
HAL Id: hal-03815800
https://hal.science/hal-03815800v1

Submitted on 14 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identity-Based Encryption in DDH Hard Groups
Olivier Blazy, Saqib Kakvi

To cite this version:
Olivier Blazy, Saqib Kakvi. Identity-Based Encryption in DDH Hard Groups. AFRICACRYPT
2022 - 13th International Conference on Cryptology in Africa, Jul 2022, Fes, Morocco. pp.81-102,
�10.1007/978-3-031-17433-9_4�. �hal-03815800�

https://hal.science/hal-03815800v1
https://hal.archives-ouvertes.fr

Identity Based Encryption in DDH hard Groups

Olivier Blazy1[0000−0001−6205−8249] and Saqib A. Kakvi2[0000−0003−4425−4240]

1 École Polytechnique, France
olivier.blazy@polytechnique.edu

2 Royal Holloway University of London, United Kingdom
kakvi@rhul.ac.uk

Abstract. The concept of Identity-Based Encryption was first intro-
duced by Shamir (CRYPTO 1984) but were not realised until much
later by Sakai, Ohgishi and Kasahara (SCIS 2000), Boneh and Franklin
(CRYPTO 2001) and Cocks (IMACC 2001). Since then, Identity-Based
Encryption has been a highly active area of research. While there have
been several instantiations of Identity-Based Encryption and its variants,
there is one glaring omission: there have been no instantiations in plain
Decisional Diffie-Hellman groups. This seemed at odds with the fact that
we can instantiate almost every single cryptographic primitive in plain
Decisional Diffie-Hellman groups. An answer to this question came in a
result by Papakonstantinou, Rackoff and Vahlis (EPRINT 2012), who
showed that it is impossible to instantiate an Identity-Based Encryp-
tion in plain DDH groups. The impossibility result was questioned when
Döttling and Garg (CRYPTO 2017) presented an Identity-Based En-
cryption based on the Decisional Diffie-Hellman problem. This result
however did not disprove the impossibility result, as it requires the use
of garbled circuits, which are inherently interactive. This type of scheme
is not covered by the impossibility result, but it does raise some ques-
tions. In this paper, we answer some of those questions by constructing
an Identity-Based Encryption scheme based on the Decisional Diffie-
Hellman problem. We achieve this by instantiating the generic construc-
tion based on Witness Encryption by Garg, Gentry, Sahai and Waters
(STOC 2013), with some minor changes. To this end, we construct the
first unique signature scheme in Decisional Diffie-Hellman groups, to the
best of our knowledge. The unique signature scheme, and as a result, our
Identity-Based Encryption scheme, is inefficient, but this is unavoidable.
Our construction does not completely contradict the impossibility result,
but instead shows that the statement was too strong, and the result only
rules out efficient constructions.
Keywords: Identity-Based encryption, Unique Signatures, Generic Con-
structions, DDH, Impossibility results

1 Introduction

Identity-Based Encryption (IBE) was first proposed by Shamir [43] is a gen-
eralization of standard Public Key Encryption (PKE), wherein instead of each
user generating a public key themselves, their unique identifier, such as their

e-mail address, would serve as their public key. The corresponding secret key for
decryption is derived from the public identity and a master secret key, which is
held by a trusted third party. Despite being posited in the 80s, the first construc-
tions came at the turn of the millennium with a factoring-based scheme due to
Cocks [16] and the pairing-based schemes due to Boneh and Franklin [10] and
Sakai, Ohgishi and Kasahara [40]. A few years later, an IBE scheme based on lat-
tice problems was introduced by Gentry, Peikert and Vaikuntanathan [26]. Since
then, IBE schemes have been an active area of research, with several interesting
results.

Despite all the results and advances in the field of IBEs, there is one glaring
omission; there is no IBE scheme that is secure in plain Decisional Diffie-Hellman
(DDH) groups. Given this, one might think that parings are somehow crucial
for the constructions of IBEs and that it may not be possible to construct IBEs
in plain DDH groups. Further evidence to this end was provided by the impos-
sibility result of Papakonstantinou, Rackoff, and Vahlis [37], who showed that
it is impossible to construct a weakly secure IBE scheme in the Generic Group
Model (GGM). We will refer to this as the PRV impossibility result henceforth.
Given that this weakly secure scheme cannot exist in this idealised model, it
follows that no fully secure scheme can exist in this idealised model. This cast
further doubt upon the possibility of such a scheme being realised in the stan-
dard model. However, recent developments present a glimmer of hope and may
show a way in which to construct an IBE in DDH groups.

The seminal work of Garg, Gentry, Sahai and Waters [23] not only introduced
the very powerful primitive of Witness Encryption (WE), but they also showed
how to use it to generically construct several other primitives. In particular Garg
et al. showed how to generically construct a weakly secure IBE scheme, from a
WE scheme and a unique signature scheme. If we assume that both the generic
construction and the impossibility result are correct, this would mean that at
least one of the constituent components cannot be instantiated. However, if we
can show an instantiation of these components, then either the impossibility
result is correct and the DDH problem is not hard, or the impossibility result
is somehow flawed. Given this, that means that at least one of the following
statements is true:

1. There is no unique signature scheme in DDH groups.

2. There is no secure WE in DDH groups.

3. The DDH problem is not hard.

4. The PRV impossibility result is incorrect.

We now take this list and examine each statement and begin to eliminate
the incorrect from the list. Once we have removed all the incorrect statements,
we will know where we stand. We can show that the first two statements are
not true by instantiating a WE scheme and a unique signature scheme in DDH
groups. Once we have these, we can then apply the transformation to them to
construct an IBE scheme. Given this, we can then look at the third and fourth
items on our list.

We begin by showing a unique signature scheme in DDH groups. To the best
of our knowledge, there are no deterministic signatures in plain DDH groups. The
most commonly used Diffie-Hellman-based signatures are variants of the Digital
Signature Algorithm (DSA) [42], which requires randomness. DSA builds upon
the early work of ElGamal [22] and Schnorr [41], both of which are randomised.
Even the tightly secure standard model signatures of Blazy et al. [8] rely on the
randomness of Chameleon Hash Functions to be secure. This is not surprising
since it was shown that any deterministic signature in the standard model cannot
have a tight security reduction [17,31]. Indeed, not only can signatures in DDH
groups not be tight, but the can also not be short as shown by Döttling et al. [21].
This means that we can do no better than a non-tight, non-short signatures.
Keeping this in mind we construct a unique signature scheme by combining the
discrete logarithm-based hash function of Chaum, van Heijst and Pfitzmann [13]
with the tree-based signature construction of Merkle [35] in Section 3.1.

The next item on the list is theWE, which at first glance seems like a daunting
task as all known constructions of WE (and variants thereof) [2, 12, 15, 23] rely
on either indistinguishability Obfuscation (iO) [5] or extractable Obfuscation
(eO) [12], neither of which have an instantiation in DDH groups. While it might
seem that we have hit a wall, we are saved by another primitive, namely Smooth
Projective Hash Functions (SPHFs), which were first introduced by Cramer and
Shoup [19]. There are several known constructions of SPHFs in DDH groups
[19, 24], for a variety of languages. Furthermore, it has been shown that an
SPHF for some language L can be used to construct a WE scheme for L [1, 7].
We note that this generic transformation does not give rise to a generic WE
scheme, but rather a WE for the given language L. We describe the language
and the related SPHF in more detail in Section 3.2. We then show how to build
a WE scheme from our SPHF. Therefore we know that the second item on our
list is also not true.

Given that we have a unique signature and a WE in DDH groups, we also
have an IBE in DDH groups. At this point, we must note that our scheme is
a proof of concept and is inefficient. Although the scheme could be optimized
to some degree, this inefficiency is unavoidable. This is due to the fact that our
unique signature scheme cannot be efficient, as was demonstrated by Döttling
et al. [21]. However, this will be a key point in showing the limits of the PVR
result.

We now look at the third and fourth items on our list simultaneously. Our
IBE construction and the PRV impossibility result are in direct contradiction of
one another. This means that either the PRV impossibility result is correct and
our IBE construction gives an adversary against the DDH problem, which would
mean that the DDH problem is not hard. The other possibility is that the the
DDH problem is still hard, which would mean that the PRV impossibility result is
not correct. Here we note that the PVR result and the result of Döttling et al. [21]
have a similar high-level idea; they show that with sufficiently many queries, one
can recover the secret key. Therefore, we see that the PVR impossibility result

is incorrect and the statement they show is somewhat weaker. Specifically, the
PVR result only rules out efficient IBEs. We discuss this in Section 4.

1.1 Our Contributions

The core result of the paper is an IBE in DDH groups. To build this, we proceed
in the following steps:

– Firstly, we need to build a unique signature scheme secure under the DDH
assumption. The first step is to build a one-time signature. We achieve this
by treating the hash function of Chaum, van Heijst and Pfitzmann [13] as
Chameleon Hash Function [33] and applying the techniques of Mohassel [36].

– The next step in constructing our signatures is amplifying our one-time
signature to a k-time signature for sufficiently large k. We achieve this using a
variant of Merkle’s tree-based signatures [35]. To be in a purely DDH setting,
we rely again on the hash function by Chaum, van Heijst and Pfitzmann [13].

– Secondly, we construct a witness encryption using SPHFs. The original
generic construction of Garg et al. [23] uses the Goldreich-Levin hardcore
predicate [27], but we cannot use this in the GGM, as we are required to
do XORs and the SPHFs for this type of circuit require interactivity. To
work around this we replace the Goldreich-Levin hardcore predicate with
a Katz-Wang style DDH proof of membership [32], for which we can build
efficient SPHFs. It is clear to see that our replacement satisfies the original
generic construction, at the cost of being specific to DDH hard groups. We
then use the well-known WE construction from an SPHF.

– Finally, we combine these two using our modified version of the generic
construction of Garg et al. [23] to build a selectively secure IBE in the GGM.

Once we have our IBE scheme, this gives us a first indication that the PVR
impossibility result is incorrect. It is not a direct contradiction as our construc-
tion is not tight and has large keys and ciphertexts. However, as we discuss in
Section 4, this shows that the result only extends to efficient instantiations.

1.2 Related Work

Identity-Based Encryption schemes have been widely studied since their intro-
duction by Shamir in [43], while the design of IBEs has been studied exten-
sively [10,45], there is a lack of generic design which could be leveraged to achieve
a construction natively under a given hypothesis. Chen and Wee [14] and Blazy,
Kiltz and Pan [9] proposed a generic design of IBEs by using affine MACs as
a building block. However their constructions, while leading to (almost) tight
IBEs, require the use of pairings, which puts them outside pure DDH groups.
More recently, Döttling and Garg [20] proposed a construction of IBE under
DDH using Garbled Circuits and Pedersen-like multi-commitments. Their con-
struction was the first to try and bridge the gap. However, Garbled Circuit while
being a useful building blocks are inherently interactive, which does not match

with the classical definitions of IBE. In the standard definition, neither the en-
cryptors nor the recipients are expected to actively interact with the authority
to produce/decrypt a new ciphertext. Thus, this IBE is not ruled out by the
PVR impossibility result. Our construction is similar to that of Döttling and
Garg [20], but we use WE instead of garbled circuits and thus do not require
interactivity.

2 Preliminaries

2.1 Notations and conventions

We denote our security parameter as λ. For all n ∈ N, we denote by 1n the n-bit
string of all ones. For any bit string a, we define a[i] as the ith most significant
bit of a. For any element x in a set S, we use x ∈

R
S to indicate that we choose

x uniformly random in S. We denote the set of all integers with Z and the set
of all primes as P. We denote the set of k-bit integers as Z[k] and the set of all
k-bit primes as P[k]. All algorithms may be randomized. For any algorithm A,

we define x
$← A(a1, . . . , an) as the execution of A with inputs a1, . . . , an and

fresh randomness and then assigning the output to x. For conciseness, we will
write PPT for Probabilistic Polynomial Time.

2.2 Identity-Based Key Encryption

We recall syntax of an Identity-Based Encryption scheme.

Definition 1 (Identity-Based Key Encryption). An Identity-Based En-
cryption IBE consists of four PPT algorithms IBE = (IBE .Setup, IBE .KeyGen,
IBE .Encrypt, IBE .Decrypt) with the following properties.

– The probabilistic key generation algorithm IBE .Setup(1λ) returns the (mas-
ter) public/secret keys (pk,msk).

– The probabilistic user secret key generation algorithm IBE .KeyGen(msk, ID)
returns a secret key skID for identity ID ∈ I.

– The probabilistic encapsulation algorithm IBE .Encrypt(pk, ID,m) returns a
ciphertext c with respect to the ID ∈ I.

– The deterministic decryption algorithm IBE .Decrypt(skID, ID, c) returns a
plaintext m or the reject symbol ⊥.

For correctness we require that for all λ ∈ N, all pairs (pk,msk) generated by
IBE .Setup(1λ), all ID ∈ I, all skID generated by IBE .KeyGen(msk, ID) and all
(c) generated by IBE .Encrypt(pk, ID,m) for all m:

Pr[IBE .Decrypt(skID, ID, c) = m] = 1.

2.3 Signature Schemes

We first recall the definition of a unique signature scheme.

Definition 2. A digital signature scheme SIG with message
space M and signature space S is defined as a triple of PPT algorithms SIG =
(KeyGen,Sign,Verify):

– KeyGen takes as an input the unary representation of our security parameter
1λ and outputs a signing key sk and verification key pk.

– Sign takes as input a signing key sk, message m ∈M and outputs a signature
σ ∈ S.

– Verify is a deterministic algorithm, which on input of a public key and a
message-signature pair (m,σ) ∈M×S outputs 1 (accept) or 0 (reject).

We say SIG is correct if for any λ ∈ N, all (pk, sk)←$ KeyGen(1
λ), all m ∈M,

and all σ ←$ Sign(sk,m) we have that

Pr[Verify(pk,m, σ) = 1] = 1.

We say SIG is a unique signature scheme if ∀m ∈ M,∃! σ ∈ S such that
Verify(pk,m, σ) = 1.

2.4 Witness Encryption

Witness Encryption (WE), which is generalisation of public key encryption where
anybody in possession of a valid witness w that some statement x is in a spec-
ified language can decrypt all ciphertexts encrypted under x. The first witness
encryption scheme was presented by Garg et al. [23]. We now recall the definition
of WE.

Definition 3. A Witness Encryption scheme WE for some language L is de-
fined by the two PPT algorithms WE = (Encrypt,Decrypt):

– Encrypt takes as an input the unary representation of our security parameter
1λ, an instance x and a message m and outputs a ciphertext c.

– Decrypt takes as input the decryption parameters ppd, a ciphertext c and a
witness w and outputs m if (x,w) ∈ L and ⊥ otherwise.

We say WE is correct if for all messages m and for all pairs (x,w) ∈ L, we
have:

Pr[Decrypt(Encrypt(1λ, x,m), w) = m] = 1

2.5 Smooth Projective Hash Functions

When building our Witness Encryption, we require Smooth Projective Hash
Functions (SPHF). They were proposed by Cramer and Shoup in [19]. SPHFs
can evaluated them in two ways : using the (secret) hashing key on a public
element, or using the (public) projected key on a word on a special subset of its
domain with a secret witness.

A Smooth Projective Hash Function system over a language L ⊂ X onto a
set S is defined by the five following algorithms :

– Setup(1λ) generates the global parameters of the protocol and the description
of an NP language L.

– HashKG(L) generates a hashing key hk.
– ProjKG(hk,L, C) derives the projection key hp, possibly depending on the

word C.
– Hash(hk,L, C) outputs the hash value of C from hk.
– ProjHash(hp,L, C, w) outputs the hash value of the word C from the projec-

tion key hp and the witness w that C ∈ L.

A Smooth Projective Hash Function SPHF should satisfy the following prop-
erties:

– Correctness: Let W ∈ L and w a witness of this membership. Then, for all
hashing keys hk and associated projection keys hp we have Hash(hkL,W) =
ProjHash(hp,L,W,w).

– Smoothness: For all W ∈ X \ L the following distributions are statistically
indistinguishable:

∆0 =

{
(L, prm,W, hp, v)

prm = Setup(1λ), hk = HashKG(L),
hp = ProjKG(hk,L,W), v = Hash(hk,L,W)

}
∆1 =

{
(L, prm,W, hp, v)

prm = Setup(1λ), hk = HashKGL,
hp = ProjKG(hk,L,W), v

$← S

}
.

This is formalized by

AdvStdMSPHF(1
λ) =

∑
V ∈G

∣∣∣∣Pr∆1

[v = V]− Pr
∆0

[v = V]

∣∣∣∣ is negligible.

– Pseudo-Randomness: If W ∈ L, then without a witness of membership the
two previous distributions should remain computationally indistinguishable:
for any adversary A within reasonable time and a negligible function ϵ, we
have

AdvprSPHF,A(1
λ) = |Pr

∆1

[A(L, prm,W, hp, v) = 1]− Pr
∆0

[A(L, prm,W, hp, v) = 1]|

⩽ ϵ

2.6 The Generic Group Model

The Generic Group Model was first proposed by Shoup [44], as a way to show
lower bounds for generic algorithms solving the discrete logarithm problem, such
as Pollard’s Rho method [39]. Shoup presented a model wherein an adversary
only interacts with group elements via oracles for all the operations. To facilitate
this, the adversary was given a random encoding as a unique tag for each element.
The adversary can then use these encodings to make oracles queries on the

relevant elements. This model was then extended by Maurer [34], by replacing
the random encodings with indices of their locations in the oracle’s internal table.

One may wonder as to which model is better suited for use in cryptographic
proofs. The answer to this was provided by Jager and Shwenk [28], who show the
two models to be equivalent. They achieve this by reducing algorithms in model
to the other. As the PVR impossibility result was stated in Shoup’s model, we
will also use Shoup’s model for consistency.

Definition 4 (Generic Group Algorithm in Shoup’s Model [44]). A
generic group algorithm A is a (possibly probabilistic) algorithm which takes as
input a r-tuple of encoded group elements ([x1], . . . , [xr]), xi ∈ G, 1 ≤ i ≤ r. The
algorithm may query a generic group oracle O to perform computation operations
in some set Π and relations in some set Σ on encoded group elements.

Normally one considers the sets Π = {⊙}, Σ = {≡}, that is the group
operation and equality testing. This leads to the most basic instantiation of the
GGM we can think of or at least, the most intuitive. Algorithmically, we have:

– OG: The oracle for encoding group elements.

– O⊙: The oracle for performing the group operation.

– O≡: The oracle for testing equality of group elements.

It must be noted that these oracles are stateful with regards to elements.
That is to say, if we compute the same element twice, then the results of both
those computations is the same.

3 Construction

3.1 Unique Signatures Based on DDH

We now present the signature we will employ in the generic construction of our
IBE scheme. Recall that the generic construction of Garg et al. [23] requires
a unique signature scheme. When constructing such a scheme, there are two
significant hurdles. Firstly, it is known that no unique signature scheme in the
standard model can be tightly secure as shown by Coron [17,18] and Kakvi and
Kiltz [30, 31]. Secondly, the recent result of Döttling et al. [21] showed that no
unique signature in a DDH group can be short.

Given these restrictions, it is not surprising that there is no known direct
construction of DDH-based unique signatures, but only generic ones. We will
use one such generic construction, specifically the tree-based signature scheme
of Merkle [35]. However, we will deviate slightly from the original construction
due to the fact that we cannot use standard collision-resistant hash functions,
so we need to adapt our scheme to fit this. The basic building tool for this is the
Discrete Logarithm-based (chameleon) hash function due to Chaum, van Heijst
and Pfitzmann [13].

Hash Function based on Discrete Logarithm We now recall the hash
function due to Chaum, van Heijst and Pfitzmann [13] based on the discrete
logarithm problem, which will we denote as CVPH. The hash function requires
a seed s = (g, h), which will be passed to the hash evaluation algorithm each
time. Unlike normal hash functions that can take arbitrarily large values, CVPH
maps two Z∗

p elements to one Z∗
p element i.e. CVPH : Z∗

p×Z∗
p → Z∗

p. We note that
this hash function is closely related to the commitment scheme of Pedersen [38],
as was used by Döttling and Garg [20], and it can be extended to larger input
sizes in a similar manner. We now present the hash function in Figure 1.

Scheme CVPH
KeyGen(1λ)

p ∈R P[λ]
g, h ∈R Z∗

p

return s = (p, g, h)

Hash(s, (x1, x2))

return y = gx1hx2 mod p

Fig. 1. The CVPH Hash Function

We can see that we get collision-resistance from the discrete logarithm prob-
lem (DLog). If we can find (x1, x2) ̸= (y1, y2), we can find the discrete logarithm
of h in base g as logg h = y1−x1

x2−y2
. Recall that if DDH is hard, then DLog is also

hard.

One-Time Signatures After their introduction of chameleon hash functions
by Krawczyk and Rabin [33], it became clear that CVPH can also be viewed as
a Chameleon Hash Function. We will use this fact to build a one-time signature,
using the well-known method of Mohassel [36]. We will give the explicit instanti-
ation of the one-time signature scheme, which we call the CVPOT S scheme. For
clarity, we write the scheme mod a prime q instead of mod p so as to distinguish
the two usages. We now present the one-time signature scheme in Figure 2.

Now that we have our one-time signature scheme, we can start to build it
into a full-fledged signatures scheme. There are two tree-based transformations of
one-time signatures to full signatures that one would consider in this situation,
namely that of Merkle [35] using hash functions and that of Blazy et al. [8]
using chameleon hash functions. However, neither of these approaches is directly
applicable to our scenario for separate reasons. The Merkle [35] transformation
relies on cryptographic collision-resistant hash functions, which is an assumption
we cannot make, as it would take us out of the pure Generic Group Model.
On the other hand the transformation of Blazy et al. [8] does not require this
assumption, but creates signatures that are not unique. Therefore, we take ideas
from both schemes and create a tree-based transformation that is tailored to our
purposes.

Scheme CVPOT S
KeyGen(1λ)

q ∈R P[λ]
g, α, m̂, r̂ ∈R Z∗

q

h = gα mod q

z = gm̂hr̂ mod q
return vk = (q, g, h, z), sk = (α, m̂, r̂)

Sign(sk,m)

return σ = (m̂−m)α−1 + r̂ mod q

Verify(pk,m, σ)

if (gmhσ == z mod q)
return 1

else
return 0

Fig. 2. The CVPOT S One-Time Signature scheme.

We first begin by outlining the general structure of both tree-based signa-
tures. Both schemes build a binary tree of depth d and then associate each leaf
with a one-time signature verification key. The leaf is then an authentication
of the OTS verification key. Each parent node is the authentication of its chil-
dren, leading all the way up to the root node. The root node is published as
the verification key, potentially with some additional public parameters. In the
scheme of Merkle [35], the authentication is the hash value, whereas in Blazy et
al. [8] the authentication is a two-tier signature [6]. We will primarily follow the
transformation of Merkle, with a modification at the leaves.

The primary hurdle in our setting is that the Merkle transformation relies
on hash functions CRHF : {0, 1}∗ → {0, 1}ℓ, which allows them to deal with
values of arbitrary size. However, we have CVPH : Z∗

p × Z∗
p → Z∗

p, which means
that we can only hash pairs of group elements. While this does fit in with the
intermediate nodes, we run into the issue that our OTS verification keys consist
of 3 group elements and the modulus. To get around this, we employ a hash
function with a sufficiently large modulus p such that q can also be hashed, by
having the bit size of p be a constant factor larger than the bit size of q (For
simplicity we will use 2). We will then hash p, g and h, z to get intermediate hash
values η1 = CVPH.Hash(s, (q, g)), η2 = CVPH.Hash(s, (h, z)). We then take the
hash of these intermediate values to get the label of the corresponding leaf as
CVPH.Hash(s, (η1, η2)). This is conceptually similar to just adding an additional
level to our tree.

We now establish some notation for our trees. We label all nodes of our
tree as Nodei,j with i being the depth and j being the position, with the left-
most nodes being labelled 0 and the right most being labelled 2i − 1. The
root node it therefore labelled as Node0,0. We also label the leaves of our tree
Noded,0, . . . , Noded,2d−1 as Leaf0, . . . , Leaf2d−1 from left to right. We assume there

is en efficient algorithm that returns the path and co-path to any leaf Leafi,
which we call TreePath(i). We now present the final signature scheme in Fig-
ure 3.

Scheme USIG
KeyGen(1λ, d)

s←$ CVPH.KeyGen(1λ)

for i ∈ J0, 2d − 1K
vki, ski ←$ CVPOT S.KeyGen(1λ/2)
parse vki = (qi, gi, hi, zi)
ηi,1 = CVPH.Hash(s, (qi, gi))
ηi,2 = CVPH.Hash(s, (hi, zi))
Leafi = CVPH.Hash(s, (ηi,1, ηi,2))

next i

for i ∈ Jd− 1, 0K
for j ∈ J0, 2i − 1K

Nodei,j = CVPH.Hash(s, (Nodei+1,2j−1, Nodei+1,2j))
next j

next i

vk = (s = (p, g, h), Node0,0), sk = (sk0, sk1, · · · , sk2d−1)
return (vk, sk)

Sign(sk,m)

parse m as a integer ∈ J0, 2d − 1K
(Node0,0, · · · Leafm)← TreePath(m)
σ̂ = CVPOT S.Sign(skm,m)
return σ = (σ̂, vkm, Node0,0, · · · Leafm)

Verify(vk,m, σ)

parse vk = (s, Node0,0)
parse σ = (σ̂, vkm = (qm, gm, hm, zm), Node′0,0, · · · Leaf′m)

if (CVPOT S.Verify(vkm,m, σ̂) = 0)
return 0

end if

η1 = CVPH.Hash(s, (qm, gm))
η2 = CVPH.Hash(s, (hm, zm))
if (Leaf′m ̸= CVPH.Hash(s, (η1, η2))

return 0

for Nodei,j ∈ (Node0,0, · · · Leafm)
if Nodei,j ̸= CVPH.Hash(s, (Nodei+1,2j−1, Nodei+1,2j)

return 0
next Nodei,j

if (Node′0,0 = Node0,0) then
return 1

else
return 0

Fig. 3. The Unique Signature Scheme Based on DDH

3.2 Witness Encryption based on DDH

The next ingredient needed for our generic IBE construction is a witness en-
cryption (WE) scheme. Since its introduction by Garg et al. [23], there have
been some follow-up constructions [2, 12, 15, 46], but crucially all of these have
relied on either indistinguishability obfuscation [5], or extractability obfusca-
tion [12]. These are undesirable as the initial constructions were based on multi-
linear maps, which were first introduced by Boneh and Silverberg [11], which
are out of the scope of the GGM. While there have been recent works on build-
ing obfuscation from other assumptions [3,4,25,29], none of these fall within the
GGM.Therefore, we must look for another way to construct a witness encryption
scheme.

We will use the generic construction of a Witness Encryption scheme from
a Smooth Projective Hash Function (SPHF). The generic construction was pro-
posed by Abdalla, Benhamouda and Pointcheval [1], which we now briefly recall.
To encrypt a message m under an instance x generates and new set of SPHF
keys and computes the hash of the instance. The hash is used as a one-time
pad and is XOR’d with the message to provide a ciphertext. The ciphertext and
the projective key are then sent to the receiver. Given the projective key, the
receiver can recompute the hash value with the correct witness, which they can
then use to decrypt the ciphertext.

Now that we have the basic idea for our Witness Encryption, we now need
to define our language. For this we will work in a way similar to Katz-Wang
signatures [32]. Natively our signature, are verified by checking that: hσ =

g−m
∏

Bmi
i , instead, we are going to double those parameters, with ĥ, ĝ, Ai by

picking α
$← Zp and setting logAi

(Bi) = logĥ(h) = logĝ(g) = α, intuitively now

in addition to verifying the equation, h, ĥ, hσ, ĥσ form a DDH tuple, and the
signature simply becomes a witness of this fact.

SPHF for the Verification of Signatures The language Lvk , we need to
handle with an SPHF is the verification equation. That we know the (unique)
σ such that g−m · Bi(m[i]) = hσ and logĥ(h) = logĝ(g). The Bi is uniquely
determined by the depth at which the SPHF is computed relatively to a node
or a leaf.

In other words, writing G = g−m · Bm[i]
i , Ĝ = ĝ−m ·

∏
A

m[i]
i , we need the

witness σ such that G, Ĝ, h, ĥ is a DDH tuple.

– HashKG(M, vk): Outputs hk = λ, µ
$← Zp, hp = hλĥµ

– Hash(hk,M, vk): Outputs GλĜµ

– ProjHash(hp,M, vk, σ): Outputs hpσ

This SPHF is Smooth, and it should be noted, that the person in charge of
the SPHF can compute Hash without receiving data from the prover.

The Witness Encryption Scheme To achieve a Witness Encryption from an
SPHF, one classically outputs a word presumably in the language, compute on
Hash on it, and XOR this hash with the message to encrypt. Anyone possessing a
witness the word is in the language, can then decrypt by computing the Projected
Hash.

A final step is thus to combine the previous construction for every level of
the tree, so d + 1 times. For the witness encryption, we are going to need to
handle the language where words are a tuple of (Identity, ĥ) , and the witness is
the deterministic signature on the given identity. We use the SHPFs described
above and combine them into one SPHF for our final language, which we call
SPHF .

Given an instance x = (ID, ĥ), we run our combined SPHF SPHF to get
a hashing key and a projection key. We then use the hashing key to compute
the hash of the instance x, which is a single element in Z∗

p. We use this hash
as a mask and multiply it with the message, to get our masked message. Our
ciphertext consists of the masked message and the projection key. Our projection
key consists of d+ 1 group elements. With the masked message, and the helper
generator ĥ, this gives a total ciphertext size of d+3 group elements to transmit.

On receipt of a ciphertext, the user can use their secret key skID as the
witness and recompute the mask using the projection key. With this they can
then unmask message, which is returned. We now give the complete witness
encryption scheme WE below in Figure 4.

The resulted (projected) hashes are each a group element that will serve as
a mask.

Scheme WE
Encrypt(1λ, x = (ID, ĥ),m)

prm←$ SPHF .Setup(1λ)
For all i:

Gi = g−ID ·Bi(IDi),

Ĝi = ĝ−ID ·Ai(ID(i))
hki ←$ SPHF .HashKG(Lvk)
hpi = SPHF .ProjKG(hki)
Hi = SPHF .Hash(hki, Gi, Ĝi)

Ĉ = m ·
∏

Hi

return C = ((hpi)i∈[n+1], Ĉ, ĥ)

Decrypt(C, ID, σ)

parse C = (hp, Ĉ, ĥ)

Ĥ =
∏
SPHF .ProjHash(hpi,Lvk, σ)

return M = Ĉ · Ĥ−1 mod p

Fig. 4. The Witness Encryption Scheme for Lvk

3.3 Modified Generic Construction

We now recall the generic construction of IBE due to Garg et al. [23]. Before
we begin we must establish some notation. We define our ID space such that
all identities can be expressed as bitstrings of length at most d, for some public
parameter d, that is to say IBE .I ⊆ {0, 1}d. Additionally, we note that we do not
restrict ourselves to single bit messages, as is the case of the Witness Encryption
of Garg et al. [23] or the IBE of Papakonstantinou, Rackoff, and Vahlis [37],
but instead consider the more general case where messages can be longer. For
simplicity we consider messages that are single group elements. We now give a
high-level explanation of the scheme.

We first discuss the Setup and KeyGen algorithms together as they both rely
on the same primitive. Let USIG = {USIG.Gen,USIG.Sign,USIG.Verify} be
the secure signature scheme with unique signatures from Section 3.1 such we
can sign all our identities, i.e. the depth of our tree is the same as the public
parameter d. This is required as the user secret keys skID are simply a signature
on the corresponding identity ID. It is easy to see that the IBE public parameters
pp are the signature verification key vk and the IBE master secret key msk is the
signature signing key sk. Here we note that the master secret key is 2d one-time
signing keys, each of which is 3 Z∗

q elements. This means we have a total size of

2d · 3λ/ = 2d−1 · 3λ bits. Additionally, user secret keys consist of d+ 1 elements
from Zp∗, one λ/2-bit prime q and four elements from Zq∗. Since we know q < p,
we pad q and all elements in Zq∗ with leading 0’s to be λ bits long for simplicity.
Thus we know that our user secret keys are are ℓ = (d+ 6)λ bits long.

Now we discuss the Encrypt algorithm. We pick a random value α and com-
pute ĥ = hα, where h is from our hash function seed. We the combine this
with the ID to create an instance for the witness encryption scheme WE from
Section 3.2. Recall our language for the witness encryption is verifying our Katz-
Wang like signatures [32] with proof of membership. To encrypt, the user simply
runs the WE encryption procedure and receives the ciphertext Ĉ. Recall that this
contains projection key, the masked message and the randomness. We combine
this with our identity to form our IBE ciphertext.

Finally, we discuss the Decrypt algorithm. Once the the receiver has the IBE
ciphertext, they can use their secret key to WE decryption algorithm to decrypt
the ciphertext Ĉ and recover the message. Having given a high-level description
of the IBE, we now present the full scheme.

Proof idea Our construction allows to achieve a secure IBE under the DDH
assumption. As we are building on the construction of Garg et al. proof [23], the
arguments of security follow in a straightforward manner. We will first provide
a high level sketch, then we provide a more detail sketch proof.

Any adversary that is able to break the IBE scheme, must fall into one of
two categories:

Scheme IBE-Generic

algorithm Setup(1λ)

(vk, sk)
$← USIG.Gen(1λ, d)

pp = vk,msk = sk
return (pp,msk)

algorithm KeyGen(msk, ID)

σ ← USIG.Sign(msk, ID)
return skID = σ

algorithm Encrypt(pp, ID,m)

parse pp = (p, g, h, Node0,0)
α ∈R Z∗

p

ĥ = hα mod p

Ĉ =WE .Encrypt(1λ, (ID, ĥ,m)

return C = (Ĉ, ID, ĥ)

algorithm Decrypt(pp, skID, C)

parse C = (Ĉ, ID, ĥ)

x = (ID, ĥ)

m =WE .Decrypt(Ĉ, x, skID)
return m

Fig. 5. The Generic Construction of an IBE scheme [23]

1. The adversary is able to generate secret keys themselves. Since the adversary
never sees the secret key for the target identity ID*, this is equivalent to
forging a signature, which in turn would break the DLog assumption.

2. The adversary is able to distinguish the encryption of their message from a
random encryption. This is directly equivalent to breaking the underlying
WE built from the SPHF, which in turn would break the DDH assumption.

We now give a brief sketch as to how we achieve this. In the first game
hop, we would move from generating user secret keys to querying the signature
security game for all the ID requests. This way, we are able to provide a user
secret key oracle without the master secret key. Here the challenge ciphertext
would be generated normally. From the view of the adversary this is identical to
the normal game.

The next game hop would be to switch the generator ĥ to random value so
that (G, Ĝ, h, ĥ) is no longer a valid DDH tuple. The difference to the previous
game is negligable, under the DDH assumption, as a significant advantage loss
compared to the previous game would imply a distinguisher for DDH challenges.

Additionally in this game, there is are valid signature that would be a valid
witness for any statements, hence the adversary can do no better than random
guessing. Thus the advantage of the adversary in the game is effectively 0.

Detailed Proof

Theorem 5. Our construction allows to achieve a secure IBE under the DDH
assumption

Proof. In this proof, we are going to build a simulator B using an adversary A
against our IBE to either break the unforgeability or our signature scheme, or
the pseudo-randomness of the underlying SPHF. In both cases, this would lead
to breaking a DDH challenge.

We start from a game G0. This is the real game, everything is generated
honestly. The adversary is allowed to query user secret keys, and wins if he can
decrypt a challenge ciphertext on a chosen identity if and only if he never queries
a user secret key for this id. AdvG0 = Advreal

In game G1, we now use the signature Osign oracle to answer the UserKey
Queries. As, the challenge identity is not allowed to be queries, this game is indis-
tinguishable of the previous one (under appropriate simulation in the signature
security proof). |AdvG1 − AdvG0 | ≤ Advuf

In game G2, we forget the signature secret key we were no longer using. As
this is just some internal memory state of the simulator this is strictly equivalent
to the previous game. AdvG2 = AdvG1

In game G3, we now alter the challenge ciphertext. Instead of using a word
in the language, we switch it to outside the language (as in the Katz-Wang
signatures), hence the adversary has to lose the game (except with neglibile
probability). We use the secret Hash key hk from the sphf to produce the
valid output. Under DDH, this game is indistinguishable from the previous one.
|AdvG3 − AdvG2 | ≤ AdvDDH

At this stage, there is no valid user secret key possible for the description,
hence, the security relies purely on the smoothness of the SPHF. And so AdvG3 ≤
ε. ⊓⊔

Which leads to the conclusion Advreal ≤ Advuf + AdvDDH + ε = O(AdvDDH)

4 Discussion

Now that we have shown that we can construct an IBE in the GGM, albeit a
somewhat inefficient one, we now consider how this affects the PVR impossibility
result. It would seem at first glance that the PVR result is incorrect as we have
proven a result directly contrary to theirs. While at a high level this does seem
to be true, as there are several subtle details of the PVR impossibility which
we need to examine more closely to get a more complete answer. We will give a
high level overview of the PVR impossibility result and then we will show where
problems may arise and how we provide an alternative formulation of the result.
We believe that the result is not a general impossibility result, but more likely
rules out tightly secure and efficient constructions. This is in line with the recent
results of Döttling et al. [21] who show that no unique signature can be “short”
using similar techniques. We now recap the PVR impossibility result.

4.1 The PVR Impossibility Result [37]

We will now give a high-level overview of the PVR impossibility result and
discuss how it relates to our construction. For a more detailed description, we
refer the reader to the original paper [37]. We begin by introducing the notation
needed for the PVR impossibility result. In the impossibility result, IBE schemes
are parametrised by the prime modulus p and 3 additional values m,n ∈ Z, ε ∈
(0.5, 1]. The value n is the bit-size of the master secret key msk and the bit size
of the randomness used in encryption. The value m is the maximum number of
GGM oracle queries by any of the IBE algorithms and is also the upper bound
on the number of group elements output by any IBE algorithm. Finally, ε is the
correctness error; that is to say, a valid ciphertext is correctly decrypted with
probability ≥ ε.

The first step in the impossibility result is to transform an IBE scheme to a
so-called Restricted IBE (RIBE), which has no group elements in the secret key.
To this end, Papakonstantinou, Rackoff, and Vahlis introduce a transformation
that turns any (p,m, n, ε)-IBE scheme into a (p, poly(m),poly(n), ε − 1

poly(n))-

RIBE [37]. The RIBE key generation algorithm first runs the IBE key generation
algorithm to get skID. The algorithm then generates a large number of ciphertexts
and uses skID to decrypt them. By observing the queries and responses made
during these decryption procedures the algorithm can rewrite all the secret key
elements as sums of the public key elements and the ciphertext elements. Using
this, the secret key elements can all be rewritten as these sums of public elements.
The decryption procedure is modified to accept these new keys. It must be noted
that any RIBE that results from this transformation, as some of the secret
information may be lost in the transformation. However, the resulting RIBE is
a secure IBE scheme.

The next step is to show an attacker against a (p,m, n, ε)-RIBE. For this
attack, we have an additional parameter c > 0. The RIBE attacker receives
k1 ∈R

Jn2c, 2n2cK user secret keys skID1 , . . . , skIDk1
for identities ID1, . . . , IDk1

of
its choice and a challenge ciphertext C∗ under the identity ID∗ of its choice.
It uses these secret keys to construct a partial master secret key msk′. The
adversary now generates a large number of ciphertexts for some other identities
IDk1+1, . . . , IDk1+k2

, with k2 ∈R
∈

R
Jn2c, 2n2cK, which it uses to learn “frequently

accessed elements”. With all this information the adversary builds a simulated
secret key skID∗ using the information it has collected. Once it has a simulated
secret key skID∗, it attempts to decrypt the challenge ciphertext. The adversary
succeeds with a probability equal to the correctness error of the RIBE. We now
recall the theorem statement of the attacker.

Theorem 6 (Thm. 1 in [37]). Let RIBE = (Setup,KeyGen,Encrypt,Decrypt)
be a restricted (p,m, n, ε)-IBE, then for every c > 0 and sufficiently large n,
there exists and adversary which breaks the security of RIBE with poly(m,n)
queries and advantage ε− 1

2 −
1
nc .

4.2 Shortcomings of the the PVR Impossibility Result

We now look at how the PVR impossibility result works with our scheme and
where it fails. First, we establish what our parameters are. We see that n =
|msk| = 2d · 3 · λ/2 = 2d−1 · 3λ, as we have 2d one time signing keys, each with 3
elements of size λ/2. Next, we have that m = |C| = d+3. Finally it is clear to see
we have ε = 1. Even before we apply the RIBE transformation, a problem starts
to become evident. The attacker requires k1 secret keys, where k1 ∈ Jn2c, 2n2cK,
which if we plug in our value of n and use the minimal value c = 1, this gives
us k1 ∈ J(2d−1 · 3λ)2, 2(2d−1 · 3λ)2K = J22d−2 · 9λ2, 22d−1 · 18λ2K, which is larger
than the total number of valid user secret keys 2d. While at first glance it seems
possible that we could reduce this by using smaller moduli for our signatures,
but we would have to make them so small as to be impractical. Furthermore,
we note that these figures are for our base IBE and not for the reduced IBE
that results from the transformation, where the parameters are polynomial in
the original parameters.

Therefore, it is clear that the PVR does not apply to our case. However,
based on this it is not possible to completely discount the result, as our scheme
does not expose any flaws in the core methodology of the attack. It seems most
likely that the result only applies to “compact” IBEs, for some appropriate
definition of compact. This seems the most likely result, as it fits in perfectly
with the recent impossibility by Döttling et al. [21], which states that there are
no “short” unique signatures in the GGM. The impossibility of “compact” IBEs
combined with the generic construction of Garg et al. [23], immediately implies
the impossibility of “short” unique signatures, as shown by Döttling et al. [21].

This idea is further reinforced by the number of oracle queries that are
required be the adversary. The attacker against a (p, n,m, ε)-RIBE requires
poly(n,m) queries to the oracles. As n and m, this number also grows, espe-
cially considering both n and m are polynomially larger than the parameters
from the original IBE. As the number of queries approaches

√
p, the RIBE at-

tack starts to be less efficient than the generic attacks on DDH/DLog, such as
that of Pollard [39]. Therefore, for the attack to be a valid attack on the IBE
system, the parameters n,m must be as small as possible, that is to say the IBE
must be “compact”. Therefore, it seems that the PVR impossibility result only
holds for “compact” IBEs.

Another aspect that is overlooked by the PVR impossibility result is the
tightness of the security reduction. If the IBE is tightly secure, then any attack
on the IBE would result in an attack on the underlying assumption, in our case
DDH and/or DLog. However, our scheme is not tight and our loss is in the
number in secret key queries, which are signing queries to our unique signature.
Therefore even if the attack were successful against our IBE scheme, it would
not necessarily lead to an attack on DDH/DLog. This is further compounded by
the fact that the attack is not always successful. While it might be tempting to
assume that this rules out any tight IBE in the GGM, it is not clear that this is
the case. The loss in our scheme is unavoidable, as any unique signature cannot

be tight, but that does not mean that there does not exist an IBE scheme where
there is no loss.

5 Conclusions

We have constructed the first IBE scheme in a DDH only group, by using the
generic construction of Garg et al. [23]. To do this, we showed the first unique
signature scheme in DDH only groups and combined that with known results on
SPHFs to obtain our IBE. The resulting IBE is not very efficient, but serves as
a counter-example to the impossibility result of Papakonstantinou, Rackoff, and
Vahlis [37]. We showed that while our construction contradicts the impossibility
result, it does not fully negate it and it seems that result only rules out all IBEs
with small parameters. This is reinforced by the impossibility result of short
signatures by Döttling et al. [21]. Thus, while the PVR impossibility result does
not rule out all possible IBEs in DDH only groups, it does rule out all practical
IBEs. Therefore, while the result is mildly overstated, it is still correct for all
practical purposes.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: New constructions and applications. In: Oswald, E., Fischlin, M. (eds.) EU-
ROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (Apr
2015). https://doi.org/10.1007/978-3-662-46803-6˙3

2. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Offline witness encryption. In: Manulis,
M., Sadeghi, A.R., Schneider, S. (eds.) ACNS 16. LNCS, vol. 9696, pp. 285–303.
Springer, Heidelberg (Jun 2016). https://doi.org/10.1007/978-3-319-39555-5˙16

3. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: New meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 191–225. Springer, Heidelberg (May
2019). https://doi.org/10.1007/978-3-030-17653-2˙7

4. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfus-
cation without multilinear maps: New paradigms via low degree weak pseudo-
randomness and security amplification. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 284–332. Springer, Heidelberg
(Aug 2019). https://doi.org/10.1007/978-3-030-26954-8˙10

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (Aug 2001).
https://doi.org/10.1007/3-540-44647-8˙1

6. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures,
and Fiat-Shamir without random oracles. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (Apr 2007).
https://doi.org/10.1007/978-3-540-71677-8˙14

7. Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices
revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770,
pp. 644–674. Springer, Heidelberg (Mar 2018). https://doi.org/10.1007/978-3-319-
76581-5˙22

8. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (Mar / Apr 2015). https://doi.org/10.1007/978-3-662-46447-
2˙12

9. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (Aug 2014).
https://doi.org/10.1007/978-3-662-44371-2˙23

10. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(Aug 2001). https://doi.org/10.1007/3-540-44647-8˙13

11. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Cryp-
tology ePrint Archive, Report 2002/080 (2002), https://eprint.iacr.org/2002/
080

12. Boyle, E., Chung, K.M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (Feb 2014).
https://doi.org/10.1007/978-3-642-54242-8˙3

13. Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeni-
able signatures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.)
CRYPTO’91. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (Aug 1992).
https://doi.org/10.1007/3-540-46766-1˙38

14. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–
460. Springer, Heidelberg (Aug 2013). https://doi.org/10.1007/978-3-642-40084-
1˙25

15. Chvojka, P., Jager, T., Kakvi, S.A.: Offline witness encryption with semi-adaptive
security. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS
20, Part I. LNCS, vol. 12146, pp. 231–250. Springer, Heidelberg (Oct 2020).
https://doi.org/10.1007/978-3-030-57808-4˙12

16. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) 8th IMA International Conference on Cryptography and Coding.
LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (Dec 2001)

17. Coron, J.S.: Optimal security proofs for PSS and other signature schemes. Cryptol-
ogy ePrint Archive, Report 2001/062 (2001), https://eprint.iacr.org/2001/062

18. Coron, J.S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7˙18

19. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (Apr / May 2002).
https://doi.org/10.1007/3-540-46035-7˙4

20. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401,
pp. 537–569. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-319-
63688-7˙18

21. Döttling, N., Hartmann, D., Hofheinz, D., Kiltz, E., Schäge, S., Ursu, B.: On
the impossibility of short algebraic signatures. Cryptology ePrint Archive, Report
2021/738 (2021), https://ia.cr/2021/738

22. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

23. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 467–
476. ACM Press (Jun 2013). https://doi.org/10.1145/2488608.2488667

24. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–
543. Springer, Heidelberg (May 2003). https://doi.org/10.1007/3-540-39200-9˙33,
https://eprint.iacr.org/2003/032.ps.gz

25. Gentry, C., Jutla, C.S., Kane, D.: Obfuscation using tensor products. Cryptology
ePrint Archive, Report 2018/756 (2018), https://eprint.iacr.org/2018/756

26. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374407

27. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way
functions. In: 21st ACM STOC. pp. 25–32. ACM Press (May 1989).
https://doi.org/10.1145/73007.73010

28. Jager, T., Schwenk, J.: On the analysis of cryptographic assumptions in the generic
ring model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 399–416.
Springer, Heidelberg (Dec 2009). https://doi.org/10.1007/978-3-642-10366-7˙24

29. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials overa R to build iO. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Heidelberg (May
2019). https://doi.org/10.1007/978-3-030-17653-2˙9

30. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 537–553. Springer, Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-
29011-4˙32

31. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited.
Journal of Cryptology 31(1), 276–306 (Jan 2018). https://doi.org/10.1007/s00145-
017-9257-9

32. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight se-
curity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003. pp.
155–164. ACM Press (Oct 2003). https://doi.org/10.1145/948109.948132

33. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet
Society (Feb 2000)

34. Maurer, U.M.: Abstract models of computation in cryptography (invited paper).
In: Smart, N.P. (ed.) 10th IMA International Conference on Cryptography and
Coding. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (Dec 2005)

35. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.)
CRYPTO’89. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (Aug 1990).
https://doi.org/10.1007/0-387-34805-0˙21

36. Mohassel, P.: One-time signatures and chameleon hash functions. In: Biryukov, A.,
Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 302–319. Springer,
Heidelberg (Aug 2011). https://doi.org/10.1007/978-3-642-19574-7˙21

37. Papakonstantinou, P.A., Rackoff, C.W., Vahlis, Y.: How powerful are the DDH
hard groups? Cryptology ePrint Archive, Report 2012/653 (2012), https://

eprint.iacr.org/2012/653
38. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (Aug 1992). https://doi.org/10.1007/3-540-46766-1˙9

39. Pollard, J.M.: A monte carlo method for factorization. BIT Numerical Mathematics
15(3), 331–334 (1975)

40. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS
2000. Okinawa, Japan (Jan 2000)

41. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (Aug
1990). https://doi.org/10.1007/0-387-34805-0˙22

42. Secretary), C.F.K.A., (Director), C.R.: Fips pub 186-4 federal information process-
ing standards publication digital signature standard (dss) (2013)

43. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(Aug 1984)

44. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(May 1997). https://doi.org/10.1007/3-540-69053-0˙18

45. Waters, B.R.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (May 2005). https://doi.org/10.1007/11426639˙7

46. Zhandry, M.: How to avoid obfuscation using witness PRFs. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016-A, Part II. LNCS, vol. 9563, pp. 421–448. Springer,
Heidelberg (Jan 2016). https://doi.org/10.1007/978-3-662-49099-0˙16

