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ABSTRACT

A multi-fidelity surrogate modelling approach for shape optimization, which relies on adaptive techniques to
obtain good performance for a large range of problems, is presented and critically evaluated. Furthermore, an
approach to adaptive selection of the fidelity levels to be used is presented. Adaptation is shown to be effective for
solving complex problems. Finally, potential improvements in the noise canceling, the uncertainty estimation,
and the adaptive sampling are identified.

1 INTRODUCTION

Multi-fidelity surrogate modelling is a promising method for simulation-driven design optimization (SDDO),
especially when high-quality optimization based on accurate physics-based models, such as CFD, is desired.
The addition of inexpensive low-fidelity data can greatly reduce the total cost for the optimization [1]. However,
the behavior of a multi-fidelity method depends strongly on the simulation data which form its input. Factors
such as numerical noise, the number of dimensions, the optimum shape, and the number of local optima all have
an influence on the best optimization strategy for a given problem. Thus, a consensus appears to be forming in
the research community, that there is not one unique multi-fidelity method which is suited for all problems.

It is our conviction that the only way to obtain a general shape optimization methodology which does not require
extensive tuning by the user, is through adaptivity. Ideally, each component of the optimization algorithm should
have the capability to adjust its behavior to what the data require. This is the long-term objective of our research.

The current document is intended as a discussion paper on the subject of adaptivity. We briefly introduce
our current multi-fidelity learning approach (section 2) and flow solver (section 3), focusing on their adaptive
elements. Then, the behavior of the method for different analytical and SDDO problems is shown in section 4.
Finally, in section 5 we discuss the strengths and weaknesses of the proposed adaptive algorithms and deduce
new research directions for the further evolution of adaptive multi-fidelity SDDO.
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2 MULTI-FIDELITY ACTIVE LEARNING METHOD

2.1 Multi-Fidelity Setting

Consider x ∈ RD as a design variables vector of dimension D. Let the true merit function to be optimized
f(x), be assessed by N fidelity levels: the highest-fidelity level is f1(x), the lowest-fidelity is fN (x), and
the intermediate fidelity levels are {fi}N−1

i=2 (x). Using ˜︁· to denote surrogate model prediction and ˆ︁· for
multi-fidelity prediction, the MF approximation ˆ︁fi(x) of fi(x) (i = 1, . . . , N−1) is the sum of the lowest-fidelity
surrogate and surrogates of the errors (inter-level errors or bridge-functions, ˜︁ε(x)) between subsequent levels

ˆ︁fi(x) = ˜︁fN (x) +
N−1∑︂
k=i

˜︁εk(x). (1)

For each i-th fidelity level the training set is Ti = {xj , fi(xj)}Jij=1, with Ji the training set size. The resulting
inter-level error training set is defined as Ei = {xj , εi(xj)}Jij=1, where

εi(xj) = fi(xj)− ˆ︁fi+1(xj). (2)

The surrogate models are based on stochastic radial basis functions (SRBF) which provide both the prediction
and its associated uncertainty [2]. If the uncertainty U ˜︁fN of the lowest-fidelity prediction is uncorrelated with
the uncertainty U˜︁εk of the inter-level error predictions, the uncertainty U ˆ︁fi of the MF prediction can be evaluated
as (i = 1, . . . , N − 1)

U ˆ︁fi(x) =
⌜⃓⃓⎷U2˜︁fN (x) +

N−1∑︂
k=i

U2˜︁εk(x). (3)

2.2 Stochastic Radial Basis Functions with Least Squares Approximation

Given a (single-fidelity) training set T = {xj , f(xj)}Jj=1, the SRBF surrogate model prediction ˜︁f (x) is
computed as the expected value (EV) over a stochastic tuning parameter of the surrogate model [2], τ ∼ unif[1, 3]

˜︁f (x) = EV [g (x, τ)]τ ,

g (x, τ) = EV [f ] +

M∑︂
k=1

wk||x− ck||τ ,
(4)

where f is the vector of training data, wk are unknown coefficients, || · || is the Euclidean norm and ck are the
RBF centers, with k = 1, . . . ,M and M ≤ J . Noise reduction in the training set is achieved by choosing a
number of RBF centers M smaller than the number of training points J , and the ck coordinates are defined via
k-means clustering [3] of the training points coordinates. wk are determined with least squares regression by
solving w = (ATA)−1AT(f −EV [f ]), where the M × J matrix A contains the values of the M kernels in the
J training points. The optimal number of stochastic RBF centers (M⋆) is defined by minimizing a leave-one-out
cross-validation (LOOCV) metric [4].
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2.3 Initial Training Set and Bounded Surrogate Model

The reduced initial training set (RS) [5] is used: except on the lowest fidelity level, where the domain center
and the centers of the boundary faces are sampled, the surrogate models are initialized with only a point in the
domain center. For the error surrogate models, this requires a SRBF surrogate which can handle extrapolation.
Therefore, a bounded surrogate model prediction and uncertainty (both identified with the B subscript) are
defined as˜︁εBi(x) = ˜︁εi(x) [1− si(r)] + EV[εi]si(r), (5)

U˜︁εBi
(x) = min(U˜︁εi ,EV[εi]), (6)

where a sigmoid-like function s(r) is used to provide a smooth transition between the SRBF prediction and the
bounded prediction:

s(r) =
1

1 + eα(r−γ)
. (7)

For the present work, α = −75 and γ = 0.2. To define r, the smallest hyperrectangle (whose edges are parallel
to the Cartesian coordinated axis) containing the training points is defined and r is the Euclidean distance of x
from the hyperrectangle boundaries.

The definition of U˜︁εBi
(x) stems from the consideration that the error surrogates represent errors in the simulation

results. Therefore the average error can be used as reference for the surrogate model prediction uncertainty
when an extrapolation is performed. This is acceptable since great precision is not required far away from the
high-fidelity points; the most important requirement is, that the uncertainty remains bounded.

2.4 Active Learning Method

The MF surrogate model is dynamically updated by adding new training points. First, a new training point x⋆

is identified based on a modified version of the Lower Confidence Bound (LCB) [6] infill criterion presented in
[7], which samples points with large prediction uncertainty and small objective function value:

x⋆ = argmin
x

[︂ ˆ︁f(x)− U ˆ︁f (x) + Px(x)
]︂
. (8)

Px(x) is a penalization factor based on the distance from the existing training sets (considering all the fidelities)
to prevent the sampling of already sampled points. Once x⋆ is identified, the fidelity used for the evaluation of
f(x⋆) is selected. The new training point is added to the k-th training set Tk and to the lower-fidelity sets from
k + 1 up to N , where k = maxloc(ϕ) and the elements of ϕ are:

ϕi =

⎧⎨⎩
√︂

U2ˆ︁εi−MSEi

βi
, if MSEi < U2ˆ︁εi ,

Uˆ︁εi
βi

, if MSEi ≥ U2ˆ︁εi ,
ϕN =

⎧⎪⎨⎪⎩
√︂

U2˜︁fN−MSEN

βN
if MSEN < U2˜︁fN ,

U ˜︁fN
βN

if MSEN ≥ U2˜︁fN .
(9)

Here βi = ci/c1 with ci the computational cost associated to the i-th level and c1 the computational cost of the
highest-fidelity. MSEi is the mean-squared error computed as

MSEi =

⎧⎨⎩
1
Ji

∑︁Ji
j=1 [εi(yj)− ˜︁εi(yj)]

2 if i < N,

1
JN

∑︁JN
j=1

[︂
fN (yj)− ˜︁fN (yj)

]︂2
if i = N.

(10)
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The inclusion of the MSE term aims to better distribute the available budget of function evaluations among the
fidelity levels. Indeed, when the least-squares regression is accurate for a fidelity and the surrogate prediction
uncertainty decreases below the average noise variance in the training set, it is not interesting to continue
sampling that fidelity level, since the surrogate prediction is already accurate compared with the noise affecting
the training set. Thus, adding more (noisy) training points will not improve the surrogate model accuracy.

3 FLOW SOLVER AND ADAPTIVE SIMULATION

Simulations to generate the input data are performed with the Navier-Stokes solver ISIS-CFD [8] developed
at ECN – CNRS, available in the FINE™/Marine computing suite from Cadence Design Systems. ISIS-CFD
is an incompressible unstructured finite-volume solver for multifluid flow. The velocity field is obtained from
the momentum conservation equations and the pressure field is extracted from the mass conservation constraint
transformed into a pressure equation. Free-surface flow is simulated with a conservation equation for the volume
fraction of water, discretized with specific compressive discretization schemes.

Adaptivity is essential to the simulations: the computational grids are created through adaptive grid refinement
[9], which is used to take into account the need for several fidelities of the MF method (Fig. 1). The interest
of this procedure is that different fidelity results can be obtained by running the same simulations and simply
changing the refinement threshold, a parameter which determines the global mesh fineness.

(a) (b) (c)

Figure 1: Adapted ISIS-CFD grids for the NACA problem of section 4.2: (a) high-fidelity, 12.8k
cells, (b) medium-fidelity, 5.7k cells, and (c) low-fidelity, 3.6k cells.

4 NUMERICAL TEST PROBLEMS

Numerical tests are presented to demonstrate the strengths of the current method, as well as its open issues.
The MF SRBF method presented here (labeled RS-MSE) is compared with a method (labeled RS) where the
correction with the MSE is removed from Eqs. (9) and with one (FS) where furthermore, the RS is replaced by
a full startset on all levels. The optimization results are assessed by three error metrics [10], namely Ex and Ef

evaluate design and goal accuracy, respectively. These comparisons are performed at the same computational
cost CC which is taken proportional to the training set sizes Jl: CC = J1 +

∑︁N
l=2 βlJl.

All these test results have been published before [5]. For brevity, the detailed problem definitions and error
metrics are not given here, but the original references are provided for those readers who are interested.
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4.1 Analytical Test: Paciorek Problem

This two-dimensional optimization test is defined with two fidelity levels. This problem poses several challenges
(see Fig. 2): first, it has multiple optima located on the loci x1x2 = 2/(3π) and x1x2 = 2/(7π), and second, the
LF and HF optima are in different locations, which is a danger for multi-fidelity methods which rely too heavily
on LF data. Finally, the LF data are perturbed by adding synthetic noise having a normal distribution with zero
mean and variance equal to 10% of the high-fidelity function range.

(a) High-fidelity f1(x) (b) Low-fidelity f2(x)

Figure 2: Paciorek test problem. The dashed lines show the two loci with the lowest f1(x) value
(the x1x2 = 2/(7π) locus is in the neighborhood of the bottom-right corner).

In [5] we present a statistical analysis of results, created with 25 different realizations of the random noise; here
the main results are reported. The evolution of the sample sizes over the course of the optimization (see Fig.
3a) shows the higher number of LF samples at the start (below CC = 10) for both RS and RS-MSE, indicating
that the reduced startset not only decreases the cost of the initialization, but also encourages early adaptive
exploration with low-fidelity samples only. This is followed by a larger increase of HF samples for RS-MSE,
since LF sampling is discouraged once the LF uncertainty approaches the noise level.

Figure 3b-c shows box plots of the error in the optimum position Ex and value Ef . The RS and RS-MSE
approaches achieve lower median values than the FS approach, while RS-MSE performs the best; its median
result is an almost exact optimum. However, the FS approach has the smallest interquartile range. Thus, FS is
consistent, but it is consistently wrong: the information in the large initial sample set forces the optimization into
a fixed, but suboptimal direction. RS with its greater freedom performs better, but its reliance on LF data also
leads to some bad results, since the LF optimum does not correspond to the HF one; hence the large inter-quartile
range for this approach. Finally, RS-MSE with its initial LF sampling and final emphasis on HF samples provides
the most consistently good results.

In Fig. 4 the collocation of HF samples with respect to x1x2 is studied: the quantity ni is the number of elements
in each bin of width 0.017. The figure shows that FS requests most of its high-fidelity training point close to the
x1x2 = 2/(3π) locus and only a small quantity in the neighborhood of the x1x2 = 2/(7π) locus, negatively
affecting the final performance. The RS approach requests almost the same quantity of high-fidelity training
points between the two loci, in the position of the LF optimum. The RS-MSE approach requests for the highest
number of high-fidelity training points in the x1x2 = 2/(3π) locus and almost the same number of high-fidelity
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(a) Median of the training sets size versus
CC

(b) Ex (c) Ef

Figure 3: Analytical test, training sets sizes versus computational cost and box plots of the Ex

and Ef metrics.

(a) x1x2 quantity for J1 of FS (b) x1x2 quantity for J1 of RS (c) x1x2 quantity for J1 of RS-MSE

Figure 4: Analytical test, histogram of the x1x2 quantity for the high-fidelity training set (with ni

the number of elements in each bin).

samples in the second locus as the RS approach. This explains why the RS-MSE approach achieves the best
performance overall.

4.2 NACA 4-Digit Airfoil

The NACA 4-digit series is a family of airfoils defined by three design parameters: the thickness t, the maximum
camber value m, and the position of the maximum camber p. We optimize the airfoil shape for minimum drag
at a fixed lift. One- and two-parameter optimization problems can be defined by fixing some of the parameters
as necessary. The challenge of the problem is that the optimum shape has a thin leading edge, whose resolution
is highly dependent on the mesh. Therefore, the simulations are noisy, especially the low-fidelity ones.

Figure 5 shows the final iteration of a one-dimensional optimization (varying the maximum camber) from
[4], comparing single-fidelity (HF) optimization with two-fidelity (HF – LF) and three fidelity levels, where
an intermediate fidelity has been added. The three cases have the same total CC. Using a single-fidelity

14 - 6

PUBLIC RELEASE

STO-TR-AVT-354



PUBLIC RELEASE

ADAPTIVE SURROGATE MODELLING FOR HIGH-QUALITY OPTIMIZATION

surrogate model (see Figure 5a) the noise in the CFD outputs is negligible. Differently, the use of two fidelities
(see Figure 5b) introduces a significant amount of noise, negatively affecting the MF prediction. Finally, an
intermediate-fidelity level (see Figure 5c) provides more effective filtering of the noise. Still, in this case,
HF-only data produce the best surrogate model.
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ĈD UĈD T1
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(c) N = 3

Figure 5: NACA airfoil MF surrogate models for D = 1.

A statistical analysis based on 7 samples for a two-dimensional optimization (varying the maximum camber and
thickness) using three-levels of fidelity is presented in [5]. Figure 6 shows the final iteration for the FS, RS and
RS-MSE approaches. The FS approach has the same problem as for the analytical test case: the training points
are clustered around an incorrect optimum position (the true optimum lies in [0.3776, 0.0]). RS again shows
significant data clustering, but the points are better placed thanks to the less constrained initial exploration.
Finally, RS-MSE surprisingly provides a concentration of LF points, which are not exactly in the optimum
position but better placed than FS. This is confirmed by the box plots of the Ex and Ef metrics in Fig. 7: RS
achieves the lowest errors and FS the highest.

(a) FS (b) RS (c) RS-MSE

Figure 6: D = 2 NACA problem, response surface and training sets for the three approaches.

Thus, for the NACA SDDO problem, the RS-MSE approach performs worse than RS. This could be caused by
the limited number of low-fidelity samples in comparison with the analytical test problem. Another explanation is
that the MSE becomes larger than the uncertainty due to the significant noise for this test case, which deactivates
the procedure (Eq. (9)). As a preliminary check, this equation was changed to have zero uncertainty (e.g., Uεi = 0
or Uf̃N

= 0) if MSEi > U2
i ; the results show that the median numbers of high-, medium-, and low-fidelity

samples change from 2, 13, 134 to 6, 15, 96, respectively. Thus, this modification seems effective in forcing
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(a) Ex (b) Ef

Figure 7: D = 2 NACA problem, box plots of the Ex and Ef metrics.

the active learning towards higher fidelities in presence of noise. Nevertheless, when applied to the analytical
test with two fidelities it completely prevented the sampling of the lower fidelity. The optimal formulation of
RS-MSE is therefore an open problem.

4.3 DTMB 5415 Model

Finally, the hull shape optimization of the DTMB 5415 destroyer for minimal resistance RT [5] is presented.
Since this optimization of 3D free-surface flow is characterized by high computational costs, the problem is
solved only with the RS-MSE approach. The comparison with the FS approach is provided using the results
presented in [4]. Since both the adaptive surrogate modelling strategy and the CFD simulations have changed,
this does not provide a detailed assessment of one topic; rather, the comparison globally shows the progress that
has been achieved in the last two years.

Figures 8a/b present the multi-fidelity surrogate models at the last iteration of the active learning approach,
the MF training sets, and the predicted optima. The sampling strategies for the two approaches are significantly
different: RS-MSE performed an exploration of the domain using only low-fidelity samples, correctly identifying
the region of the minimum. The precision in this region is then increased using mainly medium-fidelity
evaluations; only two high-fidelity points are sampled, one of which is almost in the optimum location. Near
the end of the sampling, most points are added around the optimum. FS on the other hand, uses more HF points
spread around the parameter space. Not all these points are useful; note for example the set of points in the top
left corner, where a second minimum was suspected in the initial stages of the sampling. And while the data
points are clustered, none are placed directly around the optimum.

These differences are also reflected in the x⋆ convergence (see Fig. 8c). The CC of evaluating the startset
is 7.35 for FS and only 1.24 for RS-MSE which, combined with the efficient initial LF exploration, means
that RS-MSE has globally identified the optimum before FS finishes half its startset. The subsequent RS-MSE
convergence is fast and without oscillations, as medium- and high-fidelity points are added around the optimum.
The optimization has converged around CC = 15. The FS convergence is much more irregular, as it identifies
two incorrect optima before finally settling on the correct one around CC = 24.

Table 1 summarizes the performance of the FS and RS-MSE approaches, where the prediction error |Ep| is
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(a) FS, RT prediction (b) RS-MSE, RT prediction (c) x⋆ convergence

Figure 8: DTMB 5415 SDDO problem, multi-fidelity surrogate model prediction and x⋆

convergence for the FS and RS-MSE approaches.

Table 1: DTMB 5415 SDDO problem, summary of the results.

Approach CC x1 x2 ∆x% ∆f% |Ep|% J1 J2 J3

FS 24.0 0.5506 0.1330 26.2 -4.5 1.73 16 18 72
RS-MSE 18.4 0.5043 0.1525 37.2 -4.9 0.87 3 44 103

computed between the MF surrogate model prediction of the minimum and its numerical validation. Although
the CC is lower, the RS-MSE approach correctly identified the region of the minimum, using more low- and
medium-fidelity data than the FS approach. The prediction error is twice lower, which confirms that the surrogate
model is accurate around the optimum. Since a reference minimum is not available for this problem, two metrics
are used instead of Ex and Ef , namely ∆x and ∆f that quantify the exploration of the design space and objective
function reduction. The ∆x% value is larger for RS-MSE than for FS, meaning that the exploration for the
identification of the minimum moved further. Finally, the RS-MSE approach achieves a lower resistance than
the FS approach. Altogether, the RS-MSE optimization produces a similar optimum as the old FS result, in a
more robust manner. Overall, the use of RS-MSE in combination with improvements made to the ISIS-CFD
code [5], provided a reduction of the total wall clock time from 25 to about 11 days.

5 CONCLUSION: TOWARDS ENHANCED ADAPTIVITY IN MULTI-FIDELITY MODELS

The tests in section 4 show that the adaptive elements presented here are mostly successful. Progress has been
made with respect to our earlier work and the adaptive processes work as intended. Still, the development of
a fully adaptive and generally efficient multi-fidelity surrogate modelling approach requires more work. The
purpose of this section is to evaluate the current approach to determine which elements deserve to be retained
and which would benefit from further improvement.

Reduced Startset The RS approach is successful in all the cases where it is tested, improving the identification
of the minima and better distributing the high-fidelity samples in interesting regions of the domain. There
are three reasons for this. First, RS makes available a larger budget for the adaptive sampling to produce the
right training sets. Furthermore, the reduced startset encourages early exploration with low-fidelity samples,
unconstrained by high-fidelity data which may wrongly indicate sub-optimal regions. This early exploration
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leads to a reliable identification of the region of the minimum. Later on, thanks to the limits imposed on the
extrapolated high-fidelity uncertainty, sampling of high-fidelity data is concentrated in the observed region of the
minimum instead of the domain corners, which efficiently increases the precision in the region of the minimum.

While RS is not an adaptive technique, its success underlines the validity of the adaptive sampling; we can have
confidence in the idea of adaptively choosing the training points. Furthermore, RS and RS-MSE encourage
temporal as well as spatial adjustment of the MF sampling: optimizations are started with LF exploration and
finished with HF data around the optimum. The tests indicate that this may be a generally correct procedure.

MSE correction A key issue in choosing new datapoints is evaluating the gain obtained when a point is
sampled, usually in terms of the reduction in prediction uncertainty. In our classical approach for selecting the
fidelity to be sampled (based on Ui/βi only, compare with eq. (9)) it is implicitly assumed that the uncertainty
after sampling becomes zero, so the gain in uncertainty is equal to the uncertainty itself. In the presence of noise
however, this is no longer justified. There will always be a moment when a fidelity level is sampled so much that
new training points no longer add useful information, so the expected gain in accuracy becomes zero. Therefore,
a procedure like equation (9) where the sampling of a level is discouraged once the noise filtering is established
by an effective regression, is mandatory for surrogate model efficiency. However, the current MSE procedure
has mixed results in the tests and it may be possible to improve it.

Two issues could be addressed. The first one is the question of what to do when the noise variance is higher than
the prediction uncertainty. Currently, eq. (9) switches off the MSE correction in this case, restoring the possibility
to sample the ‘noisy’ level. According to section 4.2, it would be more logical to set ϕ to zero, but this choice
requires testing. The second point is that good noise filtering ought to be able to bring the multi-fidelity surrogate
model uncertainty below the noise level, so there is no reason why the noise level should be the cutoff point for
the higher fidelities. An alternative would be to multiply ϕ by an ‘impact factor’ which estimates the gain in
uncertainty when a point is added. Once this factor drops towards zero (i.e. the uncertainty stays the same after
sampling), the level is no longer to be sampled.

Noise filtering Given the amount of noise which can appear in simulations (see Fig. 5), some sort of noise
treatment is mandatory. As RBF surrogate models cannot use noise kernels like Gaussian processes, the least
squares approach with a reduced number of kernels is a logical choice. Furthermore, this technique adapts
itself to spatially varying noise, something that a standard GP formulation cannot do: regions with much noise
and close-lying sample points are likely candidates for clustering several points into a single RBF kernel, so
especially in these regions, the surrogate model will not go through all the data values.

However, the current clustering and cross-validation procedure is not optimal. First of all, it is slow since
the cross-validation metric has to be computed for several numbers of kernels M . Also, the response of the
cross-validation metric to changes in M is jittery, which means that the optimal M may change rapidly when
data are added. This is of course not good for the stability of the algorithm, and there is a risk of overfitting.
The introduction of a constraint to limit the variation of the number of centers among the iterations may trap the
LOOCV metric in a local minimum and limits the adaptation possibilities of the methods. Finally, the k-means
clustering may not be the ideal distribution of the RBF kernels. All these points will be addressed in the future.

Uncertainty estimation Since any adaptive measure is aimed at managing and reducing the prediction
uncertainty, accurate estimation of this uncertainty is the backbone of any efficient adaptive procedure. The
uncertainty estimation of Volpi et al. [2], based on the variance of a series of RBF fits with different kernels,
works well for us in practice. Among others, this estimation takes into account the behavior of the data,
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producing lower uncertainty in the ‘easier’ areas of the design space, where all the interpolations agree.
Furthermore, it naturally suits the noise filtering approach, since it predicts non-zero uncertainty in the noisy
training points because the LS surrogate models do not pass exactly through these points.

Still, in a noisy multi-fidelity context, there are issues with the current estimation. Notably, the multi-fidelity
uncertainty estimation (3) supposes that the uncertainties of the LF and error surrogate models are uncorrelated.
And while this is correct without noise, when the only uncertainty comes from the interpolation between the
data, it is no longer valid when the training points themselves are considered uncertain. The reason for this is
that the data for the error surrogate models are the difference between simulation results on two levels, so the
uncertainty in each simulation result affects at least two surrogate models.

For our approach, the choice of the error metamodel training set (2) is important. Isolating ˆ︁fi+1(xj) from this
expression and substituting it in the identity ˆ︁fi(xj) = ˆ︁fi+1(xj) + ε̃i(xj) results in:ˆ︁fi(xj) = fi(xj) + (˜︁εi(xj)− εi(xj)) .

This implies that the MF uncertainty U ˆ︁fi(xj) depends on the simulation noise in fi(xj) and on how well the
highest-level error surrogate model ˜︁εi can filter this noise; none of the lower-fidelity surrogate models have any
influence. Therefore, Eq. (3) is invalid in the neighborhood of the training points. An error estimation is needed
which takes into account that the uncertainty close to training points only depends on the highest-fidelity data in
that point, while the uncertainty far away from the training points depends on all the fidelity levels. A possible
way to handle this, instead of using (4) for each separate surrogate model, is to construct entire noise-filtered
multi-fidelity surrogate with standard RBF and different values of τ . The final surrogate model and its uncertainty
are then deduced from the EV and 95% confidence interval of these MF non-stochastic surrogate models.

A second issue with the uncertainty estimation is the appearance of training point clustering, which is seen in the
NACA test and, to a lesser extent, for the 5415. This is likely caused by two issues in the uncertainty estimation
(which drives the adaptive sampling): a) with the noise filtering and cluster-based LS fitting, the uncertainty
may not actually diminish when a training point is added, especially in a region where many training points are
already available. b) if the estimated uncertainty is too low, the adaptive sampling (8) is mainly driven by the
function value itself. In both cases, the addition of a training point will not change the behavior of the adaptive
sampling criterion, so in the next iteration, the neighborhood of same training point is sampled again, leading to
clusters of points.

Point a) may be improved by an uncertainty estimation which better evaluates the diminished uncertainty around
training points. The MSE correction is also fundamental for reducing this issue. For point b), the uncertainty is
underestimated if the true function lies outside the envelope of the RBF interpolations for different τ . For this
reason, the LCB method can set a weighting > 1 for the uncertainty. This is a possibility to explore.

HF only It is a fact of life that HF-only surrogate modelling is sometimes better than MF. The NACA
1-parameter test is an example. Therefore, we believe that a fully adaptive MF surrogate model should be
able to select the fidelities it uses, abandoning LF if necessary.

In principle, this is not that difficult. For any fidelity i < N , a single-fidelity surrogate model could be
constructed based on the data available on that level. Then the uncertainty of that surrogate model could be
compared with the MF surrogate model (3) to determine which of the two is the best choice. This optimal
surrogate model for that level can then be used as LF model for the next level, or the next level may again require
a single-fidelity model.
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The difficulty of this approach is to locally vary the choice of the surrogate model combination. Since HF data
are probably concentrated around the optimum, they cannot provide an effective surrogate model throughout
the domain, so it is difficult to create HF-only surrogate models which are valid everywhere. However, if
the LF surrogate model is used in some regions and not in others, then the resulting surrogate model may be
discontinuous, which is a major problem for optimization. Maybe a gradual blending of MF and single-fidelity
models could be envisaged?
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