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A Generic GPU-based Pipeline for Feature Discovery from Massive Planetary LiDAR Data Shen Liang, Antoine Lucas, Stephen Porder, Gregory Sainton, Alexandre Fournier, Themis Palpanas Abstract-In recent decades, with the placement of LiDAR remote sensing instruments in orbit, we now have global coverage of the bare ground elevation on the Earth, Mars and beyond. Encoded in such planetary LiDAR data are interesting landscape features that promise to further our knowledge of planetary topography. However, discovery of such features comes with 3 major challenges: First, the volume of planetary LiDAR data can be massive, calling for analytical algorithms with great efficiency. Second, interesting features can often repeat themselves in multiple scales in local regions, thus it is vital to enable multiscale feature discovery. Third, planetary LiDAR data can be heterogeneous, and evaluation of the quality of the extracted features can often be hampered by a variety of interfering factors. In response to these challenges, we propose FARMYARD, a generic pipeline for Feature Discovery From Planetary LiDAR Data. To the best of our knowledge, this is the first time such a pipeline has been proposed, which provides a brand new methodology for comparative studies of planetary topography. Specifically, drawing on the parallel computing power of the Graphics Processing Unit (GPU), we propose a novel pseudoon-pass sweep (POPS) framework for fast and memory-efficient feature extraction for massive planetary LiDAR data, a twolevel division scheme for local regions with support for multiscale features, and a Domain-Shifted Partition (DSP) scheme for feature evaluation that is robust against interfering factors. To showcase the utility of our FARMYARD pipeline, we deploy it to an ongoing real-world research project called PARKER, which seeks to find topographical signatures of life by discovering features that can potentially distinguish between the Earth and alien worlds with no known life activity. We also highlight the efficiency of our POPS framework with experiments on both synthetic and real data, which can be hundreds or even thousands of times faster than its CPU-based counterpart.
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I. INTRODUCTION

T OPOGRAPHY, the surface configuration of a planet, bears the imprint of the processes that shape it. Deciphering the "text" encoded in topography has been the goal of scholars for centuries (Darwin, Gilbert, others). In the past 15 years, the advent of orbital Light Detection And Ranging (LiDAR) technology has lead to global highresolution topographical data for Mars [START_REF] Smith | The global topography of mars and implications for surface evolution[END_REF] and the Moon [START_REF] Smith | Initial observations from the lunar orbiter laser altimeter (lola)[END_REF], and to some extent for others bodies such as Titan, the largest moon of Saturn [START_REF] Stiles | Determining titan surface topography from cassini sar data[END_REF]. Moreover, December of 2018 saw the arrival of the Global Ecosystem Dynamics Investigation1 (GEDI) [START_REF] Dubayah | Gedi l2a elevation and height metrics data global footprint level v002[END_REF], a full-waveform LiDAR installed onboard the International Space Station (ISS). Over the nominal two-year mission, GEDI provides an estimated 10 billion waveform LiDAR observations between 51 Degrees N and 51 Degrees S, producing readings at both ground and vegetation height. Notably, GEDI is the first instrument to provide complete waveform of the LiDAR echoes from space. Thus, for the first time, we can literally see through the living skin of the Earth, obtaining bare ground readings that are not influenced by vegetation at the global scale.

Up until now, LiDAR has been used to characterize the surface properties, such as elevation, roughness, as well as the canopy height or density in the case of the Earth. By nature, such studies offer a useful constraint on hypotheses about surface evolution, namely how lithology, tectonics, and climate on the Earth control the transport flux of rivers, or how the surface properties are affected by resurfacing mechanisms by Mars or the Moon [START_REF] Dietrich | The search for a topographic signature of life[END_REF], [START_REF] Melosh | Planetary Surface Processes[END_REF]. However, existing works are significantly lacking in inter-planetary comparative studies, which may hold the key to answering some of the most intriguing questions concerning planetary topography. For example, as recently as 2006, Dietrich and Perron asked the question is there a topographical signature of life [START_REF] Dietrich | The search for a topographic signature of life[END_REF], who concluded that none could be detected from terrestrial data available back then. To answer this question, we can first compare the topographical features of the Earth and alien worlds (where no life is known to exist) to find characteristics unique to topography of the Earth, and then study whether there is a relationship between such characteristics with terrestrial life. Such comparative studies are now made possible by the abundance of planetary LiDAR data [START_REF] Smith | The global topography of mars and implications for surface evolution[END_REF]- [START_REF] Stiles | Determining titan surface topography from cassini sar data[END_REF] that provides global coverage with relatively high resolution. Moreover, with these data, we are now able to conduct apple-to-apple comparison of planets. For example, to make meaningful comparisons between the Earth and other planets, we need bare ground observations of the Earth as there is no known vegetation on alien worlds. This was previously impossible until the GEDI mission [START_REF] Stiles | Determining titan surface topography from cassini sar data[END_REF] which, as was mentioned, has enabled us to see through the terrestrial vegetation cover for the first time.

While we now have the high-quality LiDAR data needed to conduct inter-planetary comparative studies, we still lack the proper methodology needed to carry out such comparisons. Indeed, there have been strong geophysical perspectives to justify global topography field surveys since the 1990 on terrestrial planets, yet existing works on comparison of planetary bodies has mainly focused on exploring deep earth issues with spherical harmonic [START_REF] Wieczorek | Gravity and topography of the terrestrial planets[END_REF] and/or spherical spline [START_REF] Lorenz | A global topographic map of titan[END_REF] approaches. Such a methodology leads to very smooth global signals that with limited high frequency components, losing information that is present in the raw records which may be significant to subsequent comparative analysis.

In view of the drawbacks in existing works, in this paper we present a brand new methodology for comparative studies with planetary LiDAR data. Specifically, the task we will undertake in this paper is defined as follows.

Definition 1: Feature Discovery From Planetary LiDAR Data (FARMYARD): given a set of planetery LiDAR data, find interesting features that can be used to distinguish between two or more geo-objects of the same category T . For example, suppose T is planets, and we have LiDAR data for the Earth and Mars, FARMYARD aims to find features that can be used to distinguish between the two planets. For the rest of the paper, we refer to T as the target category (TC). It is worth noting that while the motivation of this work is to enable effective comparison of different planets, FARMYARD also supports comparison of other geo-objects by changing T from planets to other categories. For instance, one can change T to landscapes to compare different landscapes, or to geolocations to compare different regions on the same planet.

In our work, we draw on a machine learning based methodology and formulate FARMYARD as a classification problem. Specifically, we first extract certain candidate features from the dataset that can potentially distinguish between the geo-objects in question, and then conduct cross validation (CV) using some pre-defined classifiers upon these features, applying evaluation criteria for classification (e.g. Cohen's kappa coefficient [START_REF] Cohen | A coefficient of agreement for nominal scales[END_REF], F1-score, etc.) to quantify their distinguishing power in terms of T . However, this comes with the following challenges.

• C1: Massive data. Planetary LiDAR data often cover vast areas, making them big data in their raw form. For example, as was previously mentioned, the GEDI [START_REF] Dubayah | Gedi l2a elevation and height metrics data global footprint level v002[END_REF] planetary LiDAR is to conduct 10 billion measurements of terrestrial landscapes over its nominal twoyear mission. Worse still, raw planetary LiDAR data is often irregularly-sampled (namely not aligned to a uniform raster), which is likely to pose an inconvenience to further analysis. Hence, it is necessary to transform them into raster data using some interpolation algorithm such as Kriging [START_REF] Krige | A statistical approach to some basic mine valuation problems on the witwatersrand[END_REF] and Inverse Distance Weighting (IDW) [START_REF] Shepard | A two-dimensional interpolation function for irregularlyspaced data[END_REF]. This can make the volume of the raster data far more massive than the already big raw data.

In fact, the numbers of data points after interpolation can be several to several dozen times of those before interpolation. Like many other big data problems, the sheer volume of planetary LiDAR data calls for analytical algorithms with high efficiency. • C2: The need for local multi-scale features. As was previously mentioned, the methodology applied by existing works [START_REF] Wieczorek | Gravity and topography of the terrestrial planets[END_REF], [START_REF] Lorenz | A global topographic map of titan[END_REF] largely leads to very smooth signals on a global scale. However, important topographical features often reside not in such global, low-resolution signals, but in local, high-resolution data. For example, the topographical difference between the Earth and Mars may well be exhibited in minute details of their local regions (e.g., specific volcanoes, drainage systems, landslides, impact craters, etc., which are scattered across the globe). Moreover, the same topographical features can be repeated on multiple scales for the same local region [START_REF] Brodu | 3d terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology[END_REF]. For example, for an impact crater, its bottom may share similar topographical features to the entire crater. Delicate design choices are needed to capture such local multi-scale features. • C3: Sensitivity to interfering factors. As is well-known to the machine learning community [START_REF] Yudkowsky | Artificial intelligence as a positive and negative factor in global risk[END_REF], due to the presence of interfering factors, a high classification score does not necessarily translate to high feature quality.

For example, suppose we want to find features that can distinguish between the Earth and Mars, and we have a LiDAR dataset composed of two classes: one corresponds to volcanoes on the Earth, while the other corresponds to drainage systems on Mars. In this case, a high classification score does not necessarily mean that the extracted features can effectively distinguish between the Earth and Mars, for they may actually have been distinguishing between volcanoes and drainage systems. In other words, differences in landscapes may well interfere with feature discovery concerning the differences in planets. Such interference must be minimized.

To address these challenges, we propose the following 3 solutions that will be implemented in our FARMYARD pipeline.

• S1: Memory-efficient Graphics Processing Unit (GPU) based parallelism. To address Challenge C1, namely the problem with massive data, we draw on the power of GPU-based parallelism [START_REF]Cuda c++ programming guide[END_REF] To address Challenge C3, namely the problem with interfering factors, we first ensure that the entire dataset is diverse enough for these factors to be taken into account.

We then device a novel Domain-Shifted Partition (DSP) strategy for the dataset which can lead to train-test splits that maximize intra-class diversity in terms of the interfering factors. This can in turn make the classification scores better reflect the classifier's robustness to interference, thus better evaluating feature quality.

Before we move on, we would like to note 2 points: First, we are NOT proposing a specific feature extraction method for planetary LiDAR data. Rather, we are proposing a generic pipeline that can be instantiated using existing (and future) feature extraction methods (which we call core methods). Second, unless otherwise stated, we limit our discussion to traditional hand-crafted features (namely non-deep learning features) in this work. The reason for this is that while deep learning can often yield higher classification scores, its black box nature can prevent the user from interpreting the learned features and thus gaining insight into the geoscientific knowledge behind them.

In summary, the main contributions of this paper are as follows.

• We present a generic GPU-based pipeline for Feature Discovery From planetary LiDAR Data (FARMYARD).

To the best of our knowledge, this is the first time such a pipeline has been proposed, which presents a brand new methodology for comparative studies of planetary topography that can effectively exploit local high-resolution information. Exploiting the parallel processing power of the GPU, FARMYARD promises raster interpolation, multiscale decimation and feature evaluation of topographical data with efficiency never reached before. propose a Domain-Shifted Partition (DSP) strategy for train-test splits. This results in feature evaluation that is robust against interfering factors, which can in turn lead to better assessment of feature quality. • We conduct extensive experiments to showcase the utility of our FARMYARD pipeline in an ongoing project called PARKER that seeks to find topographical signatures of terrestrial life activities, and provide suggestions to future studies on planetary LiDAR based on our results on realworld data. We also examine the efficiency of our POPS framework, which can be hundreds or even thousands of time faster than its CPU-based counterpart.

This paper is an extension to our work [START_REF] Liang | Pops: An efficient framework for gpu-based feature extraction of massive gridded planetary lidar data[END_REF] which will appear in the 49th International Conference on Very Large Databases (VLDB 2023), a top data science venue. In the VLDB paper, we mainly focused on the POPS routine for GPU-based raw feature extraction as well as feature aggregation, with brief mentions of the two-level division scheme only to help the readers better understand the POPS algorithm. In this work, we extend our VLDB paper to a fullfledged FARMYARD pipeline, with complete and thorough description of how to conduct data collection, preprocessing, feature extraction, feature evaluation and further analysis using planetary LiDAR data, and how to apply GPU acceleration to break multiple computational bottlenecks of the pipeline. Specifically, we present a much more detailed description of our two-level division scheme, and for the first time propose our DSP startegy for dataset split. Also, in our VLDB paper, the experiments were largely focused on showcasing the efficiency of POPS, while in this work, not only do we demonstrate the efficiency of our GPU-based algorithms, we also present a complete case study showcasing the utility of the entire FARMYARD framework. Finally, unlike our VLDB paper which is mainly oriented towards a data science audience, in this work, while maintaining all the technical merits in terms of data science of our VLDB paper, we add more discussions from the geoscience perspective. In particular, based upon our experimental results, we present several suggestions to possible future directions to pursue on planetary LiDAR analytics.

The rest of this paper is organized as follows: Section II provides an overview of planetary LiDAR data. Section III presents our FARMYARD pipeline. Section IV details how we leverage the GPU to accelerate this pipeline. Section V demonstrates the experimental results. Section VI concludes the paper.

II. PLANETARY LIDAR DATA

Light detection and ranging (LiDAR) laser systems have been put into orbit around Mars, the Moon and more recently around the Earth. They share the same physical concept and formalism. Specifically, planetary LiDAR comes in the form of represented as 3D point clouds, in which each point is represented by a tuple (x, y, z) where x is the longitude, y is the latitude, and z is the elevation of that point. Fig. 1 shows a LiDAR point cloud of the Vesuve volcano in Italy.

Next, we present brief introductions of some of the existing planetary LiDAR data repositories.

1) GEDI [START_REF] Dubayah | Gedi l2a elevation and height metrics data global footprint level v002[END_REF]: Global Ecosystem Dynamics Investigation (GEDI) is a full-waveform topographic LiDAR installed onboard the International Space Station (ISS). The GEDI instrument uses three lasers that produce 8 ground tracks. Each ground track is a series of footprint samples separated by 60 m in the along-track direction. The distance between adjacent ground tracks is 600m. The sole GEDI observable is the returned laser waveform, which records the three-dimensional distribution of intercepted surfaces within the extent of the illuminated laser footprint (23 ± 2m). Measurements are acquired over the land surface during day and night conditions (one ISS orbit is about 90 minutes) within the observational limit of the ISS (51.6 Degrees N to S latitude). This orbit results in greater measurement density at high-latitude and fewer measurements near the equator. The total number of land-surface measurements anticipated over the nominal twoyear mission life is 10 billion. A significant advantage of GEDI is that apart from producing observations at vegetation height, it can also see through the vegetation and produce observations of the ground surface, thus avoiding biases induced by top-ofcanopy inferences of underlying topography [START_REF] Balzotti | Episodic canopy structural transformations and biological invasion in a hawaiian forest[END_REF], [START_REF] Mallet | Full-waveform topographic lidar: State-of-theart[END_REF].

2) MOLA [START_REF] Smith | The global topography of mars and implications for surface evolution[END_REF]: Mars is being scanned globally since the Mars Orbiter Laser Altimeter (MOLA) onboard MGS (1996)(1997)(1998)(1999)(2000)(2001). This global data set offers half billion echoes from the surface with a ground spatial sampling of about 460m at the equator with a beam diameter of about 75m in diameter. Note that subsequent missions offer higher resolution from stereo imagery, e.g., HRSC onboard Mars-Express, HiRISE onboard Mars Reconnaissance Orbiter, and CaSISS onboard Trace Gas Orbiter. Therefore, the topography can be derived at 1m sampling very locally in completion with the global MOLA LiDAR echoes.

3) LOLA [START_REF] Smith | Initial observations from the lunar orbiter laser altimeter (lola)[END_REF]: Similarly to Mars, the Moon is being scanned since 2009 with the Lunar Orbiter Laser Altimeter (LOLA), a 5 beams laser altimeter similar to MOLA . LOLA offers 6.5 billion measurements of global surface height with a vertical precision of ∼10cm, and a mean ground spatial sampling of 100 m at the equator and about 10m at the poles [START_REF] Mazarico | Orbit determination of the lunar reconnaissance orbiter[END_REF]. As on Mars, this data set is being completed with stereo images using LROC sensors from which Digital Terrain Models (DTM) at 1m/pixel at the local scale can be derived from the orbit. Mars and the Moon's surface have been visited (by landers, rovers and humans, the latter only for the Moon) and small scale and high resolution DTMs are also available very locally.

III. THE FARMYARD PIPELINE

We are finally in a position to introduce our FARMYARD pipeline, which is shown in Fig. 2. The pipeline starts with data collection where we collect a set of raw point cloud data covering various geolocations from planetary LiDAR repositories such as those mentioned in the previous section. We then conduct data preprocessing to them with the following three steps: ROI selection where we select subsets of points that corresponds to regions of interest (ROIs) from each geolocation, coordinate reference system (CRS) unification where we project the CRSes of the raw points from the different LiDAR repositories to a uniform CRS, and raster interpolation where we interpolate irregularly-sampled points into regularlysampled raster data. On the other hand, we separately conduct feature definition where we define the features to extract via a feature template on which we will elaborate later. With the data preprocessed and features defined, we conduct feature extraction where we first extract raw features from the raster data and then aggregate them to obtain the final features. Afterwards, we perform feature evaluation in two ways: First, we partition the dataset into training and testing data for cross validation (CV) and obtain CV scores such as Cohen's kappa Fig. 2. The workflow of our FARMYARD pipeline, with its 3 design highlights shown in dark blue banners, and its GPU-accelerated procedures shown in pink boxes. Note that these GPU-accelerated procedures are the main efficiency bottlenecks of our pipeline, thus moving them onto the GPU makes our pipeline almost entirely GPU-based. coefficient [START_REF] Cohen | A coefficient of agreement for nominal scales[END_REF] and F1-score which quantify the distinguishing power of the extracted features. Second, we visualize the features for manual inspection. The user can then apply the CV scores and visualized features to further analysis.

For the rest of this section, we will elaborate on the aforementioned procedures one by one.

A. Data Collection

The starting point of our FARMYARD pipeline is to collect raw 3D point cloud data of multiple local regions scattered across the globe from planetary LiDAR repositories such as the ones introduced in Section II. Here an important principle is to make the data as diverse as possible. For example, suppose we are trying to discover features that can distinguish between the Earth and Mars, it is imperative that we collect data from diverse geolocations and across diverse landscapes on both planets. This can give us a comprehensive representation of the two geo-objects in question. As we will shown in Section III-E, this is crucial to finding features that are truly relevant to the differences between the two geo-objects.

B. Data Preprocessing

After data collection, we preprocess the collected raw data with the following procedures (Fig. 3) before using them for feature extraction.

1) ROI selection: The user may want to select regions of interest (ROIs) from the raw data. For example, a user may want to only keep a certain landscape at a geolocation where multiple landscapes co-exist, or the boundaries pre-defined by the data source are too rough for certain geo-objects. In such cases, the user can manually crop out polygonal ROIs at that geolocation. Note that if a user-selected ROI is not rectangular, we use its rectangular bounding box instead for the ensuing procedures for ease of processing, and map the extracted features back to the original non-rectangular ROI with a simple step between feature extraction and feature evaluation. See Section III-D for more.

2) CRS unification: The raw data points in the dataset often follow different coordinate reference systems (CRS) as they originate from different data repositories produced for different planets. We need to unify the CRS so that all data points are comparable. Specifically, we recommend a Lambert Conformal Conic Alternative (LCCA) projection, as it can be well adapted to the variety of latitude's cover as well as extent of the ROIs.

3) Raster interpolation: After CRS transformation, we interpolate the raw data in each ROI to raster with uniform resolution. The reason for raster interpolation is two-fold: First, the raw cloud is irregularly sampled, thus the sampling protocol differs from ROI to ROI. Like the discrepancy with CRS, the discrepancy with sampling needs to be addressed to make all ROIs comparable with each other. Second, for some ROIs, the raw clouds may be too sparse to extract meaningful features, thus they must be made denser with interpolation. There are many existing tools for topographical point cloud interpolation, such as IDW [START_REF] Shepard | A two-dimensional interpolation function for irregularlyspaced data[END_REF], Kriging [START_REF] Krige | A statistical approach to some basic mine valuation problems on the witwatersrand[END_REF], etc. We will not dive into the details on them for brevity.

C. Feature Definition

Apart from preprocessing the raw data, we need to determine the features to extract. We define them with a feature . In our implementation, we further transform these 2 values into their coordinates in a ternary graph, using the latter as the final features.

-ST AT : This method extracts statistics of the elevation (namely z) values for the set of points as feature values. Specifically, we use the following 6 statistics: standard deviation (std), minimum (min), first quartile (Q1), median, third quartile (Q3), and maximum (max) 1 .

• Dimensionality dim: either 2D or 3D. For 2D, the core method is applied to all points in a 2D square bounding box along x and y. For 3D, the core method is applied to points in a 3D (namely x, y and z) spherical area. • Feature scales fScales: one or several length values. For each of these values, if dim is 2D, it refers to the edge 1 See Section III-D for why we do not use the mean value as a feature here.

size of the square bounding box; if dim is 3D, it refers to the diameter of the spherical area. Together with dim, f Scales define the sets of points to apply the core method to. For example, if dim is 2D and f Scales is 300m, 400m and 500m, the core method will be applied to points in bounding boxes with edge sizes of 300m, 400m and 500m individually, and the feature values obtained on each feature scale is concatenated to form the final feature vector. Before moving on, we make 2 notes about feature template: First, we consider the location of the bounding boxes or spheres (which correspond to 2D and 3D respectively) to be irrelevant to the definition of the features. The rationale is that a feature with high distinguishing power between multiple geo-objects should remain consistent everywhere within each of these geo-objects. Second, we allow for multiple feature scales. As was mentioned in Section I, the same features can be exhibited across multiple scales and thus a multi-scale setting can better capture them [START_REF] Brodu | 3d terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology[END_REF].

D. Feature Extraction

With regularly sampled raster data of all ROIs and the feature template defined, we can now conduct feature extraction. This procedure is shown in Algorithm 1. Specifically, for each ROI (line 3 in Algorithm 1), we take the following 3 steps to extract its features.

1) ROI division: For a given ROI, we opt not to extract a uniform set of features for all data points in it for 2 reasons: First, there may be so few ROIs that it is hard to directly use them as training and testing examples for ensuing cross validation (CV) procedure (see Section III-E). Second, the need for multi-scale features makes it impractical to extract features upon an ROI with a fixed size. In view of these, we devise a two-level ROI division scheme (Fig. 4) to divide the ROI into smaller sub-regions on which we extract features with the core method. Specifically, on the top level, we handle the problem of ROI scarcity in line 4 in Algorithm 1, where we divide each ROI into examples that will later be used for CV. Each example is a square sub-region of the ROI that resides in one of all possible locations of a 2D sliding window, which moves rightwards and upwards from the bottom-left corner of the ROI (Fig. 4a). This process requires two user-defined parameters: the first is an example scale parameter exScale that dictates the edge size of the sliding window (namely that of each example). The second parameter is an example sampling step parameter exStep that dictates the stride size of the sliding window as it moves horizontally and vertically.

On the bottom level of the division, we further divide each example into patches (line 10 in Algorithm 1) on which we later apply the core method to. To facilitate multi-scale feature extraction, we obtain these patches by applying multiple 2D sliding windows to the example. For each window, its edge size is f Scale which is one of the feature scales in f Scales in the feature template (line 8). Similar to that used in the top level of the division, these windows move rightwards and upwards from the bottom-left corner of each example (Fig. 4b). We introduce a user-defined stride-to-scale ratio parameter stsRatio to control the stride size of the sliding windows. Specifically, if the edge size of a window is f Scale, then its stride size is f Scale × stsRatio (line 9).

2) Raw feature extraction: With the ROIs divided into examples, and then patches after the two-level division, we now apply the core method to the points in each patch to obtain a set of raw features (lines 11-19 in Algorithm 1). Specifically, if dim is 2D in the feature template, all points in the patch are fed into the core method core; if dim is 3D, then we obtain the spherical area around the center point of the patch with a diameter of f Scale and apply core to it. Also note that we mean-normalize the data points on each of the x-, yand z-axes before feature extraction (line 17) to avoid interference from inter-patch (and indeed inter-example and inter-ROI) distinctions in geolocation and elevation. This is also why in the core method ST AT (see Section III-C) we do not extract the mean value, as it is always 0 for meannormalized data.

3) Feature aggregation: After raw feature extraction for each patch, our next move is to obtain the final feature vector for each example. Note that it is not advisable to simply concatenate all the raw features to obtain the feature vector for two reasons: First, as mentioned in Section III-C, the feature template does not consider the locations of the bounding boxes or spheres, thus each example-level feature (namely each value in the final feature vector) should be agnostic to patch positions. Second, it is most likely that an example can have a large number of patches in it, thus a simple concatenation of all patch-level raw features will result in a very long feature vector, which can lead to the well-known curse of dimensionality [START_REF] Hughes | On the mean accuracy of statistical pattern recognizers[END_REF] problem in later CV steps. In view of these, we opt to obtain the feature vector by aggregating the raw features. Specifically, in lines 20-23, for all patches of a fixed f Scale (namely edge size), we aggregate each dimension of their raw features using 7 statistics (line 22): mean, and the 6 statistics used in the core method ST AT1 (see Section III-C), namely std, min, Q1, median, Q3, max. The feature vector of each example is comprised of the aforementioned statistics for all indices in the raw features of all patch sizes in it (namely all indices of curRawF eats in Algorithm 1, see line 20). Therefore, the length of this feature vector is agnostic to both the positions and the number of the patches. The final return of Algorithm 1 is the feature vectors of all examples (line 24) in all ROIs (line 25).

Before we move on, we note 2 points: First, we discuss how to set the parameters exScale, exStep and stsRatio for the two-level ROI division scheme. We begin with the example scale exScale. Obviously exScale should at least be equal to the largest f Scale in f Scales so that an example can hold at least one largest patch. With this criterion met, the choice of exScale is essentailly a trade-off between quality and quantity: The larger exScale is, the more patches it can hold, and the more robust its aggregated features are likely to be. However, this also means fewer examples for ROIs of fixed sizes, which can limit the performance of the classifiers used in CV. Similar trade-offs hold for exStep and stsRatio, as the larger the stride sizes are, the smaller interdependency between adjacent examples (patches) is, the more robust the ensuing CV process is likely to be. On the other hand, increasing the stride sizes will lead to fewer examples (patches), which will hinder classifier performance. The user needs to carefully consider such trade-offs when setting these parameters. Especially, we strongly recommend against setting exStep smaller than exScale, as this will cause examples to overlap, breaking the minimal level of independence between examples in CV. However, we do allow patches within an example to overlap as this does not violate example-wise independence.

Second, the aforementioned feature extraction procedure only allows for rectangular ROIs. We now discuss how to cater to non-rectangular polygonal ROIs. Recall that we substituted these non-rectangular ROIs with their rectangular bounding boxes in ROI selection (see Section III-B1). To map back to the original ROIs, we simply remove all examples that are not enclosed by any of the original ROIs after feature extraction while keeping all the rest.

E. Feature Evaluation

Having obtained the feature vectors for all examples, we now move on to feature evaluation. Specifically, for a given set of features extracted under a certain feature template, suppose we wish to evaluate how well these features can distinguish between geo-objects from target category (TC) (see Section I) T , we assign a label to each example under T . For instance, with T being planets, we label each example with the planet it comes from, such as Earth or Mars. We then partition the labeled examples into several folds, and feed them into a cross validation (CV) routine. The CV scores (to be discussed later in this section) are used as indicators of feature quality (namely their distinguishing power). Next, we separately discuss how to partition the labeled examples, and how to obtain the CV scores based on the partitioned data.

1) Data partition: On partitioning the examples, a straightforward solution is Random Partition (RP), namely randomly assigning each example to one of K folds for CV where K is a user-defined parameter. However, RP cannot address Challenge C3 in Section I, namely the problem with interfering factors. For instance, suppose we have examples with labels Earth and Mars, derived from the TC planet. For each label, we have examples that correspond to 3 landscapes: volcano, drainage and crater. In this case, RP is likely to result in partitions where examples with all landscapes coexist in both the training and testing sets, In this case, even if we get a high CV score, we cannot tell whether this is because the features can distinguish between different planets or landscapes.

To tackle this issue, we devise the following Domain-Shifted Partition (DSP) 2 Olympus only appear in the first fold, while ::::: Borku, ::::::

Warego and ::::::::::: Gosses Bluff only appear in the second fold. Unlike RP, DSP can effectively screen influence from any interfering factors indicated by the NTCs. To illustrate, in the aforementioned instance, the TLs are Earth and Mars under TC planets, while the NTLs under NTC landscapes are volcano, drainage and crater. As was previously mentioned, the coexistence of these 3 NTLs in the training and testing sets makes it hard to identify whether the features are indicative of differences in terms of planets or landscapes. However, with DSP, if any one of the 3 NTLs appears in the training set, it cannot appear in the testing set. Therefore, features that are mostly relevant to differences among the 3 NTLs will be of little use to train a classifier that will do well in testing. Rather, only features that are actually related to the differences between Earth and Mars are likely to lead to high CV scores.

The DSP strategy highlights the need for diverse data, which was mentioned in Section III-A. Specifically, we need the raw data to encompass as many NTCs as possible. Only in this way can we take into account enough interfering factors to accurately evaluate the relevance of the features to the TC.

2) Cross validation (CV): After data partition, we conduct CV, performing K runs over the K folds, among which each run has a K -1 : 1 train-test split and yields a classification score. The average classification score over all runs is the final CV score. For the choice of classifiers, commonly-used options such as support vector machines (SVMs), XGBoost [START_REF] Chen | Xgboost: A scalable tree boosting system[END_REF], 1 There are craters located near the Warego drainage basin.

k-nearest neighbor (k-NN), logistic regression and artificial neural networks are all valid choices.

For the choice of classification score, we recommend using a combination of Cohen's kappa coefficient [START_REF] Cohen | A coefficient of agreement for nominal scales[END_REF] (κ) and F1score, as these two metrics are both robust against imbalanced datasets, which is common in real-world scenarios. κ is a single-value metric that measures the agreement between the predicted labels and the groundtruth labels. The range of κ is [-1, 1], the higher it is, the better classification performance. Specifically, a κ of 1 indicates perfect agreement; a κ of 0 indicates no agreement other than those that are expected by chance; a κ that is negative indicates either no relationship between the predicted and groundtruth labels, or a tendency of the two disagreeing with each other. On the other hand, F1-score is a per-label metric (that is, there is one F1-score for each label) that can reflect the classifier's accuracy of identifying examples with each label. The higher the F1-score is, the more accurate. In our case, we recommend using κ to quantify the overall quality of the features as defined by the feature template, and inspecting the F1-scores to gain deeper insight into their per-label distinguishing power.

Apart from choosing CV scores that can better cope with imbalanced datasets, it is also advisable to balance the training set before training to actively counter this problem. Possible data balancing methods include oversampling methods such as SMOTE [START_REF] Chawla | Smote: synthetic minority over-sampling technique[END_REF] and ADASYN [START_REF] He | Adasyn: Adaptive synthetic sampling approach for imbalanced learning[END_REF], as well as undersampling methods such as random undersampling and undersampling with instance hardness threshold [START_REF] Smith | An instance level analysis of data complexity[END_REF], which are implemented in the Imbalanced-learn2 [START_REF] Lemaître | Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning[END_REF] package.

3) Feature visualization: Aside from quantitative evaluation with CV, it is also important for domain experts to manually inspect the extracted features. To facilitate this, it is advisable to visualize both the raw and aggregated features across different TLs. This can be done using visualization tools such as t-distributed Stochastic Neighbor Embedding (t-SNE) [START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF], or adopting customized visualization methods that are compatible with the core feature extraction method.

F. Further Analysis

With the CV scores and visualized features, we can now perform further analysis as needed. Here we present 3 instances of such analysis.

1) Feature ranking: A straightforward type of analysis is to decide the best feature template among multiple candidates. For example, we can use the CV scores of these candidates to obtain an objective ranking, or inspect the visualizations to give a subjective assessment.

It is worth noting that both the CV scores and the visualization are subjected to influence from the configurations of FARMYARD (e.g. the choice of interpolation method and its parameters, the choice of data balancing method before classification, the choice of classifier and its parameters, the choice of visualization method and its parameters, etc.). Therefore, it is advisable that the user run the FARMYARD pipeline under multiple configurations and comprehensively examine the results across all configurations.

Concretely, when comparing the CV scores (especially κ), we highly recommend performing statistical tests to compare the statistical differences of the multiple candidate feature templates across all configurations. Specifically, drawing on practices in the time series data mining literature [START_REF] Bagnall | The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances[END_REF], [START_REF] Liang | Active model selection for positive unlabeled time series classification[END_REF], we first conduct a Friedman test (with a significance threshold p = 0.05) to check whether there are significant differences among the rankings of all candidates. If so, we then use Wilcoxon signed rank test (p = 0.05) with Holm correction to divide them into groups such that candidates in the same group have no significant differences, while those in different groups do. The results of the aforementioned two statistical tests can be represented by a visualization method called critical difference diagram (CDD) [START_REF] Demšar | Statistical comparisons of classifiers over multiple data sets[END_REF], on which we will further elaborate in Section V-A.

2) Feature qualification: Another simple type of analysis is to decide whether a feature template can yield features whose quality meets the user's expectation. For example, the user can set thresholds for κ and the F1-scores, and judge whether a feature template is qualified by comparing its CV scores against this threshold. The user can also manually inspect the visualize features to give a subjective assessment on the feature quality. Again, it is advisable that the user conduct multiple runs under different FARMYARD configurations for both CV and feature visualization.

3) Bias analysis: Another possible analysis to perform is to see if the results are biased towards certain labels, which can be achieved by looking into the per-label F1-scores. In particular, if the F1-scores of some labels are much higher than those of the other labels, then it suffices to say that there exists a bias towards the former. However, we cannot be certain of the cause of such a bias, which may be down to the feature template, the dataset composition (in particular, data imbalance), or the FARMYARD configurations, or a combination of some or all of the aforementioned factors. The user would probably need further investigation to pinpoint the cause, by means of scrutinizing the feature visualization results, etc. Again, we recommend conducting multiple runs on different configurations. This can at least help determine whether such a bias exists only for certain FARMYARD configurations, or are common to the majority of them, thus providing clues to the cause of the bias.

Besides the aforementioned analyses, the user can perform other types of analysis as needed. It is also advisable to conduct multiple analyses for a more comprehensive insight.

IV. GPU ACCELERATION FOR FARMYARD So far, we have discussed the general workflow of our FARMYARD pipeline without looking into its efficiency, which is most likely to be unreasonably low under a CPUbased sequential implementation. Specifically, in most cases, the computational bottlenecks of our pipeline are raster interpolation, raw feature extraction, feature aggregation and cross validation (namely the procedures highlighted by pink boxes in Fig. 2). To break these bottlenecks, we adopt CUDA-based GPU parallelism to accelerate these procedures. In particular, for the first time to our knowledge, we propose a GPUaccelerated framework for raw feature extraction. It is also worth noting that as the aforementioned procedures are the main bottlenecks of our pipeline, moving them onto the GPU essentially makes our pipeline almost entirely GPU-based.

For the rest of this section, we will first briefly introduce CUDA-based GPU acceleration, and then go through how we accelerate the aforementioned bottlenecks one by one.

A. CUDA-based GPU Acceleration

CUDA [START_REF]Cuda c++ programming guide[END_REF] is a general purpose parallel computing platform and programming model that can effectively leverage NVIDIA GPUs for parallel processing of massive data. In particular, GPUs are especially suitable to process multiple data slices in parallel with a single set of operations, thanks to their single-instruction-multiple-threads (SIMT) architecture. Specifically, a GPU has massive numbers of threads executing in parallel on multiple streaming multiprocessors (SMs), and each thread executes the same operations on different data. These threads are grouped into blocks, which are assigned to SMs to be executed independently from each other. The index of each block and each thread in block are identified by CUDA built-in variables blockIdx.x and threadIdx.x1 .

Arguably, the most important factor to consider when designing CUDA-based algorithms is its memory hierarchy. Under CUDA, each GPU thread has its registers, all threads in a block can access the same block-wise shared memory, and all threads across all blocks can access the same global memory. To process data using CUDA, it must first be loaded into the global memory from the CPU memory, and then be fetched to registers or shared memory by individual threads. Likewise, the output of the CUDA program can only be transferred to CPU memory via global memory. The memory size increases in order of per-thread registers, perblock shared memory and global memory, with the global memory being much larger than the former two. For example, for the Quadro RTX 6000 GPU, the maximum number of 32-bit registers per thread is 255, the maximum amount of shared memory per block is 64KB, while its global memory size is 24GB. As with access time, accessing registers and shared memory is much faster than accessing global memory. Thus, global memory accesses should be avoided whenever possible. Rather, when handling data that cannot be fitted into registers, it is advisable to cache the data in shared memory 2 . Moreover, all data in the shared memory of a block can be accessed by all threads in that block, thus shared memory offers an effective way for intra-block communication. Also, CUDA offers the syncthreads() function which serves as an intra-block synchronization barrier where any thread must wait till all other threads in the same block have reached this barrier to proceed. See [START_REF]Cuda c++ programming guide[END_REF] for more on CUDA programming.

B. GPU-accelerated Raster Interpolation

As an integral part of data preprocessing, raster interpolation can be extremely time-consuming under a sequential implementation. Fortunately, GPU acceleration for topographical point cloud data has attracted much attention from researchers in recent years, and there are many off-the-shelf options [START_REF] Cheng | Accelerating universal kriging interpolation algorithm using cuda-enabled gpu[END_REF]- [START_REF] Zhang | Implementation of a parallel gpu-based space-time kriging framework[END_REF] for the user to choose from. For brevity, we opt not to elaborate on these method here.

C. GPU-accelerated Raw Feature Extraction

The sequential version of our feature extraction workflow, as illustrated in Algorithm 1, can be too inefficient to handle massive datasets. It's main bottleneck is the nested loops in lines 6-24. This is because while the number of ROIs is usually limited, they can often cover large areas. Therefore, for each of them, both the number of examples and the number of patches in each example can be huge, and looping over all of them can be highly time-consuming. Fortunately, note that we conduct the same operations (namely the same core method for raw feature extraction, and the same statistics for feature aggregation) to all patches and examples, which makes the feature extraction procedure amiable to the aforementioned SIMT architecture of the GPU. For the rest of this section, we focus on GPU-based raw feature extraction. We will discuss GPU-based feature aggregation in the next section.

For raw feature extraction, given the two-level nature of both the ROI division scheme (example-patch) and the GPU architecture (block-thread), it is intuitive to let each GPU block handle one example, and let each thread in the block handle one patch in the example. The former is advisable as all examples have the same size with the same number of patches, thus the workloads across all blocks are naturally balanced. However, it is not practicable to allocate one patch to one thread, for the number of threads in each block is limited to 1024 [START_REF]Cuda c++ programming guide[END_REF], which is usually surpassed by the number of patches. This would require each thread to iteratively process multiple patches, which brings about the following issue: under our multi-scale setting, an naïve iterative method is to process each feature scale one by one, letting each thread process one or more patches for each scale. However, this comes with the problem of idle threads. For example, suppose we have a 10000 × 10000 example, and the feature scales are 250, 500, 1000 with the stride-to-scale ratio set to 1 for all 3 scales, thus the number of patches for each scale is 1600, 400, 100. Suppose we use a block of 1024 threads to process it. To process the first scale with 1600 patches, we need two iterations, in the second of which only 1600 -1024 = 576 threads are busy, while nearly half of the available threads sit idle. Moreover, when processing the second and third scales, only 400 and 100 threads are busy, leading to even greater waste of computational resource. It is thus highly desirable to allow different scales to be processed simultaneously to keep as many threads busy for as long as possible.

Another problem the multi-scale setting brings about is many data points in the example will be accessed multiple times, and directly accessing them from the GPU global memory is highly inefficient. Thus we need to leverage the shared memory for faster access, yet it is often the case that the example is so large that it cannot be fitted into the shared memory all at once. This calls for a well-designed shared memory management method that can both accommodate the limited size of the shared memory and the aforementioned need for simultaneous multi-scale processing.

In view of these problems, we present the GPU-based solution shown in Algorithm 2, which can extract raw features from all patches of all scales in all examples with very limited numbers of repeated accesses to global memory. Specifically, as mentioned earlier, each GPU block is assigned with a single example (lines 3-4). Raw feature extraction is performed in a Pseudo-One-Pass Sweep (POPS) 1 of the example (lines 5-24). This process is illustrated in Fig. 5, which revisits the example in Fig. 4b. To extract features from this example, we introduce the concept of superpatch, which is a rectangular area in the example that can fit into the shared memory while being able to hold the largest of the patches in the example. Specifically, the size of the superpatch is dictated by two user-defined parameters spScaleX and 1 We will explain the namesake of POPS later.

spScaleY which set the upper bounds for the edge sizes of the superpatch on the xand y-axes. The general idea of POPS is to use several superpatches to sequentially (that is, only one superpatch is used at a time) fetch data points in the example from global memory to shared memory. Each superpatch covers several patches in the example, thus we can let threads in the block extract raw features from the covered patches while the latter reside in shared memory. This process goes on until all patches are covered, that is, until all raw features are extracted for all the patches. Note that throughout this process, all superpatches reside in only one chunk of shared memory with a fixed size.

As a concrete example, we look into Fig. 5. Here, with spScaleX and spScaleY being both 21, the first superpatch (Superpatch 0) is initiated at the bottom-left corner of the example (line 5 in Algorithm 2). This can be done by letting each thread in the block transfer one or several data points from global memory to the chunk of shared memory dedicated to the superpatch. Starting here, we iteratively conduct the following 2 steps (lines 6-24).

Step 1: apply the core method to all patches of all scales in the current superpatch (lines 8-16 in Algorithm 2). Here we let each thread extract features for one or several patches. For example, in Fig. 5, Superpatch 0 covers Patches A-0, B-0, B-1, B-5, B-6. Suppose we have 3 available threads. Here we let each thread handle each one of the first 3 patches. Plus, we let the first 2 threads handle the remaining 2 patches B-5 and B-6. Note that we allow different threads to handle patches of different feature scales simultaneously, thus avoiding the aforementioned waste of resources problem with sequential processing of each feature scale 1 .

Step 2: move to the next superpatch (lines 18-24 in Algorithm 2). There are two ways of moving. One is the goright move (lines [START_REF] Hughes | On the mean accuracy of statistical pattern recognizers[END_REF][START_REF] De Chazal | Automatic classification of heartbeats using ecg morphology and heartbeat interval features[END_REF], namely move to the next superpatch in the same row along the x-axis. The x-coordinate of the leftmost points in the next superpatch is that of the first patch(es) in this row that the current superpatch fails to cover. For example, in Fig. 5, the first patches that Superpatch 0 fails to cover on the x-axis is A-1 and B-2, whose leftmost x-coordinate is 18, which is that of Superpatch 1. Go-right moves continue till the last possible superpatch in the current row, namely Superpatch 2.

For the go-right move, we can use a simple incremental data transfer (Fig. 6) strategy to negate the need for repeated global memory access. Specifically, we store the data points in each superpatch in a column-first (that is, the y index changes faster than the x index) manner in the shared memory. This means that when we perform a go-right move, if the next and the current superpatches have any overlap, that is, the first few columns of data points in the next superpatch are also the last few columns in the current one, these data points already reside in a contiguous sub-chunk of shared memory. Hence, we do not need to reload these points from global memory. Rather, we can simply move the starting index of the next superpatch to where these data points currently reside in the shared memory. For example, in Fig. 6, as the first 3 columns of Superpatch 0 in Fig. 5 are also the last 3 columns of Superpatch 1, and is already in a sub-chunk of shared memory with the starting index 18 × 21 = 378. we simply move the starting position of Superpatch 0 to 378 without reloading the these 3 columns. For the rest of new superpatch, we append these data points to the existing ones. If we hit the end of the chunk of shared memory for superpatches, we simply re-use the indices from the beginning of the chunk. For example, for Superpatch 1, the columns other than the first 3 ones are stored in the positions with indices 0 to 18 × 21 -1 = 377. Also, if the last superpatch of the current row is smaller than the rest, such as the case with Superpatch 2, we can simply keep part of the shared memory vacant. The second way of moving is the go-up move (lines 21-22 in Algorithm 2). When the go-right moves hit the end of the current row, we re-initiate the superpatch at the leftmost position of the next row. The y-coordinate of the points at the bottom of the current row is the minimum y-coordinate of the points in the patches that have not been covered by previous rows. For example, in Fig. 5, when moving from Superpatch 2 to 3, this minimum y-coordinate is 18, which is that of the points at the bottom of Patches A-2, A-3, B-10, B-11, B-12, B-13 and B-14. Thus, Superpatch 3 starts at 18 on the y-axis.

After the go-up move, we can again perform the go-right move till the end of this row, conducting feature extraction for all patches in this row along the way. Then we can again perform the go-up move. This iterative process stops when it is no longer possible to perform either the go-right or go-up moves (lines 23-24 in Algorithm 2), at which point all patches in the example have been processed.

Looking back on the entire Pseudo-One-Pass Sweep, we reach a point where we can explain its namesake. By onepass, we mean that unlike the naïve approach where we scan the global memory once for each feature scale, we can now logically perform only one scan using the superpatches to achieve multi-scale feature extraction; by pseudo, we mean while it is logically possible to scan only once, in practice we need repeated global memory access for overlapping data points in superpatches from different rows (the purple regions in Fig. 5). However, the number of such points are usually very limited compared to the total number of points in the example. Also, it is worth noting that our incremental data transfer strategy ensures that no repeated global memory access is required for a single row, which can greatly reduce the total number of repeated global memory accesses.

Before moving on, we note 2 points: First, we provide advice on how to set the superpatch size parameters spScaleX and spScaleY . Obviously, both of these parameters should be larger than the largest feature scale to accommodate at least one patch with the largest size. Moreover, we would like the superpatch to be as large as possible given a fixed number of bytes available in the shared memory. This can be achieved by making spScaleX and spScaleY as large as possible while keeping their difference as small as possible.

Second, we look into whether the choice of core methods is significantly limited by the relatively scarce memory resource on the GPU. Fortunately, the answer is no. Specifically, in Algorithm 2, we let each thread execute the core method for a single patch at a time. The patch itself, which holds the raw raster data, already resides in shared memory. Therefore, the only remaining concern is assigning the extra workspace memory needed by the core method to process the raw data. Given the highly limited size of per-thread registers and perblock shared memory, one simple solution is to relegate the workspace to global memory as needed. Considering the fact that modern NVIDIA GPUs have (tens of) gigabytes of global memory, this solution will suffice for the vast majority of (if not all) core methods that can be run on CPU. However, as was mentioned in Section IV-A, global memory is slow to access and using it can limit the overall efficiency of raw feature extraction. Rather, we prefer to assign the workspace memory within the per-thread registers, or use both the registers and a small proportion of the shared memory. This would normally require the workspace to be of O( 1) size (namely constant size), regardless of the number of points in the raw data. As it turns out, in many cases, this is achievable. To illustrate, we look into the two core methods mentioned in Section III-C, and see how they can be implemented with constant workspace and relatively low time complexity.

• P CA: Applying P CA to a patch of data points entails 3 steps: 1) Obtain the covariance matrix C of the patch. Suppose the patch contains n data points, each being a 3D coordinate, then the patch can be represented as an

n × 3 matrix M = [m T 1 , m T 2 , m T 3 ] where m T i = [m i,1 , m i,2 , . . . , m i,n ] T (i = 1, 2, 3
) are the columns of M, and C is a 3 × 3 matrix where the element at position (i, j) is • ST AT : Applying ST AT to a patch of n data points entails calculating their std, as well as min, Q1, median, Q3 and max which are order statistics. Among them, std (denoted as σ) can be calculated as

c i,j = n k=1 m i,k m j,k n -1 (1 
σ = 1 n n i=1 (z i -µ) 2 = n i=1 z 2 i n -µ 2 (2) 
where z i is the elevation value of the i-th point in the patch and µ is the mean of elevation values of all points in the patch, which can be calculated as

µ = n i=1 z i n (3) 
It is easy to see that we simply need to obtain the sums i z p i (p = 1, 2) to further calculate std in constant workspace and time, and we can obtain them in O(n) time and O(1) workspace, as we only need to keep the sum so far and the next z i value in the workspace at a time. Thus, it takes O(1) workspace and O(n) time to obtain std. For the order statistics, we can obtain them using some selection algorithm which usually comes with a spacetime trade-off. In our implementation, we use the basic algorithm proposed in [START_REF] Munro | Selection from read-only memory and sorting with minimum data movement[END_REF], which uses constant workspace and has a time complexity of O(nlgn), which is usually fast enough as it is unlikely that the patches are excessively large. In the rare cases that this happens, Munro and Raman [START_REF] Munro | Selection from read-only memory and sorting with minimum data movement[END_REF] also provided methods with lower time complexity with slightly higher demand for workspace memory. We omit discussion of these methods for brevity. In conclusion, by implementing the core method in a way that only requires O(1) workspace, which is achievable in many cases, or by simply relegating the workspace to global memory, we can run the vast majority of (if not all) core methods on the GPU.

D. GPU-based feature aggregation

We now discuss GPU acceleration for feature aggregation. From Section III-D (in particular lines 20-23 in Algorithm 1), we can conclude that the aggregated features for an ROI can be divided into segments with an ID of (ex, f Scale, i), in which ex is the ID of an example in the ROI, f Scale is the one of the feature scales, and i is an index of the output vector of the core method. Each segment consists the 7 statistics mentioned in Section III-D. Among them, mean and std can be obtained in constant time if we pre-calculate the two sums mentioned in the discussion on ST AT in the previous section (although here the values to sum up are raw feature values, rather than elevation values). These sums can be obtained by CUDA-based parallel reduction [START_REF] Harris | Optimizing parallel reduction in cuda[END_REF]. For the order statistics, we can first sort the raw features that correspond to the current segment, which can be performed on GPU using existing software tools such as Thrust1 [START_REF] Bell | Thrust: A productivity-oriented library for cuda[END_REF] and CuPy2 [START_REF] Nishino | Cupy: A numpy-compatible library for nvidia gpu calculations[END_REF], and then trivially obtain them in constant time.

E. GPU-accelerated Cross Validation

For cross validation (CV), we mainly apply GPU acceleration to the classifiers. Here we have a wide range of open-source GPU-based implementations for a variety of classifiers. For example, the CuML3 [START_REF] Raschka | Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence[END_REF] library includes GPU-accelerated implementations of multiple commonly-used classification models; the ThunderSVM4 [START_REF] Wen | Thundersvm: A fast svm library on gpus and cpus[END_REF] library provides GPU-based implementations of support vector machines (SVMs); the XGBoost5 [START_REF] Chen | Xgboost: A scalable tree boosting system[END_REF] library has built-in support for GPU acceleration; k-nearest neighbor is implemented in CUDA-based packages such as KNN CUDA 6 ; deep learning frameworks such as PyTorch7 [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] and Tensorflow8 [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF] can be used to implement logistic regression and artificial neural networks executable on GPUs.

V. EXPERIMENTS

For empirical study, we conduct 2 sets of experiments: First, we present a demo of our FARMYARD pipeline to showcase its utility in a real-world geoscientific research project. Second, we conduct experiments on both real and simulated large planetary LiDAR datasets to demonstrate the efficiency of our Pseudo-One-Pass Sweep (POPS) based raw feature extraction framework. All experiments were ran on a Ubuntu 18.04 server with 2 NVIDIA Quadro RTX 6000 GPUs (only one is used at a time), 1 AMD EPYC 7402P 24-core CPU @2.8GHz, and 125GB memory. Unless otherwise stated, all CPU-based code is implemented in Python 3.8, while all GPU-based code is implemented in CUDA-C [START_REF]Cuda c++ programming guide[END_REF] and linked with the Python code using the PyCUDA9 [START_REF] Klöckner | Pycuda and pyopencl: A scripting-based approach to gpu run-time code generation[END_REF] package. All results are averaged over 10 runs.

A. PARKER: A Demo of the Utility of FARMYARD

In this section, we showcase the utility of our FARMYARD pipeline in an ongoing geoscientific research project called Planetary lidAR seeKing for lifE signatuRe (PARKER), where we are interested in discovering topographical features related to terrestrial life activities. To do so, we attempt to find features that can distinguish between the Earth and other planets with no known life signs (currently we focus on Mars) by analyzing planetary LiDAR data. Specifically, we follow our FARMYARD pipeline step by step, with notable settings for each step listed as follows.

1) Data collection: We collect raw points of various regoins scattered across the globe on the Earth and Mars (Fig. 7). The reason why these regions have been chosen is that they encompass 4 landscapes that are present on both the Earth and Mars, which are volcanoes, drainage systems, landslides (or rock avalanches) and impact craters. For the Earth, we use the GEDI [START_REF] Dubayah | Gedi l2a elevation and height metrics data global footprint level v002[END_REF] repository (since 4/2019); for Mars, we use the MOLA [START_REF] Smith | The global topography of mars and implications for surface evolution[END_REF] repository (1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006).

See Section II for a more detailed description of these repositories. 2) Preprocessing:

• ROI selection: From each of the aforementioned regions, we manually select one or more non-rectangular ROIs, each bounding a sub-region with only one dominant landscape. • CRS transformation: As mentioned in Section III-B, we apply the Lambert Conformal Conic Alternative (LCCA) projection to the selected ROIs. • Raster interpolation: For each transformed ROI, we interpolate them to raster data with 60m resolution with the IDW [START_REF] Shepard | A two-dimensional interpolation function for irregularlyspaced data[END_REF] algorithm. IDW has two parameters: search radius r and power parameter α. We fix the former to 10,000m, while setting the latter from one of 1 : 5. 3) Feature Definition: For the feature template, we consider 2 core methods, 2 dimensionalities, and 3 feature scales.

• Core method core: We consider P CA and ST AT , which have been introduced in Section III-C. • Dimensionality dim: We consider both 2D and 3D.

• Feature scales f Scales: We consider 3 options, each of which is a group of 3 feature scales: (300m, 400m, 500m) which we designate as the small group, (700m, 800m, 900m) which we designate as the medium group, and (1100m, 1200m, 1300m) which we designate as the large group. Combining these options leads to 2×2×3 = 12 candidate feature templates. For the rest of this section, we refer to each template in the format of {core} -{dim} -{f Scales}. For example, P CA -2D -small indicates the feature template with the core method P CA, the dimensionality 2D, and the feature scales small. 4) Feature extraction:

• Raw feature extraction: We set both the example scale exScale and example step exStep to 2000m. We fix the feature stride-to-scale ratio stsRatio to 0.5 for all 9 feature scales that are included in the aforementioned options for f Scales. Also, we implement the raw feature extraction in such a way that it is executed for all 9 feature scales in a single run on GPU (rather than one separate run for each option of feature scale). This can maximally leverage the ability of our POPS framework to handle multiple scales. • Feature aggregation: We use the CuPy [START_REF] Nishino | Cupy: A numpy-compatible library for nvidia gpu calculations[END_REF] package to sort raw features in each segment (see Section IV-D) before we pass them on to our own CUDA-C code. 5) Feature evaluation:

• Data partition: For our Domain-Shifted Partition (DSP), since we are trying to find features related to inter-planet differences, we set the target category (TC) to planets with the target labels (TLs) being Earth and Mars. For non-target categories (NTCs), we consider landscapes and geolocations. The nontarget labels (NTLs) for the former are volcano, drainage, landslide and crater, and those for the latter are ::: Etna, :::::::::: Emi Koussi, ::::: Vesuve, ::::::: Elysium, ::::::: Olympus, ::::::

Pavonis, ::::: Borku, ::::::: Ngazima, :::::::: Sycamore, ::::: Durius, ::::: Elaver, ::::::

Warego, ::::::::: Blackhawk, ::::::: Socompa, ::::::: Coprates, :::::: Ganges, :: Ius and ::::::::::

Gosses Bluff. The number of folds K is set to 3, as larger settings can not lead to partitioned datasets that meet the criteria of DSP. The numbers of examples in each fold is shown in Table I 1 . • Cross validation (CV): For data balancing, we consider 5 balancing methods: no balancing, 2 oversampling methods which are SMOTE [START_REF] Chawla | Smote: synthetic minority over-sampling technique[END_REF] and ADASYN [START_REF] He | Adasyn: Adaptive synthetic sampling approach for imbalanced learning[END_REF], as well as 2 undersampling methods which are random undersampling (RUS) and undersampling with instance hardness threshold (IHT) [START_REF] Smith | An instance level analysis of data complexity[END_REF]. For the latter four, we use the implementation provided by the Imbalancedlearn [START_REF] Lemaître | Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning[END_REF] library. For the choice of classifiers, we apply 8 classifiers, including 4 SVM classifiers with different kernels (linear, RBF, polynomial, and Sigmoid) which are implemented in the ThunderSVM [START_REF] Wen | Thundersvm: A fast svm library on gpus and cpus[END_REF] package, XGBoost [START_REF] Chen | Xgboost: A scalable tree boosting system[END_REF] and 3 k-NN classifiers (the number of neighbors k are set to 1, 5 and 10) which are implemented using the KNN CUDA package (see Section IV-E). • Feature visualization: For feature visualization, we use the t-SNE algorithm [START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF], which is a dimensionality reduction algorithm that can facilitate visualization of high-dimensional datasets in 2D space. In our case, we visualize both the raw and aggregated features extracted using each feature template for all examples. The raw feature vector for each example is obtained by concatenating the features of all patches in it. t-SNE has an expected density parameter perplexity that can affect the visualization result by controlling the number of points used as nearest neighbors (see [START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF] for details). Here we consider 3 values for perplexity: 10, 30, 50. For visual clearance, we keep the number of examples for each target label under 500 within the visualization by random sampling. Note that in some of the aforementioned steps, we consider multiple FARMYARD configurations, as was recommended in Section III-F. Specifically, for raster interpolation, we consider 5 configurations as dictated by the 5 different IDW alpha settings; for data balancing, we consider 5 configurations as dictated by the 5 balancing methods; for CV, we consider 8 configurations as dictated by the 8 classifiers; for visualization, we consider 3 configurations as dictated by the 3 perplexity values. This leads to 5 × 5 × 8 = 200 configurations for CV, and 5 × 3 = 15 configurations for feature visualization.

Next, we show how we can carry out the 3 further analysis tasks mentioned in Section III-F, based on the CV and visualization results.

1) Feature ranking: We would like to first see which ones among the 12 candidates feature templates can best distinguish between Earth and Mars, which may be indicative of their relevance to terrestrial life activities. To this end, we look into the CV results shown in Fig. 8, from which it is very hard to decide a clear winner. Therefore, as was mentioned in Section III-F, we perform two statistical tests over the κ scores of the 12 feature templates across all 200 CV configurations, obtaining the critical difference diagram (CDD) [START_REF] Demšar | Statistical comparisons of classifiers over multiple data sets[END_REF] shown in Fig. 9. In the CDD, each feature template has a mean rank (the values over the lines connected to templates) obtained from the Friedman test, and the smaller the rank value (that is, the more to the right in the CDD), the better CV results the template has yielded. As is shown in Fig. 9, P CA -2D -small has lead to the best overall results.

Next, we examine whether there are statistical differences between one feature template to another. In other words, if one template is better than another, we wish to know if it is significantly better. In the CDD, feature templates are grouped into cliques as indicated by the bold bars. Those in the same clique, such as ST AT -2D -medium and ST AT -3Dmedium, as well as P CA-3D-large and P CA-2D-large in Fig. 9, have no statistically significant differences, while the rest do. In particular, P CA-2D-small is significantly better than all the other feature templates, which makes it the sole winner.

Finally, from Fig. 9 we can make 2 interesting observations besides deciding the winning feature template: First, P CA generally outperforms ST AT for the same group of feature scales (except large). Second, small generally outperforms medium, and medium generally outperforms large, no matter which core method is used.

2) Feature qualification: While we already know that P CA -2D -large significantly outperforms the remaining 11 feature templates, we still need to examine whether its performance is good enough to effectively distinguish between the Earth and Mars. To do so, we look into its κ scores across all 200 configurations, whose mean, standard deviation, minimum and maximum values are 0.139, 0.114, 0.478, -0.240, respectively. Unfortunately, while there is no universally accepted way to interpret the "goodness" of κ scores, the aforementioned values are most certainly not good. This assessment is corroborated by the F1-scores on the two target labels and the feature visualization results: For the F1-scores, the mean, standard deviation, minimum and maximum values for the F1-scores on Mars are 0.793, 0.143, 0.953, 0.168, respectively, while those on Earth are 0.183, 0.113, 0.496, 0.003. The F1-scores on Mars seem reasonably good, but those on Earth are poor. For the feature visualizations, the results are shown in Fig. 10. For brevity, we only present the results with IDW α = 1, relegating the remaining results to Fig. 18 and 19 in the Appendix. As is shown, in neither the visualizations of raw and aggregated features are the two target labels well-separated. Moreover, in most cases the intra-class distribution is highly heterogeneous, which indicates that P CA -2D -small can not lead to lowvariance representations for neither the target labels. These observations also hold true for cases where IDW α ̸ = 1.

In conclusion, P CA -2D -small, and thus all 12 feature templates, have so far failed to produce features that meet our criterion when it comes to distinguishing between the Earth and Mars. Again we note that none of the 12 feature templates in question should be considered contributions of our paper. Rather, our main contribution is a novel FARMYARD pipeline that has worked as expected, helping us discover that none of the 12 templates we have currently considered are likely to lead us to further insights into the inter-planetary topographical differences related to life activities. That being said, we are encouraged by the superior performance of P CA to ST AT . As will be discussed in the next section, we now have a preliminary hypothesis on the reason why P CA has lead to poor results and are working to improve it accordingly.

3) Bias analysis: While P CA -2D -small has generally lead to underwhelming results, we are curious to see whether these have to do with its bias towards one of the two target labels. As was previously mentioned, the average F1-scores for Earth and Mars are 0.183 and 0.793. This strongly suggests that there is a bias towards Mars. In fact, this observation is not only true to P CA -2D -small, but also true to the other feature templates. The reason behind this is likely to be the fact that we have far more training examples for Mars than Earth, and the data balancing techniques have failed to compensate for this.

B. Discussions

From the results shown in the last section, we identify the following issues that future researches on planetary LiDAR may address.

1) The need for novel core methods: From the generally poor results yielded by the 12 feature templates we have considered, it is obvious that there is a need for novel core feature extraction methods for planetary LiDAR, at least for discovering the differences between the Earth and Mars. In fact, we are surprised to find that there are very few researches (if not none) for feature extraction from planetary LiDAR. The most closely related work we could find was by Brodu and Lague [START_REF] Brodu | 3d terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology[END_REF] who proposed the P CA method. However, that work was not originally dedicated to space-borne planetary LiDAR. Rather, it was intended for close-up terrestrial laser scanning (TLS) of natural scenes such as rivers and cliffs. We believe there is an urgent need for novel feature extraction methods that are more adaptive to the characteristics of planetary LiDAR.

In particular, we believe there is great room for improvement for P CA. Specifically, a critical difference between planetary LiDAR and close-up TLS is that for a given pair of (x, y) value, planetary LiDAR only allows for one z value, which is the elevation of the highest point at that coordinate. Close-up TLS, on the other hand, allows for multiple readings for the object at that particular coordinate. For example, suppose there is a tree at the coordinate, we can obtain a series Fig. 11. The raw 3D point cloud of the terrestrial Ambrym Volcano from the GEDI [START_REF] Dubayah | Gedi l2a elevation and height metrics data global footprint level v002[END_REF] repository, which is so sparse that we were not able to conduct raster interpolation to it that was faithful to the groundtruth. of readings from the top of the tree to its trunk all the way to ground level. The extra readings provide more information than the single elevation reading of planetary LiDAR. We are currently working on improving P CA to adapt to this difference. The general idea is that for each (x, y) coordinate, apart from keeping the original elevation value, we add more z values below the elevation of the highest point, thus mimicking the characteristics of close-up TLS.

2) The need for denser raw data: As was mentioned previously, the results we have obtained are highly biased towards Mars, which is likely caused by far fewer examples from the Earth than Mars. Admittedly, the inclusion of very large Martian geo-objects such as Olympus Mons has played a row in such data imbalance. However, in the meantime, we find it very hard to obtain enough terrestrial data from the GEDI [START_REF] Dubayah | Gedi l2a elevation and height metrics data global footprint level v002[END_REF] repository due to the sparsity of raw data in may regions. For example, we originally intended to include the terrestrial Ambrym Volcano in our dataset. However, after inspecting its raw 3D point cloud (Fig. 11), we decided that the data was so sparse that it was impossible to conduct raster interpolation to it that was faithful to the groundtruth. We note that this is not an isolated case. Rather, we have faced with such difficulties for many regions on the Earth that would have been included were not for data sparsity.

Moreover, even with the current dataset with relatively dense raw data, raster interpolation still has a significant impact on the CV results. To illustrate, the CDD of the CV scores of P CA -2D -small with different IDW α settings is shown in Fig. 12. As is indicated, different interpolation configurations can lead to significantly different CV scores. This is also true for the majority of the remaining 11 feature templates. To address both this problem and the previously mentioned problem with downright invalid data due to sparsity issues, it is advisable to improve the raw data density in the GEDI [START_REF] Dubayah | Gedi l2a elevation and height metrics data global footprint level v002[END_REF] repository for certain regions on the Earth, thus making raster interpolation produce more accurate and robust results.

3) The need for novel data balancing techniques: While denser raw data can help mitigate data imbalance, it is unlikely to fix the problem entirely. In many cases, data imbalance is almost inevitable, especially when we deal with supersized geo-objects such as Olympus Mons. Therefore, we still need explicit data balancing in CV. However, as was shown in the previous section, the classic data balancing methods we have considered so far have failed to address the aforementioned bias issue. Moreover, different data balancing methods have led to significantly different CV results, as is shown in Fig. 13. Based on these observations, we contend that there is a need for novel data balancing techniques for planetary LiDAR, especially one adaptive to our DSP strategy.

4) The need for attention to classification decision boundaries: Last but not least, as is shown in Fig. 14, we have noticed that different classifiers can lead to significantly different CV results for a single feature template. In addition, different feature templates can correspond to different classifiers when the best results are achieved. It is likely that the decision boundaries between target labels under different feature templates are different, and only the classifiers that can best detect these boundaries can lead to the best results. We believe that the characteristics of the decision boundaries may encode deep geoscientific knowledge that are worth looking into, and it is thus advisable for researchers to pay attention to the decision boundaries which can be obtained by feature visualization (see Section III-E).

C. Efficiency of Raw Feature Selection

We now turn to a key design highlight of our GPU-based FARMYARD pipeline: the Pseudo-One-Pass Sweep (POPS) framework for raw feature extraction, which promises much higher efficiency than its CPU-based counterpart 1 . We now validate this promise using both simulated and real data. For the rest of the section, the number of threads per GPU block is set to 256.

1) Efficiency on simulated data: We begin with experiments on simulated data which is randomly-generated rasters. First, we examine how our POPS framework compares against the following 2 rivals: the CPU-based sequential framework, and POPS without its ability to simultaneously process multiple feature scales. We call the latter POPS-NMS, where we disable simultaneous multi-scale processing using the syncthreads() function (see Section IV-A).

For the 3 frameworks in question, we conduct raw feature extraction using both P CA and ST AT on randomlygenerated square rasters. These rasters have different numbers of points along each edge ranging from 1000 to 10000 with a step size of 10002 . On all rasters, we fix the example scale exScale to 300 data points. As with the feature scales f Scales, we set it as the union of 3 groups: small where the scales are 5-10 points, medium where the scales are 15-20 points, and large where the scales are 25-30 points3 , thus we have a total of 3 × 6 = 18 feature scales. The feature stride-to-scale ratio stsRatio is fixed to 0.5.

The results are shown in Fig. 15. Note that we have set a timeout threshold of 3h (10,800s) to avoid excessively long runs. As is shown, for the CPU-based framework, it is much slower than the two GPU-based frameworks and has run out of time prematurely for both P CA and ST AT . For P CA, the difference between the CPU-based framework and the GPUbased ones are relatively stable. However, for ST AT , the difference between the two are relatively small for smaller rasters, yet gradually grows as the raster gets larger. This is likely because for ST AT , the GPU-based frameworks use a memory-efficient implementation with O(nlgn) time complexity (see Section IV-C), while the CPU-based framework uses one with O(n) complexity. When the raster is small, the power of parallelism is relatively weaker at offseting the disadvantage we have in terms of per-patch time complexity. However, as the raster becomes larger, the power of parallelism gradually surpasses the effect of higher time complexity, thus leading to greater advantage on our side. Finally, under all circumstances considered, POPS is able to beat POPS-NMS thanks to the optimizations for multi-scale features.

Our next simulated experiment concerns the impact of different f Scales settings on POPS with varying number of examples and number of points in each example. Specifically, we have randomly generated a raster with 30, 000 × 30, 000 = 9 × 10 8 points. To put into perspective how large this raster is, suppose it has a high resolution of 30m, then it covers an area of (30, 000 × 30/1, 000) 2 = 810, 000km 2 , which is larger than the entire French territory. We set different values for exScale within a range of 100 : 100 : 500. Because the size of the raster is fixed, these different settings lead to different numbers of examples in the raster. For f Scales, we consider the 3 settings of small, medium and large in our previous simulated experiment, except that this time we consider them separately, rather than use their union. With stsRatio fixed to 0.5, we run POPS under these 3 settings and record the running times.

The results are shown in Fig. 16. First of all, POPS runs much slower for ST AT than P CA, which is likely due to the higher time complexity of the former. As with the f Scales settings, both small and medium leads to relatively short running time, while large has significantly longer time. This reveals a weakness of our POPS framework: it only allows one thread per patch, no matter how large the patch is, thus it is relatively inefficient at processing large feature scales. In particular, despite its optimizations for multi-scale scenarios, this yields limited gains when all the scales are large. That being said, the longest running time is a little over 600s (10min), which is still very impressive given the massiveness of the raster. Another interesting phenomenon is the zig-zag pattern of the running time curve for large. This is likely to be a combined effect of 2 competing factors: On the one hand, as the number of points in each example increases, so does the number of patches per example and thus the per-example processing time. On the other hand, the number of examples drops as the size of individual examples grow larger, which decreases the overall running time.

All in all, the aforementioned experiments strongly indicate that our POPS framework can easily defeat its CPU-based counterpart and can highly efficiently handle very large rasters. Moreover, its support for simultaneous multi-scale processing is indeed effective in boosting its efficiency.

2) Efficiency on real data: We now further validate the efficiency of POPS on real data. Specifically, we report the running time of POPS, POPS-NMS and their CPU-based counterpart when applied to extracting raw features from the dataset used in Section V-A, where we have also specified the parameters for feature extraction. The results are shown in Fig. 17. Specifically, for P CA, POPS is more than 3 orders of magnitude faster than the CPU-based framework; for ST AT where POPS has higher per-patch time complexity, it is still over 2 orders of magnitude faster. Also, POPS is nearly 2x as fast as POPS-NMS, which can make a difference when the absolute running time is relatively long, such as the case with ST AT .

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a generic and (nearly) entirely GPU-based pipeline for Feature Discovery From Planetary LiDAR Data (FARMYARD) with 3 design highlights: a Pseudo-One-Pass Sweep (POPS) based framework for efficient raw feature extraction of massive raster data, a two-level ROI division scheme for multi-scale feature extraction of local regions, and a Domain-Shifted Partition (DSP) strategy for robust feature evaluation in the presence of interfering factors. We validated the utility, effectiveness and efficiency of our contributions through extensive experiments. Based on our results on real-world data, we have also made suggestions to future researches on planetary LiDAR such as developing new core methods for feature extraction (especially improving upon P CA), enhancing raw data density, improving data balance, and paying attention to classification decision boundaries for different feature extraction methods.

For future work, we mainly focus on the following 3 aspects. 1) Improving efficiency on large patches: As was demonstrated in Fig. 16, the efficiency gain of our POPS-based feature extraction method decreases for larger patches, due to its limitation that a patch can only be processed by a single thread. In response, we plan to extend our current method to allow for parallel processing of a patch using multiple threads, thus boosting our efficiency on larger patches. This may only be possible for some core methods. If so, we plan to propose generic guidelines that can help the user determine whether their core method can be executed using multiple threads, and if this is the case, the optimal number of threads per patch to use for maximum efficiency.

2) Incorporating deep learning (DL): Throughout this paper, we have limited our discussions to traditional hand-crafted features, rather than deep features learned by neural networks. This is primarily out of concerns for feature interpretability, as the black box nature of data-driven neural networks can prohibit domain experts from interpreting learned deep features and thus uncovering equally deep knowledge. However, in view of the effectiveness of DL, we plan to incorporate it into our current pipeline, so that the interpretability of handcrafted features and the efficacy of DL can complement each other. One possible way of doing this is to first discover potentially interesting handcrafted features using our current pipeline, and then apply a neural network to fine-tune these features, e.g. weighting them using the attention mechanism [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF]. Also, recent advances in explainable DL [START_REF] Tjoa | A survey on explainable artificial intelligence (xai): Toward medical xai[END_REF] may also shed light on humanly interpretable knowledge embedded in deep models.

3) Extending to new topics on planetary topography: The ultimate goal of this work is to provide a new methodology for comparative studies of planetary topography that can lead to future geoscientific discoveries. Thanks to the generic and GPU-based nature of our FARMYARD pipeline, we can now compare multiple geo-objects with easiness, accuracy and efficiency never possible before, which can potentially usher in a new era of the study of the "text" provided by topography. Apart from continuing with our PARKER project (see Section V-A) which seeks to find topographical life signatures on the Earth, with FARMYARD, we can extend our research to other interesting topics. For example, we can study the influence of life on planetary geomorphology by comparing biotic and abiotic controlled landscapes (on the same planet); for similar landscapes at different geolocations, we can study the influence of their different forming mechanisms of on their topography. We can even ask questions as yet unthoughtof, because once new ways of seeing become available, new questions emerge.

APPENDIX: ADDITIONAL EXPERIMENTAL RESULTS

We provide additional experimental results that were previously omitted for brevity, which are shown in Fig. 1819202122. 

Fig. 1 .

 1 Fig. 1. Planetary LiDAR point cloud of the bare ground over Vesuve volcano in Italy, extracted from the GEDI [4] repository.

Fig. 3 .

 3 Fig. 3. An illustration of data preprocessing for Vesuve volcano from the GEDI [4] repository. For ROI selection (b), the shaded area indicates the nonrectangular polygonal ROI selected by the user, while the rectangular area enclosed by the dashed lines indicates its bounding box.

Algorithm 1 :

 1 extractFeats(rois, exScale, exStep, core, dim, f Scales, stsRatio): feature extraction Input : raster data for all ROIs rois, example scale exScale, example sampling step exStep, core method core, dimensionality dim, feature scales f Scales, feature stride-to-scale ratio stsRatio Output: aggregated feature vectors of all examples in all ROIs aggF eats 1 aggF eats = []; 2 lcv = getLenCoreVec(core) ; // The length of the output vector of core. For example, lcv = 2 for P CA as it outputs 2 ternary coordinates. 3 foreach roi in rois do // Divide an ROI into examples.

4 examples 6 foreach ex in examples do 7 f 9 f

 4679 = roiToEx(roi, exScale, exStep); 5 curAggF eats = []; eatV ec = []; 8 foreach f Scalep in f Scales do Step = round(f Scale × stsRatio); // Divide an example into patches. patches = exToPat(ex, f Scale, f Step); // Extract raw features. curRawF eats = []; foreach patch in patches do if dim == '2D' then data = patch; else if dim == '3D' then data = sphereAroundCenter(patch); data = meanNorm(data); raw = runCore(data, core); curRawF eats.append(raw); // Aggregate features. foreach i = 0 : lcv -1 do cur = curRawF eats[:, i]; agg = getStats(cur); f eatV ec.concat(agg); curAggF eats.append(f eatV ec); aggF eats.append(curAggF eats); return aggF eats;

Fig. 4 .

 4 Fig. 4. Two-level ROI division. top) Dividing an ROI of size 91 × 84 into examples of size 42×42 with an example sampling step of 25. bottom) Further dividing an example into patches of size 18 × 18 with a feature sampling step of 10 (left)), and size 6 × 6 with a feature sampling step of 9 (right)). Note that this is merely a toy example for illustration. Actual ROIs and examples are hundreds or thousands of times larger than what is shown here.

Fig. 5 .

 5 Fig. 5. An illustration of our Pseudo-One-Pass Sweep (POPS) framework. For the 42 × 42 example that is divided into 18 × 18 and 6 × 6 patches shown in Fig.4b, we use superpatches with a maximum size of 21 × 21 to move over all patches in it, fetching data points from global memory to shared memory. Within the superpatchs, the green regions indicate data points that have not been covered by any previous superpatches. The grey regions indicates data points that have been covered by the last superpatch in the same row, but have not by any superpatches in the previous row. Our incremental data transfer strategy ensures that we do not need repeated global memory accesses to re-fetch these data points to the current superpatch. The purple regions indicate data points that have been covered by a superpatch in a previous row. Only these data points require repeated global memory accesses for the current superpatch.

Fig. 6 .

 6 Fig. 6. An illustration of shared memory usage for Superpatches 0-2 in Fig. 5 under incremental data transfer. Green indicates new data points that require global memory access. Grey indicates data that is already in shared memory. Light green indicates unused shared memory space. Red arrow indicates where the first point in the superpatch is stored.

)

  Note that c i,j can be obtained in O(n) time with O(1) workspace as we only need to keep one m i,k and one m j,k in the workspace at a time. As there are 3 × 3 = O(1) elements in C, it takes O(n) time and O(1) space to obtain C. 2) Obtain the eigenvalues λ 1 , λ 2 and λ 3 of C and the explained variance ratios λ1 λ1+λ2+λ3 and λ2 λ1+λ2+λ3 , which takes O(1) time and workspace as the size of C is constant. 3) Transform the explained variance ratios to their coordinates in a ternary graph, which also takes O(1) time and workspace as there are only 2 = O(1) values to transform. All in all, the entire process takes O(1) workspace and O(n) time.

Fig. 7 .

 7 Fig. 7. Geolocations of the regions on the Earth and Mars currently studied in the PARKER project.

Fig. 8 .

 8 Fig. 8. Raw cross validation results of the 12 feature templates across 200 FARMYARD configurations. The name of the configurations have been omitted for visual clearance.

Fig. 9 .

 9 Fig. 9. Critical difference diagram of the cross validation κ scores of the 12 feature templates across 200 FARMYARD configurations. The more to the right, the better results a feature template has yielded. Those in the same clique (indicated by bold bars) have no statistically significant differences.

Fig. 10 .

 10 Fig. 10. Feature visualization for the feature template P CA -2D -small with IDW α = 1. See Fig. 18 and 19 in the Appendix for cases where α is set to 2, 3, 4, 5.

Fig. 12 .

 12 Fig. 12. Critical difference diagram of the cross validation κ scores of the feature template P CA -2D -small with different IDW α settings. See Fig. 20 in the Appendix for diagrams of other feature templates.

Fig. 13 .

 13 Fig. 13. Critical difference diagram of the cross validation κ scores of the feature template P CA -2D -small with different data balancing methods. See Fig. 21 in the Appendix for diagrams of other feature templates.

Fig. 14 .

 14 Fig. 14. Critical difference diagrams of the cross validation κ scores of the feature templates P CA -2D -small and ST AT -2D -large with different classifiers. See Fig. 22 in the Appendix for diagrams of other feature templates.

Fig. 15 .

 15 Fig. 15. Raw feature extraction time on simulated rasters with varying number of points. Note that the time axis is in log scale.

Fig. 16 .

 16 Fig. 16. Raw feature extraction time of POPS on a simulated raster of 30, 000 × 30, 000 with different example and feature scale settings.

Fig. 17

 17 Fig. 17. Raw feature extraction time on the real dataset used in Section V-A. Note that the time axis is in log scale.

  Fig. 17. Raw feature extraction time on the real dataset used in Section V-A. Note that the time axis is in log scale.

Fig. 18 .

 18 Fig. 18. Visualization of raw features under the feature template P CA -2D -small with IDW α set to 1, 2, 3, 4, 5.

Fig. 19 .

 19 Fig. 19. Visualization of aggregated features under the feature template P CA -2D -small with IDW α set to 1, 2, 3, 4, 5.

Fig. 20 .

 20 Fig. 20. Critical difference diagrams of the cross validation κ scores of all 12 feature templates with different IDW α settings.

Fig. 21 .

 21 Fig. 21. Critical difference diagrams of the cross validation κ scores of all 12 feature templates with different data balancing methods.

Fig. 22 .

 22 Fig. 22. Critical difference diagrams of the cross validation κ scores of all 12 feature templates with different classifiers.

  

  Etna for Mount Etna in Italy on the Earth, Olympus for Olympus Mons on Mars, ::::: Borku which is a region in Central Africa on the Earth, :::::: Warego for the Warego drainage basin on Mars, and ::::::::::Gosses Bluff for the Goss Bluff crater in Australia on Earth. For the rest of this section, we refer to the labels under TC as target labels (TL), and those under NTCs as non-target labels (NTL). 3) Partition the data into K folds, such that for each NTC, any NTL under it should only appear in one fold. In other words, we make sure that for any pair of examples that are drawn from the training and testing sets respectively, they do not share the same NTL under any NTC. For instance, suppose we have examples whose labels are (in order of planets, landscapes and geolocations) as follows. Gosses Bluff. Suppose TC is planets and K = 2, then we can divide these examples into 2 folds: Examples 1, 2; and examples 3, 4, 5, 6. This way, either one of the two folds covers both the TLs Earth and Mars, while for the NTC landscapes, NTL volcano only appears in the first fold, while drainage and crater only appear in the second fold. Similarly, for the NTC geolocations, NTLs

	bounding box coordinates, or a textual designation for a
	specific region, such as
	strategy, which entails the following
	procedures.
	1) Identify as many non-target categories (NTCs) as pos-
	sible, with each NTC indicating a potential interfering
	factor for feature evaluation. For instance, if the TC
	is planets, the set of NTCs may include landscapes,
	geolocations, etc.
	2) Under each NTC, assign labels to all examples. For
	example, under landscapes, a label may be volcano,
	drainage or crater; under geolocations, a label may be

• Example 1: Earth, volcano, :::: Etna; • Example 2: Mars, volcano, ::::::: Olympus; • Example 3: Earth, drainage, ::::: Borku; • Example 4: Mars, drainage, ::::::: Warego; • Example 5: Mars, crater, :::::: Warego 1 ; • Example 6: Earth, crater, ::::::::::: ::: Etna and :::::::

  Algorithm 2: extrRawGPU(examples, exScale, core, dim, f Scales, stsRatio, spScaleX, spScaleY ): GPU-based raw feature extraction Input : examples from a given ROI examples, example scale exScale, core method core, dimensionality dim, feature scales f Scales, feature stride-to-scale ratio stsRatio,

		maximum superpatch scales on the x-and
		y-axes spScaleX and spScaleY
		Output: raw features for all patches in all examples
		in the ROI rawF eats
		// initiate return value in global
		memory
	1 l = getLenRawFeats(|examples|, f Scales, stsRatio);
	2 rawF eats = initArray(l);
	3 foreach GPU block do in parallel
	4	bid = blockIdx.x; ex = examples[bid];
		// Pseudo-One-Pass Sweep
	5	sp = initSupPat(ex, spScaleX, spScaleY );
	6	while True do
	7	syncthreads();
		// Apply core method to all
		patches in the superpatch.
	14	writeToRawFeats(cur, rawF eats, bid,
		tid);
	15	else
	16	break;
	17	syncthreads();
		// Move superpatch.
	23	else
	24	break;
	25 return rawF eats;

8 foreach thread in block do in parallel 9 tid = threadIdx.x; 10 while True do 11 patch = getNextPatch(sp, tid); 12 if patch ̸ = N U LL then 13 cur = applyCore(patch, core, dim); 18 params = [sp, exScale, f Scales, stsRatio]; 19 if canGoRight(params) then 20 sp = goRight(ex, params, spScaleX); 21 else if canGoUp(params) then 22 sp = goUp(ex, params, spScaleY );

https://gedi.umd.edu/

Note that ST AT is not to be confused with the feature aggregation method we describe here. The former is a raw feature extraction method which aggregates the original 3D data points in each patch to obtain patchlevel raw features, while the latter is used to further aggregate the patch-level raw features into example-level features.

DSP is inspired by the inter-patient setting in electrocardiogram-based arrhythmia detection in the biomedical engineering literature[START_REF] De Chazal | Automatic classification of heartbeats using ecg morphology and heartbeat interval features[END_REF], while its namesake comes from the domain adaptation[START_REF] Wilson | A survey of unsupervised deep domain adaptation[END_REF] problem in machine learning, where a domain refers to a set of examples from the same distribution and different domains tend to have inter-domain distribution discrepancies that lead to significant performance decay for classifiers trained in one domain to classify examples in another domain.

https://imbalanced-learn.org/stable/

The indexing of GPU blocks and threads can be either 1D,

2D or 3D. In this paper, we only consider the case with 1D.2 NVIDIA GPUs also have memory space named local memory, which is essentially global memory space that is private to each thread to cater to variables that cannot be fitted into registers. The size of local memory is limited and its access time is comparable with regular global memory, thus such accesses should also be avoided whenever possible.

In reality, to avoid running into the bank conflict[START_REF]Cuda c++ programming guide[END_REF] problem with shared memory, we may let a few threads sit idle while the others finish processing patches with the previous feature scale. The number of such idle threads is small (smaller than 16), leading to minimal waste of resources.

https://developer.nvidia.com/thrust

https://cupy.dev/

https://github.com/rapidsai/cuml

https://github.com/Xtra-Computing/thundersvm

https://xgboost.readthedocs.io/en/stable/index.html

https://github.com/unlimblue/KNN CUDA

https://pytorch.org/

https://tensorflow.org/

https://pypi.org/project/pycuda/

Note that the data is highly imbalanced. We will explain why it was hard for us to obtain a balanced dataset in Section V-B.

Note that in for the rest of the section, the CPU-based implementation heavily relies on the NumPy package, whose vectorization capability usually makes CPU-based operations much faster than naïve implementations. This makes it fairer to our CPU-based rival when compared with our POPS framework.

Note that these numbers are NOT the numbers of points in the rasters. In fact, the latter is the square of the former.

Note that the 3 feature scale groups we use for simulated experiments are different from those used for real data in the previous section, despite the fact that they share the same naming.
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