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Abstract: Alzheimer’s disease (AD) is a devastating neurodegenerative disorder, one of the main
characteristics of which is the abnormal accumulation of amyloid peptide (Aβ) in the brain. Whereas
β-secretase supports Aβ formation along the amyloidogenic processing of the β-amyloid precursor
protein (βAPP), α-secretase counterbalances this pathway by both preventing Aβ production and
triggering the release of the neuroprotective sAPPα metabolite. Therefore, stimulating α-secretase
and/or inhibiting β-secretase can be considered a promising anti-AD therapeutic track. In this context,
we tested andrographolide, a labdane diterpene derived from the plant Andrographis paniculata, as
well as 24 synthesized derivatives, for their ability to induce sAPPα production in cultured SH-SY5Y
human neuroblastoma cells. Following several rounds of screening, we identified three hits that
were subjected to full characterization. Interestingly, andrographolide (8,17-olefinic) and its close
derivative 14α-(5′,7′-dichloro-8′-quinolyloxy)-3,19-acetonylidene (compound 9) behave as moderate
α-secretase activators, while 14α-(2′-methyl-5′,7′-dichloro-8′-quinolyloxy)-8,9-olefinic compounds
31 (3,19-acetonylidene) and 37 (3,19-diol), whose two structures are quite similar although distant
from that of andrographolide and 9, stand as β-secretase inhibitors. Importantly, these results were
confirmed in human HEK293 cells and these compounds do not trigger toxicity in either cell line.
Altogether, these findings may represent an encouraging starting point for the future development of
andrographolide-based compounds aimed at both activating α-secretase and inhibiting β-secretase
that could prove useful in our quest for the therapeutic treatment of AD.

Keywords: Alzheimer’s disease; βAPP; andrographolide; α-secretase; β-secretase; neuroprotection

1. Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the
main cause of dementia worldwide. It is characterized by a progressive loss of memory and
cognitive function, which ultimately lead to dementia and death. Pathologically, there is an
accumulation of extracellular β-amyloid peptide (Aβ) in senile plaques and of intracellular
hyper-phosphorylated tau-containing neurofibrillary tangles (NTFs) in the hippocampus
and cerebral cortex. This is accompanied by a large panel of molecular events related to the
progression of the disease including oxidative stress, neuroinflammation, mitochondrial
dysfunction, altered calcium homeostasis, and apoptosis [1].

The Aβ peptides are produced from the β-amyloid precursor protein (βAPP) along
the amyloidogenic pathway through the sequential cleavages by β-secretase (BACE1) and
the heterotetrameric γ-secretase complex that also gives rise to the production of the sAPPβ,
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C99, and AICD metabolites [2]. At the same time, a major alternative non-amyloidogenic
route involves α-secretase activity. It not only hampers the production of the amyloid
peptide since cleavage occurs in the middle of the Aβ sequence, but it also leads to the
secretion of the metabolite sAPPα with neuroprotective and neurotrophic powers [3].
Therefore, α-secretase activation appears as a promising therapeutic strategy aimed at
preventing AD [4,5]. Unfortunately, sustained efforts to inhibit and/or modulate β- and
γ-secretases or to activate α-secretases are still unsuccessful, this being mainly explained by
the fact that these enzymes cleave numerous other substrates involved in vital physiological
functions [6–8]. Hence, the use of plant-derived active compounds has increasingly been
considered in recent years as an alternative to pharmacotherapies [9] because side-effects
for most medicinally used natural products are considerably low or inexistent.

Andrographolide (Scheme 1) is a bicyclic diterpenoid lactone present in the stem and
leaves of Andrographis paniculata. As the major bioactive constituent of this traditional
Asian medicinal herb, it supports its antioxidant, anti-microbial, anti-inflammatory, and
anti-cancer properties [10]. Interestingly, several beneficial effects of andrographolide
on physiological functions of the central nervous system have been reported in recent
years as shown by the ability of the compound to stimulate adult neurogenesis in the
mouse hippocampus [11] and the capacity of andrographolide analogues to promote
neurite outgrowth in rat PC-12 cells [12]. Furthermore, several studies have very recently
evidenced some positive effects of andrographolide on AD pathology. Firstly, it can
strongly attenuate Aβ-induced microglial activation [13,14] and autophagy-associated cell
death [15] in vitro. Secondly and most importantly, andrographolide administration has
been shown to alleviate AD-associated phenotypes, including cognitive deficits, observed
in both transgenic [16–18] and non-transgenic [19,20] models of the disease.
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Scheme 1. Reagents and conditions: (a) Ph3P, DIAD with 4, 5, or 6 by Mitsunobu reaction; (b) MeOH/H2O (4/1), TsOH·H2O, 
20 °C. 
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tion [24] mostly because of the ability of Wnt to repress the transcription of the β-secretase 
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of βAPP towards the non-amyloidogenic pathway as shown by an increased production 
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Mechanistically, it has been shown that andrographolide activates the canonical Wnt
signaling pathway via an inhibition of GSK-3β in primary neurons [21] and in the aged
rodent Octodon degus [22], and that it increases glucose uptake and utilization in a Wnt-
dependent manner in the J20 transgenic mouse model of AD [23]. Interestingly, there
exists a close relationship between Wnt loss of function and AD-associated neurodegenera-
tion [24] mostly because of the ability of Wnt to repress the transcription of the β-secretase
BACE1 [25]. Indeed, it has been established that andrographolide can shift the metabolism
of βAPP towards the non-amyloidogenic pathway as shown by an increased produc-
tion of C83 and a concomitant decrease in C99 and Aβ42/Aβ40 ratio in epithelial cells
overexpressing βAPP [26].

Because its simplistic structural nature brings amenability for semi-synthetic mod-
ifications, andrographolide has given rise to many derivatives with potent therapeutic
effects in diverse fields [27]. In this context, we have undertaken to design, synthesize, and
test twenty-four andrographolide derivatives, classified as two series, for their ability to
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favorably modulate βAPP processing through the stimulation of α-secretase and/or the
inhibition of β-secretase catalytic activities/expression in human neuroblastoma SH-SY5Y
cells. A first screening allowed us to identify andrographolide as well as the three deriva-
tives 9, 31, and 37 as potent sAPPα production-enhancing compounds without altering
cell viability. Their subsequent full characterization indicated that while andrographolide
and 9 could moderately stimulate the α-secretase catalytic activity, 31 and 37 behaved as
potent β-secretase inhibitors. These results thus established andrographolide and some of
its derivatives as a promising basis for the future development of anti-amyloidogenic fac-
tors, the next generation of which hopefully leading to the setup of druggable α-secretase
activator/β-secretase inhibitor compounds.

2. Results
2.1. Synthesis of Andrographolide Derivatives

Since andrographolide can exert neuroprotective effects [26,28,29] and because the
quinoline moiety is important in anti-AD compounds, thanks to its antioxidant, anti-
aggregating, and neurotrophic properties [28,30,31], we were interested in assessing the
anti-AD activity of 24 andrographolide derivatives bearing a 14-quinolinyloxy group, and
divided in 12 derivatives [32,33] of a 8,17-olefinic series (Scheme 1) and 12 derivatives of a
9-dehydro-17-hydro series (Scheme 2).
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Scheme 2. Reagents and conditions: (a) acylation (X = Cl) by Et3N and 4-nitrobenzoyl chloride in
DCM; (b) Mitsunobu reaction (X = OH) by Ph3P, DIAD and 4-nitrobenzoic acid in THF; (c) 85%
H3PO4; (d) anhydrous DCM, 2,2-dimethoxypropane, PPTS, 40 ◦C; (e) Li2CO3, MeOH; (f) 25 or 26,
Ph3P, DIAD with 4, 5, or 6 by Mitsunobu reaction; (g) MeOH/H2O (4/1), TsOH·H2O, 20 ◦C.

8,17-Olefinic compounds of 7 to 12 and their corresponding deprotected derivatives 13
to 18 were synthesized as previously published [32–34]. Briefly, the acetonide-protected 14α
and 14β analogues of andrographolide [34] were reacted with various 8-hydroxyquinoline
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derivatives in Mitsunobu conditions, yielding the analogues 7–12, which were subsequently
deprotected by hydrolysis, giving the analogues 13–17 (Scheme 1).

The analogues of 17-hydro-9-dehydro andrographolide (27–32 and 33–38) were pre-
pared as presented in Scheme 2. Firstly, 3,19-acetonylidene andrographolide (2) was
4-nitrobenzoylated by acylation or Mitsunobu reaction to form 19 or 20, respectively. The
key step is to isomerize the 8,17-double bond of 19 or 20 into 8,9-double bond of 21 or
22 by 85% H3PO4, which removed the acetonide protection. After re-protection as 3,19-
acetonylidene, the 4-nitrobenzoyl group was removed to form the two key intermediates
25 (14α) and 26 (14β), which then reacted with the 8-hydroxyquinoline derivatives 4, 5,
and 6 to yield the 3,19-acetonylidene-protected analogues 27 to 32. Deprotection of the
3,19-acetonylidene group afforded the 3,19-diol analogues 33 to 38.

2.2. Screening of Andrographolide Derivatives for sAPPα Production and sAPPα/βAPP Ratio

We then investigated the effect of andrographolide and its 24 derivatives for their
ability to promote the secretion of the βAPP-derived sAPPα metabolite in cultured naive
SH-SY5Y human neuroblastoma cells. As a first step, we chose to treat the cells for 24 h
with 1 µM of the compounds (andrographolide, the 12 derivatives of the 8,17-olefinic
series (8,17-double bond) and the 12 derivatives of the 9-dehydro-17-hydro series (8,9-
olefen/double bond)) and we used both sAPPα production and the sAPPα/βAPP/β-actin
ratio as a read out for comparison with controls (duplicate).

The results showed that four derivatives (28, 31, and their corresponding deprotected
forms 34 and 37) of the 9-dehydro-17-hydro series were able to increase sAPPα production
by a factor greater than two when compared to controls (Figure 1A,B), while treatment
of cells with 9 and 31 led to a 2.5-fold augmentation of the sAPPα/βAPP/β-actin ratio
(Figure 1C). It is noted that most of the tested andrographolide analogues were more active
than andrographolide in increasing sAPPα production (Figure 1A,B) and sAPPα/βAPP
ratio (Figure 1C). Specifically, eight compounds (8, 11–16, and 18) of the 8,17-double bond
series and ten compounds (28–34 and 36–38) of the 8,9-double bond series increased sAPPα
production when compared to andrographolide (Figure 1A,B), while nine compounds
(8, 9, 11, 12–16, and 18) of the 8,17-double bond series and eight (28, 30, 31, 33, 34, and
36–38) of the 8,9-double bond series displayed higher sAPPα/βAPP ratio than andro-
grapholide (Figure 1C). Particularly, the 14α-(2′-methyl-5′,7′-dichloro-8′-quinolyloxy)-3,19-
acetonylidene-8,17-olefinic analogue 31 showed the highest sAPPα secretion (Figure 1A,B)
and the second highest sAPPα/βAPP ratio (Figure 1C). In contrast, 14α-(5′,7′-dichloro-8′-
quinolyloxy)-8,9-olefin-3,19-diol 35 exhibited the lowest sAPPα secretion rate (Figure 1A,B)
and sAPPα/βAPP ratio (Figure 1C).

Moreover, both 14α-(2′-methyl-8′-quinolyloxy)-3,19-acetonylidene compound 7 and
its 8,9-double bond counterpart 27 displayed much lower sAPPα production (Figure 1A,B)
and sAPPα/βAPP ratio (Figure 1C) than their corresponding 14β compounds 8 and 28.
Meanwhile, the 3,19-diols 13 (14α) and 14 (14β) are more able than the 3,19-protected
compounds 7 and 8 to increase sAPPα production (Figure 1A,B) and sAPPα/βAPP ratio
(Figure 1C) while the 14β-8,9-olefinic-3,19-diol 34 is superior to its 14α counterpart 33 in
augmenting both sAPPα production (Figure 1A,B) and the sAPPα/βAPP ratio (Figure 1C).

Among the 5′,7′-dichloro-8′-quinolyloxy series, the three 8,17-olefinic compounds,
14α-3,19-acetonylidene 9, 3,19-diols 15 (14α) and 16 (14β) are similarly active and superior
to their 14β-3,19-acetonylidene-8,17-olefinic 10, 14α-3,19-acetonylidene-8,9-double bond 29
and 14α-3,19-acetonylidene-8,9-olefinic 35 counterparts in both promoting sAPPα secretion
(Figure 1A,B) and increasing the sAPPα/βAPP ratio (Figure 1C). In addition, it appeared
that the 14β-3,19-acetonylidene-8,9-olefinic compound 30 is less active than its correspond-
ing diol 36 in promoting sAPPα secretion (Figure 1A,B) and increasing the sAPPα/βAPP
ratio (Figure 1C). In this series, 36 is the most active sAPPα secretion inducer (Figure 1A,B)
while 9, 16, and 36 are the compounds most capable of increasing the sAPPα/βAPP ratio
(Figure 1C).
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Figure 1. Screening of andrographolide and andrographolide derivatives for sAPPα secretion, βAPP
protein levels, and the ratio sAPPα/βAPP in SH-SY5Y cells. (A) illustrates the Western blot analysis
of the screening. Bars in (B) (sAPPα production) and (C) (ratio of sAPPα to βAPP normalized with
β-actin) correspond to the densitometric analyses, are expressed as a percentage of control (white
bars, non-treated cells) and are the average of the comparison with two controls. The black circles
indicate compounds selected for further characterization. The hatched black line in (A) indicates a
splicing of the original gels.

Now regarding the 14-(2′-methyl-5′,7′-dichloro-8′-quinolyloxy)-8,17-olefinic analogues,
the 14α-3,19-acetonylidene compound 11 and its 3,19-diol analogue 17 were less active than
their respective 14β 12 and 18 counterparts in both sAPPα secretion (Figure 1A,B) and
sAPPα/βAPP ratio (Figure 1C). On the other hand, the 14α-(2′-methyl-5′,7′-dichloro-8′-
quinolyloxy)-8,9-olefinic compound 31 and its 3,19-diol analogue 37 displayed the highest
sAPPα secretion rate (Figure 1A,B) and a relatively high sAPPα/βAPP ratio (Figure 1C).
However, the corresponding 14β-3,19-acetonylidene compound 32 and its diol 38 behaved
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in opposite ways with 32 having a much lower ability than 38 to increase sAPPα secretion
(Figure 1A,B) and the sAPPα/βAPP ratio (Figure 1C).

Overall, these results suggest that an optimal combination of 8,9-double bond or
8,17-double bond, substitution at quinolone, 14α or 14β, and 3,19-free diol or protection
will benefit the enhancement of sAPPα production. As a whole, based on the screening
results and structure-activity consideration, we undertook to focus on 9, 28, 31, 34, and 37
for further characterization, using andrographolide as the reference compound.

2.3. Further Characterization of Andrographolide Derivatives 9, 28, 34, 31, and 37

The results obtained following a consistent number of independent experiments
(n ≥ 6 when compared with n = 2 for the initial screening step) first showed that 31
and 37 (1 µM) significantly induce sAPPα secretion (Figure 2A,B). Secondly, none of the
compounds significantly altered βAPP immunoreactivity (Figure 2A,C), thereby ruling
out an effect on βAPP expression or maturation and rather suggesting that they genuinely
control βAPP processing. The additional measurement of the sAPPα/βAPP/β-actin ratio
further indicated that all the selected derivatives including andrographolide itself were
able to significantly increase this ratio although to different degrees (Figure 2D).
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Figure 2. Effect of andrographolide and the selected andrographolide derivatives on sAPPα secretion,
βAPP protein levels and the ratio sAPPα/βAPP in SH-SY5Y cells. (A) illustrates one representative
gel. Bars in (B) (sAPPα production), (C) (βAPP immunoreactivity normalized with β-actin), and
(D) (ratio of sAPPα to βAPP normalized with β-actin) correspond to the densitometric analyses, are
expressed as a percentage of control (white bars, non-treated cells), and are the means ±SE of 6 to 10
independent determinations. * p < 0.05; ** p < 0.03; *** p < 0.02; # p < 0.01; @ p < 0.001; ns, no statistical
difference. The hatched black line in (A) indicates a splicing of the original gels.

2.4. Full Characterization of Andrographolide Derivatives 9, 31, and 37
2.4.1. Effect of Derivatives 9, 31, and 37 on Cell Survival

In light of these results, we decided to reduce our field of investigation to 9, 31, and
37. At this stage, it was important to demonstrate that these compounds are not inherently
toxic. For this purpose, we measured the survival rate of SH-SY5Y cells following a 24 h
treatment at concentrations ranging from 100 nM to 10 µM with the MTT assay. In fact, no
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notable changes were observed whatever the compound and the concentrations considered
(Figure 3), clearly indicating that none of them are toxic under our experimental conditions.
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Figure 3. Andrographolide and compounds 9, 31, and 37 do not trigger toxicity in SH-SY5Y cells.
Cells were incubated without (control, white bar) or with three concentrations (100 nM, 1 µM, and
10 µM) of the four compounds for 24 h and cell viability was determined with the MTT assay. The
results are expressed as the mean of quadruplicates and no statistical difference were observed.

2.4.2. Dose-Dependent Effect of Derivatives 9, 31, and 37 on sAPPα Production, βAPP
Protein Levels, and sAPPα/βAPP Ratio

Following the screening phase carried out at one single concentration (1 µM), we then
examined the ability of the selected compounds to stimulate sAPPα at lower concentrations
and in a dose-dependent manner in SH-SY5Y cells. Although an increasing trend was
observed for both andrographolide and 9, we could not establish statistically significant
differences with controls (Figure 4A). Nevertheless, in addition to the fact that 31 and
37 were triggering a significant increase in sAPPα production at 1 µM (Figure 4A) as
previously observed (see Figure 2), we showed that 37 is also effective at 10 nM and
100 nM concentrations (Figure 4A). Parallel analysis of βAPP protein levels showed no
significant variation in βAPP immunoreactivity under any conditions (Figure 4B). The
concomitant measurement of the sAPPα/βAPP/β-actin ratio showed in addition that
the four compounds increased it significantly at the highest concentrations (100 nM to
1 µM) (Figure 4C). Following the demonstration of the superior efficiency of compound
37 in inducing the production of sAPPα and in order to show that these effects are not
restricted to a cell type but rather represent a ubiquitous phenomenon, we conducted the
same experiments in human cells HEK293. The results showed that 37 produced effects
similar and even superior to those observed in SH-SY5Y cells, namely an increase in sAPPα
production and in the sAPPα/βAPP/β-actin ratio at all concentrations tested (Figure 4D,
upper and lower panels, respectively). The additional observation that 37 also significantly
reduced βAPP protein levels at the same concentrations in HEK293 cells (Figure 4D, middle
panel) most likely reflects some depletion of the substrate due to higher metabolic activity
when compared to the SH-SY5Y cell line.
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Figure 4. Effects of andrographolide and compounds 9, 31, and 37 at different doses on sAPPα
secretion, βAPP protein levels, and the ratio sAPPα/βAPP in human cells. Data presented in (A)
(sAPPα production), (B) (βAPP immunoreactivity normalized with β-actin), and (C) (ratio of sAPPα
to βAPP normalized with β-actin) are from experiments carried out in SH-SY5Y cells while data in
(D) correspond to the results obtained for 37 in HEK293 cells. All bars are the densitometric analyses,
are expressed as a percentage of control (white bars, non-treated cells) and are the means ±SE of 9 to
20 independent determinations. * p < 0.05; ** p < 0.03; *** p < 0.02; # p < 0.01; ~ p < 0.003; & p < 0.002;
@ p < 0.001; $ p < 0.0002; π p < 0.0001 (gray bars); ns, no statistical difference (black bars). The upper
parts of each panel illustrate representative gels.

2.4.3. Effect of Derivatives 9, 31, and 37 on ADAM10 and BACE1 Protein and mRNA
Levels

Based on these results, we then wanted to determine whether these compounds were
capable of influencing the expression of the main α-secretase activity ADAM10 and of the
β-secretase BACE1.

Firstly, the Western blot analyses of ADAM10 (Figure 5A) and BACE1 (Figure 5B) in
SH-SY5Y cells did not detect any significant changes between the control conditions and
those where the cells were treated with the four compounds at concentrations ranging
from 1 nM to 1 µM. These results were then confirmed for 37 in HEK293 cells (Figure 5C).
Because protein level measurement results from transcriptional, translational, and post-
translational events, we undertook to examine the genuine transcriptional effect of the four
compounds (1 µM) by real time qPCR in both SH-SY5Y and HEK293 cells. The results
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indicated a slight but significant increase in ADAM10 mRNA levels when cells were treated
with 1 µM of 31 and 37 (SH-SY5Y) or 9 (HEK293) (Figure 5D), while no significant change
in BACE1 mRNA levels was detected (Figure 5E).
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Figure 5. Effects of andrographolide and compounds 9, 31, and 37 on ADAM10 and BACE1 expres-
sion in human cells. ADAM10 and BACE1 protein (A–C) and mRNA (D,E) levels were measured (by
Western blot and real-time qPCR, respectively) in the indicated cell lines following treatment without
(control, white bar) or with various concentrations of the compounds (1 nM to 1 µM). Bars are the
densitometric analyses, are expressed as a percentage of control (white bars, non-treated cells), and
are the means ±SE of 11 to 18 (Western blots) and 4 (qPCR) independent determinations. * p < 0.03;
** p < 0.01 (gray bars); ns, no statistical difference (black bars). The upper parts of panels A and B
illustrate representative gels.

This set of data suggests transcriptional up-regulation of the α-secretase ADAM10 as
a minor although possibly involved mechanism in the observed beneficial effect of these
compounds on βAPP metabolism.

We finally subjected andrographolide and the three derivatives to a thorough charac-
terization aimed at evaluating their effect on the catalytic activities of α- and β-secretases,
which compete for βAPP processing, thereby tightly controlling the balancing between the
amyloidogenic and the non-amyloidogenic pathways.
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2.4.4. Effect of Derivatives 9, 31, and 37 on α-Secretase Catalytic Activity

In a first set of experiments, we examined the impact of increasing concentrations
(10 nM up to 10 µM for andrographolide and 1 nM to 1 µM for compounds 9, 31, and 37) of
the four compounds on the α-secretase activity by measuring the phenanthroline-sensitive
hydrolysis of the fluorimetric JMV2770 substrate by cultured SH-SY5Y cells.

Our results indicated that andrographolide slightly and dose-dependently enhances
the JMV2770-hydrolyzing activity, 9 displaying such capability only at 10 nM while 31 and
37 remain inert in this paradigm (Figure 6A). Andrographolide and 9 were subsequently
submitted to the same assay in HEK293 where they also significantly contributed to a
moderate stimulation of the α-secretase activity, although showing a slightly different
pattern when compared to SH-SY5Y cells (Figure 6B).
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Figure 6. Effects of andrographolide and compounds 9, 31, and 37 on the α-secretase catalytic activity
in human cells. (A) The α-secretase catalytic activity (phenanthroline-sensitive hydrolysis of the
fluorimetric substrate JMV2770) was measured on cultured SH-SY5Y cells in the absence (control,
white circle/white bar) or in the presence of various concentrations of the compounds (10 nM to
10 µM for andrographolide; 1 nM to 1 µM for compounds 9, 31, and 37). (B) Experiments carried
out with andrographolide and 9 under the same conditions on cultured HEK293 cells. The curves
represent the mean specific fluorescence (from 2 to 3 independent experiments including two controls
each) while bars in histograms are expressed as a percentage of control (white bars, non-treated
cells) calculated from the linear parts of the curves (initial velocity) and are the means ±SE of 8 to 16
independent determinations. * p < 0.05; ** p < 0.03; *** p < 0.02; # p < 0.01; ~ p < 0.003; π p < 0.0001
(gray bars); ns, no statistical difference (black bars).
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2.4.5. Effect of Derivatives 9, 31, and 37 on β-Secretase Catalytic Activity

Another important aspect of this study was to determine if these compounds could
behave as inhibitors of the amyloidogenic β-secretase catalytic activity. Taking advantage
of a well-characterized BACE1-selective fluorimetric assay, we have first measured the
effect of the four molecules, at the same concentrations used for the α-secretase assay, on
the JMV1197-sensitive hydrolysis of the fluorimetric JMV2236 substrate in SH-SY5Y cell
extracts at acidic pH. We showed a capability of all the compounds to reduce BACE1 activity,
31 and 37 operating the most efficiently and in a dose-dependent manner (Figure 7A).
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Figure 7. Effects of andrographolide and compounds 9, 31, and 37 on the β-secretase catalytic
activity in human cells. (A) The β-secretase catalytic activity (JMV1197-sensitive hydrolysis of the
fluorimetric substrate JMV2236) was measured in SH-SY5Y cell extracts in the absence (control,
white circle/white bar) or in the presence of various concentrations of the compounds (1 nM to
1 µM for andrographolide; 1 nM to 1 mM for compounds 9, 31, and 37). (B) Experiments carried
out with 31 and 37 under the same conditions in HEK293 cell extracts. The curves represent the
mean specific fluorescence (from 2 to 3 independent experiments including two controls each) while
bars in histograms are expressed as a percentage of control (white bars, non-treated cells) calculated
from the linear parts of the curves (initial velocity) and are the means ±SE of 6 to 15 independent
determinations. * p < 0.05; ** p < 0.03; *** p < 0.02; π p < 0.0001 (gray bars); ns, no statistical difference
(black bars).

The data obtained with 31 and 37 were then reproduced with HEK293 cell extracts,
thereby confirming the genuine ability of these two andrographolide analogues to potently
block the β-secretase catalytic activity (Figure 7B). It should be noted here that the inhibitory
effects of the compounds on the β-secretase activity seem to be more pronounced than
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their capability to stimulate the α-secretase activity. From the fact that compound 9 of the
8,17-olefinic series possesses anti-BACE1 activity, it is suggested that the 5′,7′-dichloro-
8′-hydroxyquinolyloxy moiety is important for BACE1 inhibition. As the 2′-methyl-5′,7′-
dichloro-8′-hydroxyquinolyloxy derivatives 31 and 37 are potent BACE1 inhibitors, this
particular structure might interact in a more efficient way with the BACE1 catalytic site.
Finally, the observation that 31 and 37 are the most potent β-secretase inhibiting factors
in this study, suggests that the 8,9-double bond in the 9-dehydro-17-hydro series is an
important feature for a proper inhibition of this activity.

3. Discussion

AD is a yet incurable neurodegenerative disorder characterized by loss of memory
and cognition. The reason why available medical treatments are still incapable of curing
AD symptoms efficiently mostly resides in the fact that AD is a complex and multifactorial
pathology. Over the past decades, a huge effort, although in vain, has been made to
develop novel synthetic drugs with disease-modifying properties and few side effects [35].
Hence, compounds extracted from natural sources are constantly gaining popularity in
AD treatment with the notion of preventive rather than curative intervention against the
disease being increasingly considered.

In this context, beside its previously reported effects on viral infection [36], bacterial
infection [37], cancer [38], metabolic syndromes [39], and inflammation [40], thereby mak-
ing this molecule a multi-targeting agent [41], andrographolide has also been interestingly
established as a promising candidate in neuropharmacology as it shows diverse potent
therapeutic effects against various neurological disorders [29], such as brain ischemic
stroke [42], multiple sclerosis [43], Parkinson’s disease [44], and Alzheimer’s disease [19].

Regarding AD and on a mechanistic point of view, andrographolide most likely con-
veys some anti-AD effects via its well-established antioxidant [45] and NFκB inhibitory
and anti-inflammatory [46] properties as illustrated for instance by the fact that andro-
grapholide inhibits Aβ1–42-induced production of neuroinflammatory mediators in mi-
croglia [13,14]. However, whether it could regulate the processing of βAPP through the
control of βAPP-cleaving secretases was still an unanswered question. Here, we first iden-
tified andrographolide as well as some chemically modified andrographolide analogues as
regulators of βAPP processing in cultured human cell lines using sAPPα production as
a read-out. This metabolite with beneficial properties arises from the cleavage of βAPP
by the non-amyloidogenic α-secretase activity. Because α-secretase and β-secretase, the
amyloidogenic rate-limiting initiator of amyloid peptide production, work competitively
regarding βAPP processing as evidenced by the inverse correlation between sAPPα and
Aβ productions under both α-secretase activation or β-secretase inhibition [47,48], any
increase in sAPPα production can result from either an activation of α-secretase or an
inhibition of β-secretase (that disrupts sAPPα integrity by cleaving inside its sequence),
or both. We therefore undertook to study the effect of andrographolide, 9, 31, and 37, all
initially identified on the basis of their ability to induce the production of sAPPα, on the
catalytic activities of α- and β-secretase by means of specific fluorimetric assays. This
allowed us to establish that the four compounds indeed regulate these activities although
to different degrees and that 31 and 37 behave as potent β-secretase inhibitors. It has to be
underlined here that their efficiency at submicromolar concentrations lays the groundwork
for the future production of highly potent derivatives that could serve as a basis for their
therapeutic use. Moreover, the confirmation of the results in HEK293 cells suggests that
the effects observed are probably ubiquitous and not restricted to one cell type.

Importantly, studies carried out in animals have shown that andrographolide does
not trigger toxicity in the liver and the kidney of rat [49] and does not alter body and organ
weight, inflammatory responses, hematological parameters, and mortality in mice [50].
These data therefore established andrographolide as a relatively safe compound in respect
to toxicological side effects. Moreover, andrographolide easily passes the blood–brain
barrier and distributes into different brain regions [51]. However, restricted bioavailability
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due to its poor solubility and relatively short half-life obviously limits its clinical application
and numerous semi-synthetic transformations were performed in order to improve its
physiochemical properties and stability [52,53].

Considering that quinoline is also a pharmacophore group for neuroprotection [28,30,
31], we envisaged that our published active 14-quinolyloxy derivatives of andrographolide
against Zika and dengue viruses [32,33] and bacteria [54] possibly have anti-AD activity.
Moreover, in addition to andrographolide itself [26,29,36,55], some of its 9-dehydro-17-
hydro analogues have increased neuroprotective properties [12] and are more efficient
against angiogenesis [56,57] than its 8,17-olefinic counterpart. These results led us to
explore whether 14-aryloxy-9-dehydro-17-hydro analogues also possess a higher capability
to inhibit BACE1 activity than the 8,17-olefinic ones. Our results confirmed the concept
that 14-quinolyloxy modification or combination of 14-quinolyloxy and 9-dehydro-17-
hydro modifications on andrographolide benefits for neuroprotection and will lead to the
discovery of more potent and druggable anti-AD compounds.

Overall, our original findings that andrographolide derivatives display both pro-
α-secretase and anti-β-secretase properties open the way to the possible development,
hitherto not explored, of molecules of natural origin capable of acting in a doubly beneficial
manner on the metabolism of βAPP and representing a new class of factors to be developed
as a therapeutic tool aimed at combating Alzheimer’s disease. The design, synthesis
and testing of new chemically modified andrographolide-derived compounds aimed at
obtaining highly potent α- and β-secretases regulating molecules is currently being carried
out in our laboratories.

4. Materials and Methods
4.1. Materials

DMEM, fetal bovine serum (FBS), and penicillin-streptomycin mix (Pen/Strep) were
from Invitrogen (Carlsbad, CA, USA). Tris buffer and glycine were from VWR Amresco
lifesciences (Solon, CA, USA). Polyclonal anti-βAPP antibody (A8717), monoclonal anti-β-
actin (A2228), dimethyl sulfoxide (DMSO), SDS, and sodium bicarbonate were from Sigma
(St. Louis, MO, USA). Polyclonal anti-ADAM10 (AB19026) was from Millipore (Bedford,
MA, USA). Monoclonal anti-BACE1 (ab108394) was from Abcam (Cambridge, UK). Skim
milk powder was from Bio Basic (Singapore). Monoclonal anti-β-amyloid antibody (2B3),
which was used to specifically detect sAPPα was from IBL (Minneapolis, MN, USA). ECL
reagent and ammonium persulphate were from GE Health care (Pisataway, NJ, USA). O-
Phenanthroline was from Calbiochem (San Diego, CA, USA). Goat anti-mouse (polyclonal
7076) and goat anti-rabbit (polyclonal 7074) peroxidase-conjugated secondary antibodies
were from Cell Signaling (Beverly, MA, USA).

4.2. General Information for Chemistry
1H and 13C NMR spectra (Supplementary Materials) were recorded on a Bruker AV-

400 spectrometer at 400 and 100 MHz, respectively, in CDCl3, CD3OD, (CD3)2SO, and
C6D6 as indicated. Coupling constants (J) are expressed in hertz (Hz). Chemical shifts (δ)
of NMR are reported in parts per million (ppm) units relative to the solvent. The high
resolution of ESI-MS was recorded on an Applied Biosystems Q-STAR Elite ESI-LC-MS/MS
mass spectrometer, respectively. Unless otherwise noted, materials were obtained from
commercial suppliers and used without further purification. Melting points were measured
using an YRT-3 melting point apparatus (Shanghai Yice Apparatus & Equipment Co., Ltd.,
Shanghai, China) and were uncorrected.

4.3. Synthesis of Andrographolide Derivatives
4.3.1. Synthesis of Compounds 7 to 10 and 12 to 16

The synthesis of compounds 7 to 10 and 12 to 16 (Scheme 1) was previously de-
scribed [32,33].
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4.3.2. Synthesis of Compounds 11, 17, and 18

The synthesis of compounds 11, 17, and 18 (Scheme 1) was conducted according to
previously described procedures [32–34].

(14α)-(Quinolyl-2′-methyl-5′,7′-dichloro-8′-oxy)-3,19-acetonylidene andrographolide
(11): white solid; m.p. 166.3–167.0 ◦C; 72.6% yield; 1H NMR (400 MHz, DMSO-d6) δ 8.48 (d,
J = 8.7 Hz, 1H), 7.92 (s, 1H), 7.69 (d, J = 8.7 Hz, 1H), 6.74–6.65 (m, 1H), 6.37 (d, J = 4.6 Hz,
1H), 4.75–4.68 (m, 2H), 4.60 (m, 1H), 4.10 (s, 1H), 3.76 (d, J = 11.6 Hz, 1H), 3.31–3.26 (m, 1H),
3.03 (d, J = 11.6 Hz, 1H), 2.77 (s, 3H), 2.23 (d, J = 12.2 Hz, 1H), 1.90–1.69 (m, 3H), 1.63 (d,
J = 11.6 Hz, 1H), 1.55 (m, 3H), 1.31 (s, 3H), 1.24 (s, 3H), 1.09 (d, J = 4.4 Hz, 2H), 1.06 (s, 3H),
0.92 (m, 2H), 0.46 (s, 3H); 13C NMR (101 MHz, DMSO) δ 170.0, 160.9, 148.7, 147.7, 147.2,
142.9, 133.8, 127.4, 126.9, 126.6, 124.7, 124.5, 108.3, 98.6, 77.0, 76.2, 72.3, 63.1, 54.8, 51.8, 38.2,
37.5, 37.3, 34.2, 28.0, 26.2, 25.8, 25.5, 25.2, 25.1, 23.0, 15.6; HRMS (ESI) m/z 600.2280 [M +
H]+, calculated for C33H40Cl2NO5, 600.2284.

(14α)-(Quinolyl-2′-methyl-5′,7′-dichloro-8′-oxy) andrographolide (17): white solid;
m.p. 142.0–142.4 ◦C; 75.1% yield; 1H NMR (400 MHz, DMSO-d6) δ 8.48 (d, J = 8.7 Hz,
1H), 7.91 (s, 1H), 7.75–7.61 (m, 1H), 6.68 (dd, J = 8.7, 5.0 Hz, 1H), 6.35 (d, J = 4.6 Hz, 1H),
5.09–4.92 (m, 1H), 4.74–4.65 (m, 2H), 4.60 (m, 1H,), 4.07 (d, J = 19.2 Hz, 2H), 3.70 (d, J = 10.9
Hz, 1H), 3.16 (d, J = 10.8 Hz, 1H), 3.07 (m, 1H), 2.76 (s, 3H), 2.24–2.14 (m, 1H), 1.77 (m, 2H),
1.59 (m, 2H), 1.45–1.40 (m, 2H), 1.26–1.13 (m, 2H), 0.99 (m, 4H), 0.80 (m, 2H), 0.22 (s, 3H);
13C NMR (101 MHz, DMSO-d6) δ 169.6, 160.5, 148.2, 147.3, 146.8, 142.5, 133.5, 127.0, 126.5,
126.2, 126.1, 124.2, 124.1, 107.4, 78.2, 76.6, 71.9, 62.5, 54.4, 54.1, 42.2, 38.3, 37.2, 36.0, 27.7, 25.1,
24.4, 23.9, 23.0, 14.1; HRMS (ESI) m/z 560.1972 [M + H]+, calculated for C30H36Cl2NO5,
560.1971.

(14β)-(Quinolyl-2′-methyl-5′,7′-dichloro-8′-oxy) andrographolide (18): white solid;
m.p. 172.1–172.7 ◦C; 74.4% yield; 1H MR (400 MHz, DMSO-d6) δ 8.46 (d, J = 8.7 Hz, 1H),
7.90 (s, 1H), 7.68 (d, J = 8.8 Hz, 1H), 6.59 (m, J = 8.5, 4.6 Hz, 1H), 6.48 (d, J = 4.5 Hz, 1H), 5.00
(d, J = 4.8 Hz, 1H), 4.72–4.64 (m, 2H), 4.60 (m, J = 11.0, 4.7 Hz, 1H), 4.13 (s, 1H), 4.07–4.04
(m, 1H), 3.71 (m, J = 10.9, 2.9 Hz, 1H), 3.15 (m, 1H), 3.09 (m, 1H), 2.75 (s, 3H), 2.23–2.13 (m,
1H), 1.83–1.68 (m, 2H), 1.59 (d, J = 12.3 Hz, 2H), 1.45 (q, J = 6.6 Hz, 2H), 1.36–1.20 (m, 2H),
1.05–0.92 (m, 4H, 1-H), 0.84–0.75 (m, 1H), 0.68 (m, 1H), 0.19 (s, 3H); 13C NMR (101 MHz,
DMSO-d6) δ 169.5, 160.5, 149.2, 147.6, 146.7, 142.6, 133.3, 127.2, 126.5, 126.3, 125.9, 124.2,
124.1, 107.8, 78.2, 76.7, 71.8, 62.5, 54.4, 54.0, 42.1, 38.1, 37.2, 35.9, 27.8, 25.1, 25.0, 23.9, 23.0,
14.3; HRMS (ESI) m/z 560.1965 [M + H]+, calculated for C30H36Cl2NO5, 560.1971.

4.3.3. Synthesis of Compounds 19 to 26

The key intermediates 25 and 26 of the 9-dehydro-17-hydro series were synthesized
as shown in Scheme 2.

Synthesis of compound 19: a solution of compound 2 (5.0 g, 12.8 mmol) in 10 mL
of dry dichloromethane (50 mL) was cooled in ice-water bath and then triethylamine
(4.5 mL, 32.0 mmol) was added, followed by p-nitrobenzoyl chloride (2.85 g, 15.4 mmol)
in 20 mL of dry dichloromethane. The reaction mixture was stirred in an ice-water bath
for 5 h and volatile solvents were removed by Rotavapor. The residue was dissolved in
ethyl acetate and treated with sat. NaHCO3 aqueous solution. The organic phase was
washed with brine twice and then dried over anhydrous Na2SO4. The filtered organic
solution was evaporated to dryness and the residue was purified by silica gel column
chromatography (petroleum ether/ethyl acetate 3/1) to afford 5.9 g of titled compound
19. (14α)-(4′-nitrobenzoyl)-3,19-isopropylideneoxy andrographolide (19): white solid; m.p.
82.7–84.1 ◦C; 86.9% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.37–8.28 (m, 2H), 8.25–8.14
(m, 2H), 7.14 (m, 1H), 6.24 (d, J = 5.9 Hz, 1H), 4.85 (s, 1H), 4.68 (m, 1H), 4.50 (s, 1H), 4.41
(m, 1H), 3.91 (d, J = 11.5 Hz, 1H), 3.48 (m, 1H), 3.15 (d, J = 11.6 Hz, 1H), 2.54–2.47 (m, 1H),
2.43–2.36 (m, 1H), 2.02–1.92 (m, 2H), 1.89 (d, J = 10.0 Hz, 1H), 1.81–1.74 (m, 1H), 1.69 (m,
2H), 1.37 (s, 3H), 1.35 (s, 3H), 1.30 (t, J = 6.4 Hz, 1H), 1.26 (d, J = 3.7 Hz, 2H), 1.18 (s, 3H),
0.87 (s, 3H), 0.86–0.85 (m, 1H).
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Synthesis of compound 20: to a solution of compound 2 (5.0 g, 12.8 mmol), p-
nitrobenzoic acid (2.57 g, 15.4 mmol) and triphenylphosphine (5.0 g, 19.2 mmol) in anhy-
drous THF (50 mL) placed under N2 and at 0 ◦C, diisopropyl azodicarboxylate (DIAD)
(3.76 mL, 19.2 mmol) was added. The reaction was stirred at 0 ◦C for 1 h and at room
temperature overnight. After the reaction was complete as established by TLC monitor-
ing, the volatile solvents were distilled off, the residue was dissolved in ethyl acetate
and the organic phase was washed with brine twice, dried over anhydrous Na2SO4, fil-
tered, and evaporated to dryness. Titled compound 20 was purified by silica gel column
chromatography (petroleum ether/ethyl acetate 8/1) to yield 5.3 g. (14β)-(4′-nitrobenzoyl)-
3,19-isopropylideneoxy andrographolide (20): white solid; m.p. 109.6–110.8 ◦C; 77.5%
yield; 1H NMR (400 MHz, Chloroform-d) δ 8.36 (d, J = 8.9 Hz, 2H), 8.24 (d, J = 8.8 Hz, 2H),
7.21–7.15 (m, 1H), 6.29 (d, J = 5.8 Hz, 1H), 5.00 (m, 1H), 4.93 (s, 1H), 4.71 (m, 1H), 4.49 (s,
1H), 4.43 (m, 1H), 3.88 (d, J = 11.6 Hz, 1H), 3.41–3.28 (m, 1H), 3.14 (d, J = 11.6 Hz, 1H),
2.54–2.50 (m, 1H), 2.44 (d, J = 13.3 Hz, 1H), 2.01–1.87 (m, 2H), 1.71 (m, 2H), 1.36 (s, 3H), 1.34
(s, 3H), 1.30 (s, 4H), 1.16 (d, J = 2.6 Hz, 1H), 1.11 (s, 3H), 0.92 (s, 3H).

Synthesis of compound 21: compound 19 (5.9 g, 10.9 mmol) was added to 85%
phosphoric acid (40.0 mmol) with fast stirring and the solid was dissolved gradually. The
reaction was monitored by TLC and complete in about 3 h before being diluted carefully
with distilled water followed by extraction with ethyl acetate. The organic phase was
washed with a sat. NaHCO3 aqueous solution and brine and then dried over anhydrous
Na2SO4. Filtered organic phase was evaporated and the residue was purified by silica gel
column chromatography (petroleum ether/ethyl acetate 3/1) to yield 3.6 g of compound
21. (14α)-(4′-nitrobenzoyl)-9-dehydro-17-hydro andrographolide (21): white solid; m.p.
97.3–98.5 ◦C; 66.7% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.39–8.27 (m, 2H), 8.23–8.14
(m, 2H), 6.99 (m, 1H), 6.26 (d, J = 5.8 Hz, 1H), 4.68 (m, 1H), 4.42 (m, 1H), 4.17 (d, J = 11.2 Hz,
1H), 3.40 (d, J = 8.8 Hz, 1H), 3.30 (s, 1H), 3.08 (m, 1H), 2.95 (m, 1H), 2.73 (d, J = 8.5 Hz, 1H),
2.53 (s, 1H), 2.03 (m, 2H), 1.82–1.64 (m, 4H), 1.50 (s, 3H), 1.40–1.27 (m, 2H), 1.23 (s, 3H),
1.20–1.16 (m, 1H), 0.89 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 169.4, 164.3, 150.9, 150.2,
136.7, 134.9, 131.4 (2C), 129.1, 124.4 (2C), 123.9, 78.6, 71.6, 69.8, 63.2, 51.7, 42.6, 38.6, 34.9,
34.4, 28.5, 28.0, 23.3, 20.5, 19.7, 19.4. HRMS (ESI) m/z 522.2101 [M + Na]+, calculated for
C27H33NO8Na, 522.2098.

Synthesis of compound 22: compound 22 was synthetized from compound 20 fol-
lowing the synthetic procedure described for the synthesis of compound 21. (14β)-(4′-
nitrobenzoyl)-9-dehydro-17-hydro andrographolide (22): white solid; m.p. 107.8–109.1 ◦C;
68.5% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.33 (d, J = 8.9 Hz, 2H), 8.20 (d, J = 8.8 Hz,
2H), 6.99 (t, J = 7.0 Hz, 1H), 6.27 (d, J = 5.8 Hz, 1H), 4.68 (m, 1H), 4.42 (m, 1H), 4.15 (d,
J = 11.2 Hz, 1H), 3.49–3.39 (m, 1H), 3.30 (d, J = 11.1 Hz, 1H), 3.09 (m, 1H), 2.96 (m, 1H),
2.66 (s, 1H), 2.43 (s, 1H), 2.03 (d, J = 8.0 Hz, 2H), 1.81–1.68 (m, 4H), 1.51 (s, 3H), 1.38–1.32
(m, 1H), 1.29 (d, J = 7.6 Hz, 1H), 1.24 (s, 3H), 0.90–0.86 (m, 1H), 0.85 (s, 3H). 13C NMR
(101 MHz, Chloroform-d) δ 169.1, 164.2, 151.1, 151.0, 135.2, 134.1, 131.0, 130.4, 123.8, 122.8,
80.2, 71.5, 69.3, 64.1, 51.6, 42.7, 38.4, 35.0, 34.2, 28.8, 27.9, 22.5, 20.6, 19.5, 18.7. HRMS (ESI)
m/z 522.2099 [M + Na]+, calculated for C27H33O8NNa, 522.2098.

Synthesis of compound 23: compound 21 (3.6 g, 7.2 mmol) was dissolved in 2,2-
dimethoxypropane (7.5 mL, 50.4 mmol) and 2.5 mL dry dichloromethane and pyridinium
4-toluenesulfonate (88 mg, 0.36 mmol) was added. The reaction was stirred at 45 ◦C and
complete in 3 h as monitored by TLC. After volatile solvents were distilled off, the residue
was taken off with ethyl acetate and the organic phase was washed with sat. CuSO4
aqueous solution, sat. NaHCO3 solution, and brine. The organic phase was dried over
anhydrous Na2SO4, filtered, and evaporated in vacuo, and the residue was purified by silica
gel column chromatography (petroleum ether/ethyl acetate 3/1) to give 3.1 g of compound
23. (14α)-(4′-nitrobenzoyl)-9-dehydro-17-hydro-3,19-isopropylideneoxy andrographolide
(23): white solid; m.p. 90.3–91.7 ◦C; 76.9% yield; 1H NMR (400 MHz, DMSO-d6) δ 8.40–8.33
(m, 2H), 8.24–8.17 (m, 2H), 6.78–6.72 (m, 1H), 6.32 (d, J = 5.8 Hz, 1H), 4.72 (m, 1H), 4.56
(m, 1H), 3.82 (d, J = 11.6 Hz, 1H), 3.29 (m, 1H), 3.15–3.00 (m, 3H), 1.97 (d, J = 7.3 Hz, 2H),
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1.69–1.61 (m, 1H), 1.55 (s, 2H), 1.50 (s, 3H), 1.45 (d, J = 5.4 Hz, 1H), 1.37–1.27 (m, 1H), 1.21
(s, 6H), 1.14 (m, 2H), 1.06 (d, J = 1.8 Hz, 6H).

Synthesis of compound 24: the procedure for the synthesis of compound 24 from
compound 22 is the same as for the synthesis of compound 23. (14β)-(4′-nitrobenzoyl)-9-
dehydro-17-hydro-3,19-isopropylideneoxy andrographolide (24): white solid; m.p. 153.7-
154.4 ◦C; 82.1% yield; 1H NMR (400 MHz, DMSO-d6) δ 8.90 (s, 2H), 8.43–8.32 (m, 2H),
8.27–8.17 (m, 2H), 6.74 (t, J = 6.7 Hz, 1H), 6.33 (d, J = 5.9 Hz, 1H), 4.80–4.70 (m, 3H), 4.57
(m, 1H), 3.83 (d, J = 11.6 Hz, 1H), 3.11 (d, J = 10.9 Hz, 1H), 1.50 (s, 3H), 1.40 (s, 2H), 1.23 (d,
J = 3.2 Hz, 6H), 1.19 (s, 6H), 1.09 (s, 3H), 1.03 (s, 3H).

Synthesis of compound 25 (key intermediate): to a solution of compound 23 (3.1 g,
5.7 mmol) in 20 mL methanol, lithium carbonate (794 mg, 11.5 mmol) was added, and
the mixture was stirred at room temperature for 2 h (TLC monitoring). After removal of
volatile solvents by rotavapor, the residue was treated with ethyl acetate and the organic
phase was washed with brine twice, dried over anhydrous Na2SO4, filtered, and distilled
off to dryness. The residue was purified by silica gel column chromatography (petroleum
ether/ethyl acetate 3/1) to give 1.6 g of titled compound 25. (14α)-9-dehydro-17-hydro-
3,19-isopropylideneoxy andrographolide (25): white solid; m.p. 138.2–139.4 ◦C; 71.4%
yield; 1H NMR (400 MHz, Chloroform-d) δ 6.88 (m, 1H), 5.07 (s, 1H), 4.53–4.44 (m, 1H),
4.26 (m, 1H), 3.99 (d, J = 11.6 Hz, 1H), 3.48 (m, 1H), 3.26–3.14 (m, 2H), 3.04 (m, 1H), 2.04 (m,
2H), 1.99–1.92 (m, 1H), 1.78–1.69 (m, 2H), 1.68–1.61 (m, 2H), 1.55 (s, 3H), 1.50–1.43 (m, 1H),
1.41 (s, 3H), 1.37 (s, 3H), 1.32 (d, J = 6.2 Hz, 1H), 1.28 (d, J = 1.9 Hz, 1H), 1.25 (d, J = 2.1 Hz,
3H), 1.17 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 170.4, 146.2, 137.6, 128.9, 128.1, 98.8,
75.7, 74.7, 65.2, 63.4, 48.6, 37.8, 37.6, 33.6, 32.2, 28.2, 27.3, 26.1, 25.8, 24.9, 22.2, 19.7, 18.32.
HRMS (ESI) m/z 413.2299 [M + Na]+,calculated for C23H34O5Na, 413.2298.

Synthesis of compound 26 (key intermediate): the synthetic procedure for compound
26 from compound 24 is the same as that for compound 25. (14β)-9-dehydro-17-hydro-
3,19-isopropylideneoxy andrographolide (26): white solid; m.p. 93.2–94.7 ◦C; 72.6% yield;
1H NMR (400 MHz, Chloroform-d) δ 6.88 (t, J = 6.1 Hz, 1H), 5.10 (t, J = 6.5 Hz, 1H), 4.48 (m,
1H), 4.27 (m, 1H), 3.99 (d, J = 11.6 Hz, 1H), 3.50 (m, 1H), 3.21 (d, J = 11.6 Hz, 1H), 3.12 (d,
J = 7.0 Hz, 2H), 2.07–1.96 (m, 3H), 1.93 (d, J = 6.7 Hz, 1H), 1.81–1.72 (m, 2H), 1.64 (m, 1H),
1.52 (s, 3H), 1.43 (s, 1H), 1.41 (s, 3H), 1.37 (s, 3H), 1.30 (d, J = 1.8 Hz, 1H), 1.28 (d, J = 5.8 Hz,
1H), 1.21 (s, 3H), 1.19 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 170.4, 146.0, 137.6, 129.0,
128.3, 98.8, 75.9, 74.7, 65.2, 63.3, 48.8, 37.9, 37.5, 33.7, 32.6, 28.2, 27.5, 26.1, 25.9, 25.1, 22.1,
19.6, 18.3. HRMS (ESI) m/z 413.2297 [M + Na]+, calculated for C23H34O5Na, 413.2298.

4.3.4. Synthesis of Compounds 27 to 32

Titled 9-dehydro-17-hydro series compounds 27 to 32 were prepared as shown in
Scheme 2 according to previously described procedures [32–34]. Under N2 atmosphere,
1.0 mmol of compound 25 or 26, 1.5 mmol of PPh3, and 1.5 mmol of 8-hydroxyquinoline
derivative 4, 5, or 6 were dissolved in 10.0 mL of anhydrous THF. The solution was cooled
to 0 ◦C and then treated with 1.5 mmol of DIAD in 2.0 mL of anhydrous THF. The reaction
was stirred overnight at room temperature after being stirred at 0 ◦C for 1 h. After distilling
off the volatile solvents, the residue was dissolved in ethyl acetate and the organic phase
was washed with brine about 5 times and dried over anhydrous Na2SO4. The filtered
organic solution was evaporated to dryness and the residue was purified by silica gel
column chromatography to afford compounds 27 to 32.

(14α)-(2′-Methyl-8′-quinolinoxy)-9-dehydro-17-hydro-3,19-isopropylideneoxy-andro-
grapholide (27): white solid; m.p. 87.2–87.7 ◦C; 69.5% yield; 1H NMR (400 MHz, Chloroform-d)
δ 8.08 (d, J = 8.5 Hz, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.35 (d, J = 8.4 Hz,
1H), 7.16–7.13 (m, 1H), 7.00 (s, 1H), 6.17 (d, J = 5.6 Hz, 1H), 4.77 (m, 1H), 4.66 (m, 1H), 3.96
(d, J = 11.5 Hz, 1H), 3.46 (m, 1H), 3.19 (d, J = 11.6 Hz, 1H), 2.98 (d, J = 17.1 Hz, 1H), 2.78
(s, 3H), 2.09 (d, J = 45.1 Hz, 2H), 1.94–1.82 (m, 2H), 1.52 (s, 3H), 1.45 (s, 6H), 1.38 (s, 3H),
1.26 (s, 1H), 1.21 (d, J = 10.8 Hz, 2H), 1.16 (s, 3H), 1.12 (d, J = 6.2 Hz, 3H). HRMS (ESI) m/z
532.3057 [M + H]+, calculated for C33H42NO5, 532.3057.
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(14β)-(2′-Methyl-8′-quinolinoxy)-9-dehydro-17-hydro-3,19-isopropylideneoxy-andro-
grapholide (28): white solid; m.p. 99.6–100.3 ◦C; 76.2% yield; 1H NMR (400 MHz, Chloroform-
d) δ 8.06 (d, J = 8.4 Hz, 1H), 7.53 (m, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H),
7.13 (m, 1H), 6.97 (m, 1H), 6.14 (d, J = 5.8 Hz, 1H), 4.92 (d, J = 6.8 Hz, 1H), 4.74 (m, 1H), 4.62
(m, 1H), 3.95 (d, J = 11.6 Hz, 1H), 3.46 (m, 1H), 3.18 (d, J = 11.5 Hz, 1H), 2.89 (d, J = 6.8 Hz,
2H), 2.75 (s, 3H), 1.96 (m, 3H), 1.76–1.67 (m, 1H), 1.45 (s, 3H), 1.39 (s, 3H), 1.37 (s, 1H), 1.36
(s, 3H), 1.21 (m, 3H), 1.16 (s, 3H), 1.05 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 170.2,
158.3, 152.0, 151.0, 141.2, 136.7, 136.4, 128.8, 128.2, 125.6, 124.9, 123.0, 122.6, 118.0, 99.2, 76.0,
74.9, 71.7, 63.9, 48.5, 37.7, 37.6, 33.6, 32.2, 28.9, 26.8, 25.9, 25.6, 25.5, 24.8, 22.1, 19.5, 18.3.
HRMS (ESI) m/z 532.3060 [M + H]+, calculated for C33H42NO5, 532.3057.

(14α)-(5′,7′-Dichloro-8′-quinolinoxy)-9-dehydro-17-hydro-3,19-isopropylideneoxy-
andrographolide (29): white solid; m.p. 86.0–86.5 ◦C; 76.5% yield; 1H NMR (400 MHz,
Chloroform-d) δ 9.00 (m, 1H), 8.57 (m, 1H), 7.69 (s, 1H), 7.58 (m, 1H), 6.94–6.83 (m, 1H),
6.43 (d, J = 5.2 Hz, 1H), 4.78 (d, J = 11.0 Hz, 1H), 4.46 (m, 1H), 3.93 (d, J = 11.6 Hz, 1H),
3.43 (m, 1H), 3.17 (d, J = 11.6 Hz, 1H), 2.76 (m, 1H), 2.52 (m, 1H), 1.93 (d, J = 5.4 Hz, 1H),
1.92–1.84 (m, 1H), 1.75–1.66 (m, 1H), 1.49 (m, 2H), 1.42 (s, 1H), 1.40 (d, J = 3.2 Hz, 6H), 1.36
(s, 3H), 1.17 (d, J = 5.0 Hz, 1H), 1.13 (s, 3H), 1.10 (s, 3H), 1.08–1.02 (m, 1H), 0.95 (m, 1H).
13C NMR (101 MHz, Chloroform-d) δ 170.3, 151.0, 150.7, 147.5, 143.4, 136.4, 133.8, 128.7,
128.0, 127.9, 127.0, 126.4, 124.8, 122.3, 99.4, 76.9, 75.5, 71.8, 64.0, 48.1, 37.8, 37.6, 33.6, 31.7,
29.1, 26.4, 25.8, 25.4, 24.5, 22.3, 19.4, 18.3. HRMS (ESI) m/z 586.2122 [M + H]+, calculated
for C32H38O5NCl2, 586.2122.

(14β)-(5′,7′-Dichloro-8′-quinolinoxy)-9-dehydro-17-hydro-3,19-isopropylideneoxy-
andrographolide (30): white solid; m.p. 167.1–167.4 ◦C; 74.2% yield; 1H NMR (400 MHz,
Chloroform-d) δ 8.98 (m, 1H), 8.57 (m, 1H), 7.69 (s, 1H), 7.58 (m, 1H), 6.87 (m, 1H), 6.44 (d,
J = 5.0 Hz, 1H), 4.79 (d, J = 11.0 Hz, 1H), 4.48 (m, 1H), 3.93 (d, J = 11.6 Hz, 1H), 3.72 (m, 1H),
3.45 (m, 1H), 3.17 (d, J = 11.5 Hz, 1H), 2.77 (m, 1H), 2.49 (m, 1H), 1.96 (m, 2H), 1.93–1.86 (m,
1H), 1.71 (m, 1H), 1.46 (m, 1H), 1.40 (s, 3H), 1.39 (s, 3H), 1.36 (s, 3H), 1.33–1.28 (m, 1H), 1.20
(m, 2H), 1.16 (s, 3H), 0.97 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 170.3, 150.6, 150.5,
147.6, 143.4, 136.3, 133.7, 128.9, 128.0, 127.9, 127.0, 126.3, 124.9, 122.3, 99.2, 76.9, 76.0, 71.9,
63.8, 48.5, 37.7, 37.6, 33.6 32.3, 28.8, 26.8, 25.9, 25.5, 24.8, 22.0, 19.4, 18.3. HRMS (ESI) m/z
586.2125 [M + H]+, calculated for C32H38NO5Cl2, 586.2122.

(14α)-(2′-Methyl-5′,7′-Dichloro-8′-quinolinoxy)-9-dehydro-17-hydro-3,19-isopropylide-
neoxy-andrographolide (31): white solid; m.p. 82.3–82.8 ◦C; 73.4% yield; 1H NMR (400 MHz,
Chloroform-d) δ 8.44 (d, J = 8.7 Hz, 1H), 7.62 (s, 1H), 7.44 (d, J = 8.7 Hz, 1H), 6.88 (m, 1H),
6.41 (d, J = 5.0 Hz, 1H), 4.83 (m, 1H), 4.51 (m, 1H), 3.96 (d, J = 11.6 Hz, 1H), 3.47 (m, 1H),
3.20 (d, J = 11.5 Hz, 1H), 2.85 (m, 1H), 2.80 (s, 3H), 2.63 (m, 1H), 2.06–1.87 (m, 3H), 1.72
(m, 1H), 1.48 (m, 1H), 1.42 (s, 6H), 1.38 (s, 3H), 1.36–1.32 (m, 1H), 1.25–1.22 (m, 1H), 1.20
(d, J = 1.8 Hz, 1H), 1.18 (s, 3H), 1.03 (s, 3H), 0.88 (d, J = 3.8 Hz, 1H). 13C NMR (101 MHz,
Chloroform-d) δ 170.3, 160.1, 150.3, 147.1, 142.9, 136.4, 133.7, 128.9, 127.7, 127.0, 126.8, 125.1,
124.6, 123.2, 99.2, 76.8, 76.0, 72.0, 63.8, 48.5, 37.7, 37.6, 33.6, 32.2, 28.8, 26.8, 25.9, 25.5, 25.3,
24.8, 22.0, 19.4, 18.3. HRMS (ESI) m/z 600.2281 [M + H]+, calculated for C33H40NO5Cl2,
600.2278.

(14β)-(2′-Methyl-5′,7′-dichloro-8′-quinolinoxy)-9-dehydro-17-hydro-3,19-isopropylide-
neoxy-andrographolide (32): white solid; m.p. 151.3–152.1 ◦C; 72.4% yield; 1H NMR (400 MHz,
DMSO-d6) δ 8.90 (s, 1H), 8.49 (d, J = 8.7 Hz, 1H), 7.95 (s, 1H), 7.69 (d, J = 8.7 Hz, 1H), 6.53
(m, 1H), 6.46 (d, J = 4.5 Hz, 1H), 4.77 (m, 2H), 4.67 (d, J = 11.0 Hz, 1H), 4.58 (m, 1H), 3.83
(d, J = 11.6 Hz, 1H), 3.09 (d, J = 11.5 Hz, 1H), 2.75 (s, 3H), 1.33 (d, J = 10.3 Hz, 6H), 1.25 (s,
3H), 1.19 (d, J = 6.3 Hz, 9H), 1.08 (s, 3H), 0.85 (s, 3H). 13C NMR (101 MHz, Chloroform-d)
δ 170.5, 160.2, 150.5, 147.2, 143.0, 136.5, 133.8, 129.0, 127.8, 127.1, 127.0, 125.2, 124.8, 123.3,
99.3, 76.2, 72.2, 70.2, 63.9, 48.7, 37.8, 37.7, 33.7, 32.4, 29.0, 27.0, 26.1, 25.6, 25.5, 25.0, 22.1, 19.5,
18.4. HRMS (ESI) m/z 600.2281 [M + H]+, calculated for C33H40NO5Cl2, 600.2278.
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4.3.5. Synthesis of Compounds 33 to 38

Titled 9-dehydro-17-hydro series compounds 33 to 38 were prepared as shown in
Scheme 2 according to references [32–34]. A measure of 0.5 mmol of compounds 27 to 32
was dissolved in 4 mL of methanol and then treated with 0.05 mmol of TsOH·H2O at 20 ◦C
for 30 min. The mixture was then diluted with ethyl acetate and washed with sat. aqueous
NaHCO3 solution, brine, dried over anhydrous Na2SO4, filtered, and evaporated by a
Rotavapor to dryness. Resulting compounds 33 to 38 were purified by silica gel column
chromatography.

(14α)-(2′-Methyl-8′-quinolinoxy)-9-dehydro-17-hydro andrographolide (33): white
solid; m.p. 148.3–149.1 ◦C; 68.5% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.09 (d,
J = 8.5 Hz, 1H), 7.55 (m, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.14 (m, 1H),
6.96 (m, 1H), 6.21 (d, J = 5.4 Hz, 1H), 4.97 (s, 1H), 4.74 (m, 1H), 4.64 (m, 1H), 4.20 (m, 1H),
3.47–3.37 (m, 1H), 3.30 (d, J = 11.6 Hz, 1H), 3.04 (m, 1H), 2.77 (s, 3H), 2.52 (s, 1H), 2.03 (m,
3H), 1.75 (s, 4H), 1.56 (s, 1H), 1.55 (s, 3H), 1.23 (s, 3H), 0.94 (s, 2H), 0.80 (s, 3H). HRMS (ESI)
m/z 492.2746 [M + H]+, calculated for C30H38NO5, 492.2744.

(14β)-(2′-Methyl-8′-quinolinoxy)-9-dehydro-17-hydro andrographolide (34): white
solid; m.p. 143.3–143.9 ◦C; 73.2% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.06 (d,
J = 8.4 Hz, 1H), 7.59–7.47 (m, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.33 (d, J = 8.5 Hz, 1H), 7.12 (m,
1H), 6.93 (t, J = 6.4 Hz, 1H), 6.15 (d, J = 5.9 Hz, 1H), 4.95 (s, 1H), 4.72 (m, 1H), 4.61 (m, 1H),
4.18 (m, 1H), 3.44 (t, J = 8.1 Hz, 1H), 3.27 (s, 1H), 2.92 (d, J = 8.2 Hz, 2H), 2.74 (s, 3H), 2.39 (s,
1H), 2.01 (m, 2H), 1.77 (m, 2H), 1.72 (d, J = 14.5 Hz, 2H), 1.49 (s, 1H), 1.44 (s, 3H), 1.23 (s,
3H), 1.22–1.20 (m, 2H), 0.75 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 170.2, 158.3, 151.9,
150.7, 141.1, 136.4, 136.1, 129.5, 128.2, 125.6, 125.0, 123.0, 122.6, 117.8, 80.5, 74.9, 71.7, 64.1,
51.6, 42.7, 38.4, 34.7, 34.2, 28.6, 28.0, 25.6, 22.5, 20.4, 19.4, 18.7. HRMS (ESI) m/z 492.2748 [M
+ H]+, calculated for C30H38NO5, 492.2744.

(14α)-(5′,7′-Dichloro-8′-quinolinoxy)-9-dehydro-17-hydro andrographolide (35): white
solid; m.p. 88.7–89.2 ◦C; 79.2% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.99 (m, 1H),
8.57 (m, 1H), 7.69 (s, 1H), 7.59 (m, 1H), 6.87 (m, 1H), 6.48 (d, J = 5.2 Hz, 1H), 4.78–4.72 (m,
1H), 4.43 (m, 1H), 4.17 (d, J = 11.2 Hz, 1H), 3.38 (m, 1H), 3.29 (d, J = 11.2 Hz, 1H), 2.79
(m, 1H), 2.70–2.50 (m, 2H), 2.42 (s, 1H), 1.97 (d, J = 6.6 Hz, 1H), 1.80–1.73 (m, 1H), 1.70 (d,
J = 4.9 Hz, 1H), 1.54 (s, 1H), 1.44 (s, 3H), 1.21 (s, 3H), 1.13 (d, J = 12.6 Hz, 1H), 1.04–0.99 (m,
1H), 0.96 (d, J = 6.7 Hz, 1H), 0.90–0.87 (m, 1H), 0.85–0.82 (m, 1H), 0.79 (s, 3H). 13C NMR
(101 MHz, Chloroform-d) δ 170.3, 150.9, 150.6, 147.5, 143.4, 135.6, 133.8, 129.4, 128.0, 127.9,
127.1, 126.4, 124.7, 122.3, 80.3, 76.8, 71.7, 64.1, 51.5, 42.7, 38.4, 34.6, 34.1, 28.6, 28.0, 22.4, 20.6,
19.4, 18.7. HRMS (ESI) m/z 546.1812 [M + H]+, calculated for C29H34NO5Cl2, 546.1809.

(14β)-(5′,7′-Dichloro-8′-quinolinoxy)-9-dehydro-17-hydro andrographolide (36): white
solid; m.p. 139.8–140.6 ◦C; 73% yield; 1H NMR (400 MHz, Chloroform-d) δ 8.97 (m, 1H),
8.57 (m, 1H), 7.68 (s, 1H), 7.58 (m, 1H), 6.87–6.78 (m, 1H), 6.45 (d, J = 5.1 Hz, 1H), 4.77
(d, J = 11.1 Hz, 1H), 4.46 (m, 1H), 4.13 (d, J = 11.2 Hz, 1H), 3.49–3.35 (m, 1H), 3.25 (d,
J = 11.1 Hz, 1H), 2.80 (m, 1H), 2.69 (s, 1H), 2.46 (m, 1H), 2.36 (s, 1H), 1.96 (d, J = 6.5 Hz, 2H),
1.80–1.67 (m, 3H), 1.53–1.46 (m, 1H), 1.40 (s, 3H), 1.30 (s, 1H), 1.21 (s, 3H), 1.15 (d, J = 12.5
Hz, 2H), 0.67 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 170.3, 150.6, 150.1, 147.5, 143.3,
135.7, 133.8, 129.7, 128.0, 127.9, 127.0, 126.4, 125.0, 122.3, 80.4, 76.9, 71.9, 64.1, 51.6, 42.7, 38.3,
34.7, 34.1, 28.5, 27.9, 22.4, 20.4, 19.3, 18.6. HRMS (ESI) m/z 546.1812 [M + H]+, calculated
for C29H34NO5Cl2, 546.1809.

(14α)-(2′-Methyl-5′,7′-dichloro-8′-quinolinoxy)-9-dehydro-17-hydro andrographolide
(37): white solid; m.p. 115.1–115.7 ◦C; 76.3% yield; 1H NMR (400 MHz, DMSO-d6) δ 8.48
(d, J = 8.6 Hz, 1H), 7.93 (s, 1H), 7.68 (d, J = 8.6 Hz, 1H), 6.51 (m, 2H), 4.93 (s, 1H), 4.63 (d,
J = 11.1 Hz, 1H), 4.54 (m, 1H), 4.01 (s, 1H), 3.76 (d, J = 10.9 Hz, 1H), 3.22 (d, J = 11.1 Hz,
1H), 3.10 (t, J = 8.2 Hz, 1H), 2.75 (s, 3H), 2.40 (m, 1H), 1.87 (d, J = 6.3 Hz, 2H), 1.66–1.49 (m,
3H), 1.39 (s, 3H), 1.33 (s, 3H), 1.02 (d, J = 7.8 Hz, 3H), 0.86 (s, 1H), 0.68 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) δ 169.7, 160.4, 148.7, 146.6, 142.5, 136.1, 133.4, 128.5, 127.0, 126.6, 126.2,
125.3, 124.2, 124.1, 78.1, 76.6, 71.5, 62.7, 51.2, 42.1, 38.1, 34.3, 33.9, 27.8, 27.6, 24.9, 22.9, 19.8,
19.1, 18.9. HRMS (ESI) m/z 560.1967 [M + H]+, calculated for C30H36NO5Cl2, 560.1965.
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(14β)-(2′-Methyl-5′,7′-dichloro-8′-quinolinoxy)-9-dehydro-17-hydro andrographolide
(38): white solid; m.p. 139.8–140.6 ◦C; 78.6% yield; 1H NMR (400 MHz, Chloroform-d) δ
8.42 (d, J = 8.7 Hz, 1H), 7.60 (s, 1H), 7.42 (d, J = 8.7 Hz, 1H), 6.81 (m, 1H), 6.39 (d, J = 5.0 Hz,
1H), 4.79 (d, J = 11.0 Hz, 1H), 4.46 (m, 1H), 4.14 (d, J = 11.2 Hz, 1H), 3.42 (m, 1H), 3.26 (d,
J = 11.2 Hz, 1H), 2.86 (m, 1H), 2.77 (s, 3H), 2.71 (s, 1H), 2.58 (m, 1H), 2.34 (s, 1H), 2.05–1.91
(m, 2H), 1.74 (m, 3H), 1.49 (m, 1H), 1.39 (s, 3H), 1.33 (d, J = 12.9 Hz, 1H), 1.22 (s, 3H),
1.20–1.13 (m, 2H), 0.71 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 170.4, 160.1, 150.0,
147.0, 142.9, 135.8, 133.7, 129.7, 127.7, 126.9, 126.9, 125.1 124.7, 123.2, 80.4, 72.0, 64.1, 51.6,
42.7, 38.3, 34.6, 34.2, 31.6, 28.6, 27.9, 25.3, 22.4, 20.3, 19.3, 18.7. HRMS (ESI) m/z 560.1967 [M
+ H]+, calculated for C30H36NO5Cl2, 560.1965.

4.4. Cell Lines and Treatments

Human HEK293 cells (ATCC, # CRL-1573) were cultured at 37 ◦C, 5% CO2 in DMEM
supplemented with 10% FBS, penicillin (100 U/mL), and streptomycin (50 mg/mL). Human
SH-SY5Y neuroblastoma cells (gift from Dr Narisorn Kitiyanant, Mahidol University) were
grown at 37 ◦C, 5% CO2 in high glucose-DMEM supplemented with 10% FBS, penicillin
(100 U/mL), and streptomycin (50 mg/mL). Andrographolide was prepared as a 100 mM
stock solution (in 100% DMSO) and derivatives were prepared as a 10 mM stock solution
(in 100% DMSO) from which serial dilutions were prepared. Cells were treated for 24 h
before being processed for sAPPα secretion and Western blot analysis. For all conditions
(including non-treated controls), DMSO was adjusted to 0.1%.

4.5. sAPPα Secretion and Detection

Secretion and detection of sAPPα in HEK293 and SH-SY5Y cells with the human-
specific monoclonal anti-sAPPα antibody (2B3) has been previously described [58]. Briefly,
following treatments in complete media, media was removed, and cells were incubated
with fresh DMEM (1 mL) and allowed to secrete for 5 h. Then, 10% TCA precipitation of
the whole medium was performed, and the precipitate was subjected to electrophoresis
through 10% SDS-PAGE gels, transferred onto nitrocellulose membranes (100 min, 90 volts),
incubated in 5% non-fat milk blocking solution for 30 min and incubated overnight at
4 ◦C with 2B3 (1 µg/mL). After three washes with PBST (PBS containing 0.05% Tween
20), membranes were then incubated with a HRP-conjugated anti-mouse IgG antibody
(dilution 1/3000), rinsed three times with PBST incubated with ECL reagent, and signals
were detected using an Azure c400 (Azure Biosystems, Dublin, CA, USA). Band densities
were measured with the Image J software.

4.6. Western Blot Analyses

Cells were collected with phosphate-buffered saline (PBS)-EDTA and resuspended
in 70 to 100 µL of lysis buffer (10 mM Tris/HCl, pH 7.5, 150 mM NaCl, 0.5% triton X-
100, 0.5% deoxycholate, 5 mM EDTA). Protein concentrations were determined by the
Bradford method [59] and 20–40 µg proteins were loaded onto 10% of SDS-PAGE gels
which were run at 100 volts for 2–2.5 h. Proteins were then transferred onto nitrocellulose
membranes for 60–120 min at 90 V). Protein transfer was verified by Ponceau red staining,
and nitrocellulose membranes were subsequently incubated in 5% non-fat milk blocking
solution for 45 min. Membranes were then incubated with primary antibodies directed
against βAPP (dilution 1/2000), ADAM10 (dilution 1/500), BACE1 (dilution 1/1000),
or β-actin (dilution 1/5000) on a platform shaker overnight at 4 ◦C. Bound antibodies
were detected using goat anti-mouse (dilution 1/3000, polyclonal 7076, Cell Signaling) or
goat anti-rabbit peroxidase-conjugated antibody (dilution 1/3000, polyclonal 7074, Cell
Signaling). After 3 washes with PBST, membranes were incubated with a HRP-conjugated
anti-rabbit (ADAM10, βAPP and BACE1) or anti-mouse (β-actin) secondary antibody
(1/3000) for 2 h, rinsed 3 times with PBST, and processed as described above. All protein
levels were normalized using β-actin as an internal standard.
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4.7. Cell Viability Assay

Cells were seeded in 96-well polystyrene-coated tissue culture plates (Corning) over
night. Proper attachment and confluence of the cells were confirmed by checking under a
microscope. Media was removed and cells were treated with the compounds at various
concentrations in quadruplicate for 24 h with control cells being treated with vehicle
(0.1% DMSO). Media was then removed and cells were washed with sterile milli-Q water.
Then, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was added
(0.5 mg/mL) for 1.5 h. Formazan crystals formation was then checked under a microscope
and the media was replaced by 100% DMSO until the purple crystals dissolved. Absorbance
was measured at 595 nm.

4.8. Real-Time Quantitative Polymerase Chain Reaction (q-PCR)

Following treatments without (control) or with andrographolide or andrographolide
derivative for 24 h at 37 ◦C in 1 mL of DMEM containing 1% FBS, total RNA was extracted
from HEK293 or SH-SY5Y cells and purified with the PureLink RNA mini kit (Ambion,
Life Technologies, Austin, TX, USA). Real-time PCR was performed with 100 ng of total
RNA using the QuantiFast SYBR Green RT-PCR kit (Qiagen, Singapore) detector system
(Eppendorf Mastercycler ep RealPlex, Eppendorf, Hamburg, Germany) and the SYBR
Green detection protocol. The 2x QuantiFast SYBR Green RT-PCR master mix, QuatiFast
RT mix, QuantiTectPrimer Assay, and template RNA were mixed and the reaction volume
was adjusted to 25 µL using RNase-free water. The specific primers were designed and
purchased from Qiagen. Each primer was added to a 10× QuantiTect Primer Assay
containing a mix of forward and reverse primers for specific targets: Hs_ADAM10_1_SG
(QT00032641, human ADAM10), Hs_BACE1_1_SG (QT00084777, human BACE1), and
Hs_GAPDH_1_SG (QT00079247, human GAPDH, housekeeping gene for normalization).

4.9. α-Secretase Fluorimetric Assay on Intact Cells

SH-SY5Y and HEK293 cells were cultured in 35 mm-dishes coated with polylysine
(10 µg/mL) until cells reached 80% confluence. Cells were treated in duplicate without
(control) or with various concentrations of andrographolide or andrographolide derivatives
for 24 h at 37 ◦C in 1 mL of DMEM containing 1% FBS. Duplicates were then incubated for
30 min at 37 ◦C in the absence or in the presence of the general metalloprotease inhibitor o-
phenanthroline (100 µM) in 1.5 mL of PBS. Then, the α-secretase-specific JMV2770 substrate
(10 µM) [60] was directly added into the media and cells were maintained at 37 ◦C. Every
15 min, 100 µL of media were removed and the α-secretase-specific activity corresponding
to the o-phenanthroline-sensitive fluorescence was recorded in black 96-well plates at
320 nm and 420 nm excitation and emission wavelengths, respectively.

4.10. β-Secretase Fluorimetric Assay on Cell Homogenates

SH-SY5Y and HEK293 cells were cultured in 35 mm-dishes until they reach 80%
confluence, treated without (control) or with various concentrations of andrographolide or
andrographolide derivatives for 24 h at 37 ◦C in DMEM containing 1% FBS and assayed
for their β-secretase activity as previously described [61]. Briefly, cells were collected, lysed
with Tris 10 mM pH 7.5, homogenized, and kept on ice. Samples were assayed for their
protein contents with the Bradford method and adjusted to a 3 µg/µL concentration. Then,
30 µg of each sample (10 µL) diluted in 10 mM sodium acetate buffer pH 4.5 were incubated
for 30 min at 37 ◦C in black 96-well plates (in a final volume of 100 µL) in the absence
(triplicate) or in the presence (triplicate) of the β-secretase specific inhibitor JMV1197. Then,
the β-secretase-specific JMV2236 substrate (10 µM) was added to all samples and plates
were maintained at 37 ◦C. Every 15 min, the β-secretase-specific activity corresponding
to the JMV1197-sensitive fluorescence was recorded at 320 nm and 420 nm excitation and
emission wavelengths, respectively.
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4.11. Statistical Analysis

Statistical analyses were performed with the Prism software (GraphPad, San Diego,
USA) using an unpaired t-test for pairwise comparisons. All results are expressed as means
± SEM and p values equal to or less than 0.05 were considered significant.

Supplementary Materials: The following are available online. NMR spectra for Scheme 1; NMR
spectra for Scheme 2.
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