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Abstract: This work demonstrates the enhancement in plasmonic sensing efficacy resulting from
spatially-localized functionalization on nanostructured surfaces, whereby probe molecules are con-
centrated in areas of high field concentration. Comparison between SERS measurements on nanos-
tructured surfaces (arrays of nanodisks 110 and 220 nm in diameter) with homogeneous and spatially-
localized functionalization with thiophenol demonstrates that the Raman signal originates mainly
from areas with high field concentration. TERS measurements with 10 nm spatial resolution confirm
the field distribution profiles predicted by the numerical modeling. Though this enhancement in
plasmonic sensing efficacy is demonstrated with SERS, results apply equally well to any type of
optical/plasmonic sensing on functionalized surfaces with nanostructuring.

Keywords: Raman spectroscopy; SERS; TERS; plasmonics; nanostructures; surface functionalization

1. Introduction

Improving photonic biosensor performance remains an ongoing challenge, requiring
a comprehensive understanding of the physical principles involved and accurate char-
acterization methods. Enabled by plasmonic nanostructures, surface-enhanced Raman
spectroscopy (SERS) has led to significant amplification of the Raman signal [1–4]. Indeed,
plasmonic nanostructures can confine electromagnetic fields beyond the diffraction limit
and have enabled SERS to reach single-molecule detection [5]. Optimization on the nanos-
tructure geometry can lead to a high electric field [6,7]. In particular, gold nanodisk arrays
fabricated atop continuous gold films on glass substrates have recently shown promising
results in SERS [2,8,9] as well as in SPR [9,10] due to the formation of hybridized plasmonic
modes. The continuous metal layer sustains propagating surface plasmons while the nanos-
tructures sustain localized surface plasmon resonances. Coupling between them occurs
under specific conditions and gives rise to hybrid modes with improved characteristics for
sensing [11,12]. Other important phenomena may also warrant consideration regarding
their influence on the plasmonic response such as band structure, permittivity, size, and
localized particle/lattice rearrangements [13–16].

Numerical modeling of nanostructured substrates predicts that the Raman signal is
most intense from molecules located at the edges of the nanostructures due to the field
concentration. This suggests that deliberate and accurate positioning of probe molecules
at locations of high field concentration on the nanostructures could be a way to optimize
detection sensitivity [17] and response time, especially at low molecular concentrations.
In addition, the design of our sample composed of gold nanostructures on gold film is
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compatible with SPR biosensors and could overcome the limit of detection with accurate
positioning of the molecule under conditions of very low target concentrations. Indeed,
selective functionalization can exclude the disturbance from SERS-inactive molecules
outside the hot spot.

To experimentally confirm model predictions and quantify the SERS sensitivity en-
hancement resulting from spatially resolved positioning of probe molecules at the nanoscale,
a very high spatial resolution measurement tool is required.

Tip-enhanced Raman spectroscopy (TERS) has been used to study and map the elec-
tromagnetic near-field surrounding metal nanostructures [18] and multipolar plasmonic
resonance modes from nanoparticles [19]. Recently, several factors that had limited spatial
resolution in TERS have been addressed from both experimental and theoretical points
of view [20]. Based on the tip selection, experimental configuration, and grafting of a
molecule on the tip, TERS resolution can now achieve spatial resolutions from tens of
nanometers down to a few angstroms [21–24]. As a result, TERS has been applied in
a variety of demanding applications of surface characterization, catalysis, and single-
molecule detection [25]. TERS instrument configurations and applications have recently
been reviewed [26,27]. Field density and spatial distribution in the local neighborhood of
nanoscale surface geometry features such as edges or surface heterogeneities have been
precisely mapped with TERS [24,28–30], with studies focusing on the impact of tip size [31],
commercial vs. custom-made tips [32], and positioning [33–35]. TERS is therefore ideally
suited to characterize nanostructured SERS substrates to determine the optimal positioning
of probe molecules on the sensor surface.

In this work, we demonstrate the impact on the SERS response of selectively position-
ing probe molecules near areas of high field concentration surrounding gold nanostructures
atop a continuous metal film, as shown in Figure 1. Numerical simulations were performed
to determine the field profile surrounding the nanostructures. TERS measurements of
the Raman signal with sub-10 nm resolution confirmed the modeled field spatial distri-
bution. Finally, measurements of the SERS response were conducted on samples with
different spatially-localized surface functionalization with thiophenol, to demonstrate that
molecules grafted to the surface in between nanostructures do not contribute significantly
to the optical signal.
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house developed numerical tool [36] that combines FEM (finite element method) with 
FMM (Fourier modal method). Simulations were conducted without the tip and mole-
cules. Figure 2 shows the domain meshing (left) and normalized electric field amplitude 

Figure 1. Schematic diagram of selectively positioned probe molecules near areas of high field
concentration surrounding gold nanostructures atop a continuous metal film.

2. Materials and Methods
2.1. Numerical Modeling of Nanodisks Arrays

Based on previous work in our group, we conducted numerical simulations of electro-
magnetic field distribution at the surface of the bare gold nanostructures using an in-house
developed numerical tool [36] that combines FEM (finite element method) with FMM
(Fourier modal method). Simulations were conducted without the tip and molecules.
Figure 2 shows the domain meshing (left) and normalized electric field amplitude distribu-
tions (middle: Side view, right: Top view) for an infinite gold disk array atop a continuous
gold film on a glass substrate, excited at 638 nm at two incidence angles (normal and 60◦).
The geometry matches the experimental conditions described in the next section for the
disk array (30 nm height, 220 nm diameter, 400 nm period, 10 nm radius edge round-



Nanomaterials 2022, 12, 3586 3 of 12

ing) and underlying metal film (30 nm height, 2 nm thickness titanium adhesion layer).
Modeling results are shown for off-resonance conditions (the experimental nanostructured
array resonance wavelength is 664 nm [2]) to reflect typical conditions of use, where the
excitation wavelength is determined by the reporter molecule Raman characteristics. For
both incidence angles, the field strength is greater at the edges of the nanodisks by up to a
factor of 4 compared to areas between the disks.
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Figure 2. Numerical modeling results for λ = 638 nm. Left: domain meshing. Middle and right:
Normalized electric field amplitude distribution for side (x, z) and top (x, y) views of the gold
nanodisks (30 nm height, 220 nm diameter, 400 nm period, 10 nm radius edge rounding) in an
infinite square array (400 nm period) atop a continuous gold film (30 nm height, 2 nm thickness
titanium adhesion layer) on a glass substrate. The structure is excited with TM polarized light
(p-polarized excitation light referenced to the surface plane (gold surface)), E0 is the incident electric
field amplitude at 638 nm at: (a) 0◦ incidence and (b) 60◦ incidence. The horizontal dashed lines in
the field profile side views (middle) show the top and bottom surfaces of the continuous gold film.

2.2. Fabrication of Nanodisks Arrays

We fabricated gold nanodisk arrays on gold films for two disk diameters: D = 110 nm
and D = 220 nm. The nanostructures were prepared by e-beam lithography with a protocol
published previously [2]. The SEM image in Figure 3a shows a well-defined array with
D = 220 nm and a period (P) of 400 nm (see supplementary Figure S1 for 110 nm disks).
AFM measurements (Figure 3b) of nanostructure disk height were 32 ± 5 nm, confirming
the shape homogeneity and low surface roughness [28]. The underlying 30 nm gold film
thickness was confirmed by ellipsometry (data not shown).
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Figure 3. (a) SEM image of a gold nanodisk array (diameter = 220 nm, period = 400 nm) on a
continuous gold film; (b) AFM measurements in 2D and 3D of the nanodisks.

2.3. Surface Functionalization with Thiophenol

Samples were functionalized with a 0.1 mM solution of thiophenol (C6H6S) over a
2.5 h incubation time to saturate the gold surface. Samples were then rinsed with ethanol
for 5 min and dried with nitrogen. We chose to use thiophenol molecules due to the large
Raman cross-section of the benzene ring that facilitates its detection in SERS and TERS
experiment. Thiophenol molecules have characteristic Raman peaks at 419/1000 cm−1

(out-of-plane C-C-C stretching), 1025 cm−1 (out-of-plane C-H stretching), 1075 cm−1 (C-
C-C stretching in-plane and C-S stretching), and 1575 cm−1 (C-C stretching) [37,38]. As
described further (in Section 3.2), samples were functionalized both with uniform surface
coverage for TERS measurements and with spatially-localized coverage to validate the
hypothesis of SERS molecular response improvement through nanostructuring.

2.4. TERS and SERS Measurement Methodology

TERS mapping of samples with homogeneous surface functionalization was used as
a reporter mechanism to map the field distribution on the surface of the nanostructured
samples and confirm the locations of high field concentration predicted by the numeri-
cal model. The TERS system consisted of an XploRA Nano system (HORIBA Scientific,
Palaiseau, France) combining a scanning probe microscope (OmegaScope) with a Raman
micro-spectrometer. Figure 4 shows a schematic illustration of the TERS measurement on
a nanostructured sample. Laser excitation (638 nm, 80 µW, TM-polarized) was incident
on the sample at an angle of 60◦ with respect to the surface normal. The laser light was
focused using a 100× objective (NA = 0.7) mounted on a piezo scanner for positioning and
focusing on the apex of the probe tip. The TERS probes were cantilever-based gold-coated
AFM-TERS tips (OMNI TERS-SNC-Au, App Nano for HORIBA Scientific).

Lateral spatial resolution in TERS is defined as the full-width-at-half-maximum of the
local field distribution around the tip in the plane of the surface: FWHM ≈ 0.87

√
Rd [33],

where R is the tip radius and d is the height of the tip-to-surface gap. At R = 30 nm and
d = 2 nm, FWHM resolution = 6.7 nm. As a compromise between image acquisition time,
field uniformity, and spatial resolution, a scanning step size of 10 nm was chosen, hence
the spatial resolution in the TERS images is 10 nm/pixel in both axes. TERS spectra were
acquired with the tip in contact with the sample surface (typical interaction force of 2–10 nN,
labeled “In contact” in Figures 4 and 5). Between pixel measurements, the samples were
displaced laterally in semi-contact mode to preserve tip sharpness. The TERS spectra were
compared to spectra acquired with the tip retracted (no TERS local field enhancement, i.e.,
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SERS, labeled “No contact” in Figures 4 and 5). In both cases, acquisition times were 5 s
per spectrum.
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Figure 5. TERS Raman signal amplitude increase from a thiophenol-functionalized sample due to the
tip in contact with the surface (TERS) at the center of a disk (“In contact”, red curve) versus without
the tip (“No contact”, black curve). Laser excitation: 638 nm, 80 µW; Acquisition time: 5 s.

Finally, to confirm the Raman signal enhancement resulting from the combination of
surface nanostructuring and spatially-localized surface functionalization, samples were
characterized by SERS with an XploRA Raman micro-spectrometer using a 100× objective
at 633 nm, 660 nm, and 785 nm as in previous work [2,8]. As shown in the Supplementary
Materials (Figure S6), results were confirmed with a LabRAM Soleil Raman microscopy
platform (HORIBA Scientific, Palaiseau, France). Acquisitions were carried out at 532 nm
(9 mW), 638 nm (6 mW), and 785 nm (4 mW) excitation for 30 s over area of 144 µm2.

3. Results and Discussion
3.1. TERS and SERS Measurements on Samples with Homogeneous Surface Functionalization

Figure 5 shows the example spectra acquired from a point in the center of a nanodisk
at an excitation wavelength of 638 nm on a thiophenol-functionalized sample: TERS
spectrum (probe tip in contact with the surface, red curve) and spectrum due to the surface
nanostructuring alone (tip withdrawn and no longer in contact with the surface, black curve,
i.e., SERS). As expected, the TERS spectrum shows an increase in the Raman response.

This increase can be quantified for individual peaks in terms of contrast ratio, that
is, the ratio ITip-in/ITip-out, where ITip−in and ITip−out are the Raman peak signal intensities
with the tip in contact and withdrawn from the surface, respectively. After subtracting the
background signal (smoothed baseline spectrum without the peaks, obtained by non-linear
filtering) from both spectra, the peaks at 419, 1075, and 1575 cm−1 showed contrast ratios
of 2.2, 2.8, and 2.5, respectively. Note that the ITip−out measurements were consistent with
previous SERS results obtained by our group on similar nanodisk arrays, at a slightly
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different excitation wavelength (633 nm) [2]. A slight widening and shift of the resonance
peaks observed in the TERS spectrum is due to the perturbation of the Raman modes by
the presence of the tip [31]. When the tip is in contact with the surface (TERS), the Raman
signal in fact results from an excitation field having two components: A “far field” (FF)
component from the laser source focused by the objective and an additive “near field” (NF)
component from the tip, with respective spectral amplitude peaks IFF and INF. Therefore,
ITip−in = INF + IFF and ITip−out = IFF.

The TERS signal increase can be normalized with respect to volume via the TERS
enhancement factor (TERSEF), defined for a given peak as [39,40]:

TERSEF =

(
ITip−in

ITip−out
− 1

)
VFF
VNF

where VFF and VNF are to the far-field and near-field excitation volumes, respectively. For
the far field component, VFF = R2

f ocusπbFF, with R f ocus and bFF the microscope objective
focal spot radius and effective depth of focus. For the near field, VNF = (RTERS)2πbNF,
with RTERS and bNF the radius of the TERS volume [40] and effective height of the near
field, respectively. For laser illumination at angle α (60◦ in the experiments), the focal
volume becomes elliptic, modifying the field distribution acting on the tip—this effect
is accounted for by the cos(α) term below. For a thin layer of adsorbed molecules on
the surface, bFF ≈ bNF, therefore VFF

VNF
reduces to R2

f ocus/R2
TERS. Using the approximation

RTERS = 1
2 Rtip [41] with Rtip the tip radius, the TERS enhancement factor reduces to [40]:

TERSEF =

(
INF
IFF

)(R f ocus
1
2 Rtip

)2

cos(α)

In our experiments, R f ocus = 1200 nm, Rtip = 30 nm, α = 60◦, yielding TERSEF

values of 7 × 103, 8.9 × 103, and 8 × 103 for the three peaks (419, 1075, and 1575 cm−1) for
a 638 nm excitation. These values are in the range obtained by others with AFM-based
TERS (TERSEF ≤ 104) [40]. Note that for tip diameters below 20 nm, ITip−in = INF + 2IFF,
because the far-field contribution includes a mirror effect from the tip [39], which does not
apply in our case.

Surface nanostructuring causes TERSEF values to be underestimated due to the SERS
effect that enhances the ITip−out “reference” (normally un-enhanced Raman response from
a flat metal film). Indeed, measurements on unstructured gold films do not show character-
istic peaks when the tip is withdrawn. Using the background signal as a reference in the
denominator, TERSEF values are on the order of 3.9 × 106, in agreement with results found
by others [25,33]. Furthermore, previous SERS measurements realized on these nanodisk
arrays by our group [2] yielded enhancement factor of 2.4 × 106 corresponding to the
far-field contribution (excitation wavelength of 633 nm instead of 638 nm). We confirm the
INF
IFF

ratio of 2.2 reported above by our indirect findings.
Figure 6 shows an AFM image (1650 × 1560 nm2) of a portion of a 220 nm diameter

gold nanodisk array excited at 638 nm, with a composite TERS signal amplitude map
overlay for the central area. The colors in the TERS map are a superposition of the Raman
signal contributions from three spectral bands of interest (see Supplementary Figure S2).
The highest intensity TERS signals are located on the edges of the nanodisks, as expected.
These results agree with a recent lower spatial resolution study by others for a gold nanodisk
array on a Si substrate functionalized with a MoS2 monolayer [34].
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6 with higher brightness); (b) Raman spectra averaged over 36 pixels for three distinct zones of 
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Figure 6. AFM image of a 220 nm diameter gold nanodisk array with TERS image overlay (638 nm
excitation). The highest intensity TERS signals are located on the edges of the nanodisks. The colors
in the TERS map are a superposition of the Raman signal contributions from three spectral bands of
interest (see Supplementary Figure S2). The TERS image pixel size is 10 nm in both axes.

TERS spectra from three distinct areas of the sample topology were compared: disk
top surface, disk edge, and between disks, as shown in Figure 7. The spectra were averaged
over ROIs of 36 pixels each (each pixel is a distinct TERS spectrum) as shown by the
outlines in the figure (note that the ROI for the disk edge spectrum is split into multiple
sub-areas to conform to the curved shape). As expected, the black curve corresponding to
the nanostructure edges shows higher peak values and signal intensity overall versus the
blue (top of disk) and green (between disks) curves (the latter two spectra are similar since
they correspond to TERS gap-modes, i.e., tip interaction with a locally-flat surface [39]).
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Figure 7. (a) TERS mapping of 220 nm gold nanodisk array excited at 638 nm (same image as Figure 6
with higher brightness); (b) Raman spectra averaged over 36 pixels for three distinct zones of surface
topology: top-edge-between; note that signals from the top and between are almost indistinguishable.
The outlines in (a) show the averaging areas (the area for the disk edge spectrum averaging is split
into multiple sub-areas to conform to the curved shape).

The ratio between Raman signal intensities at the edges versus the center of the
nanostructures is defined as the signal gain, G, that is, the gain in biosensor sensitivity
expected from the spatially-localized positioning of probe molecules. For the samples with
220 nm diameter disks, G = 2.1 ± 0.4 for the 1575 cm−1 peak. Note that for gain estimation
at the edges, signal integration may average high and low intensities on either side of
edges, resulting in a slight underestimation of the gain. Note also that gain values will
depend on metal grain boundaries, tip thickness, excitation wavelength, and nanostructure
geometry. Equivalent experiments performed on smaller nanodisks (D = 110 nm, see
Figure S3) yielded G = 1.8 ± 0.3. These values agree with similar experiments by others
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on 100 nm gold nanodisks (height = 20 nm, period = 150 nm) where a gain G of 4.2 was
observed [33].

The TERS measurements confirmed the correlation between areas of highest concen-
tration of electric field at the edges of the nanostructures with highest Raman response.
These results therefore strongly suggest that selective localization of probe molecules on the
nanostructured sensor surface could indeed improve SERS sensing performance, especially
at low target concentrations.

3.2. SERS Measurements on Samples with Spatially-Localized Surface Functionalization

As described in Figure 8a, we developed a method for spatially-localized surface func-
tionalization that simply adds a simple step to our nanodisk array fabrication process [2].
The method greatly simplifies spatially-localized surface functionalization compared to
previous work by others [42–45], though the surface chemistry must be compatible with
immersion in acetone. Following e-beam lithography (step 1) and gold deposition (step
2), thiophenol was deposited homogeneously on the sample surface by incubation as de-
scribed above (step 3). The resist (grey material in the figure) was then removed by lift-off
in acetone (step 4), leaving only the disk top-edge surfaces with thiophenol functionaliza-
tion. TERS measurements between the disks 24 h after step 4 confirmed that there was no
measurable migration of thiophenol to the areas between the disks by surface diffusion
so that the surface functionalization was stable over time (Supplementary Figure S4). As
shown in step 5, homogeneously functionalized reference samples were obtained by post-
processing with a second incubation in thiophenol. In the case of reference samples (on
the left of Figure 8a), the lift-off process precedes the surface functionalization, resulting in
homogeneous surface coverage.

The ratio of Raman signal intensities measured at steps 4 and 5 for the 1075 cm−1

peak, QSERS, was used to assess the effectiveness of the spatially-localized functionalization

on the SERS response, QSERS =
Istep4
Istep5

(example spectrum shown in Figure 8b). A ratio
of QSERS = 1 implies that the second surface functionalization at step 5 did not add any
significant signal contribution, and hence, that most of the Raman signal came from the
selectively functionalized disk edges and top surfaces. A ratio of QSERS < 1 implies that
the functionalization between the disks added non-negligible Raman signal contributions.
QSERS values were calculated for three excitation wavelengths (633, 660, and 785 nm) for
220 nm diameter disk arrays with three different periods (300 nm, 350 nm, 400 nm). As
shown in Figure 8c, a ratio of QSERS = ~1 was obtained in all cases (the error bars correspond
to an average of 10 spectra for each combination of wavelength and period obtained from
distinct regions of the disk array encompassing four disks on average, typical standard
deviation of ~10%). The experiment was also performed on arrays of 110 nm diameter
disks and yielded similar results (see Figure S5 in the Supplementary Materials).

The sensor “capture efficacy” afforded by functionalization selectivity can be quanti-
fied by the fill factor, ρ (functionalized proportion of total surface area), defined as the ratio
between the disk top surface area and the square of the array periodicity: ρ = (πD2)/(4P2).
Disk vertical walls were neglected because of the high form factor (height� diameter). For
220 nm diameter disks with a 400 nm periodicity, the fill factor was 23.8%, corresponding
to gain of 4.2 (1/ρ) in capture efficacy. As such, under conditions of very low target concen-
tration, i.e., where the bulk concentration of target molecules is insufficient to saturate the
sensor surface, the SERS response of a selectively-functionalized nanostructured sensor
could be up to 4.2× greater compared to a homogeneously functionalized device. Note that
110 nm disks with a 400 nm periodicity yielded an even lower fill factor (5.9%). However,
compared to the 220 nm disk arrays, such small dimensional disk arrays are difficult to
fabricate and would not be as well suited in practice to mass production. In addition to
the increased sensor capture efficacy via spatially-selective surface functionalization, the
SERS response under conditions of low target concentration could be enhanced further
with tapered nanostructures [46] that produce stronger local fields compared to rounded
structures, such as bowties [47,48], suspended bowties [49], or dimers with nanogaps [50].
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However, there are still significant fabrication challenges involved in producing such
structures uniformly over large surfaces at scale.
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a lift-off process; (b) superposition of reference, spatially-localized (step 4) and homogeneous (step 5)
functionalization SERS spectra (an offset on the y-axis was applied to overlay the spectra); (c) ratio of
SERS intensity (QSERS) obtained for spatially-localized and homogeneous functionalization at three
excitation wavelengths (633, 660, and 785 nm) and three disk array periods (300 nm, 350 nm, 400 nm)
for the 1075 cm−1 peak.

4. Conclusions

This work demonstrates the enhancement in SERS sensing efficacy resulting from
spatially-localized functionalization, whereby probe molecules are concentrated in areas
of high field concentration on the nanostructured sensor surface. As a result, under
conditions of low target concentration, the SERS response will be enhanced compared to a
homogeneously functionalized device. TERS measurements with 10 nm spatial resolution
confirmed the field distribution profiles atop the nanostructured surface predicted by
the numerical modeling. Comparison between SERS measurements from surfaces with
homogeneous and spatially-localized functionalization confirmed that the Raman signal
originates mainly from the areas with high field concentration (nanodisk edges). A simple
method for spatially-localized functionalization involving a single additional step in a
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standard nanofabrication process was demonstrated, though the surface chemistry must
be compatible with an acetone-based lift-off process. Though the enhancement in sensing
efficacy was demonstrated with SERS, these results apply equally well to any type of
optical/plasmonic sensing on functionalized nanostructured surfaces.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12203586/s1. Additional SERS and TERS measurement results
on 220 nm diameter disk arrays, as well as for 110 nm diameter disk arrays (AFM measurements,
TERS characterization). Figure S1: AFM pictures in 2D and 3D views of the gold nanodisks on gold
film for D = 110 nm and P = 400 nm.//Figure S2: TERS mapping of 220 nm gold nanodisks with 638
nm laser. Each region of the Raman spectra can be asso-ciated with area on the sample (a-b). Then,
we can superpose the area (c). In the TERS image, the pixel size is 10 × 10 nm2//Figure S3. TERS
mapping of 110 nm gold nanodisks with 638 nm laser. (b) Raman signal for three identified sample
regions: Top – Edge – Between.//Figure S4. TERS intensities signal obtained from the top (red curve)
and between (green curve) the nanostructures (220 nm gold nanodisks).//Figure S5. Ratio of SERS
intensities between the first and second functionalization for three excitation wavelengths (633, 660,
and 785 nm) for 1075 cm−1 characteristic peaks.//Figure S6. SERS spectra for two sizes of nanodisks
(D = 110 and 220 nm) with a period of 400 nm. Three excitation wavelengths were used at 532, 638,
and 785 nm.
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