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Abstract: We used in situ transmission electron microscopy (TEM) to observe the dynamic changes of
Si nanowires under electron beam irradiation. We found evidence of structural evolutions under TEM
observation due to a combination of electron beam and thermal effects. Two types of heating holders
were used: a carbon membrane, and a silicon nitride membrane. Different evolution of Si nanowires
on these membranes was observed. Regarding the heating of Si nanowires on a C membrane at
800 ◦C and above, a serious degradation dependent on the diameter of the Si nanowire was observed
under the electron beam, with the formation of Si carbide. When the membrane was changed to Si
nitride, a reversible sectioning and welding of the Si nanowire was observed.

Keywords: electron beam irradiation; silicon nanowire; growth; TEM

1. Introduction

Low-dimensional materials such as nanoparticles, nanotubes, nanowires (NWs), and
graphene attract strong interest because of their unique properties as compared to bulk
materials. To open up all of these unique properties, a deep understanding of the materials
themselves is extremely important. Advanced characterization of the materials is indispens-
able for their development and optimization. Among these advanced characterizations,
different techniques have been developed targeting different properties. For example, atom
probe tomography (APT), which is a three-dimensional (3D) characterization technique
based on a projection microscope combined with a time-of-flight mass spectrometer, is
widely used in fine compositional (100 parts per million) and spatial (Angstrom) characteri-
zation of advanced materials [1,2]. Although the 3D information of APT is very useful, the
observation of material evolution in real time is also very important. To integrate the fourth
dimension of time into APT would be impossible, since APT is a destructive technique that
relies on the evaporation of atoms from the sample. Fortunately, many other techniques
can be applied as a function of time, so-called in situ techniques, including in situ X-ray
diffraction, in situ transmission electron microscopy (TEM) and in situ scanning tunneling
microscopy. Among all of these in situ techniques, in situ TEM is most widely used due to
its various configurations. Several types of in situ TEM have been developed, such as in
situ heating TEM [3–5], in situ cryo TEM [6,7], in situ gas environmental TEM [8–12], in situ
liquid TEM [13,14], in situ nanomechanical TEM [15], etc. In situ heating TEM, obtained by
integrating a heating holder into a TEM analysis chamber, has been widely used in metal
and semiconductor science. The holder can be heated by a current via the Joule effect or
by a laser. Therefore, it can be used to obtain a better understanding of the fundamental
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physical phenomena associated with NW or nanotube materials [16,17]. In situ TEM can
be used to observe the dynamic changes of NWs [16–18], control their growth [19–23], and
induce the formation of nanotubes [24,25] and nanopores [26]. For example, Harmand et al.
observed the atomic layer nucleation by growing GaAs NWs in environmental TEM [27].
Yuan et al. used environmental TEM to observe the dissolution and regrowth dynamics
of MoO2 NWs [28]. Kohno et al. used in situ TEM to observe the transformation of a SiC
NW into a carbon nanotube via Joule heating [25]. Wen et al. grew axial heterojunction
silicon–germanium NWs by tuning the growth parameters in in situ TEM [21].

Since in situ TEM is dedicated to observing the real-time material evolution, the influ-
ence of the electron beam (e-beam) cannot be ignored [1,2]. It has been reported that the
e-beam can cause increased dislocation activation, marked stress relaxation [29], anomalous
sample necking [30], and amorphization due to inelastic scattering of electrons [31,32].
The e-beam can also induce recrystallization [33,34]. On the other hand, when e-beam
irradiation and heating coexist, the degradation of the NWs is more prone to occur, and is
more severe [35]. However, all of the above studies only mentioned that the temperature
change induced by the electron beam is negligible, and there are few papers investigating
the synergistic effects of the electron beam and temperature on the morphology of Si NWs.
Moreover, electron irradiation and thermal energy can affect the atomic diffusion, induce
nanoparticles’ migration and coalescence, and may contribute to the growth of nanopar-
ticles [36]. When energetic electrons penetrate a solid, they undergo not only inelastic
scattering with atomic electrons—which results in the excitation or ejection of electrons—
but also elastic scattering with target nuclei that results in knock-on displacements of
target atoms [37]. In this work, in situ heating TEM was used to study the influence of
electron irradiation on the morphology of Si NWs. Moreover, the influence of the heating
holder with different supporting membrane materials—C or Si nitride (SiNx)—on Si NW
morphology was studied.

2. Experiments

To prepare Si NW samples for in situ TEM characterization, Si NWs grown on a glass
substrate were harvested by dipping them into an ethanol solution with the help of an
ultrasonic bath system. Then, an ethanol droplet containing Si NWs was transferred with a
pipette from the solution to the specific TEM Protochips Aduro heating chip coated with
a C membrane or a SiNx membrane. It should be noted here that there are only three
types of membranes for heating chips from Protochips, including SiC, C, and SiNx. The
maximum temperature allowed by the system is 1200 ◦C, with good heat uniformity and
5% temperature accuracy. Next, the sample holder with the chip was loaded in a JEOL
2010F operated at 200 kV and 10 nA. It should be noted here that there are two reasons
for choosing 10 nA as the working current: Firstly, because this is the current used in
standard in situ TEM experiments for the sake of visibility. Secondly, because it delivers
clear facts when one wants to find evidence of beam damage. The TEM image acquisition
time was 0.5 s, except when mentioned otherwise. It is reported in the literature that the
melting behavior of nanostructures is strongly dependent on their size, i.e., the melting
temperature of Si NWs decreases with the reduction in their diameter [38]. In order to
study the diameter dependence of electron irradiation on the Si NWs, Sn was used as a
catalyst instead of Au, since Sn-catalyzed Si NWs exhibit strong tapering (i.e., the diameter
of the Si NWs becomes thinner as it gets closer to the NW top end), unlike the cylindrical
morphology of Si NWs catalyzed by Au. Growth conditions resulting in tapered NWs can
be found in our previous work [39].

3. Results and Discussion

The evolution of Si NWs on the C membrane during in situ TEM heating was studied.
First of all, pure thermal heating of Si NWs was investigated. Note that heating was
performed in the TEM chamber, but without exposure to the e-beam. The TEM image
in Figure 1a shows the middle zone of an as-grown Si NW that has not been exposed to



Materials 2022, 15, 5244 3 of 10

the e-beam, with its corresponding diffraction pattern (DP) presented in Figure 1b. The
TEM image acquisition time in Figure 1b was 5 s. Its structure consists of a crystalline core
and an amorphous shell. This core–shell structure is due to the growth of the NW core
with the mediation of a metal droplet, along with the deposition of an a-Si: H shell on the
NW sidewall during NW growth [39]. When a Si NW with such a core–shell structure
undergoes heating at 1000 ◦C for 1200 s, a phase transformation of the shell from amorphous
to crystalline can be observed, as evidenced by TEM in Figure 1c, with the corresponding
diffraction pattern in Figure 1d. The TEM image acquisition time in Figure 1d was 3 s.
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Figure 1. (a) Middle zone of an as-grown Si NW, and (b) its corresponding diffraction pattern.
(c) The same Si NW as in panel (a), but annealed at 1000 ◦C for 1200 s without beam irradiation, and
(d) the corresponding diffraction pattern.

Let us now evaluate the effects of e-beam irradiation on the NW structure. Note that the
electron flux is around 7000 electrons/s/Å2 for Figure 2b–d, while it is 670 electrons/s/Å2

for Figure 2e. It can be seen from Figure 2a (as-grown) and Figure 2b
(dose at ≈ 4.24 × 106 electrons/Å2) that no evolution of the Si NW can be observed
when the heating is performed at a temperature of 500 ◦C for 600 s. Now, raising the
heating temperature to 1000 ◦C and keeping it for 300 s (dose at 2.12 × 106 electrons/Å2)
and 1500 s (dose at 1.01× 107 electrons/Å2), as shown in Figure 2d,e, respectively, amplifies
the degradation. Comparing Figure 2c,d, a conclusion can be made that, unsurprisingly,
higher temperatures accelerate degradation after the same irradiation dose and time. In
Figure 2e, the irradiated part of the Si NW annealed at 1000 ◦C is obviously degraded as
compared to the one without exposure to the e-beam, as shown in Figure 2f. In Figure 2f,
there is no formation of SiC without the beam when the temperature is maintained at
1000 ◦C, even for 2400 s. Note that there is a thin native oxide layer on the Si NWs, since
no HF dipping is applied to the Si NWs before loading them into the TEM chamber. The
recrystallization of the entire NW shell to single-crystalline in Figure 1c indicates that the
covered native Si oxide is very thin. However, the thickness of this native oxide is not
uniform. The degradation of Si NWs would start earlier at the region of the thinner native
oxide layer. As a result, the inhomogeneous degradation of NWs occurred.
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Figure 2. In situ TEM observation of Sn-catalyzed PECVD-grown Si NWs: (a) Top end of as-grown
Si NW transferred onto an a-C membrane. (b–e) Heating of the Si NW at different temperatures
and for various durations. (f) Si NW after heating at 1000 ◦C for 2400 s without exposure to electron
irradiation. Inset showing the enlarged view of the NW tip. The red arrows in (d) show the
degradation regions.

To investigate whether there is chemical evolution of Si NW upon irradiation annealing,
the DPs of Si NWs were studied. The analyzed Si NW (heated at 1000 ◦C for 2100 s, with
electron flux at 100 electrons·s−1·Å−2) is presented in Figure 3a, with the DPs of the NW
tip and below the NW tip (no degradation zone) shown at the right part and the left part
in Figure 3b, respectively. The DP of the NW tip indicates newly formed rings at the NW
tip, which can be indexed in terms of β-Si carbide (SiC). Thus, electron irradiation triggers
the formation of SiC at 1000 ◦C in the vicinity of the NW, probably by pushing Si surface
atoms into the nearby amorphous C membrane. Electron sputtering of Si surface atoms is
indeed very efficient at 200 keV [40]. We then heated the C membrane up to 1200 ◦C—the
maximum temperature allowed by the system. This caused the formation of β-SiC to
spread to non-irradiated areas (Figure 3c), as shown by the blue arrows. All rings of DP
(Figure 3d) can be interpreted in terms of β-SiC or amorphous C membrane; all of the Si
NWs were converted into SiC nanoparticles. These experiments thus reveal a chemical
interaction of Si NWs with the C membrane due to a combination of electron beam and
thermal effects.

To avoid the interaction between the supporting membrane and the Si NWs, we then
used heating chips equipped with a SiNx membrane. In this case, we still obtained very
significant changes in the shape of the NWs under irradiation at 620 ◦C, as presented in
Figure 4. The sequences of TEM images in Figure 4 were extracted from Video S1. At
t0 (Figure 4b), considered as the starting point of investigation, we can see that a strong
creep of Si NW occurred. After 10 s, a crack in the Si NW could be observed (Figure 4c).
Interestingly enough, this was followed by the welding of Si NW at the crack region, as
presented in Figure 4d. The two NW parts could be separated and welded consecutively
into one single Si NW. The corresponding Fourier transforms in the insets indicate that the
crystalline structure of Si NW is maintained during the evolution of NW morphology.
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Figure 5. Note that the diameters and distances were taken as illustrated in Figure 4a. It 
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the crack occurred when the heating time reached 4.5 s. Then, the distance between the 
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Figure 3. (a) Low-magnification image of a Si NW heated at 1000 ◦C for 2100 s. (b) DPs at the NW
tip and below the tip. (c) Low-magnification image of a Si NW after heating at 1100 ◦C for 600 s,
and then 1200 ◦C for 300 s, under no irradiation. (d) DP of the area. The blue arrows in (c) show the
formation of β-SiC in the non-irradiated areas.
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To quantitatively analyze the changes in NW morphology as a function of heating
time, their diameter at the narrow point (black circles) and the distance between the two
parts (red squares) were measured continuously with a time step of 0.5 s, as presented in
Figure 5. Note that the diameters and distances were taken as illustrated in Figure 4a. It
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can be seen from Figure 5 that the diameter decreased rapidly after 2.5 s of heating, and the
crack occurred when the heating time reached 4.5 s. Then, the distance between the two
separated NW parts increased gradually until it reached the maximum value of 3 nm at
6 s. After that time, the distance decreased with the increase in heating time, suggesting
that the welding of two separated parts began until they were fused together at 7.5 s. The
diameter after fusing increased dramatically in the first 1 s, but then increased slowly. It can
be seen from Figure 5 that the cracking of the NW under e-beam heating is reversible. This
interesting phenomenon suggests that the beam can be used in the healing of nano-objects.
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The influence of the e-beam on the analyzed Si NW samples can be discussed by
considering three effects of the TEM electron beam: First of all, heating by the e-beam
results in the inelastic scattering of electrons. Moreover, the diameter of the NW tip is
below 20 nm, which is smaller than the inelastic mean free path of electrons (the value of
which is calculated below). The maximum temperature increase ∆T of the NW, without
considering the radiative emission from NW and substrate, is given as follows [41]:
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where I is the beam current, 〈E〉 is the average energy lost by electrons after inelastic
collision, κ is the thermal conductivity of the material, e is the elementary charge, and λ is
the inelastic mean free path of electrons, given as follows [42]:

λ−1 =
1

πa0v2

[
A In

(
2v2

Ix

)
− 7C

v2

]
(2)

where a0 is the Bohr radius, and the quantities A, Ix, and C are material parameters. The
parameter Ix has units of energy, but its physical nature is still unknown; v is the electron

velocity, v2 = c2τ(τ+2)
(τ+1)2 , τ = V

c2 , with values of } = me = e = 1, c is the velocity of light

(c2 ≈ 510999 eV), V is the incident electron energy in eV, d is the diameter of the electron
beam, and R0 is the reference radius with respect to the temperature difference. Note here
that Equation (1) models a two-dimensional (2D) homogeneous system, but the electron



Materials 2022, 15, 5244 7 of 10

beam indeed is much wider; therefore, Equation (1) is appropriate for our sample. For
electrons with energy greater than 50 keV, the range follows a power law [43]:

R0(V) = bVn

1− 1(
1 + V

Nmec2

)2

 (3)

where we take into account relativistic corrections. The numbers b, n, and N are fitting
parameters. Let us now consider the maximum heating induced by the beam in Si. For Si,
we have b = 0.542 µm·eV−n, n = 0.676, and N = 5 [43], and the beam current I is close to
10 nA.

The energy lost by the electron can be transferred to a phonon, plasmon, or another
electron in the electronic shell of an atom. The average energy lost by electrons due to
inelastic scattering 〈E〉 depends on the material that is crossed. Let us assume that all of the
incident electrons transfer a part of their kinetic energy to other electrons, promoting them
to a higher energy level. In Si, the energy transfers recorded by electron energy-loss spec-
troscopy (EELS) drastically drop above 100 eV, which corresponds to the L transition [44].
The maximum heating can be estimated by taking 〈E〉 = 100 eV. The thermal conductivity κ

of Si is 150 W·m−1·K−1 [45]. For an incident electron energy of 200 keV, the parameters of
A (eV), I_x (eV), and C (eV2) are 26.42 eV, 25.55 eV, and 1495.47 eV2, respectively, in Si, and
the inelastic mean free path λ is 157.76 nm [41]. At our working magnification, sufficient to
gather information on the nanowire crystalline structure, the probe diameter d is 70 nm.
Putting these numbers into Equation (1), with R0,Si = 290 µm, gives a maximum heating
of 0.06 K. This value is most likely overestimated, since we only considered one channel
for incident electrons to transfer their kinetic energy. Other channels, such as plasmon
excitations, result in a much lower energy loss—in the 50 eV range—and have much higher
cross-sections. The final conclusion is that the heating effect of the electron beam is not
sufficient to change the growth dynamics. Therefore, the morphological and structural
evolution of our samples caused by beam irradiation via heating effects can be excluded.
Heat caused by the electron beam can be conducted along NWs as well on substrates.
Indeed, we took into account the contribution of the substrate to the heat conduction. We
calculated the R0 of the C-membrane substrate to be 252 µm, which is smaller than the R0
of Si (290 µm). The smaller value of R0 means a lower temperature increase. The purpose of
this discussion being to evaluate the maximum temperature increase that can be achieved
in the NWs, we adopted the larger R0. Of course, introducing radiative losses would further
decrease the heating; thus, neglecting it does not invalidate our conclusion.

Secondly, high-energy electrons can induce a knock-on effect, resulting in the displace-
ment of atoms. The minimum incidence-electron energy can be written as follows [46]:

Vmax =
(

m0c2
)
·(
√

1 +
AEd

561 eV
− 1

)
(4)

where m0c2 = 511000 eV, and the displacement energy Ed of a Si atom is 4.63 eV. Therefore,
according to Equation (4), the threshold energy that allows a knock-out effect is 56.17 keV.
This value is smaller than the incident electron energy of 200 keV used in this work.
Therefore, e-beam sputtering of Si atoms should be included.

The third effect caused by the e-beam is radiolysis, which is achieved by breaking
atomic bonds. As far as the heating of Si NWs is considered, pure thermal heating can
crystallize the a-Si: H shell and result in a fully crystallized NW. However, degradation
occurs when heating is performed under e-beam irradiation. It can be seen from Figure 3a
that the degradation of the NW does not start at the tip. With the irradiation time increasing,
degradation spreads on both sides of the original vanishing parts.
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4. Conclusions

In summary, by comparing the heating of an individual Si NW placed on a C mem-
brane under the same temperature, with or without beam irradiation, we were able to
analyze the beam’s effects on Si NW annealing. The degradation of NWs starts near the tip,
where they are thick enough for the electron interactions to build up. When the supporting
membrane is made of SiNx, no interaction between the membrane and the NWs occurs. At
620 ◦C, the creep of Si NWs is observed, with the formation of a crack after 4.5 s. Surpris-
ingly, the sectioning of Si NWs is reversible via the welding of two separated parts at 7.5 s.
In situ TEM experiments are now developing rapidly; by describing effects essentially due
to irradiation, rather than to the imposed high temperature, the present experiments give
important information on the beam’s effects, which will be useful for many researchers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15155244/s1, Video S1: The sequences of TEM images of the
Si NWs heated at 620 ◦C for 17 s.
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