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Abstract
To test a system efficiently, we need to know how good are
the defined test cases and to localize detected faults in the
system. Measuring test coverage can address both concerns
as it is a popular metric for test quality evaluation and, at the
same time, is the foundation of advanced fault localization
techniques. However, for Domain-Specific Languages (DSLs),
coverage metrics and associated tools are usually manually
defined for each DSL representing costly, error-prone, and
non-reusable work.
To address this problem, we propose a generic coverage

computation and fault localization framework for DSLs. Con-
sidering a test suite executed on a model conforming to a
DSL, we compute a coverage matrix based on three ingre-
dients: the DSL specification, the coverage rules, and the
model’s execution trace. Using the test execution result and
the computed coverage matrix, the framework calculates
the suspiciousness-based ranking of the model’s elements
based on existing spectrum-based techniques to help the
user in localizing the model’s faults. We provide a tool atop
the Eclipse GEMOC Studio and evaluate our approach using
four different DSLs, with 297 test cases for 21 models in total.
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Results show that we can successfully create meaningful
coverage matrices for all investigated DSLs and models. The
applied fault localization techniques are capable of identify-
ing the defects injected in the models based on the provided
coverage measurements, thus demonstrating the usefulness
of the automatically computed measurements.
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ware testing and debugging.
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1 Introduction
A multitude of Domain-Specific Languages (DSLs) are avail-
able nowadays to describe the dynamic aspects of systems
as behavioral models (e.g., see state machines, activity dia-
grams, and process models [5, 39, 41]). For such DSLs, the
environment should not only support creating and executing
behavioral models, but also dynamic Verification and Vali-
dation (V&V) techniques to assess as early as possible their
correctness [22]. As these techniques need model execution,
we focus in this paper on DSLs with operational semantics,
referred to as executable DSLs (xDSLs).

A prominent dynamic V&V technique is testing, which in-
volves executing systems and observing whether they act as
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expected. Some testing approaches are already proposed for
xDSLs which allow defining test suites for executable mod-
els. Among them, some are tailored for a specific xDSL [23,
29, 32, 35] and some others provide generic solutions to be
compatible with a wide range of xDSLs [14, 26, 27, 34, 50].
To test models efficiently, we need both to evaluate the

quality of the defined test cases, and to localize the model’s
faults when test cases fail. Both of these concerns can be
addressed by measuring the coverage of each executed test
case, i.e., the model elements involved in the test case execu-
tion. In the realm of programming languages, both coverage
metrics [1] and coverage-based fault localization techniques,
such as Spectrum-Based Fault Localization (SBFL) [49], have
existed for a long time. However, to our knowledge, these
concerns are still understudied when it comes to xDSLs, for
which coverage tools still have to be manually developed.

In this paper, we propose a generic framework for cover-
age computation and fault localization of domain-specific
models which is applicable to a wide range of xDSLs. Con-
sidering a test suite for an executable model, we analyze
the model’s execution traces to extract its covered elements
which compose the coverage matrix for the test suite. In
addition, our proposed framework allows language engi-
neers to customize the generic coverage measurements for
their xDSLs. Finally, we investigate the application of the
computed coverage measurements for fault localization in
executable models based on SBFL techniques.We reuse an ex-
isting collection of SBFL techniques from the literature [45]
for calculating the suspiciousness-based ranking of elements
of executable models.

The proposed framework is implemented for the GEMOC
Studio [9] that is a generic language and modeling work-
bench for xDSLs. We conducted an empirical evaluation of
our approach for four different xDSLs to assess its applicabil-
ity. In total, we wrote 297 test cases for 21 executable mod-
els with sizes ranging from 7 to 571 elements. We injected
faults into these executable models using a model mutation
tool [21] and we executed our approach for 1252 mutants of
the executable models. We observed that meaningful cover-
age matrices can be automatically constructed for the test
suites of all examined mutants and that it allows the applica-
tion of existing SBFL techniques for successfully tracking the
faulty model elements, thus demonstrating the usefulness of
the generically computed coverage measurements.

Paper organization.We provide the background and a run-
ning example in Section 2. Then we introduce our approach
in Section 3 and its supporting tool in Section 4. Section 5
presents the evaluation of our approach. Finally, related work
is given in Section 6 and Section 7 concludes the paper.

2 Background
In this section, we present the background and a running
example that will be used throughout the paper. At the end,
we discuss the motivation and the objectives of this paper.

2.1 Running Example: Arduino
Arduino1 is an open-source company proposing hardware
boards with embedded CPUs and an Integrated Develop-
ment Environment (IDE) to develop programs for the boards
in C or C++. However, an xDSL specifically defined for Ar-
duino would help in developing the Arduino programs using
required concepts rather than technical C instructions. In ad-
dition, such xDSL enables the simulation and the validation
of the boards before deployment. In subsequent, we present
the definition of an Arduino xDSL along with its usage.

2.2 Executable Domain-Specific Languages
A Domain Specific Language (DSL) with an operational se-
mantics is commonly referred to as an executable DSL (xDSL).
We call executable model, or xModel, a model that conforms
to an xDSL. An xModel is essentially a programwritten using
an xDSL, and which can be executed according to the xDSL
semantics. Additionally, the person who defines an xDSL
and the language user are often called language engineer and
domain expert, respectively.

An xDSL is at least composed of three parts: (𝑖) an abstract
syntax specifying the domain concepts of the xDSL and the
relationships between them; (𝑖𝑖) an operational semantics
enabling the execution of the xModels; and (𝑖𝑖𝑖) one or sev-
eral behavioral interfaces each specifying how to interact
with a running xModel. In this paper, we use the GEMOC Stu-
dio to specify and tool up xDSLs [9], but these considerations
also apply to other xDSL engineering platforms.

2.2.1 Abstract Syntax. Figure 1(a) presents an excerpt of
the abstract syntax definition of an Arduino xDSL2 using the
Ecore language [44] which is similar to the core of UML Class
Diagrams. The root element is a Project which may contain
several Board and Sketch elements. A Board represents an
Arduino physical board. It contains several DigitalPin each
associated with one Module such as LED, InfraRedSensor,
PushButton, and Alarm. The DigitalPin has a level attribute
which represents the state of itsModule. For example, when
the level for a DigitalPin connected to a PushButton is equal
to 1, it means the button is being pressed.

The intended behavior of the boards must be defined using
Sketch elements. A Sketch may contain a Block that may
comprise several Instructions such as ModuleAssignment
for changing the state of a Module, Delay for waiting a
specific amount of time, and Control instructions to define
conditional behaviors (e.g., using If or While).

1https://www.arduino.cc/
2Inspired from https://github.com/mbats/arduino
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detect(InfraRedSensor)         press(PushButton)
changeLevel(DigitalPin)    execute(If)
execute(Sketch)                        execute(While)
execute(ModuleAssignment)          execute(Delay)

<<imports>>Execution Rules

b

<<implementedBy>>

c

a

Figure 1. An excerpt of an xDSL defined for Arduino

Figure 2 shows a sample Arduino xModel, defined by in-
stantiating the abstract syntax elements. At the top, there
is an Arduino Board with 14 DigitalPins, four of them con-
nected to Module instances: a PushButton (button1), an
Alarm (alarm1), an LED (LED1), and an InfraRedSensor (ir-
Sensor1). The behavior of the board is defined in a Sketch
instance (shown in the bottom of Figure 2) as: “if button1 is
pressed, LED1 turns on (i.e., activating the alarm system), and
then if irSensor1 detects an obstacle, alarm1 alternates be-
tween noise/silence with a one-second delay (i.e., reporting
an intrusion)”. Note that (𝑖) pressing a button and sensing
an obstacle by a sensor means the level of their DigitalPins
is equal to 1; and (𝑖𝑖) turning on/off an LED and an alarm—
‘LED1=1’, ‘alarm1=1’, ‘LED1=0’, and ‘alarm1=0’ notations in
Figure 2—are ModuleAssignment instances. We intention-
ally inject a defect in this model where alarm1 should be
set to 0 but it is mistakenly set to 1, meaning that the alarm
turns on but does not alternate between noise/silence states
(highlighted in red in Figure 2).

2.2.2 Operational Semantics. An xDSL’s operational se-
mantics defines the possible runtime states of an xModel
under execution as well as a set of execution rules specifying

button1

alarm1

LED1

irSensor1

alarm1 = 1 alarm1 = 0 11000LED1 = 1

if button1 == 1

if irSensor1 == 1

1000 alarm1 = 0
LED1 = 0

Figure 2. An example Arduino xModel. It has a defect since
the alarm is not ringing as expected when the sensor de-
tects an obstacle (it is highlighted in red where alarm1 is
mistakenly set to 1)

how such a runtime state varies over time. As aforemen-
tioned, the DigitalPin has a level attribute which represents
the state of itsModule, such as whether the button is pressed
or the LED is on. This feature is the runtime state of an Ar-
duino xModel because changes of its value at runtime put
the model in different states.

Figure 1(b) provides some of the execution rules for the Ar-
duino xDSL. In general, for every class of the xDSL’s abstract
syntax that has a runtime behavior, at least one execution
rule must be defined to implement such behavior. For ex-
ample, the press rule implements the behavior of pressing a
PushButton. In accordance with the relationships between
the classes of the abstract syntax, the execution rules may
call each other as well to complement the xModel execution.

2.2.3 Behavioral Interface. A behavioral interface speci-
fies how to trigger the execution of an xModel and/or how to
interact with it during its execution [30], and is implemented
by the execution rules. For instance, Figure 1(c) presents a
behavioral interface for the Arduino xDSL. It comprises a set
of events, each containing a set of parameters. An accepted
event indicates a kind of request that can be accepted by an
xModel and an exposed event determines an observable re-
action of a running xModel. Accordingly, when executing an
Arduino xModel, it is possible to request for pressing a button
(using button_pressed event) and for detecting an obstacle
by a sensor (using IRSensor_detected event). Whenever
the value of the level feature of aDigitalPin changes during
execution, it will be exposed by a Pin_level_changed event.
With these facilities in place, we can simulate, debug, and
test the behavior of an Arduino xModel (such as the one in
Figure 2) before deployment.

2.2.4 xModel Execution Trace. An xModel’s execution
is captured in a trace that specifies which execution rules
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Test
Component

SUT
(Arduino xModel)

sensor_detected (irSensor1)

pin_level_changed (alarm1 == 1)

pin_level_changed (alarm1 == 0)

button_pressed (button1)

pin_level_changed (LED1 == 1)

Wait 1s

Figure 3. An example test case for the Arduino xModel

of its xDSL’s semantics are called by which elements of the
xModel [10, 11]. In Section 3.2.2, an example will be given.

2.3 Testing for xDSLs
xModels formally describe the behavior of a system. They can
be executed in the xDSLs’ supported modeling environment
to simulate such behavior. When the environments offer
V&V techniques (e.g., testing), it is also possible to ensure
the correctness of the xModel’s behavior as early as possible.
For example, Khorram et al. proposed a testing framework
for xDSLs [27]. Using this approach, we wrote a test case for
the Arduino xModel of Figure 2. As displayed in Figure 3, it
is defined as a scenario of exchanging data between a Test
Component and the System-Under Test (SUT), in our case
the Arduino xModel. The test data are instances of the events
specified by the behavioral interface of the Arduino xDSL.
The values of the events’ parameters are elements of the
Arduino xModel with values for their runtime features (such
as alarm1 element with value 1 for its level feature).

This test case checks whether the LED turns on when the
button is pressed and whether the alarm alternates between
noise/silence periods when the sensor detects an obstacle.
Due to the defect of the Arduino xModel, the first two asser-
tions pass but the last one fails; their corresponding arrows
in Figure 3 are highlighted in green and red, respectively.

2.4 Coverage
Coverage is a popular test quality measurement technique
that analyzes howmuch of the system under test is exercised
by a given test case based on a given criterion. There are
many coverage metrics in the literature, each observing the
system execution from a different perspective. For example,
in the context of programming languages, Statement cov-
erage metric computes the percentage of the statements of
the software that are executed and Method coverage metric
calculates the percentage of the methods that at least one of
their inner statements is executed [1].

2.5 Spectrum-Based Fault Localization (SBFL)
In the context of software debugging, SBFL is a popular fault
localization technique that uses the results of test cases and
their corresponding code coverage information to estimate
the likelihood of each program component being faulty (us-
ing specific arithmetic formulas) [18]. Depending on how
the coverage is computed (i.e., coverage metric), the exam-
ined components could be different. For instance, when SBFL
uses statement coverage for a Java program, it calculates the
probability of each program’s statement to have a fault [49].

2.6 Motivation and Objectives
In the context of xDSLs, there are generic testing approaches
that enable testing behavioral models [14, 26, 27, 34, 50]. To
perform testing efficiently, there is a need to evaluate the
quality of the defined test cases and to localize the model’s
faults in case of test failure. While these concerns are well-
addressed in the field of software testing by coverage com-
putation, it is still an understudied concern for xDSLs. In-
deed, coverage computation is both a means for test quality
measurement [1] and a foundation of SBFL techniques [49].
Leveraging coverage in the context of xDSLs is still a manual
task and is hitherto performed for specific DSLs [37]. As
there are plenty of xDSLs for designing systems of specific
domains [5, 39, 41] and as engineering of additional ones
for emerging domains is recurrent [33], there is a strong
incentive to conceive a generic coverage metric that could be
used to provide coverage computation and fault localization
means for any xDSL.

Regardless of the xDSL used for the definition of an xModel,
every xModel can be formally defined as a specific kind of
graph in which model elements are defined as nodes, and
different types of edges exist to specify containment, inheri-
tance, and cross-references [6]. When executing an xModel,
the result can systematically be captured in an execution
trace, using a fixed and generic format, which keeps track of
the xModel’s exercised elements. Based on this perspective,
and through an analysis of the xDSL definition itself, it is
apparent that we can adapt the node coverage metric—from
structural graph coverage criteria [1]—for the context of xD-
SLs, hence reasoning about the xModel coverage in a generic
way. Indeed, we can define a new coverage metric that gen-
erally considers xModels’ elements as software components
to be covered. Consequently, we can then leverage SBFL for
localizing the faulty elements of xModels based on such a
coverage metric. Therefore, to offer a generic coverage com-
putation and fault localization framework for xDSLs, we aim
for the following objective:
Objective 1 Generic coverage metric which computes the
coverage of xModels’ test suites considering the xModels’
elements as components to be covered.
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In addition to the generic coverage metric, specific cover-
age aspects may be required for particular xDSLs. Thus, we
also aim for the following objective:
Objective 2 Customization techniques for the generic cov-
erage metric which allow dealing with the peculiarities of a
specific xDSL while providing automation.
With coverage measurements at hand, we can offer fault

localization for xDSLs by adapting existing SBFL techniques.
Accordingly, we defined our third objective as:
Objective 3 Environment that supports the localizing of
faulty model elements by computing the suspiciousness-
based ranking of the models’ elements using the coverage
measurements.

3 Approach
In this section, we present our proposed framework.

3.1 Overview
Figure 4 displays an overview of our proposed framework.
Two roles are involved: a language engineer (at the top left
corner) who defines an xDSL according to the definitions
given in Section 2.2, and a language user (at the top right
corner) who defines xModels (using the xDSL) and test cases
for them. We assume there is an existing testing framework
(at the center) that (1) provides facilities for writing and
executing test cases for xModels; and (2) produces the results
of the tests along with the execution trace for the tested
xModel (such as [27]).

The first component of our framework, namely the xModel
Coverage Computation component, generates the coverage
matrix of each xModel’s test case (at the bottom left). The
coverage matrix is a list of elements from the xModel along
with their coverage status. Two sources of information are
used by this component. First, from the definition of the
given xDSL, the xModel Coverage Computation component
recognizes which classes of the abstract syntax are used by
each execution rule of the operational semantics. This is
required to recognize what are the “traceable” elements of
the xModel, i.e., elements whose execution may be captured
in the trace. Second, the xModel Coverage Computation com-
ponent analyzes the execution trace of the tested xModel to
extract the xModel’s elements that are captured in the trace,
meaning that they are covered by the test case.
The framework allows the language engineers to option-

ally define specific coverage rules for their xDSL (at the
bottom left corner). Accordingly, the xModel Coverage Com-
putation component uses such rules, if they are available,
to update the generated coverage matrix according to the
specific needs of the xDSL.
Based on the computed coverage measurements, addi-

tional techniques may be applied, such as test suite mini-
mization or fault localization. In this paper, we apply a set of
collected SBFL techniques taken from [45]. Thus, we provide

a second component (at the bottom center) that reads the test
results produced by the test execution engine and the cover-
age matrix constructed by our xModel Coverage Computation
component to generate the suspiciousness-based ranking of
the xModel’s elements. Such ranking helps in debugging the
xModel as it directly positions the location of the faults.

Lastly, the framework provides a Visualization component,
in which the test results, the computed coverage, and the
suspiciousness ranking are visualized.

3.2 Coverage Computation
In this section, we introduce a new coverage computation
metric for the context of xDSLs. It can be used for computing
the coverage measures for any xModel, regardless of the
xDSL used for its definition. To construct the coverage matrix
for an xModel using this metric, we need information about
the xModel execution. Such information can be accessed
from two main sources, including the definition of the xDSL
and the xModel execution trace.

3.2.1 Analyzing the xDSL Definition. As explained in
Section 2.2, given an xDSL, the execution of a conforming
xModel is performed by calls to the execution rules of the
xDSL’s operational semantics. Each execution rule uses spe-
cific classes of the xDSL’s abstract syntax. This means that,
when running an xModel, the execution of its individual
elements will be captured in a trace only if there is at least
one execution rule defined for either a direct or inherited
type of the element. Therefore, by analyzing the definition
of an xDSL, we can identify the classes of its abstract syntax
for which instances can be considered traceable, and thus,
whose coverage by a test case can be detected using an exe-
cution trace. Algorithm 1 shows this analysis with an xDSL
as input and a list of classes namely traceableTypes as output.
Its output will be used for the coverage computation of the
xModels which are defined by its input xDSL.

Algorithm 1: Finding the traceable types of an xDSL
Input:
xDSL.syntax: the abstract syntax of the xDSL,
xDSL.semantics: the operational semantics of the xDSL
Output :
traceableTypes: classes of the xDSL’s abstract syntax for which the
execution of their objects can be traced

1 begin
2 foreach rule ∈ xDSL.semantics do
3 traceableTypes.add (rule.class)

// Checking inheritance relationships

4 foreach class ∈ xDSL.syntax do
5 if class ∉ traceableTypes
6

∧
class.allSuperClasses → exists (c|c ∈ traceableTypes)
then

7 traceableTypes.add (class)
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defines
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Engineer

imports
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Fault Localization

Tests for an xModel

implemented by

Behavioral Interface

uses

Visualization
uses Test Result UI

uses
Test Coverage UI

uses

Fault Localization UI

reads

Figure 4. Approach Overview

3.2.2 Initializing the Coverage Matrix for the xMod-
els’ Tests. After running a test case on an xModel, we com-
pute its initial coverage using the xModel’s execution trace.
We described in Section 2.2 that such a trace is a sequence
of called execution rules on the elements of the xModel [10,
11]. Therefore, by analyzing the trace, we can extract the
xModel’s elements covered by the test case.

For example, we can run the test case of Figure 3 on the
Arduino xModel of Figure 2. This results in running the Ar-
duino xModel itself which is performed by calling rules of
the Arduino semantics (part (b) of Figure 1) as follows. When
the test case sends a request for pressing button1, first the
press(button1) rule is called, which results in a set of consecu-
tive calls: execute(sketch), execute(if), and execute(LED1=1)
that turns on the LED1 (calls changeLevel(LED1)) because the
button1 is pressed. Thus the first assertion passes (the first
green arrow in Figure 3). Subsequently, the test case requests
to put the irSensor1 in the state of detecting an obstacle
(sending sensor_detected(irSensor1) to the Arduino xModel).
This results in a call of detect(irSensor1) which triggers
the sequence execute(if), execute(alarm1=1) that turns on
the alarm (calls changeLevel(alarm1)), execute(delay) that
waits for 1000 milliseconds, execute(alarm1=1) that must
turn off the alarm—but due to the defect it does not— and
execute(delay) to wait 1000 milliseconds. So the second as-
sertion passes but the third one fails (the second green arrow
and the red arrow in Figure 3, respectively).
This set of calls is captured in an execution trace of the

Arduino xModel as shown on the top of Figure 5. Using this
trace, we can construct the initial coverage matrix of the
test case of Figure 3. As displayed on the bottom of Figure 5,
we consider the elements captured by the trace as “covered”
(highlighted in green) and the rest (highlighted in yellow)
will be examined in the next steps of coverage computation
as described next.

3.2.3 DSL-SpecificCoverageRules. As alreadymentioned
in Section 2.6, some xDSLs may require specific coverage

Figure 5. The coverage of Arduino xModel of Figure 2 by
the test case of Figure 3 based on its execution trace (covered
elements are highlighted in green, and yellow-highlighted
elements will be examined in the next steps)

metrics for their particular domain [37]. For example, decid-
ing if an element is covered is based on what we were able to
observe in the execution, i.e., captured in a trace. However,
it may also allow deducing that other elements (e.g., refer-
enced, contained by elements in the trace) can be considered
as covered as well.

To provide this customizability, our framework optionally
allows a language engineer to define a set of DSL-specific
coverage rules for a given xDSL (shown at the bottom left
corner of Figure 4). More specifically, we propose a dedicated
metalanguage for defining such rules whose concepts are
presented in Figure 6. Given the abstract syntax of an xDSL in
the form of a metamodel, a DomainSpecificCoverage can be
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defined for differentContexts each pointing to ametaclass of
the xDSL’s abstract syntax. For each Context, several Rules
can be defined and we are currently considering two families
of rules:

• Inclusion rules: a covered object, may induce that
other objects are covered as well (see CoverageOf-
Referenced and CoverageByContent rule types).

• Exclusion rules: an object is ignored from coverage
computation under a certain condition (see Ignore and
ConditionalIgnore rule types).

Given an object conforming to a Context (directly or by
inheritance), each type of rule acts as follows:

CoverageOfReferenced. From the coverage of the given
object, we infer the coverage of its referenced objects (i.e.,
the value of its reference feature). Accordingly, the type of
the reference will be added to the list of traceableTypes
(i.e., output of Algorithm 1).

CoverageByContent. Inferring the coverage of the given
object from the coverage of its contained objects (i.e., the
value of its containmentReference feature). The object is
covered if:

• multiplicity = ALL: all of its contained objects are
covered.

• multiplicity = ONE: at least one of its contained
objects is covered.

This rule also updates the list of traceableTypes by adding
the metaclass of the Context.
Ignore. The object will be ignored from coverage com-

putation, by considering it as “not-traced”, except when the
rule specifies not to ignore it if it conforms to the subclasses
of the context (ignoreSubtypes= false).
ConditionalIgnore. The object will be ignored from cov-

erage computation, by considering it as “not-traced”, when
it is contained by an object that:

• condition = INCLUSION: conforms to one of the
containerType classes.

• condition = EXCLUSION: does not conform to any of
the containerType classes.

These rules are applied in order repeatedly until a fixed point
is reached i.e., until the coverage matrix becomes steady.
For example, Listing 1 shows some of the rules we have

defined for the Arduino xDSL case. The CoverageByContent
rule specifies that a Block object is covered if at least ONE of
its contained Instruction elements is covered. According to
the definition of the Arduino xDSL semantics (Figure 1(b)),
there is no execution rule for the Expression class and its
conforming objects are evaluated inside the execute(If) and
the execute(While) rules. According to this information, we
defined a CoverageOfReferenced rule specifying that when-
ever an If object is covered, its condition that is an Expression

Figure 6. DSL-Specific Coverage Metamodel

1 DomainSpecificCoverage ArduinoCoverageRules{

2 Import metamodel arduino

3 Context Block{

4 CoverageByContent{

5 containmentReference instructions

6 multiplicity ONE

7 }

8 },

9 Context If{

10 CoverageOfReferenced {reference condition}

11 },

12 Context Module{

13 Ignore {ignoreSubtypes true}

14 }

15 }

Listing 1. Examples of Arduino-Specific Coverage Rules

is also covered. We also defined an Ignore rule to ignore in-
stances of Module in the coverage computation as they are
just representatives of physical elements.

3.2.4 Finalizing the Coverage Matrix for the xMod-
els’ Tests. At the last step of coverage computation, we
identify “not-covered” objects as follows. Given an object
with an unspecified coverage status, it is “not-covered” if its
type is traceable, i.e., contained in the traceableTypes list,
and “not-traced” otherwise. Please note that we computed
the traceableTypes in the previous steps, by analyzing the
xDSL operational semantics (Section 3.2.1) and running the
xDSL-specific coverage rules if we have any (Section 3.2.3).
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Object Type
Step1
Initial

Coverage

Step2
Updated
Coverage

Step3
Final

Coverage

button1 Push-
Button Covered Not-

Traced
Not-

Traced
if If Covered Covered Covered

button==1 Expression - Covered Covered

alarm1=0 Module-
Assignment - - Not-

Covered
Table 1. An excerpt of the coverage computation for the
running example (changes of the step in bold)

Finally, we generate a complete coverage matrix for the
whole test suite of the xModel by merging the coverage
matrices produced for each of its test cases.

3.2.5 Generating a Coverage Matrix for the Running
Example. An excerpt of the result produced by each of the
above-mentioned steps for some of the objects of the Ar-
duino xModel of Figure 2 is provided in Table 1. As can be
seen, (1) the button1 object is considered as covered after
trace analysis (Step 1), but is then ignored after updating the
coverage matrix by the Arduino-specific coverage rules (Step
2); (2) the if object is covered based on the trace analysis
(Step 1); (3) the button==1 Expression does not have any
status at first (Step 1) but it is then updated to covered after
running the Arduino-specific coverage rules (Step 2) because
when the if object is covered, its referenced expression ele-
ment must be considered as covered; and, (4) the alarm1=0
ModuleAssignment is not-covered by the test case (Step 3).
At the end, the final coverage matrix is equivalent to the
content of Table 1 modulo columns 3 and 4.

3.3 xModel Fault Localization
When a test case fails, it is hard to localize the defect causing
the failure. Accordingly, various fault localization techniques
are already proposed, like SBFL which is a coverage-based
approach [49]. As our proposed coverage computation frame-
work is generic regarding its supported xDSLs, it enables us
to offer SBFL for any xDSL as well.

In the realm of software testing, SBFL is usually applied at
the statement level, meaning that it uses the statement cover-
age of the program and calculates the suspiciousness of each
statement [49]. In this paper, we adapt SBFL for the context
of xDSLs, by substituting the notion of statement with the
more generic concept of element of an xModel. Accordingly,
considering a test suite of an xModel, our proposed xModel
Fault Localization component uses the execution result and
the coverage matrix of the test suite (i.e., generated by our
xModel Coverage Computation component) to calculate the
suspiciousness-based ranking of the xModel’s elements us-
ing SBFL techniques. Generally, each SBFL technique intro-
duces a formula that is based on a set of values (note that

we adapted them for the context of xModels) which are com-
puted from the test results and coverage information. For
example, a well-known formula is Tarantula [25] defined as:
(𝑁𝐶𝐹/𝑁𝐹 )/(𝑁𝐶𝐹/𝑁𝐹 + 𝑁𝐶𝑆/𝑁𝑆) where:

• NCF: number of failed test cases that cover the element
• NCS: number of successful test cases that cover the
element

• NS: total number of successful test cases
• NF: total number of failed test cases

SBFL follows the idea that the elements executed by more
failed test cases are more likely to be faulty, and the ones
executed by more passed test cases are less likely to have
a fault. Our approach supports 18 existing formulas which
have been collected by Troya et al. [45] by investigating
primary studies proposing concrete SBFL techniques.

3.4 Definition of Artifacts
To preserve the genericity of our proposed framework, this
section introduces a generic definition for its main artifacts
including, the test result, the execution trace, and the cover-
age matrix for the xModels’ tests. As Figure 7 shows, a test
execution result is captured as a TestSuiteResult for each Test-
Suite, comprising a set of TestCaseResult for each TestCase
with the value as PASS or FAIL. Each TestCaseResult pro-
vides a reference to the execution Trace of its tested xModel

Figure 7. Definition of Artifacts



Generic Coverage Computation and Fault Localization for DSLs SLE ’22, December 06–07, 2022, Auckland, New Zealand

i.e., a set of ExecutionStep, each specifying what execution
rule of the xDSL’s semantics is called by which object of the
tested xModel. Once coverage is computed for an executed
test suite, a TestSuiteCoverage is generated which includes
one TestCaseCoverage for each of its executed test cases.
Both of them have a list of ModelObjectCoverageStatus in-
stances, each specifies the coverage status of one object of
the xModel for the test case/test suite. The coverage status
is either COVERED, NOTCOVERED, or NOTTRACED.

4 Tool Support
We implemented our proposed framework as part of the
GEMOC Studio [9]. It is a language and modeling work-
bench for xDSLs, which is defined on top of the Eclipse
Modeling Framework (EMF) [44]. We used the testing frame-
work proposed by Khorram et al. [27] which itself uses a
generic execution trace management for xDSLs proposed by
Bousse et al. [10, 11]. All the components of the framework
(the xModel Coverage Computation, the xModel Fault Local-
ization, and the Visualization components in Figure 4), are
implemented in Java and are connected using the Eclipse
extension point mechanism.

The suspiciousness computation implementation is based
on that of provided by Troya et al. [45] for fault localiza-
tion in model transformations, now adapted for general
model elements. Currently, our tool supports 18 SBFL tech-
niques but adding new ones is possible in our framework.
Indeed within the literature, there are approximately 30 SBFL
techniques [18, 38, 49]. They all use the set of values ex-
plained in Section 3.3 (i.e., NCF, NCS, NS, NF) to compute
the suspiciousness-based ranking. Accordingly, any existing
formula defined using the aforementioned variables can be
added to the framework.
Figure 8 shows a screenshot of our tool running in the

GEMOC Studio modeling workbench, after executing a test
suite against the running example. The source code is accessi-
ble from a Zenodo repository [28]. In the project explorer on
the left, there are two projects, one containing the Arduino
xModel (shown in Figure 2) and another containing a test
suite written for it using the testing framework proposed
in [27]. All the artifacts of the tool can be persisted as XMI
files conforming to the format presented in Figure 7 upon the
request of the user—the user can select the related options in
the run configuration. For example, Label 1 in Figure 8 indi-
cates the generated files for the test execution result and the
test coverage. For each executed test case, a copy of its model
under test is also saved and its objects are referenced by the
generated ‘testCoverage.xmi’ file. We provided a graphical
view (label 2) for displaying the coverage measures com-
puted for the test cases as well as for their test suite (at top
center)3. For each element of the xModel under test, it shows
its coverage status for all the tests, green for COVERED, red

3Note that the test results view is not shown here due to space limitations.

for NOTCOVERED, and yellow for NOTTRACED elements.
Moreover, the last row (label 3) provides the percentage of
the traceable elements covered by each test case and also
by the whole test suite (i.e., 100 %). The user can also use
two filter options, one to find all the elements with a specific
coverage status (Coverage Filters on the left), and another to
find the coverage status for a specific type of the elements
(Model Element Filters on the left).

To run SBFL on the tested xModel, we provided another
graphical view titled “fault localization” (label 4). It lists
the traceable elements of the tested xModel, their cover-
age status by each test case, the test execution result (at
the last row), and the required values for calculating the
suspiciousness-based ranking. The view has a drop-down
list of the 18 supported SBFL techniques (Label 5). When a
technique is selected, the tool calculates the suspiciousness
score and the rank for all the model elements and shows the
results in the last two columns (label 6). Such ranking assists
the language users in debugging their xModels by providing
direct links to the location of the faulty elements.

For example, if we chose Phi as concrete SBFL technique,
it calculates the first rank for the secondModuleAssignment
of the second if condition of the Arduino xModel of Figure 2
where the defect is located (label 7). Therefore, the rank for
the faulty element is correctly calculated. However, there
are other elements with the same rank. This is a common
output returned by SBFL techniques, due to the so-named
tied elements [49]. There are some tie-breaking strategies in
the literature which are left to future work to be studied for
our context.

5 Evaluation
We performed an empirical study of our proposed frame-
work to answer the following research questions:
RQ1: How much genericity is supported by the framework
and how much customization is needed in order to have the
intended coverage computations for xDSLs?
RQ2: To what extent is the result of the coverage computa-
tion component valid?
RQ3: Can the generically computed coverage measurements
be used in fault localization techniques?

5.1 Experiment Setup
Setup for RQ1. For RQ1, we aim to investigate whether the
framework can be used for different xDSLs. Accordingly, we
chose four xDSLs from different domains:

• xFSM: A small language for designing Finite State
Machines for processing strings.

• xArduino: A language for simulating Arduino boards
and their execution logic (described in Section 2.1).

• xPSSM: A partial implementation of the Precise Se-
mantics of UML State Machines (PSSM) [40] which
supports modeling of discrete event-driven behavior.
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Figure 8. A screenshot of the provided tool running on the GEMOC Studio modeling workbench for the running example

• xMiniJava: A minimal implementation of Java based
on the MiniJava project [12], allowing the definition of
simple Java programs that can be executed directly by
an execution engine rather than JVM. Note that it is
not a typical xDSL and is defined just for experimental
purposes as we will see in the following.

As presented in Table 2, the considered xDSLs have differ-
ent sizes as the number of classes specified by their abstract
syntax and the number of Lines of Code (LoC) of their se-
mantics. On average, we defined 5 xModels using each xDSL
in different sizes, ranging from 7 to 571 number of objects. In
addition, using the testing framework of Khorram et al. [27],
we wrote a set of test cases per xModel, altogether, 297 test
cases for 21 xModels. The number of test cases for each
xModel ranges from 3 to 81.

Answering the first research question also requires run-
ning the fault localization component on each considered
xModel. To do this, there must be at least one defect in the
xModel and at least one of its related test cases must be fail-
ing. A well-known technique for producing faulty programs
is mutation in which small syntactic faults are injected into
a program using so-called mutation operators. The result is
a set of mutants that each is the program including some
defects. In our experiment, we used WODEL [21], a generic
mutation analysis framework which provides facilities to
define mutation operators for an xDSL, then it automatically
generates mutants for the xModels conforming to that xDSL.

As Table 2 presents, we defined cumulatively 184 mutation
operators for our considered xDSLs, and WODEL generated
a total of 1252 mutants for our 21 xModels. Afterward, we
filtered the generated mutants by keeping those killed by

their related test cases; a mutant is killed if at least one of its
related test cases is failed on it. Among 1252 mutants, 1079
of them were killed by our written test suites.

Setup for RQ2. One way to answer RQ2 is to compare
our coverage computation component with an existing cov-
erage tool. As xMiniJava is a Java-like xDSL, each xMiniJava
model is indeed a Java program and test cases of the xMini-
Java models can be defined as JUnit tests for the equivalent
Java programs. Sowe can compare our coverage computation
approach with an existing Java coverage tool. For this com-
parison, we have chosen CodeCover as it is an open-source
coverage tool supporting JUnit tests of Java programs [17].
Among different coverage metrics provided by CodeCover,
we use statement coverage as it is the closest to our metric.
CodeCover uses source code instrumentation approach to
compute statement coverage.

We transformed test cases of xMiniJavamodels—according
to Table 2, 77 tests for 6 xMiniJava models—to JUnit tests for
equivalent Java programs. We reused the Java programs [13]
provided by the MiniJava project.

Setup for RQ3. The third research question targets the
usage of our coveragemeasurements for the fault localization
component. For this, we need to assess whether our fault
localization component correctly ranks the faulty element
of an xModel as first. Accordingly, we used the 1079 killed
mutants provided in the setup for RQ1, and to know the
exact location of their injected fault, we used a tool named
EMF Compare [16] to automatically find the faulty element
of each mutant by comparing it with the original model.
However, we are not aiming for an empirical evaluation of
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xFSM xArduino xPSSM xMiniJava Total

xDSL Abstract syntax size (n. of EClasses) 3 59 39 76 -
Operational semantics size (LoC) 111 768 975 1042 -

Tested
xModels

Number of tested Models 5 6 4 6 21
Size range of tested xModels (n. of EObjects) 7-133 18-59 61-154 31-571 7-571

Test
Artifacts

Total number of test cases 45 22 153 77 297
Test case numbers range of test suites 7-16 3-4 22-81 4-25 3-81

Mutation
Analysis

Number of mutation operators 5 36 30 113 184
Number of generated mutants 289 458 324 181 1252
Number of killed mutants 194 457 308 120 1079

Coverage
Number of DSL-specific coverage rules - 8 13 4 25
DSL-specific coverage size (LoC) - 50 75 26 151
Number of test suites with computed coverage 45 22 153 77 297
Range of computed test suites’ coverage percentage 100% 100% 100% 98.08%-100% -

SBFL Number of fault localized mutants 194 452 304 119 1069

Table 2. Evaluation data at a glance

the performance of the different SBFL techniques and leave
this to future work.

Evaluation data is available in our Zenodo repository [28].

5.2 Evaluation Result
Answering RQ1. In the first research question, we aim to
evaluate whether the coverage computation and the fault lo-
calization facilities can be used for different xModels defined
by various xDSLs. Specifically, we are questioning the level
of required customization for each xDSL to have the intended
coverage measurements for their conforming xModels. To
answer RQ1, we used the prototype presented in Section 4
for 4 different xDSLs. For xArduino, xPSSM, and xMiniJava,
their operational semantics do not provide enough informa-
tion about the models’ executions required for realizing the
intended coverage measurements. To overcome this, we used
the presented DSL for defining coverage rules, and in total,
we have implemented 25 coverage rules of different types in
151 LoC. Therefore, using a few LoC, we efficiently realized
the intended coverage computation for our xDSLs.
Next, we executed the test cases on xModels, a total of

297 test cases on 21 xModels, and we observed that their
coverage has been computed successfully. To perform fault
localization using the SBFL facility, we run the 297 test cases
on the 1079 killed mutants, and then we used the SBFL tech-
niques to get the suspiciousness ranking of the elements of
1069mutants. As the examined xModels/mutants are defined
using different xDSLs, it gives us the confidence to conclude
that the framework provides the expected genericity feature.

Answering RQ2. This research question targets the va-
lidity of our proposed xModel Coverage Computation compo-
nent. To answer it, we compared the coverage matrix gener-
ated by our proposed component for the MiniJava tests with
that of generated by CodeCover for the statement coverage

of equivalent JUnit tests. For example, Table 3 lists the cov-
erage percentage for 5 randomly selected tests calculated by
each tool. With our approach, it is calculated by dividing the
number of covered model elements by the total number of
traceable elements while with CodeCover is the percentage
of covered Java statements. The slight differences between
the results are because of some additional lines of code that
CodeCover considers while they are not a statement (e.g., the
closing curly brace of if statements). We manually verified
that the coverage status of each Java statement by each JUnit
test is the same for its equivalent MiniJava element by its
related test, i.e., our approach provides the same result for
the end user. This result shows the validity of our approach.

Answering RQ3. For this question, we aim to evaluate the
usage of our generic coverage metric for subsequent tasks
such as fault localization. For answering this question, we
need to investigate whether our xModel fault localization
component correctly finds the faulty element of each mu-
tant using our computed coverage measures. Accordingly,
we checked the result of running the SBFL techniques on
1079 killed mutants from RQ1 to see the rank of the mu-
tants’ faulty element calculated by each SBFL technique. We
observed that for 1069 examined mutants (99 %), there is at
least one SBFL technique that calculated the rank of its faulty
element as first, hence emphasizing the usefulness of our

Test Cases Our Coverage CodeCover Coverage
test 1 23/33 = 69.70% 24/35 = 68.57%
test 2 7/36 = 19.44% 7/43 = 16.28%
test 3 28/49 = 57.14% 31/56 = 55.36%
test 4 51/54 = 94.44% 55/60 = 91.67%
test 5 46/119 = 38.66% 57/144 = 39.58%

Table 3. Coverage for a set of randomly selected tests
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coverage measurement. As said earlier, we leave the perfor-
mance evaluation of the different techniques as subject to
future work, but we could show that in principle the frame-
work allows employing SBFL techniques for xDSLs based on
our coverage measurements.

5.3 Threats to Validity
We identify threats to validity according to the 4 main cate-
gories defined by Wohlin et al. [48] as follows.

Construct Validity. The validity of our coverage compu-
tation was compared with one existing coverage tool. There
exist other tools like JaCoCo [24] and Cobertura [15]. In
future work, we will compare with these tools to further
support the validity of our code coverage computation.

Internal Validity. A recent survey on software fault lo-
calization [49] mentions that SBFL is incapable of locating
bugs that are caused by missing code. Accordingly, we ig-
nored mutation operators that define faults as removal of
xModels’ elements. This threatens the internal validity of our
study. To overcome this threat, extensions of our framework
with other fault localization techniques are required.

External Validity. In evaluating the genericity of our
framework, we only considered four languages, so there
is an external threat that the framework might not work
as expected for other xDSLs. Additionally, we defined our
framework considering the GEMOC Studio as a reference for
xDSL implementations. As there are other language work-
benches [20], additional studies are required to validate the
portability of our approach.

Conclusion Validity. In answering RQ3, we observed
that SBFL techniques can find the faulty element in an xModel.
However, it is not clear which technique outperforms the
other. This requires a deeper comparison between different
SBFL techniques in an empirical evaluation to investigate
their efficiency. This could also be useful in recommending
the best techniques that offer the best ranking of the faulty
elements given our coverage measurements.

6 Related Work
Several research efforts have proposed the use of existing
coverage techniques for specific modeling languages, e.g.,
see logic coverage for State Machines [19], data-flow cover-
age for executable UML models [46], branch coverage for
activity diagrams [7], among many others. To the best of our
knowledge, there is no generic coverage criterion for xMod-
els. Also, this topic is not yet discussed within the context of
language workbenches [20].

Other proposals are related to the implementation of test
coverage frameworks [8, 36, 43]. For example, Misurda et
al. [36] propose a tool for testing Java programs based on
execution paths to test coverage called Jazz. Bordin et al. [8]
introduce their tool Couverture which is able to measure

structural coverage by providing a virtualized execution plat-
form. Sakamoto et al. [43] propose an extensible tool called
Open Code Coverage Framework (OCCF), which supports a
set of test coverage criteria. In addition, OCCF supports the
addition of new test coverage as well as customization for
new programming languages. OCCF has a similar goal as
our approach, however, we rely on top of an existing tracing
framework, which allows us to directly compute coverage
measurements without instrumenting the xModels.

Some research efforts propose the application of SBFL to
specific modeling languages [37]. For instance, some studies
detect the faulty element in model transformations [31, 45].
Troya et al. [45] present an approach to apply SBFL to lo-
cate the faulty rule in a model transformation and evaluate
the effectiveness of their approach by comparing a large set
of different state-of-the-art SBFL techniques, which is also
reused in the context of our work. Li et al. [31] propose an
optimization strategy of SBFL by adding weight values to
the test models as well as statistical coverage information.
Raselimo & Fischer [42] present the usage of SBFL meth-
ods for context-free grammars based on a modified parser
which collects grammar spectra, i.e., the covered rules for
parsing a test case. We leave the application of our proposed
framework for such domains subject to future work.
In addition to the approaches that target model transfor-

mations, some approaches target finding faulty elements in
models. Wang et al. [47] propose the application of fault lo-
calization techniques for declarative models implemented in
Alloy. Other approaches detect errors in models with the use
of evolutionary algorithms. BLiMEA [4] and Ebro [3] detect
errors in models based on evolutionary algorithms. Arcega et
al. [2] compare these proposed tools for bug localization and
show that the combination of these tools outperforms ex-
isting approaches. None of these approaches consider the
operational semantics to detect errors, thus, our approach is
complementary to the others, and vice versa.
To sum up, current approaches for coverage metrics and

fault localization are mainly defined for GPLs or for one spe-
cific DSL. In this sense, with our framework, we aim to fill
this gap by proposing a generic model element coverage met-
ric for automatically computing coverage measures which
may be used in subsequent steps such as fault localization.

7 Conclusions and Future Work
We proposed a generic coverage computation and fault local-
ization framework for xDSLs. In our evaluation, we observed
that an automated and customizable framework for coverage
computation enriches the DSL definition with further V&V
techniques at a reasonable cost.
As future work, we consider defining new coverage met-

rics, providing further support for the definition of DSL-
specific coverage rules as well as detection of their conflicts,
and investigating the efficiency of different SBFL techniques
in the context of xDSLs.
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