∗

so I∗a∗|aibi(ε) ≡rat
D′1
∗
. Finally, since I∗a∗|aibi(ε) ≡rat

I∗a∗|aib(ε) from (6.1), it holds that

D′1
∗ ≡

rat
I∗a∗|aib(ε) that ends the proof of the proposition.

Given a one-rule insertion system IR|f over an alphabet A for some regular language R and some word f ,
the following language RR|f = {w ∈ A∗ | I∗R|f (w) ∩R 6= ∅} will be very useful in order to study the properties
of the system IR|f . This is shown by the following elementary lemmas. The first one highlights the longest right
factor that is never used in a derivation step.

Lemma 6.2. Let IR|f be a one-rule insertion system over an alphabet A for some regular language R and some
word f . For all derivations w0 −−−→

IR|f
w1 . . . −−−→

IR|f
wn with n > 0, there exists a word β such that for all integers

j ∈ [0, n], wj = αjβ for some word αj with for all integers k ∈ [0, n[, αk −−−→
IR|f

αk+1. Moreover there exists some

integer i ∈ [0, n[ with αi ∈ R ∧ αi+1 = αif and α0 ∈ RR|f .

Proof. Clearly, α0 ∈ RR|f is a consequence of the other properties. If w0 −−−→
IR|f

w1 . . . −−−→
IR|f

wn with n > 0, then

there exist words α′0, . . . , α
′
n, β′0, . . . , β

′
n such that w0 = α′0β

′
0, wn = α′nβ

′
n and for all 0 ≤ j < n, α′j ∈ R and

α′jfβ
′
j = α′j+1β

′
j+1. These factorisations correspond to each application of the rewrite rule in the derivation

step. Let i ∈ [0 . . . n[ such that β′i is the shortest word in {β′0, . . . , β′n−1} then we can take β = β′i and for all
integer j ∈ [0, n], αj = wjβ

−1.

A simpler statement of this property is the following:

Corollary 6.3. For all words w ∈ A∗ and w′ ∈ I∗R|f (w), there exist some words w1, w
′
1, w2 ∈ A∗ and w′′1 ∈ R

such that w = w1w2, w′ = w′1w2, w′′1 ∈ I∗R|f (w1) and w′1 ∈ I∗R|f (w′′1 ).

We also get as a corollary of Lemma 6.2:

Corollary 6.4. For all words w ∈ A∗, I∗R|f (w) = I∗R|f (w1)w2 with w = w1w2 where w1 is the longest left factor
of w that belongs to RR|f .

When R = u∗ for some word u, we observe that Ru∗|f = R∗u∗|f since ε ∈ u∗. We will now prove, in this case
R = u∗, that it is possible to build a code C such that Ru∗|f = C∗: let IR|f be a one-rule insertion system over
an alphabet A for some regular language R and some word f . Let E1 = {e ∈ A∗ | |e| < |u| ∧ fe ∈ u∗} and,
for every i > 0, Ei+1 = Ei ∪ {e ∈ RF(u) | fe ∈ (Ei + u)∗e′, (e′ ∈ Ei + u) ∧ (|e′| > |e|)}. We define E = ∪i>0Ei
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and Eu = E ∪ {u}. It is easily seen that, for every i > 0, Ei ⊆ Ei+1 ⊆ RF(u) so there exists k > 0 such that
E = Ek = Ek+1. From the inductive construction of E we get:

Lemma 6.5.

1. E∗u ⊆ Ru∗|f ,
2. E = {e ∈ A∗ | ∃e′ ∈ Eu, |e| < |e′| ∧ fe ∈ E∗ue′},
3. fw ∈ E∗u if and only if w ∈ EE∗u.

Proof.

1. Since Ru∗|f = R∗u∗|f , it is sufficient to prove Eu ⊆ Ru∗|f that is to prove E ⊆ Ru∗|f and we easily get by
induction that for all i > 0 it holds that Ei ⊆ Ru∗|f .

2. Let L = {e ∈ A∗ | ∃e′ ∈ Eu, |e| < |e′| ∧ fe ∈ E∗ue′}. Clearly, for all i > 0, Ei ⊆ L. Conversely, let e ∈ L,
then there exists some e′ ∈ Eu with |e′| > |e| and fe ∈ E∗ue′. If fe ∈ u∗ then e ∈ E1 ⊆ E. Else fe = e1 · · · en
such that for all i ∈ [1..n], it holds that ei = u or ei ∈ Eki

for some ki and en = e′. Let t be the biggest
index among the k′is, we can assume that t exists else fe ∈ u∗. From this follows e′ ∈ Et so e ∈ Et+1 ⊆ E.

3. From 2, we only have to prove that fw ∈ E∗u implies w ∈ EE∗u. If fw ∈ E∗u then f = f ′f ′′ and w = w′w′′

with f ′ ∈ E∗u, f ′′ 6= ε, w′′ ∈ E∗u and f ′′w′ ∈ Eu. From this follows fw′ ∈ E∗u(f ′′w′) and, since w′ ∈ RF(u),
we get w′ ∈ Eu. Moreover |w′| < |u| since |f ′′| > 0 so w′ ∈ E and w ∈ EE∗u.

We shall now prove the converse inclusion Ru∗|f ⊆ E∗u. The following lemma highlights the different cases
that must be considered.

Lemma 6.6. Let u, f ∈ A+. Then

1. either uf = fu,
2. or f = usz with {u, z} prefix for some integer s > 0,
3. or u = f iz with {z, f} prefix for some integer i ≥ 0,
4. or {u, f} is suffix.

Proof. Let u ∈ A+ and f ∈ A+ such that uf 6= fu. Assume first u 6∈ LF(f∗); we get u = f iz with {z, f} prefix
for some integer i ≥ 0. Otherwise, if u ∈ LF(f∗), we can first observe that |u| 6= |f | else this implies uf = fu, a
contradiction. Hence, we consider two cases:

� |u| > |f |. In this case, f = f ′f ′′ for some words f ′ and f ′′ and u = f if ′ with i > 0. Since uf 6= fu we get
f ′ 6= ε and f ′f ′′ 6= f ′′f ′ so f 6∈ RF(ff ′) which implies {u, f} suffix.

� |f | > |u|. In this case f = usz for some word z with u 6∈ LF(z) and some natural number s. Observe that
s > 0 since u ∈ LF(f∗) and z 6= ε else uf = fu. Assume that {u, z} is not prefix. We get z ∈ LF(u) and
u = zz′ for some word z′. From uf 6= fu follows zz′ 6= z′z so u 6∈ RF(uz) which implies {u, f} suffix.

We can observe that the different cases that appear in the previous lemma are not necessarily exclusive to
each other.

Lemma 6.7.

If u ∈ A∗bd and f ∈ A∗ad for some word d and some distinct letters a and b then:

1. dEu ⊆ A∗bd,
2. adE ⊆ RF(du).

Proof. From fE1 ⊆ u∗ and E1 ⊆ RF(u) follows adE1 ⊆ RF(du) which implies dE1 ⊆ A∗bd. By induction on the
construction of E, we get adE ⊆ RF(du) and dE ⊆ A∗bd.
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We can now prove the crucial following lemma:

Lemma 6.8. Let u, f ∈ A+. For every word w ∈ A∗, if uw ∈ E∗u then w ∈ E∗u.

Proof. From Lemma 6.6 we can consider four cases.

1. uf = fu. In this case, up = fq for some strictly positive integers p and q. If uw ∈ E∗u then upw ∈ E∗u
which implies fqw ∈ E∗u and we get w ∈ E∗u from Item 3 of Lemma 6.5.

2. f = usz with {u, z} prefix for some integer s ≥ 0. The property is clearly true since in this case E1 = ∅
so E∗u = u∗.

3. u = f iz with {z, f} prefix for some integer i ≥ 0. It is easily seen that in this case, E = ∪0≤j<i{f jz} so
Eu = ∪0≤j≤i{f jz}, a prefix code and this implies the property.

4. {u, f} is suffix. In this case u ∈ A∗bd and f ∈ A∗ad for some word d and some distinct letters a and
b. Let v = du and D = {α | adα ∈ RF(v)}. Observe that E ⊆ D from Lemma 6.7; on the other hand it
has been proved in [11] (Prop. 4) that vD∗ ∩ A+vA∗ = ∅. Now, assume uw ∈ E∗u and w 6∈ E∗u. From this
follows uw ∈ EE∗u which implies uw′ ∈ E∗ for some word w′: indeed if uw ∈ EE∗u, then there exist words
w′′, α, β and γ such that uw = uαw′′ with u = βγ, β ∈ E∗ and γα ∈ Eu. If γα ∈ E then we can take
w′ = α to get uw′ ∈ E∗, else uα = βu which implies uα ∈ LF(β∗) ⊆ LF(E∗) so there exists a word α′ such
that uαα′ ∈ E∗ and we can take w′ = αα′ to get uw′ ∈ E∗. Finally, uw′ ∈ E∗ leads to a contradiction:
vuw′ ∈ vD∗ and vuw′ ∈ A+vA∗ since vu = duu ∈ A∗bduA∗ = A∗bvA∗.

As a consequence, we get:

Proposition 6.9. It holds that Ru∗|f = E∗u. Moreover

1. if uf 6= fu then Eu is a code and f 6∈ E∗u,
2. else E∗u = x∗ where x is the longest word such that u and f are in x∗.

Proof. From Lemma 6.5 we only have to prove Ru∗|f ⊆ E∗u. The proof is an induction on the length of the
derivation from a word in Ru∗|f to a word in u∗. If this length is null then w ∈ u∗ ⊆ E∗u. Else w = uiα −−−→

Iu∗|f

uifα
∗−−−→

Iu∗|f
w′ for some natural number i and some w′ ∈ u∗. From the inductive hypothesis follows uifα ∈ E∗u.

This implies fα ∈ E∗u from Lemma 6.8 and α ∈ E∗u from Item 3 of Lemma 6.5. Finally we get w = uiα ∈ E∗u.

� To prove 1, from Lemma 6.6 we can consider three cases:
◦ f = usz with {u, z} prefix for some integer s ≥ 0. In this case E1 = ∅ so Eu = {u}.
◦ u = f iz with {z, f} prefix for some integer i ≥ 0. In this case, E = ∪0≤j<i{f jz} so Eu = ∪0≤j≤i{f jz},

a prefix code that does not contain f .
◦ {u, f} is suffix. In this case u ∈ A∗bd and f ∈ A∗ad for some word d and some distinct letters a

and b. Let w ∈ E+
u and assume w = αe = βe′ for some e, e′ ∈ Eu with |e′| < |e|. From this follows

e′ ∈ E and there exists a word e′′ ∈ Eu such that w ∈ A∗e′′e′. From Lemma 6.7, we get de′′ ∈ A∗bd so
bde′ ∈ RF(de) ⊆ RF(du). This leads to a contradiction since ade′ ∈ RF(du) from Item 2 of Lemma 6.7.

� To prove 2, let x be the longest word such that u and f belong to x∗. From the definition of E follows
Eu ⊆ x∗. Conversely, let y = xk for some k > 0 be the shortest word in Eu \ {ε}. Necessarily, f ∈ y∗, else
f = yixk

′
for some integer i and some integer k′ with 0 < k′ < k which implies xk

′
in Eu, a contradiction.

Assume Eu 6⊆ y∗ and let e be the shortest word in Eu such that e 6∈ y∗. There are two cases:
1. |e| < |f |: in this case, f = eyixk

′
with 0 < k′ < k that leads again to a contradiction.

2. |e| > |f |: in this case, e = fe′ which implies e′ ∈ Eu from Item 2 of Lemma 6.5. Moreover e′ 6∈ y∗ and
is shorter than e, a contradiction.

So Eu ⊆ y∗. In particular, u ∈ y∗. That implies k = 1: indeed, u = xp and f = xq for some integers p and
q that are prime between them else x is not the longest word such that u ∈ x∗ and f ∈ x∗. Finally, x = y
so x ∈ Eu.
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As a consequence, we get:

Lemma 6.10. If uf 6= fu then

1. u∗fuA∗ ∩Ru∗|f = ∅,
2. u∗f+ ∩Ru∗|f = ∅,
3. for all natural numbers p and for all words w, I∗u∗|f (upfuw) = I∗u∗|f (upfu)w,

4. for all words w ∈ A∗, I∗u∗|f (uw) = I∗u∗|f (u)I∗u∗|f (w).

Proof.

1. Assume uifuw ∈ Ru∗|f = E∗u for some natural number i and some word w. By induction on i, we get
fuw ∈ E∗u from Lemma 6.8. Moreover, from Item 3 of Lemma 6.5, we get uw ∈ EE∗u. That implies uw ∈ E∗u
so w ∈ E∗u from Lemma 6.8. We finally get uw ∈ EE∗u ∩ uE∗u that contradicts Item 1 of Proposition 6.9.

2. Assume uif j ∈ Ru∗|f = E∗u for some natural number i and some strictly positive integer j. By induction
on i, we get f j ∈ E∗u from Lemma 6.8 and by induction on j we get f ∈ E∗u from Item 3 of Lemma 6.5
that contradicts Item 1 of Proposition 6.9.

3. The inclusion I∗u∗|f (upfu)w ⊆ I∗u∗|f (upfuw) is clear. Conversely, from Corollary 6.4 follows I∗R|f (upfuw) =

I∗R|f (w1)w2 with upfuw = w1w2 where w1 is the longest left factor of upfuw that belongs to RR|f . From

Item 1, |w1| < |upfu| so I∗u∗|f (upfuw) ⊆ I∗u∗|f (upfu)w.

4. I∗u∗|f (u)I∗u∗|f (w) is clearly included into I∗u∗|f (uw). Conversely, the proof is an induction on the length of

a derivation from uw to some word w′. By considering the first step of the derivation, one can distinguish
two cases:
� uw

u−−−→
Iu∗|f

w′′
∗−−−→

Iu∗|f
w′ with w −−−→

Iu∗|f
w′′. From the inductive hypothesis, we get w′′ ∈

I∗u∗|f (u)I∗u∗|f (w′′) ⊆ I∗u∗|f (u)I∗u∗|f (w).

� uw −−−→
Iu∗|f

fuw
∗−−−→

Iu∗|f
w′. We get from Item 3 that w′ = w′′w with w′′ ∈ I∗u∗|f (fu) ⊆ I∗u∗|f (u) so w′ ∈

I∗u∗|f (u)I∗u∗|f (w).

We can observe that Item 3 and Item 4 of Lemma 6.10 remain true in the case uf = fu unlike items 1 and 2.
To finish the preliminary results of this section, we shall now prove a stronger version of Lemma 6.2 in the case
when R = u∗ and uf 6= fu. In this case, the word β of Lemma 6.2 only depends on the words w0 and wn; in
particular that implies by induction on the length of derivations the unicity of the derivation from a word w to
any word of I∗u∗|f (w). We need first:

Lemma 6.11. Let u and f be two words with uf 6= fu. For all words w ∈ E∗u there exists a unique natural
number n such that un ∈ I∗u∗|f (w).

Proof. The proof is an induction on the length of a shortest derivation from w ∈ E∗u to some word of u∗. If

w = un for some n we get from Item 1 of Lemma 6.10 that for all p 6= n, up 6∈ I∗u∗|f (w). Else w −−−→
Iu∗|f

w1
∗−−−→

Iu∗|f
un

with w = ukα and w1 = ukfα. Since w1 ∈ E∗u we get from Item 1 of Lemma 6.10 that α 6∈ uA∗. That implies
that w1 is uniquely defined and, from the inductive hypothesis, n is unique.

In the following, thanks to this lemma, when u and f satisfy uf 6= fu, for all words w ∈ E∗u, we shall
denote by ϕ(w) this unique word that belongs to I∗u∗|f (w) ∩ u∗. We observe that, for all words w1, w2 ∈ E∗u,

ϕ(w1w2) = ϕ(w1)ϕ(w2).
We also need the following lemma that states that for all prefix sets P and for all distincts words x, y in P ,

to give two words w ∈ P ∗xβ and w′ ∈ P ∗yβ uniquely defines the word β. More precisely:

Lemma 6.12. Let P ⊆ A∗ be a prefix set and x and y be two distinct words in P . For all words w,w′ ∈ A∗,
there exists at most one word β such that wβ−1 ∈ P ∗x and w′β−1 ∈ P ∗y.
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Proof. Assume there exists two distinct words β1 and β2 such that w ∈ P ∗xβ1 ∩P ∗xβ2 and w′ ∈ P ∗yβ1 ∩P ∗yβ2

and assume |β2| < |β1|. Then xβ1 ∈ P+xβ2 and, since x ∈ P which is a prefix code, we get β1 ∈ P ∗xβ2. Similarly,
we get β1 ∈ P ∗yβ2, a contradiction since P ∗x ∩ P ∗y = ∅.

We can now state:

Lemma 6.13. For all words u, f, w and w′ 6= w ∈ I∗u∗|f (w), there exist words w′′1 and w′′2 such that, for all

derivations w = w0 −−−→
Iu∗|f

w1 . . . −−−→
Iu∗|f

wn = w′, there exists some index i ∈ [0 . . . n[ such that wi = w′′1 and

wi+1 = w′′2 .

Proof. Observe first that, if uf = fu, we can take w′′1 = w and w′′2 = ukfw2 where w = ukw2 with w2 6∈ uA∗ so
we assume uf 6= fu. From Lemma 6.2, there exists a word β with:

� For all integer j ∈ [0, n], wj = αjβ for some word αj with for all integer k ∈ [0, n[, αk −−−→
Iu∗|f

αk+1,

� there exists some integer i ∈ [0, n[ with αi ∈ u∗ ∧ αi+1 = αif ,
� α0 ∈ E∗u.

We first show that β only depends on w and w′ and not on the derivation itself. From Lemma 6.6, we can
consider three cases:

1. u ∈ A∗bd and f ∈ A∗ad for some word d and some distinct letters a and b: from α0 ∈ E∗u and thanks
to Item 1 of Lemma 6.7, we get dα0 ∈ A∗bd which implies dw0 ∈ A∗bdβ. Moreover, αn ∈ I∗u∗|f (αif) ⊆
I∗u∗|f (A∗ad) = A∗ad so wn ∈ A∗adβ. Hence β is uniquely defined from these two properties : dw ∈ A∗bdβ
and w′ ∈ A∗adβ.

2. u = f iz with P = {f, z} prefix. In this case, E∗u = {z, fz, . . . f iz}∗ so zα0 ∈ P ∗z and zw ∈ P ∗zβ. Moreover,
αn ∈ I∗u∗|f (u∗f) ⊆ I∗u∗|f (P ∗f) = P ∗f so w′ ∈ P ∗fβ. From Lemma 6.12 we get that β is unique.

3. f = usz with P = {u, z} prefix. In this case, E∗u = u∗ so uα0 ∈ P ∗u which implies uw ∈ P ∗uβ. Moreover,
αn ∈ I∗u∗|f (u∗f) ⊆ I∗u∗|f (P ∗z) = P ∗z so w′ ∈ P ∗zβ and, from Lemma 6.12, we get that β is unique.

Finally, from the uniqueness of β, we can define w′′1 = ϕ(wβ−1)β and w′′2 = ϕ(wβ−1)fβ.

By induction, we can deduce from this lemma:

Proposition 6.14. For all words w and w′ ∈ I∗u∗|f (w), there exists a unique derivation from w to w′.

We can now address the main results of this section that is to characterize, given two words u and f , when
I∗u∗|f is rational and to prove that these systems preserve context-free languages.

Lemma 6.15. If uf = fu then for all words w, I∗u∗|f (w) = f∗w.

Proof. Clearly, in this case, for all words w,w′ ∈ A∗, if w −−−→
Iu∗|f

w′ then w′ = fw and, by induction we get that

I∗u∗|f (w) = f∗w.

So, when uf = fu, I∗u∗|f is rational. It is also the case when u 6∈ LF(f∗):

Lemma 6.16. If u 6∈ LF(f∗) then I∗u∗|f is rational and Lu∗|f = f∗.

Proof. If u 6∈ LF(f∗) then u = f iz for some i ≥ 0 and some word z with {f, z} being a prefix set. In this case,
E∗u = (∪0≤j≤i{f jz})∗. Let B be the alphabet B = ∪0≤j≤i{bj} and h : (B ∪A)∗ 7→ A∗ be the morphism defined
by h(bj) = f jz for all bj ∈ B and h(a) = a for all a ∈ A. Let s : (B ∪ A)∗ 7→ A∗ be the rational substitution
defined by s(bj) = f∗uf∗ for all bj ∈ B and s(a) = a for all a ∈ A.

For all w ∈ A∗, it holds that I∗u∗|f (w) = f∗s(h−1(w)∩B∗A∗): indeed we clearly have f∗s(h−1(w)∩B∗A∗) ⊆
I∗u∗|f (w); conversely, from Lemma 6.2, if w′ ∈ I∗u∗|f (w), there exists α ∈ E∗u, α′, β ∈ A∗ such that w = αβ, w′ =
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α′β and α′ ∈ I∗u∗|f (ϕ(α)). Since E∗u = (∪0≤j≤i{f jz})∗, we get α′ ∈ (h−1(α)∩B∗) so w′ ∈ f∗s(h−1(w)∩B∗A∗).
In particular, Lu∗|f = f∗.

We observe that if f ∈ a∗ for some letter a then u ∈ LF(f∗) implies u ∈ a∗ so uf = fu and we get as a
corollary:

Corollary 6.17. If f ∈ a∗ for some letter a then I∗u∗|f is rational.

This result does not hold when u ∈ a∗: indeed we have seen before that I∗a∗|ab(ε) = D′1
∗
. More generally, for

all s ≥ 0, let gs be the morphism from (a+ b)∗ to (a+ b)∗ defined by g(a) = as and g(b) = b then it holds that
g−1(I∗a∗|asb(ε)) = D′1

∗
. As a matter of fact, we can state:

Lemma 6.18. If uf 6= fu and u ∈ LF(f∗) then Lu∗|f 6∈ RAT.

Proof. From Lemma 6.6, we can consider two cases: indeed the case u = f iz with {f, z} prefix is not possible
since u ∈ LF(f∗).

1. f = usz for some integer s > 0 and some word z with {u, z} prefix. Let h : (a+ b)∗ 7→ A∗ be the (prefix)
morphism defined by h(a) = u and h(b) = z. From Lemma 4.8 we get I∗a∗|asb(ε) = h−1(Lu∗|f ) and from

I∗a∗|asb(ε) 6∈ RAT follows Lu∗|f 6∈ RAT.

2. {u, f} is a suffix set. In this case, u ∈ A∗bd and f ∈ A∗ad for some word d and some distinct letters a
and b. Let us consider the factorization f = αz where α is the longest left factor of f that belongs to
E∗u and let ϕ(α) = un. Observe that from u ∈ LF(f∗) follows n > 0 so f 6= z and ϕ(α) 6= ε. Let L be the
nonregular language L = {utnzt | t ≥ 0}; we shall prove Lu∗|f ∩ u∗z∗ = L which implies Lu∗|f 6∈ RAT.
Clearly, L ⊆ Lu∗|f ∩ u∗z∗. Conversely, we shall prove by induction over the length of the derivation that

ε
∗−−−→

Iu∗|f
wzt for some word w ∈ E∗u implies ϕ(w)zt ∈ L. It is clearly true if wzt = ε else ε

∗−−−→
Iu∗|f

usw′ −−−→
Iu∗|f

usfw′ for some natural number s and some word w′ with usfw′ ∈ E∗uz∗ so usfw′ = wzt with w ∈ E∗u.
If w′ = zk for some natural number k, we get usw′ = uszk and from the inductive hypothesis follows
s = kn. Now usfw′ = usαzk+1 with ϕ(usα) = us+n = u(k+1)n which implies usfw′ ∈ L. So we assume in
the following w′ 6∈ z∗ and we consider two cases:
(a) |zt| < |w′|. In this case, w = usfw′′ for some word w′′ 6= ε since w′ 6∈ z∗. We get fw′′ ∈ E∗u from

Lemma 6.8 so w′′ ∈ EE∗u from Lemma 6.5. Moreover, since w′′ 6∈ uA∗, we get ϕ(fw′′) = ϕ(w′′) so
ϕ(usfw′′)zt = ϕ(usw′′)zt ∈ L.

(b) |zt| > |w′|. One can distinguish two sub-cases:

i. |zw′| > |zt|. In this case, w = usαz1 with z1 6= ε and αz1 a left factor of f . Since w ∈ E∗u, from
Lemma 6.8 follows αz1 ∈ E∗u, a contradiction with the definition of α.

ii. |zw′| < |zt|. In this case, z = z1z2 for some nonempty suffix z1 of z and some nonempty left factor
z2 of z and usα = βz1 for some word β ∈ E∗uz∗. Moreover, since α ∈ E∗u, we get from Item 1 of
Lemma 6.7 that dusα ∈ A∗bd.
On the other hand, let r be the root of z. We get z1 = ri and z2 = rj for some positive integers
i and j. Since dz = dri+j ∈ A∗ad, we get d ∈ RF(r∗). That implies dr∗ ⊆ RF(r∗) and we get dr ∈
RF(dri+j) ⊆ RF(A∗ad) so dz1 ∈ A∗ad. This leads to a contradiction: dusα ∈ A∗bd and dβz1 ∈ A∗ad
but dusα = dβz1.

We shall now prove that for all words w, I∗u∗|f (w)  rat Lu∗|f . We will need the two following lemmas that

hold in the case when {u, f} is a suffix set.

Lemma 6.19. Assume u ∈ A∗bd and f ∈ A∗ad for some word d and some distincts letters a and b, then for
all words w ∈ A∗ and α, α′ ∈ (A∗d)∗, if α′w ∈ I∗u∗|f (αw) then α′ ∈ I∗u∗|f (α).
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Proof. The proof is an induction on the length of the derivation αw
∗−−−→

Iu∗|f
α′w. If this length is 0 then α = α′ else

αw = uiw′ −−−→
Iu∗|f

uifw′
∗−−−→

Iu∗|f
α′w and α′ 6= ε. If i = 0 then uifw′ = fαw and, from the inductive hypothesis,

we get fα
∗−−−→

Iu∗|f
α′ hence α −−−→

Iu∗|f
fα

∗−−−→
Iu∗|f

α′. Else we have to consider two cases:

� |ui| < |α|. In this case, α = uiα′′ and w′ = α′′w for some word α′′ that satisfies dα′′ ∈ A∗d. Then we

get uiα′′w −−−→
Iu∗|f

uifα′′w
∗−−−→

Iu∗|f
α′w. From the inductive hypothesis, we get uifα′′

∗−−−→
Iu∗|f

α′ so α −−−→
Iu∗|f

uifα′′
∗−−−→

Iu∗|f
α′.

� |ui| > |α|. In this case, ui = αw′′ and w = w′′w′ for some word w′′ 6= ε. Since α ∈ (A∗d)∗ we get dw′′ ∈
A∗bd and from α′ ∈ A∗d follows α′w′′ ∈ A∗bd. From the derivation αw −−−→

Iu∗|f
uifw′

∗−−−→
Iu∗|f

α′w′′w′ we get

from the inductive hypothesis uif
∗−−−→

Iu∗|f
α′w′′ and this leads to a contradiction with Lemma 3.20 since

uif ∈ A∗ad and α′w′′ ∈ A∗bd.

In the general case, for all words w, it holds that Lu∗|f ⊆ I∗u∗|f (w)w−1 but the converse is not always true: for

instance if u = b and f = ab for some distinct letters a and b, we get bab ∈ I∗u∗|f (b) but ba 6∈ Lu∗|f . Nevertheless,
we can state:

Proposition 6.20. For all u and f , there exists a rational language K such that for all words w, Lu∗|f =
I∗u∗|f (w)w−1 ∩K.

Proof. Thanks to Lemma 6.6, Lemma 6.15 and Lemma 6.16, we can consider three cases:

1. uf = fu or u 6∈ LF(f∗). In these cases, Lu∗|f = f∗ so we can take K = f∗: indeed, for all words w, it holds
that Lu∗|f ⊆ I∗u∗|f (w)w−1 so Lu∗|f ⊆ I∗u∗|f (w)w−1 ∩ f∗ and conversely I∗u∗|f (w)w−1 ∩ f∗ ⊆ f∗ = Lu∗|f .

2. f = usz for some s > 0 with P = {u, z} prefix. In this case, we can take K = P ∗: indeed, clearly
I∗u∗|f (P ∗) = P ∗ and I∗u∗|f (P ∗z) = P ∗z. From this follows Lu∗|f ⊆ P ∗ so Lu∗|f ⊆ I∗u∗|f (w)w−1 ∩ P ∗.
Conversely, observe first that, clearly, for all x ∈ P ∗z and for all y ∈ A∗, it holds that I∗u∗|f (xy) =

I∗u∗|f (x)y. Now, if we consider a derivation w
∗−−−→

Iu∗|f
αw for some α ∈ P ∗, either α = ε ∈ Lu∗|f or

w = uiw′ −−−→
Iu∗|f

uifw′
∗−−−→

Iu∗|f
αw = αuiw′. If i > 0 then αw ∈ P ∗zw′ ∩ P ∗uw′, a contradiction so i = 0

and α ∈ I∗u∗|f (f) ⊆ Lu∗|f .

3. {u, f} is suffix. In this case, f ∈ A∗ad and u ∈ A∗bd for some word d and some distinct letters a and b
and let K = (A∗d)∗.
� Lu∗|f ⊆ (I∗u∗|f (w)w−1)∩K: the inclusion Lu∗|f ⊆ (I∗u∗|f (w)w−1) is always satisfied and, clearly, Lu∗|f \
{ε} = I∗u∗|f (f) ⊆ A∗d.

� (I∗u∗|f (w)w−1) ∩K ⊆ Lu∗|f : if w
∗−−−→

Iu∗|f
α′w with α′ ∈ K, then either α′ = ε ∈ Lu∗|f or α′ ∈ A∗d and

α′ ∈ Lu∗|f from Lemma 6.19 by taking α = ε.

By combining the previous results of this section, we can now precisely characterize when I∗u∗|f∗ is rational:

Proposition 6.21. The following statements are equivalent:

1. Lu∗|f ∈ RAT.
2. ∃w ∈ A∗ | I∗u∗|f (w) ∈ RAT.
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3. u 6∈ LF(f∗) ∨ uf = fu.
4. Lu∗|f = f∗.
5. I∗u∗|f is rational.

Proof. Observe that implications between some of these statements are clear: 4 implies 1, 5 implies 1, 1 implies 2.
Moreover, Lemma 6.15 and Lemma 6.16 prove that statement 3 implies both statement 4 and statement 5. Hence
it remains to prove that statement 2 implies statement 3 to complete the proof. That is indeed the case since
Proposition 6.20 proves that statement 2 implies statement 1 and Lemma 6.18 proves that statement 1 implies
statement 3.

The rest of the section is devoted to the proof of the fact that I∗u∗|f preserves the context-free languages, in

other words I∗u∗|f is CF/CF. We first state:

Proposition 6.22. I∗u∗|f (u) and Lu∗|f are two context-free languages.

Proof. We define the following set ∆ = ∆1 ∪∆2 ∪∆3 ∪∆4 of context-free rules where A is the terminal alphabet
and where Sε and Su are variables:
∆1 = {Sε 7→ ε}
∆2 = {Sε 7→ Sε(Su)tf ′′ | f = f ′f ′′, f ′ ∈ E∗u, ϕ(f ′) = ut}
∆3 = {Su 7→ SεSuSε}
∆4 = {Su 7→ (Su)ku′′ | u = u′u′′, u′ ∈ E∗u, u′′ 6= ε, ϕ(u′) = uk}

From this definition, we can observe the following:

� in ∆2, the words f ′′ are nonempty since f 6∈ E∗u,
� in ∆2, if we take f ′ = ε, we get the rule Sε 7→ Sεf ,
� in ∆4, the words f ′′ is assumed to be nonempty in order to avoid the rule Su 7→ Su,
� in ∆2, if we take u′ = ε, we get the rule Su 7→ u.

We shall prove that for all words w ∈ A∗, for all x ∈ ε+ u, Sx
∗−→
∆

w if and only if w ∈ I∗u∗|f (x). Since all rules

in ∆ are context-free which implies that I∗u∗|f (u) and Lu∗|f are both context-free. The proof is an induction on

p = |w| − |x|.

1. x
∗−−−→

Iu∗|f
w implies Sx

∗−→
∆

w: if p = 0 then x = w = ε or x = w = u and we have the rules Sx 7→ x.

If p > 0, assume first x = ε and ε −−−→
Iu∗|f

f
∗−−−→

Iu∗|f
w. From Lemma 6.2 we get f = f ′f ′′ and w = w′f ′′

with f ′
∗−−−→

Iu∗|f
ϕ(f ′) = uk

∗−−−→
Iu∗|f

w′. If f ′ = ε, we have w = f and the property is true thanks to the

derivation Sε −→
∆

Sεf −→
∆

f . Else, from Item 4 of Lemma 6.10, w′ = w1 · · ·wk with u
∗−−−→

Iu∗|f
wi for all

1 ≤ i ≤ k. Observe that for all 1 ≤ i ≤ k, |wi| − |u| < |w|, so from the inductive hypothesis follows

Su
∗−→
∆

wi for all 1 ≤ i ≤ k. On the other hand, ∆2 contains the rule Sε 7→ Sε(Su)kf ′′ so we get the

derivation Sε −→
∆

Sε(Su)kf ′′ −→
∆

(Su)kf ′′
∗−→
∆

w1 · · ·wkf
′′ = w.

Assume now x = u. We have to consider two cases:
(a) u −−−→

Iu∗|f
uf

∗−−−→
Iu∗|f

w: from Item 4 of Lemma 6.10 follows w = w1w2 for some words w1, w2 with u
∗−−−→

Iu∗|f

w1 and f
∗−−−→

Iu∗|f
w2. Since |w1| − |u| < |w| − |u| = p, we get from the inductive hypothesis Su

∗−→
∆

w1.

Moreover, from |w1| ≥ |u| follows |w2| ≤ |w| − |u| = p so we can apply the inductive hypothesis on the

derivation ε −−−→
Iu∗|f

f
∗−−−→

Iu∗|f
w2 to get Sε

∗−→
∆

w2. Finally we have Su −→
∆

SεSuSε −→
∆

SuSε
∗−→
∆

w1w2 = w.
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(b) u −−−→
Iu∗|f

fu
∗−−−→

Iu∗|f
w: if w = fu, we have the derivation Su −→

∆
SεSuSε −→

∆
SεSu −→

∆
Sεu −→

∆
Sεfu −→

∆

fu. Else, from Lemma 6.2 there exist words α, β, w′ such that fu = αβ, w = w′β and α
∗−−−→

Iu∗|f
ut

∗−−−→
Iu∗|f

w′ for some t. Observe that αβ = uf 6∈ E∗u from Item 1 of Lemma 6.10. That implies β 6= ε so |w′| < |w|.
Moreover, from Item 4 of Lemma 6.10, w′ = w′1 · · ·w′t with u

∗−−−→
Iu∗|f

w′i and |w′i| < |w| for all 1 ≤ i ≤ t.

From the inductive hypothesis, we get Su
∗−→
∆

w′i for all 1 ≤ i ≤ t so (Su)tβ
∗−→
∆

w. We have to consider

again two cases by comparing |f | and |α|:
� f = αf ′′ and β = f ′′u for some word f ′′. In this case, we easily get the derivation: Su −→

∆
SεSuSε −→

∆

Sεu −→
∆

Sε(Su)tf ′′u −→
∆

(Su)tf ′′u = (Su)tβ
∗−→
∆

w.

� α = fu′ and u = u′β for some word u′. From the derivation u′ −−−→
Iu∗|f

fu′
∗−−−→

Iu∗|f
ut follows u′ ∈ E∗u

with ϕ(u′) = ut. Moreover β 6= ε so the rule Su 7→ (Su)tβ belongs to ∆4 which implies Su
∗−→
∆

w.

2. Sx
∗−→
∆

w implies x
∗−−−→

Iu∗|f
w: if p = 0 then w = x so x

∗−−−→
Iu∗|f

w. If p > 0 and x = ε then Sε −→
∆

Sε(Su)kf ′′
∗−→
∆

w with f = f ′f ′′ and ϕ(f ′) = uk. From this follows w = w0w1 · · ·wkf
′′ and, since f ′′ 6= ε, |wi| < |w| for

all 0 ≤ i ≤ k. We can apply the inductive hypothesis on the derivations Sε
∗−→
∆

w0 and Su
∗−→
∆

wi for all

1 ≤ i ≤ k so we get ε
∗−−−→

Iu∗|f
ukf ′′

∗−−−→
Iu∗|f

w1 · · ·wkf
′′ ∗−−−→

Iu∗|f
w0w1 · · ·wkf

′′ = w.

Assume now p > 0 and x = u and consider a shortest derivation Su
∗−→
∆

w, we have two cases:

(a) Su −→
∆

(Su)ku′′
∗−→
∆

w with u = u′u′′, u′′ 6= ε and ϕ(u′) = uk. From this follows w = w1 · · ·wku
′′ with

|wi| < |w| for all 1 ≤ i ≤ k since u′′ 6= ε. From the inductive hypothesis, for all 1 ≤ i ≤ k, u
∗−−−→

Iu∗|f
wi

which implies u = u′u′′
∗−−−→

Iu∗|f
uku′′

∗−−−→
Iu∗|f

w.

(b) Su −→
∆

SεSuSε
∗−→
∆

w: then w = w1w2w3 for some words w1, w2, w3 with Sε
∗−→
∆

w1, Su
∗−→
∆

w2 and

Sε
∗−→
∆

w3. Moreover, since we consider a shortest derivation, w1w3 6= ε. That implies |w2| < |w| so,

from the inductive hypothesis, we get u
∗−−−→

Iu∗|f
w2. Now, since |w2| ≥ |u| we get |w1| ≤ |w| − |u| and

|w3| ≤ |w| − |u| so, from the inductive hypothesis follows ε
∗−−−→

Iu∗|f
w1 and ε

∗−−−→
Iu∗|f

w3 which implies

u
∗−−−→

Iu∗|f
uw3

∗−−−→
Iu∗|f

w2w3
∗−−−→

Iu∗|f
w1w2w3 = w.

Thanks to Proposition 6.22, we can now state that I∗u∗|f preserves the context-free languages:

Proposition 6.23. For every context-free language L, for all u and for all f , I∗u∗|f (L) ∈ CF.

Proof. We shall prove that I∗u∗|f = s ◦ τ where τ is a rational transduction and s is a context-free substitution

that will prove the property. Let B = {be | e ∈ Eu} be an alphabet in bijection with the set Eu, we define
the morphism h : (A ∪ B)∗ 7→ A∗ by h(a) = a for all a ∈ A and h(be) = e for all be ∈ B. We also define the
morphism g : (A ∪ B)∗ 7→ (A ∪ B)∗ by g(a) = a for all a ∈ A and g(be) = (bu)i for all be ∈ B with ϕ(be) = ui.
We can now define τ : A∗ 7→ (A ∪ B ∪ {#})∗ where # is a fresh letter by τ(w) = #g(h−1(w) ∩ B∗A∗) for all
w ∈ A∗and s : (A ∪B ∪ {#})∗ 7→ A∗ by s(a) = a for all a ∈ A, s(#) = Lu∗|f and s(bu) = I∗u∗|f (u).

We observe that for all words w,

τ(w) = {#(bu)tw′′ | w = w′w′′, w′ ∈ E∗u, ϕ(w′) = ut}.
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This equality shows in particular that the fresh letter # is only useful when t = 0. We also observe that
w ∈ s ◦ τ(w) for all w ∈ A∗.

We shall now prove that for all words w,w′ ∈ A∗, it holds that w′ ∈ I∗u∗|f (w) if and only if w′ ∈ s ◦ τ(w).

1. if w′ ∈ I∗u∗|f (w) then w′ ∈ s ◦ τ(w): the proof is an induction on |w′|, the length of the word w′. The base

case |w′| = |w| is clear since w ∈ s◦ τ(w). Else, if w = w1w2 and w′ = w′1w2 for some words w1, w2, w
′
1 with

w2 6= ε and w′1 ∈ I∗u∗|f (w1), from the inductive hypothesis follows w′1 ∈ s ◦ τ(w1) so w′1w2 ∈ s ◦ τ(w1w2).

The last case is a derivation w
∗−−−→

Iu∗|f
uk

∗−−−→
Iu∗|f

w′ for some natural number k. In this case, #(bu)k ∈ τ(w)

so w′ ∈ I∗u∗|f (uk) which implies w′ ∈ Lu∗|f (I∗u∗|f (u))k ⊆ s(#)s((bu)k) ⊆ s(#(bu)k) ⊆ s ◦ τ(w).

2. if w′ ∈ s ◦ τ(w) then w′ ∈ I∗u∗|f (w): if w′ ∈ s ◦ τ(w) then there exists #(bu)kw′′ ∈ τ(w) for some word

w′′ ∈ A∗ such that w′ ∈ s(#(bu)k)w′′. From the definition of τ , w = αw′′ with α
∗−−−→

Iu∗|f
uk. Moreover,

w′ = βw′′ for some word β with β ∈ s(#(bu)k = I∗u∗|f (uk). Finally w = αw′′
∗−−−→

Iu∗|f
ukw′′

∗−−−→
Iu∗|f

βw′′ = w′.

7. Conclusion and perspectives

In this paper we have shown that, even in the case of a rational control language and even in the case of
a single insertion rule, it is possible to define a system IL|f such that I∗L|f is not (FIN/CF). In particular, we
have proved that as soon as a word f contains at least two distinct letters, there exists a rational language Rf

such that for all words w, I∗Rf |f (w) is not context-free. On the other hand, it is easily seen that, for all R and

all f , I∗Rf |f (w) is recursive: for all words, by erasing, iteratively and nondeterministically, occurrences of f it

is possible to check if w is reached with this procedure that clearly stops since the length of the input strictly
decreases at each step. Moreover this last remark shows that for all context-sensitive languages L, I∗Rf |f (L) is

in fact context-sensitive since it can be recognized by a linear bounded automaton.
Among the different questions that arose on controlled insertions systems, the following ones deserve to be

studied as a complement of Section 3.3: given a rational language L and a word f , is it possible to decide
whether or not

� I∗L|f is confluent?
� I∗L|f is unambiguous?

In Section 3.4, we have defined the maximal control language of a word f for insertion, denoted by Cmax(f)
when it exists. We have proved its existence for all words f such that r, the root of f , is unbordered: in this
case, Cmax(f) = LF(f)∗ \ (A∗fA∗ ∪A∗r) and I∗Cmax(f)|f is codeterministic. We have seen that this result does not
hold anymore when f is bordered. Nevertheless this proposition does not prove that there is no maximal control
language in this case. For instance, if f = aba it can be proved that Cmax(aba) = a∗ + (ab)∗. We can observe that
Cmax(aba) and R = LF(aba)∗ \ A∗abaA∗ are not comparable with respect to inclusion: abab ∈ Cmax(aba) \ R and
aab ∈ R \ Cmax(aba). On the other hand, it can also be proved that I∗Cmax(aba)|aba is unambiguous, so, in the light
of this example, we can summarize the questions about the maximal control language as follows:

� Does every word possesses a maximal control language for insertion?
� If the answer of the previous question is negative, given a word f , is it decidable to know whether or not
Cmax(f) exists?

� When Cmax(f) exists, is it always rational?
� When Cmax(f) exists, does it always hold that I∗Cmax(f)|f is unambiguous?

In Section 6 we have defined the language RR|f = {w ∈ A∗ | I∗R|f (w) ∩R 6= ∅}. We have proved that in the
case when R = u∗ for some word u, RR|f is a rational language and we have given an algorithm to compute it.
We think that RR|f is also rational when I∗R|f is codeterministic. More precisely, we conjecture the following:
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If I∗R|f is codeterministic then

1. I∗R|f preserves the context-free languages,
2. RR|f is a rational language.

More generally, a natural question would be to know whether RR|f is a recursive set or not when R belongs
to different classes of languages.

In the same section, we have characterized in Proposition 6.21 when such a system Iu∗|f leads to a trans-
formation I∗u∗|f that corresponds to a rational transduction and we have proved that these systems preserve
context-free languages in Proposition 6.23. More generally, given a rational language R and a word f , is it possi-
ble to decide whether I∗R|f is rational and is it possible to decide whether I∗R|f preserves context-free languages?

When R is a finite language, the controlled rewriting corresponds to prefix rewriting as defined in [2] where it
is proved that the corresponding transformation is a rational transduction. Clearly, it is also the case when R is
not necessarily finite but is a prefix set. It is worth studying whether there are some other families of rational
languages that satisfy these properties. In particular, can the results established in Section 6 be extended to
the case when R is a bounded rational language?

At last, we state here one conjecture and two questions when R = u∗ for some word u:

� First, in order to characterize when IS|U is a rational transduction, we have proved in Proposition 6.20
that for all words w, iI∗u∗|f (w)  rat Lu∗|f . In fact we conjecture that we also have Lu∗|f  rat I

∗
u∗|f (w)

i.e. I∗u∗|f (w) and Lu∗|f are rationally equivalent.
� Second, to prove that I∗u∗|f preserves context-free languages, we have proved in Proposition 6.22 that for

all u and f , Lu∗|f is a context-free language. The following questions would precise this property:
◦ Does that hold that D′1

∗  rat Lu∗|f?
◦ Conversely, does that hold that either Lu∗|f is a rational language or Lu∗|f  rat D

′
1
∗
?
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Appendix I

Some of the notations that are used in this article are listed below.

 rat : a language L rationally dominates a language L′, denoted by L  rat L
′, if there exists a rational

transduction τ such that L′ = τ(L).
≡
rat

: two languages L and L′ are rationally equivaeant, denoted by L ≡
rat
L′, if L  rat L

′ and L′  rat L.

IL|f : the binary relation on words associated with the controlled one-rule insertion system with L as control
language and f as word to be inserted. It can be seen as a one-rule rewriting system where the unique
rule ε 7→ f can only be applied in a position defining a left context that is in L.

I∗L|f : the reflexive and transitive closure of IL|f . It is also the corresponding transformation over lan-

guages: for all words w ∈ A∗, I∗L|f (w) = {w′ | (w,w′) ∈ I∗L|f} and for all languages K ⊆ A∗, I∗L|f (K) =⋃
w∈K I∗L|f (w).

−−−→
S

: a single step of rewriting using a rule of the rewriting system S.

∗−−−→
S

: the derivation relation that is the reflexive and transitive closure of −−−→
S

. In this paper, a deriva-

tion w = w0 −→
S

w1 · · · −→
S

wn = w′ is completely characterized by the list of words [w0, . . . , wn]

independently from the indexes where the rule is applied in the left-hand side of each step of rewriting.
∗−−−→ : the derivation relation in the case when the rewriting system is implicitly defined.

Lf : the language I∗A∗|f (ε) for some word f ∈ A∗.
LK|f : the language I∗K|f (ε) for some control language K and some word f .
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Cmax(f) : the maximal control for insertion of the word f . It satisfies that for all languages K, LK|f = Lf if
and only if Cmax(f) ⊆ K. The fact that for all f , Cmax(f) exists is an open question.

K0 : the language K0 = D′1
∗ ∩K where K = {w ∈ (a+ b)∗ | ∀x ∈ LF(w), |x|a ≤ 2|x]b + 1}.

I0 : the insertion system I0 = IR|ab where R = {w ∈ A∗ | |w|a = 2n, n ≥ 0}.
RL|f : the language RL|f = {w ∈ A∗ | I∗L|f (w) ∩ L 6= ∅}.
E∗u : a language obtained by an algorithmic construction and proved to be equal to Ru∗|f .

ϕ(w) : defined only for a word w ∈ Ru∗|f when u and f satisfy uf 6= fu. The word ϕ(w) is the unique word
of I∗u∗|f (w) ∩ u∗.
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