N

N
N

HAL

open science

Automated Transcription of Electronic Drumkits

Martin Digard, Florent Jacquemard, Lydia Rodriguez-de la Nava

» To cite this version:

Martin Digard, Florent Jacquemard, Lydia Rodriguez-de la Nava. Automated Transcription of Elec-
tronic Drumkits. 4th International Workshop on Reading Music Systems (WoRMS), Nov 2022, online,

Spain. hal-03815760v3

HAL Id: hal-03815760
https://hal.science/hal-03815760v3

Submitted on 25 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03815760v3
https://hal.archives-ouvertes.fr

Automated Transcription of Electronic Drumkits

Martin Digard
Inria & Inalco, Univ. Sorbonne Paris-Cité
Paris, France
martindigard @proton.me

Abstract—We present a new approach for the transcription
of drum performances captured on a MIDI drum kit into
scores in conventional Western notation. It works by parsing
an input MIDI sequence into a tree-structured intermediate
representation, using formal language techniques, post-processing
using term rewriting, and finally exporting into an XML score
file in the MEI encoding. An experimentation was conducted on
the Groove MIDI Dataset.

Index Terms—Drum notation, Automated Music Transcription.

I. INTRODUCTION

Born in the twentieth century, drums have long gone without
music scores; Drummers were initially expected to improvise
rhythmic accompaniments based from their fellow musician’s
scores (e.g. from music style, chord progressions and melodic
themes). Later, with the emergence of drum schools such as
Dante Agostini Drum School in Europ a drum notation was
settled as a vector for the preservation of performances for
future references, and the transmission of different styles to
the apprentice or professional drummers.

Automatic Music Transcription is the problem of converting
a musical performance into a music score. The particular case
of drums has given rise to many studies recently, with a focus
mostly on transcription of audio signals to unquantized MIDI
files [[14]]. However, to our knowledge, fewer works, if any,
consider the problem of drum score production.

In this work, we study the problem of parsing drum per-
formances captured in MIDI into music scores conforming
to notation standards for drums, that are easy to read. Our
transcription procedure ought to align the input MIDI events
to discrete time values expressible with musical notation.
Moreover, simultaneously, the musical events obtained are
grouped into hierarchies of rhythmic structures. These two
tasks are performed jointly thanks to the use of a prior formal
language model, Section Since several input events
might be aligned to the same time position, an additional
difficulty is to determine whether such vertical grouping is
possible or not, Section Then (Section [[V), we perform
voice separation, and some post-processing by term rewriting
before score typesetting. We experimented this approach on
MIDI recordings of the GMD, Section

This work has been partly supported by Inria Explorary Project Codex and
JSPS KAKENHI Grant Number JP20H04302. The 1% author was a student
of Inalco and Inria at the first time of preparation of this work [4].

Uhttps://www.danteagostini.com

Florent Jacquemard
Inria & CNAM/Cedric
Paris, France
florent.jacquemard @inria.fr

Lydia Rodriguez-de la Nava
Inria & CNAM/Cedric
Paris, France
lydia.rodriguez-de-la-nava@inria.fr

II. PRINCIPLES OF DRUM NOTATION

We present in this section a notation for drum sheet music
in Conventional Western Notation (CWN). There is actually
no official standard, and we follow here the notation in the
drum lessons of the the Agostini Drum School (the first
European drum school) [1]] and the collection of drum pieces
by Juskowiak [10]. Other variants, like the one used in the US,
called universal, only differ by minor details described below
(see Figure [2). Other notation systems not based on CWN are
left out of the scope of this work.

A. Elements of Drum Kit and Modes

Fig. 1. The elements of a drum kits

In a typical drum kit (Figure[I)), the central part is the Bass
Drum (BD, also called kick), that produces the lowest pitch of
the kit, and is struck when stepping on a pedal with the right
foot. On its left (from a right-handed drummer’s point of view)
is the Snare Drum (SD), and 3 toms: from left to right, High
(HT), Medium (MT) and Floor (FT). The BD, HT and FT
might be doubled (it is not the case in Figure [I). The SD
and toms are played with drum sticks, in different modes: the
stick can either hit the head (i.e. the skin, the most common
case) or the rim of the SD or tom. These two modes can be
combined in particular SD techniques: in a rimshot the rim and
the head of the SD are hit simultaneously in order to obtain
a brighter and sharper sound; in a cross-stick (also denoted
X-stick), the tip of one stick is maintained against the head, in
order to attenuate resonance, while the other end of the stick
hits the rim. The detection of rimshots and cross-sticks by a
MIDI drum kit can be source of difficulties in the context of
transcription, see Section [[II-B

The Hi-Hat (HH), on the left of the SD, is made of two
cymbals that can be joined (closed) or disjoined (open) using a

https: //www.danteagostini.com

Agostini

L)) dddd 44

T n } } T > []
1] T T T = ;& EvJ T
T
X v ° ¢ -
HHP HHP BD BD2 FT FT2SD SD SD MT HT HT2 HH HH RC RC RC CC CH SC
close open rim X closed open bow bell edge
(splash) (crash)
Universal US) I R B I I O S
I T — 99 < 4 &% f
1 | T T T I & > b
] T > & hd
3 o

HHP HHP BD BD2 FT FT2SD SD SD MT HT HT2 HH HH RC RC RC CC CH SC
open rim X closed open bow bell edge
(splash) (crash)

Fig. 2. Pitches and note heads denoting the drum kit elements and modes.

pedal activated with the left foot. Each configuration produces
a different sound when the HH is hit with drum sticks. Closing
the HH with the pedal also produces a distinguished sound by
itself, with a specific notation (see below). There are different
kinds of cymbals: ride (RC), for steady beats and patterns
played either on the bow (the body) or the bell (the top part)
of the cymbal, and crash (CC) or splash (SC), generally struck
along the edge to produce an explosive sound (the drum kit
in Figure [1| has two CC). The RC can also be hit on the edge
to produce a crash sound. The SC are generally smaller than
the CC, and produce a higher tone.

In drum notation, every part of a drum kit is associated with
a specific pitch (Figure). The height of the pitch corresponds
roughly to the position in space of the instrument: the pedals
(BD and HH) have the lowest pitches, and cymbals the highest,
and the SD and toms are in the middle. Moreover, the shape
of the note head indicates the mode (rimshot, X-stick, bow,
edge or bell for cymbals...).

B. Dynamics

Notes with louder dynamics are marked with standard
accent symbols (see Figure [3). According to the related pitch,
it may indicate that a particular technique ought to be used.
On the opposite, the so called ghost notes, denoted within
parentheses, are played with low dynamics, although firmly.

C. Ornaments

A flam is a figure made of one grace note, played with
a significantly lower intensity and slightly ahead of one
normal or accented note (main note). It is denoted like an
acciaccatura (Figure [3)). It is executed with two hands, using
a particular drum technique producing a sound described by
the onomatopoeic term of flam. A flam can either be played on
one single element of the drum kit, or two distinct elements,
e.g. SD and a tom.

Most of the time, in drum notation, the rolls are quantified.
More common for the orchestral snare drum, the tremolo
notation should be denoted literally for drums.

D. Timings

Drum events are fransients: they have no duration. There-
fore, the usual symbols of CWN (flags, beams, ties, dots
and rest symbols) represent, in drum notation, the temporal
distance between one event’s start date (onset) and next event’s

> A }S
I I I T T 'y T T P P
1 1 1 1 = 1 1 7 Z
accent marcato ghostnote SD FT flam drag 16th-note 32nd-note
flam flam between (ot used) roll roll
HT and SD
Fig. 3. Accents, ghost notes, and flams.

mmmmﬂcmmmm
oy oL w

Fig. 4. Examples of voicing in drum scores

start date. Also, notehead cannot be used for scoring these
distances because of their variety of use in drum notation. For
examples, Jtis preferred overd.

To improve the readability of the score, as few symbols
as possible are used. For instance, the simple will be
preferred over o). Moreover, in order for the score to reflect
the drummer’s way of thinking, the notation is segmented by
pulse, for example, J 7 J’ is preferred over J. D

Although hi-hat openings are not considered as notes with
duration, the fact that they sound until they are closed is taken
into account in the scoring. Consequently, ties will sometimes
be used for HH notation (but not for the other elements).

E. Voices

As for most polyphonic instruments [8f], the notes in a
drum score can be grouped into voices, denoted by the
stem directions. In drum notation, voices are useful either
to separate note played with hands, on the staff top, from
those played with feet on staff bottom (Figure [] left), or to
distinguish between repeated rhythmic patterns (played e.g.
on HH or RC), and other elements played independently, in
a more sporadic way (Figure [4] right).

The voicing is generally defined a priori: every element
is assigned a fixed voice number and does not change voice
throughout the score.

III. PARSING MIDI DRUM PERFORMANCES

Our transcription process takes place in several steps. In
the first, and most important step, an unstructured MIDI input
is structured into a tree using parsing techniques. The input
is a sequence of timestamped note-on events in a MIDI file.
Note-off MIDI events are ignored in the case of drums.

A. Prior Weighted Rhythm Tree Language

The parsing is based on a prior language model whose aim
is to define the time positions in a score where the input
MIDI events can be aligned. In many quantization algorithms
in commercial software, such as Digital Audio Workstations
(DAW) or score editors, these positions are equidistant, defined
by a regular grid. Here, we define those time positions with
a generative Regular Tree Grammar (RTG) that reflects a
metrical hierarchy [15]. Intuitively, in such a model, the higher

the metrical weight of a time position, the more likely it is
going to attract an input event.

The RTG generates labeled trees by mean of non-terminal
(NT) remplacement, following production rules of one of
the forms: gy — a, where ¢y is a NT and a is a symbol
representing one or several output symbols in score (e.g. one
note or one flam), or o — b(q1,...,qr), where qo,...,qx
are NTs and b is a symbol representing an operation on time
intervals. We consider in particular two such operations:

— time division, partitioning a given closed time interval
I = [r,7'], into k > 2 sub-intervals Iy, ..., I; of same
duration T/k_ T (symbol by, - beamed and ug, unbeamed),
— new bar, partitioning a given open time interval I =

[T, 4+o0[into two sub-intervals I; = [7, 7+1[, of duration
1 bar and Iy = [7 + 1, +00] (symbol my).
Every tree t generated by the RTG defines nested time intervals
and the bounds of these intervals are the time positions where
input events can be aligned. Moreover, ¢ defines hierarchical
event grouping, represented by beams in the output score.
Some weight values, in a specific cost domain (min-plus
algebra S [[12]), are associated to the RTG’s production rules,
in order to evaluate, for every generated tree ¢, a cost (in S) of
readability for the corresponding notation. The RTGs used for
our experimental can be found in a repositoryﬂ and Figure @

B. Vertical Alignements

Several input events might be aligned to the same time
position defined by a tree. However, not every combination of
notes and flams can be played simultaneously by a drummer
with only 2 hands and 2 feet. Therefore, we define a language
of appropriate combinations of input events, using a Finite
State Machine (FSM) that cannot be described here because
of space constraints. Moreover, we have noticed some errors
in the captation of MIDI events in some modes. For instance,
it happens sometimes that a SD rimshot is captured, by the
MIDI sensors, as a X-stick closely followed by a standard
(head) SD. Such an unlikely combo is detected by our FSM
and corrected as a rimshot.

Like the RTG of Section the above FSM is weighted,
and its computation returns a value, in S, representing the cost
of alignment, of input events to a unique time point.

Finally, we select a tree ¢ that minimizes, in S, the combined
costs of readability, as defined by the RTG of Section [[II-A
and of cost of alignment, defined by the FSM of this section.
The selection is done by k-best parsing [9], in polynomial
time, using Dynamic Programming techniques.

IV. SCORE ENGRAVING

The tree ¢ obtained from a MIDI input in Section [II]
is converted straightforwardly into a tree-structured abstract
Intermediate Score Representation called Score Model (SM),
used for further post-processing, before exporting to XML.

A score model for drums is a sequence of measures, where
every measure is a set of voices, and every voice is a sequence

Zhttps://gitlab.inria.fr/transcription/gmdscores

JJdddd dddd

Agostini T |
p

T ——

b ——

yL Ld

HHP BD FT FT SD SD SD MT MT HT HT HH HH RC RC RC CC CC CC2 CC2

closed rim rim X rim rim closed open bow bell (edg%bow edge bow edge
crasl

48 50 42,22 46,22 51 53 59

k”f:‘ 4 36 38 40 87 43 47 49 55 57 52

Fig. 5. Mapping of MIDI key numbers for the Roland TD-11 electronic drum
kit (source: Groove MIDI Dataset).

of events, described by a rhythm tree (RT). The internal nodes
of a RT are labeled by a time division symbols as above, and
each of its leaves is labeled either by (), representing a tie or
a dot in the score, or by one note, one flam, or by a set of
notes, representing a chord in the score.

A. Score model construction and Voice separation

The estimation of note names and note heads is easy, since
there is a 1-1 mapping (Figure [5) between MIDI key values,
in 0..127, and pairs of pitches and note-heads of Figure [2]

The extraction of dynamics and accents, is based on the
velocity value of MIDI events, in 0..127.

The voice of every note is estimated, following the previous
principle, according to a prior partition of the elements of the
drum kit into voices. Hence, the subtask of voice separation,
is straightforward for drums, as opposed to the case of other
polyphonic instruments like piano [13]. From the tree ¢, we
extract one RT per voice, by projection, see Figure

B. Term Rewriting

The last step consists in post processing the resulted rhythm
trees. Each tree goes through transformations which are de-
fined by term rewriting rules [3]], which do not change pitches
and durations. A term rewriting rule is an oriented equation
that defines how one pattern will be rewritten to another.
For example, with the rule: bo(z,00) — =z, the last tree
b2 (BD, be(HHP,)) in Figure [7| (second voice) is rewritten
into by(BD,HHP), and b7+ is rewritten, in two steps, into J
Note that we are using term rewriting and not string rewriting:
rules are applied to tree structures. For instance, JJ v) will not
rewrite into SJ J because the second 8-th note and the rest
do not belong to the same subtree.

The purpose of this post processing step is to fix details
of rhythm notation [[11]. Drum notation particularly needs
attention since although notes do not really have a duration,
it is easier to read a score without too many rests. Fixing
such details during the parsing would significantly increase the
execution time, since rewriting is only applied on one score
model, instead of on each candidate parse tree.

V. EVALUATION
A. Implementation

Our parsing approach to drum transcription has been im-
plemented in a C++ librar We have developped a k-best
parsing algorithm with dynamic programming and tabulation
techniques, for finding efficiency the parse tree that best
corresponds to the input performance.

3https://gitlab.inria.fr/qparse/qparselib/

https://gitlab.inria.fr/transcription/gmdscores
https://gitlab.inria.fr/qparse/qparselib/

0 0 1 1 1
go — ma(q1, qo) go — Mg qs — C gs — C ge — C
q1l>c QQ;C Q4i>a qgi>a q6i>a
1 1 2 2 3.5
g1 — a q2 — a qa = f gs = f g — f
2 2 0.1 0.1 0.1
g = f g2 = f qs — ba(q2,qs) qs — ba(ges, ¢6) g6 — ba(q7,q7)
0.1 0.1 3.0 1
@1 — u2(g2,¢2) g2 — u2(qa,qa) q4 — b3(gs, qs, qs) qgr — ¢
3.0 3.0 0.15 1
@~ u2(q2,92,q2) g2 —> u3(qa,q4,qa) g2 — ba(gs, g6, G6, I6) qr —a

Fig. 6. Prior language model as a wRTG. g1 represents the level of a 4/4 measure, that can contain either one whole rest (c), one whole note (a), or one
flam (f), or can be divided into 2 halves or 3 thirds (triplet of half-notes); g2 represents the level of a half measure, g4 of a quarter note (beat level), and so
on. Finally, go represents the level over the bar, with a first rule to create one measure, in NT q;, and a second one to finish the score (mg is a double bar).

B. Dataset for Experiments

For our experiment, we used the Groove MIDI Dataset [/7|]
(GMD). Originally created with machine learning tasks in
mind, the dataset proposes 1,150 MIDI files, captured by
professional or semi-professional drummers, on an electronic
drum kit ROLAND T-11, performing with a metronome. The
performances are either short rhythmic fills, or full-length
rhythm sequences, according to a specific style (rock, funk,
jazz...). Overall, the GMD gathers over 22,000 measures of
drumming. A unique mapping assigns a MIDI pitch to each
of the parts of the drum kit, for all the MIDI file.

We used our code to transcript a selection of around 30 files
from the GMD, ranging through as many styles as possible,
and the shortest being only 4 bars, and the longest 261 bars.

The tempo, the style, and the time signature are given in
the file names of the GMD, and used for parsing. The audio
files of the dataset, synthesized from the MIDI files are not
used in our experiments.

C. Prior languages for evaluation

We have used essentially the same RTG (and one variant)
for all the transcriptions performed during our experiments.
These RTGs specify possible drum notations, by restricting
metrical divisions, for measures in 4/4, as drum score are often
written in this time signature. Figure [6] presents a simplified
version of these RTGs. Each NT replacement rule of this RTG
defines either a time division, or the creation of a terminal
symbol, representing output events.

The RTGs used for conducting our experiments were not
trained specifically for the GMD. In particular, the weight
values are chosen arbitrarily, following roughly the principles
that: every symbol like c or a induces a weight value of 1 (see
the 2 first rules of every column of Figure [6), and that triplets
are penalized compared to binary divisions (see rules 5 and 6
in the first and second column of Figure [6). Moreover, flams
are more penalized for short notes than for longer ones (rule
4 in the first and second column of Figure [6). By lack of the
digital drum scores corresponding to the MIDI performances
in the GMD, we were not able to train a RTG model with
grammatical inference techniques similar to, e.g. [2], [6].

bo bo b
7 N Ve AN Ve N
(RC,BD) b, =3 RC ba BD b
7 N / \ /7 N
(RC, HHP) (RC) RC RC HHP 0

Fig. 7. On the left, the tree corresponding to the first beat in Figure 4} On
the right, the trees for each voice () represents a rest).

D. Evaluation

A quantitative evaluation of our transcription results would
require, for each MIDI file, one corresponding reference score.
Such ground truth does not exists for the GMD. Ideally, it
would be prepared by professional drummers, but transcribing
by hand each of the 1,150 MIDI files of the GMD seems
unrealistic, considering in particular the size of files. Moreover,
in our case, evaluation cannot by conducted by comparing
MIDI files, like e.g. in [14], but would require a tool to diff
XML score files, like [5].

To propose a qualitative evaluation, we used other common
softwares for music score edition, with the same MIDI files,
and visually compared the results. Overall, we found that our
algorithm produces scores that are easier to read and closer
to expectation. We have gathered all these results on GitLab
reposito, with all the MIDI files and the corresponding
transcription in MEI, and a table of all the parsing times.

VI. CONCLUSION

We presented our first experiments for the automatic tran-
scription of drum performances, by parsing a MIDI input into a
structured score model, which can be exported to XML/MEL
Our first results are already promising, although the output
scores have some errors, sometimes because of sensor bugs
from the drum kit, and sometimes because of the parsing.

Our future objective is to create a complete dataset of drum
scores from the GMD, initially transcribed by our parsing
technique, then manually corrected by a professional drummer.
This dataset could be a companion for the Groove MIDI
dataset to use as a base to evaluate drum transcriptions, as
well as for OMR for written drum contents.

[1]
[2]

[3]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

REFERENCES

D. Agostini. Studies for the Drums, volume 1-4. Editions Dante
Agostini, 7 bis rue Thénard, F-89100 Sens, 1977.

J. F. Bernabeu, J. Calera-Rubio, J. M. Iiesta, and D. Rizo. Melodic
identification using probabilistic tree automata. Journal of New Music
Research, 40(2):93-103, june 2011.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume volume
B: Formal Models and Semantics, chapter 6, pages 243-320. North-
Holland, Amsterdam, 1990.

M. Digard. Modélisation d’un systeme de formes rythmiques pour la
transcription automatique de la batterie. Master’s thesis, Institut National
des Langues et Civilisations Orientales, 2021.

F. Foscarin, R. Fournier-S’Niehotta, and F. Jacquemard. A diff procedure
for music score files. In 6th International Conference on Digital
Libraries for Musicology (DLfM), page 7, The Hague, Netherlands, Nov.
2019. ACM.

F. Foscarin, F. Jacquemard, and P. Rigaux. Modeling and learning
rhythm structure. In Sound and Music Computing Conference (SMC),
2019.

J. Gillick, A. Roberts, J. Engel, D. Eck, and D. Bamman. Learning
to groove with inverse sequence transformations. In International
Conference on Machine Learning (ICML), 2019.

E. Gould. Behind bars: the definitive guide to music notation. Faber
Music Ltd, 2016.

L. Huang and D. Chiang. Better k-best parsing. In Proceedings of the
Ninth International Workshop on Parsing Technology, Parsing *05, pages
53-64, Stroudsburg, PA, USA, 2005. Association for Computational
Linguistics.

O. L. J.-F. Juskowiak. Agostini Systémes Drums, volume 2. MusicCom
publications, Editions Joseph BEHAR, 61, rue du Bois des Joncs Marins
- 94120 Fontenay-sous-Bois, 2000.

F. Jacquemard, P. Donat-Bouillud, and J. Bresson. A Structural Theory
of Rhythm Notation based on Tree Representations and Term Rewriting.
In 5th International Conference on Mathematics and Computation in
Music (MCM), volume 9110 of LNAI. Springer, 2015.

J.-E. Pin. Tropical Semirings. In J. Gunawardena, editor, Idempotency
(Bristol, 1994), Publ. Newton Inst. 11, pages 50-69. Cambridge Univ.
Press, Cambridge, 1998.

K. Shibata, E. Nakamura, and K. Yoshii. Non-local musical statis-
tics as guides for audio-to-score piano transcription. arXiv preprint
arXiv:2008.12710, 2020.

C.-W. Wu, C. Dittmar, C. Southall, R. Vogl, G. Widmer, J. Hockman,
M. Muller, and A. Lerch. A review of automatic drum transcription.
IEEE/ACM Transactions on Audio, Speech and Language Processing
(TASLP), 26(9):1457-1483, 2018.

J. Yust. Organized Time. Oxford University Press, 2018.

	Introduction
	Principles of drum notation
	Elements of Drum Kit and Modes
	Dynamics
	Ornaments
	Timings
	Voices

	Parsing MIDI Drum Performances
	Prior Weighted Rhythm Tree Language
	Vertical Alignements

	Score Engraving
	Score model construction and Voice separation
	Term Rewriting

	Evaluation
	Implementation
	Dataset for Experiments
	Prior languages for evaluation
	Evaluation

	Conclusion
	References

