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ABSTRACT  1 

 2 

Wild organisms are likely exposed to complex mixtures of pesticides owing to the 3 

large diversity of substances on the market and the broad range agricultural practices. 4 

The consequences of such exposure are still poorly understood, first because of 5 

potentially strong synergistic effects, making cocktails effects not predictable from the 6 

effects of single compounds, but also because little is known about the actual exposure 7 

of organisms to pesticide mixtures in natura.  8 

We aimed to identify the number and composition of pesticide mixtures potentially 9 

occurring in French farmland, using a database of pesticide purchases in postcodes. 10 

We developed a statistical method based on a model-based clustering (mixture model) 11 

to cluster postcodes according to the identity, purchase probability and quantity of 279 12 

active substances.  13 

We found that the 5,642 French postcodes can be clustered into a small number 14 

of postcode groups (ca. 20), characterized by a specific pattern of pesticide purchases, 15 

i.e. pesticide mixtures. Substances defining mixtures can be sorted into “core” 16 

substances highly probable in most postcode groups and “discriminating” substances, 17 

which are specific to and highly probable in some postcode groups only, thus playing 18 

a key role in the identity of pesticide mixtures. We found 12 core substances: two 19 

insecticides (deltamethrin and lambda-cyhalothrin), six herbicides (glyphosate, 20 

diflufenican, fluroxypyr, MCPA, 2,4-d, triclopyr) and four fungicides (fludioxonil, 21 

tebuconazole, difenoconazole, thiram). The number of discriminating substances per 22 

postcode group ranged from 2 to 74. These differences in substance purchases 23 

seemed related to differences in crop composition but also potentially to regional 24 

effects.  25 

Overall, our analyses return (1) sets of molecules that are likely to be part of the 26 

same pesticide mixtures, for which synergetic effects should be investigated further 27 

and (2) areas within which biodiversity might be exposed to similar mixture 28 

composition. This information will hopefully be of interest for future ecotoxicological 29 

studies to characterise the actual impacts of pesticide cocktails on biodiversity in the 30 

field. 31 

Keywords: Active substances, Cluster, mixture model, expectation-maximization 32 

algorithm, risk assessment  33 
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INTRODUCTION 34 

Since the mid-20th century, pesticides have become of common use in agriculture and 35 

their effects on both the environment and human health are a growing concern. For 36 

example, systemic pesticides are known to affect a broad range of organisms, from 37 

invertebrates, both terrestrial and aquatic, to amphibians or birds (Humann-Guilleminot 38 

et al., 2019; Mahmood et al., 2016; Yang et al., 2008), thereby questioning the 39 

sustainability of agroecosystem functioning and related services (Deguines et al., 40 

2014; Dudley et al., 2017; Furlan et al., 2018; Geiger et al., 2010). Pesticides are also 41 

identified as a concern for human health, with numerous pesticide poisonings reported 42 

across developing countries (Boedeker et al., 2020) and recent evidence of 43 

relationships between diseases such as Parkinson’s or cancers and exposure to 44 

organophosphate insecticides (Sheahan et al., 2017; Tassin de Montaigu and 45 

Goulson, 2020). 46 

The effect of pesticides on biodiversity are usually demonstrated with a focus on 47 

a single substance or a limited set of substances in general (e.g. thiamethoxam, 48 

clothianidin, imidacloprid, thiacloprid or glyphosate (Botías et al., 2015; Busse et al., 49 

2001; Rundlöf et al., 2015; Van Bruggen et al., 2018). Yet, wild organisms are exposed 50 

to complex mixtures (Dudley et al., 2017), owing to the diversity of substances 51 

available and used in farmlands. Hence, studying substance mixtures is considered a 52 

central task for environmental risk assessment (Lydy et al., 2004a), notably because 53 

the effects of pesticide cocktails can strongly exceed the additive effects of single 54 

compounds (Bopp et al., 2016; Junghans et al., 2006). Laboratory experiments 55 

demonstrate synergetic interactions among substances within mixtures, affecting the 56 

effect of the cocktails in non-additive ways (Cedergreen, 2014; Hernández et al., 2017; 57 

Heys et al., 2016). While the importance of studying the effects of cocktails beyond 58 

those of single substances was highlighted as soon as the late sixties (Keplinger and 59 

Deichmann, 1967), and their evaluation is mandatory in the European Union since 60 

2009 (EC No 1107/2009), few attempts to do so exist outside laboratories (Gibbons et 61 

al., 2015).  62 

Studies examining the effects of substance cocktails use two approaches: 63 

bottom-up or top-down (Altenburger et al., 2013; Hernández et al., 2017; Relyea, 64 

2009). The bottom-up approach aims at testing all possible mixture compositions, 65 

starting from pairs of substances to more complex combinations. This method makes 66 
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it challenging to consider more than a handful of substances. For example, ten 67 

substances represent 45 possible pairs and over a thousand possible combinations of 68 

three or more substances (Lydy et al., 2004a). Moreover, such approach might be 69 

more suited to experiments in controlled rather than natural environments, as the latter 70 

are recognized as strongly contaminated (Tang et al., 2021), making the control of 71 

mixture composition difficult. The top-down approach proposes to compare the effect 72 

of cocktails, starting from potentially frequent mixtures including a high number of 73 

substances, but at the cost of not testing all combinations. In addition, the few existing 74 

field studies generally focused on the effects of pesticide cocktails composed of a 75 

restricted number of substances, on specific crops or on restricted spatial extent, 76 

thereby limiting a broad understanding of cocktail effects (e.g. Brittain et al., 2010; 77 

Hallmann et al., 2014; Millot et al., 2017, but see Schreiner et al., 2016 & (Fritsch et 78 

al., 2022). The top-down approach makes it critical to identify relevant mixture 79 

compositions, i.e. those actually occurring in the fields. The number of actual mixtures 80 

encountered in agroecosystems should be much lower than the number of possible 81 

combinations of substances because each substance is often intended for a limited set 82 

of crops only and because agricultural production is regionally specialised on particular 83 

crops. Such regional specialisation implies that existing mixtures are likely to be 84 

spatially structured. However, we still miss an overall picture of the pesticide mixture 85 

composition and its spatial structure over large spatial extents.  86 

  87 

Here, we introduce a new statistical method to identify relevant pesticide mixtures, i.e. 88 

actual combinations of substances potentially co-occurring in agroecosystems, across 89 

Metropolitan France. We overcame the general problem of limited availability of data 90 

on temporal and spatial use of pesticides (Navarro et al., 2021) by taking advantage 91 

of the recent publication of an up-to-date database on pesticide purchases in France, 92 

the French national bank of pesticide sales database 93 

(https://www.data.gouv.fr/fr/datasets/ventes-de-pesticides-par-departement/). This 94 

database has registered mandatory reporting of quantities of active substances 95 

purchased in France since 2013 (law n°2006-1772) at a relatively fine spatial grain 96 

(postcode of the buyer). France is also the seventh largest user of pesticides in the 97 

world (FAO 2020) and has a wide range of agricultural types (Urruty et al., 2016), which 98 

makes it a well-suited case country to identify pesticide mixtures encountered in the 99 

field by wild organisms, as well as their spatial variation.  100 
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Applying an Expectation/Maximization algorithm to a model-based clustering, we 101 

aimed to cluster French postcodes on the basis of their composition of active 102 

substances purchased. We addressed three main questions: 1) How many groups of 103 

postcodes best describe the patterns of pesticide purchase in France? 2) How are 104 

these groups spatially distributed? 3) What are the mixtures of active substances 105 

characterizing these groups? Because pesticide use is at least partially related to crop 106 

identity, and because of crop regional specialization in France, we expect a limited 107 

number of postcode groups, that are strongly structured in space. Such groups with 108 

homogeneous pesticide mixtures could subsequently be used to identify potentially 109 

important pesticide substances and mixtures deserving further investigation. 110 

 111 

METHODS 112 

1.1 Pesticide data 113 

Data on active substances were obtained from the French national bank of 114 

pesticide sales (BNV-d; https://bnvd.ineris.fr). The BNV-d database registers active 115 

substances under mandatory reporting. The seller indicates the amount of each active 116 

substance purchased and the postcode of the buyer in the database. This database 117 

thus indicates the quantity of active substances purchased at the spatial resolution of 118 

the postcode of the buyer. Postcode are the third level of administrative division in 119 

France, lower than the European Union NUTS3 level (administrative departments) and 120 

range from 0.17 km² to 614.39 km² in metropolitan France (median = 62.79 km², Q1 = 121 

19.59 km², Q3 =140.36 km²). Substances are identified with their generic name and a 122 

unique identifier, the Chemical Abstracts Service number. We modified generic names 123 

when synonyms were found. We only retained substances with a license fee (i.e. under 124 

compulsory reporting) because we can expect thorough reporting for these.  125 

The years registered in the database ranged from 2013 to 2020. We discarded 126 

the year 2013 because of incomplete data during the first reporting year, and the two 127 

latest years of the time series (2019 and 2020) because additions and changes in the 128 

database are allowed for two years after reporting. Also, note that the legislation has 129 

kept changing until 2016, with consequences for the mandatory nature of reporting for 130 

some substances or treatments. In particular, until 2016 the geographical information 131 

associated with seed coating substances was that of the seed coating company, not 132 

https://bnvd.ineris.fr/
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of the buyer. Hence, 2017 can be considered the most accurate and thorough year 133 

within the period 2013-2020. 134 

The data provides the total mass (in g) bought per substance with mandatory 135 

reporting, of which in 2017 there were 279. We analysed these quantitative data at the 136 

postcode level, assuming that substances purchased in a given postcode would be 137 

used within the same postcode or in close vicinity. Given the spatial extent of farms, 138 

pesticides may not always be spread exactly in the postcode where farmers are 139 

domiciled, but are unlikely to be used beyond the neighbouring postcodes, with one 140 

exception that we discarded. Using specific postcodes (CEDEX) that enable the 141 

identification of private companies, we discarded the data related to the national 142 

railroad company (SNCF): SNCF is a major buyer with central purchasing bodies that 143 

do not use the substances within the postcode of purchase. We converted all remaining 144 

CEDEX codes to their corresponding regular postcodes. We were thus left with 5,642 145 

postcodes with information about the quantities (in g) of 279 active substances 146 

purchased in 2017. We classified these substances into fungicides, herbicides, 147 

insecticides following the Pesticide Properties Data Base (PPDB) (Lewis et al., 2016) 148 

and the European commission pesticide database 149 

(ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances). 150 

There were also 32 substances with other target groups (e.g. rodents or molluscs; 151 

Table S1 for a complete list) that we classified as “other targets”.  152 

To relate the use of active substances to the area of arable land in postcodes, we 153 

extracted the total area of cropland from the 2017 French Land Parcel Identification 154 

System (LPIS, “Registre Parcellaire Graphique”, Agence de Services et de Paiements, 155 

2015). This database is a geographic information system developed under the 156 

European Council Regulation No 153/2000, for which the farmers provide annual 157 

information about their fields and crop rotation. We grouped the 16 categories of 158 

cropland types used in LPIS into 11 sub-groups (Figure S9) (Cantelaube and Carles, 159 

2010; Levavasseur et al., 2016). We summed the area of all types of cropland but 160 

meadows to obtain the total crop area per postcode. 161 

 162 

1.2 Model-based Clustering 163 

1.2.1 Input data 164 

 165 

https://www.sciencedirect.com/science/article/pii/S0168169916305117#b0005
https://www.sciencedirect.com/science/article/pii/S0168169916305117#b0005
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As described above, the dataset consisted of 𝑛 (= 5,642) postcodes and 𝑝 (=279) 166 

substances. For each postcode 𝑖 (1 ≤ 𝑖 ≤ 𝑛) and substance 𝑗 (1 ≤ 𝑗 ≤ 𝑝), we denoted 167 

by 𝑋𝑖𝑗 the presence/absence variable, which is 1 if substance 𝑗 is bought in postcode 168 

𝑖 and 0 otherwise, and by 𝑌𝑖𝑗 the log of the quantity of substance 𝑗 bought in postcode 169 

𝑖 (when used) normalized with the cropland area of postcode 𝑖:  170 

 𝑌𝑖𝑗 = log (
quantity of substance 𝑗 bought in postcode 𝑖

cropland area of postcode 𝑖
) 171 

 172 

(𝑌𝑖𝑗 is NA when substance j is not bought in postcode i). 173 

 174 

1.2.2 Model 175 

We aimed to provide a clustering of the postcodes according to the quantity of 176 

the various substances bought. Mixture models (McLahan and Peel, 2000) provide a 177 

classical framework to achieve such a clustering. To avoid any confusion with 178 

“pesticide mixtures” we will use “Model-based Clustering” when referring to the 179 

statistical “mixture models”. The model we consider assumes that the 𝑛 postcodes are 180 

spread into 𝐾 groups and that the respective use of the different substances depends 181 

on the group they belong to. Mixture models or model-based clustering precisely aim 182 

at recovering this unobserved group structure from the observed data. 183 

 184 

1.2.2.1.1 Groups definition 185 

We denoted by 𝑍𝑖 the group to which postcode 𝑖 belongs. We assumed the 𝑍𝑖 are 186 

all independent and that each postcode 𝑖 belongs to group 𝑘 (1 ≤ 𝑘 ≤ 𝐾) with 187 

respective proportions 𝜋𝑘:  188 

 𝜋𝑘 = Pr{𝑍𝑖 = 𝑘}. (1) 189 

 Note that the 𝜋𝑘consists of only 𝐾 − 1 independent parameters, as they have to sum 190 

to 1 (∑𝐾
𝑘=1 𝜋𝑘 = 1). 191 

 192 

1.2.2.1.2 Emission distribution 193 

The model then describes the distribution of the observed data conditional on the 194 

group to which each postcode belongs. The distribution of the presence/quantity pair 195 

(𝑋𝑖𝑗, 𝑌𝑖𝑗) is built in two stages: first, if postcode i belongs to group 𝑘, substance 𝑗 is used 196 

in the postcode with probability 𝛾𝑘𝑗:  197 
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 𝛾𝑘𝑗 = Pr{𝑋𝑖𝑗 = 1|𝑍𝑖 = 𝑘}, (2) 198 

then, if substance 𝑗 is used in postcode i, its log-quantity is assumed to have a 199 

Gaussian distribution:  200 

 (𝑌𝑖𝑗|𝑋𝑖𝑗 = 1, 𝑍𝑖 = 𝑘) ∼ 𝒩(𝜇𝑘𝑗, 𝜎𝑘𝑗
2 ). (3) 201 

with 𝜇𝑘𝑗 and 𝜎𝑘𝑗
2  the mean and variance of the log-quantity of substance 𝑗 used in a 202 

postcode from group 𝑘, provided that the substance is bought in the postcode. In 203 

addition to the (𝐾 − 1) proportions 𝜋𝑘 and the 𝐾 × 𝑝 probabilities 𝛾𝑗𝑘, this model 204 

involves 𝐾 × 𝑝 mean parameters 𝜇𝑘𝑗 and as many variance parameters 𝜎𝑘𝑗
2 . This 205 

makes a total of 𝐾 − 1 + 3𝐾𝑝 parameters to be estimated. 206 

Combining Equations (2) and (3), we defined the conditional distribution 𝑓𝑗𝑘 for 207 

substance 𝑗 in a postcode from group 𝑘:  208 

 𝑓𝑗𝑘(𝑥𝑖𝑗, 𝑦𝑖𝑗) = 𝑥𝑖𝑗𝛾𝑘𝑗𝜙(𝑦𝑖𝑗; 𝜇𝑘𝑗 , 𝜎𝑘𝑗
2 ) + (1 − 𝑥𝑖𝑗)(1 − 𝛾𝑘𝑗) 209 

denoting by 𝜙(⋅; 𝜇, 𝜎2) the probability density function of the Gaussian distribution 210 

𝒩(𝜇, 𝜎2).  211 

To avoid over-parametrization, we also considered models with constrained variance, 212 

assuming either that the variance depends on the substance but not on the group: 213 

𝜎𝑘𝑗
2 ≡ 𝜎𝑗

2, or that the variance is the same for all substances in all groups: 𝜎𝑘𝑗
2 ≡ 𝜎2. 214 

 215 

1.2.3  Inference 216 

 217 

Model-based clustering belongs to incomplete-data models, which can deal with 218 

situations where part of the relevant information is missing. For the sake of brevity, we 219 

denoted by 𝑌 the set of observed variables (i.e. all the (𝑋𝑖𝑗, 𝑌𝑖𝑗)) and by 𝑍 the set of 220 

unobserved variables (i.e. the 𝑍𝑖). We further denoted by 𝜃 the whole set of parameters 221 

to be estimated: 𝜃 = ({𝜋𝑘}, {𝛾𝑘𝑗}, {𝜇𝑘𝑗}, {𝜎𝑘𝑗
2 }). 222 

A classical way to estimate the set of parameters 𝜃 is to maximize the log-223 

likelihood of the data log𝑝(𝑌; 𝜃) with respect to the parameters. An important feature 224 

of incomplete-data models is that this log-likelihood is not easy to compute, and even 225 

harder to maximize, as its calculation requires integrating over the unobserved variable 226 

𝑍. However, the so-called ’complete’ log-likelihood, which involves both the observed 227 

𝑌 and the unobserved 𝑍, log𝑝(𝑌, 𝑍; 𝜃) is often tractable. 228 

 229 
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1.2.3.1.1 Expectation-Maximization algorithm 230 

The Expectation-maximization (EM) algorithm (Dempster et al., 1977) resorts to 231 

the complete log-likelihood to achieve maximum-likelihood inference for the 232 

parameters. More specifically, because log𝑝(𝑌, 𝑍; 𝜃) cannot be evaluated (as 𝑍 is not 233 

observed), EM uses the conditional expectation of the complete likelihood given the 234 

observed data, namely 𝔼[log𝑝(𝑌, 𝑍; 𝜃)|𝑌; 𝜃], as an objective function, to be maximized 235 

with respect to 𝜃. 236 

The EM algorithm alternates the steps ’E’ (for expectation) and ’M’ (for 237 

maximization) until convergence. It can be shown that the likelihood of the data 238 

log𝑝(𝑌; 𝜃) increases after each EM step. The reader may refer to Dempster et al. 239 

(1977) or McLahan and Peel (2000) for a formal justification of the procedure. 240 

 241 

1.2.3.1.2 E step 242 

This step aimed at recovering the relevant information to evaluate the objective 243 

function. In the case of model-based clustering, the E steps only amounts to evaluating 244 

the conditional probability 𝜏𝑖𝑘 for the postcode 𝑖 to belong to group 𝑘 given the data 245 

observed for the postcode and the estimate of the parameter 𝜃𝑖𝑘 after iteration ℎ − 1:  246 

 𝜏𝑖𝑘
(ℎ−1)

= Pr{𝑍𝑖 = 𝑘|{(𝑋𝑖𝑗, 𝑌𝑖𝑗)}1≤𝑗≤𝑝; 𝜃(ℎ−1)} 247 

The calculation of 𝜏𝑖𝑘 simply resorts to Bayes formula. In the following, we drop the 248 

iteration superscript (ℎ) for the sake of clarity, and we use the notation 𝜃 to indicate 249 

the current estimate. Because the substance are assumed to be independent, we get  250 

 𝜏̂𝑖𝑘 = 𝜋̂𝑘 ∏𝑝
𝑗=1 𝑓𝑗𝑘(𝑥𝑖𝑗, 𝑦𝑖𝑗)/(∑𝐾

ℓ=1 𝜋ℓ̂ ∏𝑝
𝑗=1 𝑓𝑗ℓ(𝑥𝑖𝑗, 𝑦𝑖𝑗)). 251 

 252 

1.2.3.1.3 M step 253 

The M step updates the parameter estimate by maximizing 254 

𝔼[log𝑝(𝑌, 𝑍; 𝜃)|𝑌; 𝜃(ℎ−1)] with respect to 𝜃. The objective function can be calculated 255 

using the conditional probabilities 𝜏𝑖𝑘s  256 

 𝔼[log𝑝(𝑌, 𝑍; 𝜃)|𝑌; 𝜃(ℎ)] = ∑𝑛
𝑖=1 ∑𝐾

𝑘=1 𝜏̂𝑖𝑘(log𝜋𝑘 + ∑𝑝
𝑗=1 log𝑓𝑘𝑗(𝑥𝑖𝑗 , 𝑦𝑖𝑗)). 257 

The maximization of this function yields in close-form update formulas for all 258 

parameters. All estimates can be viewed as weighted versions of intuitive proportions, 259 

means or variance. Let us first define  260 

 𝑁̂𝑘 = ∑𝑛
𝑖=1 𝜏̂𝑖𝑘, 𝑀̂𝑘𝑗 = ∑𝑛

𝑖=1 𝜏̂𝑖𝑘𝑥𝑖𝑗 . 261 
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 𝑁̂𝑘 is the current estimate of the number of entities belonging to group 𝑘; 𝑀̂𝑘𝑗 is the 262 

current estimate of the number of entities from group 𝑘 where substance 𝑗 is bought. 263 

For the proportions and probability of use, we get the following updates:  264 

 𝜋̂𝑘 = 𝑁̂𝑘/𝑛 , 𝛾𝑘𝑗 = 𝑀̂𝑘𝑗/𝑁̂𝑘. 265 

 For the quantitative part of the model, we get additionally:  266 

 𝜇̂𝑘𝑗 =
1

𝑀̂𝑗𝑘
∑𝑛

𝑖=1 𝜏̂𝑖𝑘𝑥𝑖𝑗𝑦𝑖𝑗 𝜎̂𝑘𝑗
2 = (

1

𝑀̂𝑗𝑘
∑𝑛

𝑖=1 𝜏̂𝑖𝑘𝑥𝑖𝑗𝑦𝑖𝑗
2 ) − (𝜇̂𝑘)2 . 267 

 Similar estimates of 𝜎𝑗
2 and 𝜎2 can be derived for the models with constrained 268 

variances. 269 

 270 

1.2.4 Model selection 271 

To select the number of groups K and to choose between the models with 272 

unconstrained and constrained variances, we used the Bayesian Information Criterion 273 

(BIC, Schwarz, 1978). We adopted the same form as in Fraley and Raftery [1999], that 274 

is: 275 

 𝐵𝐼𝐶 = log𝑝(𝑌; 𝜃) −
𝑛

2
log(#independent parameters). 276 

As indicated above, the number of independent parameters is:   277 

    • 𝐾 − 1 + 3𝐾𝑝 with unconstrained variances 𝜎𝑗𝑘
2 ,  278 

    • 𝐾 − 1 + 2𝐾𝑝 + 𝑝 with constant variance for each substance 𝜎𝑗𝑘
2 ≡ 𝜎𝑗

2,  279 

    • 𝐾 + 2𝐾𝑝 with constant variance 𝜎𝑗𝑘
2 ≡ 𝜎2.  280 

 281 

1.2.5 Estimated parameters  282 

The output of the model-based clustering yielded K groups with their 283 

corresponding estimated parameters, that is 𝜏̂𝑖𝑘 , 𝛾𝑘𝑗 , 𝜇̂𝑘𝑗, 𝜎̂𝑘𝑗
2 , with 𝑘 one of the K 284 

groups obtained, 𝑗 an active substance and 𝑖 a postcode. These estimated parameters 285 

gave information on groups of postcodes and substances bought per group. 286 

𝜏̂𝑖𝑘was the conditional probability that a postcode 𝑖 belongs to each group 𝑘 given the 287 

quantities of substances bought in the postcode. We used this probability to associate 288 

each postcode to its most probable group.  289 

𝛾𝑘𝑗 was the probability of a substance 𝑗 to be used in a postcode of group 𝑘. We used 290 

this probability to study the composition of active substances in each group 𝑘.   291 
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𝜇̂𝑘𝑗 and  𝜎̂𝑘𝑗
2  were the estimated mean and variance of the log-quantity of substance 𝑗 292 

per square meter of cropland purchased in a postcode from group 𝑘. These quantities 293 

were used to refine our understanding of the subtance composition of postcode 294 

groups. 295 

 296 

1.3 Analyses on estimated parameters  297 

1.3.1 Spatial structure of postcode groups 298 

To characterise the spatial structure of postcode groups, we quantified the spatial 299 

spread of postcodes belonging to a same group via the area of the convex hull of the 300 

group. The convex hull of a group is the smallest convex set that contains all postcodes 301 

of the group. Regardless of their spatial aggregation, most groups contain a few 302 

scattered postcodes, such that the convex area of all groups generally contains most 303 

of France, making comparisons of the area irrelevant. To circumvent this difficulty, we 304 

merged all contiguous postcodes within a group into single polygons and retained only 305 

the largest polygons, representing 80% of the total area of a group. This eliminated the 306 

scattered postcodes outside the main core of postcodes within a group.  307 

 308 

We also characterized the similarity among the K groups in terms of substance 309 

use via hierarchical clustering on distances between groups. To obtain a matrix of 310 

between-group distances, we used results from the model-based clustering and 311 

calculated a maximum-likelihood inference when two randomly chosen groups were 312 

merged (see method in 1.2). We repeated this step for each possible group pair. We 313 

thus obtained a matrix of between-group distances, characterized as differences in 314 

likelihood between clusterings. Using this matrix, we computed an agglomerative 315 

nesting clustering, using Ward criterion, implemented in the R package cluster 316 

(Maechler et al.,2019, R Core Team 2021).  317 

 318 

1.3.2 Searching for the drivers of the substance composition of groups  319 

We tried to identify some of the possible drivers of the substance composition of 320 

groups using two complementary approaches. First, we tested whether the groups 321 

obtained with the model-based clustering, which by construction differ in terms of 322 

active substances purchased, also differed in terms of crop composition. To compare 323 

the proportion of area covered with different crops among groups, we performed a log-324 
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ratio analysis (LRA). This approach was implemented in the R package easyCODA 325 

(Greenacre, 2019, R Core Team 2021). Second, we used Mantel tests (Mantel & 326 

Valand 1970) to estimate the correlations between three distance matrices among 327 

postcode groups: distances in the composition of substances purchased in the group 328 

(see above), distances in crop composition, and geographic distances. We used a 329 

spearman method and used 9999 permutations, computed with the vegan package 330 

(Oksanen and Simpson, 2022) 331 

 332 

1.3.3  Test of the temporal robustness of the model-based clustering  333 

To test robustness of the results of the model-based clustering run on the 334 

pesticide purchase data from the year 2017 vs. a longer time period, we also run the 335 

clustering on BNV-d data over the period 2015 to 2018. To do so, we aggregated all 336 

purchase data from 2015 to 2018 and analysed these data in the same way as those 337 

from 2017. In the following, the groups obtained with the model-based clustering 338 

applied on the 2017 data (respectively 2015-2018 data) are referred to as the “2017 339 

groups” (respectively the “2015-2018 groups”). 340 

We used postcode probabilities to be in group 𝑘 (i.e. 𝜏̂𝑖𝑘) to compare results from 341 

the two model-based clusterings, with the 2017 groups as a reference. We compared 342 

each 2017 group with all 2015-2018 groups by calculating the proportion of postcodes 343 

in each 2017 group that belong to each 2015-2018 group. We thus obtained a matrix 344 

with the percentage of postcodes from 2017 groups that were found in the various 345 

2015-2018 groups (Gelbard et al., 2007). 346 

 347 

RESULTS  348 

 349 

1.4 The model-based clustering yields a small number of groups of postcodes  350 

The model-based clustering with unconstrained variances had the highest BIC 351 

and classified the 5,642 postcodes into 19 groups on the basis of 2017 purchase data 352 

for 279 active substances (Figure S2). Most postcodes were unambiguously attributed 353 

to a single of these groups, as shown by the bimodal distribution of the probability for 354 

a postcode i to belong to group 𝑘, with most values close to 0 or 1 (Figure S3). Only 355 

13 out of 5,642 postcodes had a maximum probability to be in a group lower than 0.7.  356 

 357 
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Most groups of postcodes identified by the model-based clustering were spatially 358 

aggregated, albeit of contrasting sizes (Figure 1). The number of postcodes per group 359 

ranged from 135 to 493 (median = 270, Q1 = 215.5, Q3 = 378.5), which translated into 360 

a cropland area per group ranging from 38.7 km2 to 24,184 km2 (median = 5,573.7 361 

km2, Q1 = 1,547.55 km2, Q3 = 13,959 km2). The cropland area of groups was 362 

negatively related to the area of the convex envelop encompassing it, such that groups 363 

with the largest cropland area tended to be the most spatially clustered (Figure 2). 364 

Such a spatial clustering of postcodes purchasing similar pesticide substances was 365 

expected as agricultural practices are spatially structured (see below) but keep in mind 366 

that the model-based clustering did not incorporate spatial information. 367 

  368 

 369 

Figure 1: Map of France split into postcode groups obtained from the model-based clustering 370 

on the basis of active substances purchased within postcodes in 2017. Postcodes within a group 371 

share the same colour. The dendrogram was obtained using an agglomerative hierarchical 372 

clustering. 373 

 374 

Postcode groups corresponded to specific geographical and/or agricultural 375 

regions. For example, group i corresponded mostly to Brittany (the western peninsula) 376 

and group b was predominantly located in Northern France. Groups e and d were more 377 

scattered across the country but overlapped almost perfectly with wine regions (Figure 378 

2). Note that a couple of groups were composed of a limited number of postcodes 379 

spatially scattered across France (e.g. groups m and o Figure 2). In particular, group 380 

m represented less than 39 km2 of cropland and is generally discarded in the following. 381 

The groups identified by the model-based clustering were relatively robust to a 382 

change in the temporal range of the data, as shown by the results of the clustering on 383 
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the 2015-2018 data (Figure S7). This second clustering yielded 24 groups and the 384 

percentage of shared postcodes between the 2017 groups and their most similar 2015-385 

2018 groups varied between 41% and 80% (median = 62%, Q1 = 53%, Q3 = 66%). 386 

For example, groups in Normandie (group a vs. group 15) or part of the Languedoc 387 

region (group k vs. 10) were stable over time (Figure S7). The higher number of groups 388 

obtained with the 2015-2018 model-based clustering (24 vs. 19) was often due to the 389 

split of some 2017 groups into two 2015-2018 groups. For example, for 2017 group i, 390 

there was 53% similarity with 2015-2018 group 16 and 40% similarity with group 20 391 

(Figure S7). Because of this temporal consistency in the clustering, we only present in 392 

the following the analyses on the 2017 dataset, which is thought be more accurate 393 

(see 1.1).  394 

 395 

Figure 2: Relationship between cropland area (log scale) and convex area, a proxy for spatial 396 

extent, of groups. The spatial distribution of each group is plotted around the relationship, with 397 

one map of France per group, in which postcodes forming each group are highlighted in black. 398 

Groups are ordered clockwise from top left in decreasing cropland area. Note that the focus on 399 

cropland area (not total area) in a postcode makes some groups with little cropland (e.g. 400 

mountain areas, q or m) appear with a relatively large black area on the maps, although they 401 

are ranked low in terms of cropland area. 402 

 403 

1.5 Substance composition of postcode groups: core and discriminating substances 404 

Postcode groups differed in terms of the composition of substances purchased 405 

(Figure 3), as expected from the clustering algorithm, but may also share common 406 

substances. Group composition was inferred, and can be characterised by, (1) the 407 

probability of a substance to be purchased in a postcode from a given group (𝛾𝑘𝑗), and, 408 
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if the substance is purchased, (2) the estimated mean quantity purchased ( 𝜇̂𝑘𝑗) as well 409 

as (3) the estimated variance in the latter quantity (𝜎𝑗𝑘
2 ). In the following, for the sake 410 

of simplicity, we chose to focus on the probability of substances to be purchased, 411 

knowing that this probability was positively related with the estimated mean quantity 412 

(Figure S4 & Figure S6, r = 0.2) and negatively related with the estimated variance 413 

(Figure S4, r = -0.07). For a given substance, this probability can also vary substantially 414 

across groups, and we used this variability to distinguish two main types of substances 415 

with interest for the definition of postcode groups and for the identification of relevant 416 

pesticide mixtures : core substances and discriminating substances (Figure 4). 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

  435 
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Figure 3:  Heatmap of the probability γkj in each group, in each of four categories of substances: 437 
insecticides (green), herbicides (blue), fungicides (orange), other targets (grey). Within each 438 
category, substances are ordered in increasing average probabilities of use across groups. For 439 
readability, substance names are not displayed and can be found in Figure S8. On the right of 440 
the figure, column A corresponds to the mean probability of use and column B corresponds to 441 
the scaled (0,1) variance in probability of use across groups. 442 

 443 

Core substances, defined as substances with a high average and low variance 444 

of probability to be purchased across groups, were by definition found in most groups; 445 

they were widespread molecules that were likely to form the backbone of mixtures 446 

encountered by living organisms in farmland. Using an arbitrary threshold value of 447 

mean purchase probability of 0.85, we found 12 such core substances with high 448 

probabilities (Figure 3 & Figure S5): two pyrethroid insecticides (deltamethrin, lambda-449 

cyhalothrin), six herbicides of different chemical families (glyphosate, diflufenicanil, 450 

fluroxypyr, MCPA, 2,4-d, triclopyr) and four fungicides (fludioxonil, tebuconazole, 451 

difenoconazole and thiram). Because they were found with high probability in most 452 

groups, these substances were unlikely to weight strongly in the definition of postcode 453 

groups, although they can contribute via differences in the mean quantities used 454 

across groups. For example, the average estimated amount of glyphosate purchased 455 

ranged from 19 to 928 kg/ m2 of cropland (median = 44, Q1 = 38, Q3 = 35) among 456 

groups. 457 

Discriminating substances are defined as substances with medium to high mean 458 

probability of purchase, mechanically associated with a large variance across groups 459 

in this probability (Figure S5). Because of their contrasting probability of purchase 460 

across groups, discriminating substances were likely to contribute greatly to the 461 

formation of groups. We used the arbitrary range of average probabilities from 0.5 to 462 

0.85 to define discriminating substances. Using these thresholds, we found a set of 84 463 

discriminating substances, including 45 herbicides, 25 fungicides, 10 insecticides and 464 

4 with other targets (Supplementary information 2). In the following, we focus on 465 

discriminating substances that are highly probable (𝛾𝑘𝑗 > 0.85) in at least one postcode 466 

group, i.e. substances that are likely major components of pesticide mixtures occurring 467 

in a given group. We found seven widespread discriminating substances purchased 468 

with a probability higher than 0.85 in at least 12 out of 19 groups: azoxystrobin, 469 

boscalid, cypermethrin, mesotrione, metsulfuron-methyl, pendimethalin and 470 

prothioconazole. These substances are very close to core substances. Conversely, 471 
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four substances were highly specific, being purchased with high probability (> 0.85) in 472 

less than four groups (e.g. metribuzin in groups d and b). Within a group, the number 473 

of discriminating substances with high probability of purchase (> 0.85) varied strongly 474 

among groups, from 2 for group r to 80 for group g (mean = 43 ± 27). This cross-group 475 

variation in the number of highly probable discriminating substances has implication 476 

for the composition and complexity of pesticide mixtures in French agroecosystems: 477 

from relatively “simple” (12 core substances and 11 discriminating substances in group 478 

q) to highly complex (12 core substances and 74 discriminating substances in group 479 

g). 480 

 481 

The 156 remaining substances, with a low average probability to be purchased 482 

(< 0.5), also had a role in group identification, but were seldom purchased and will not 483 

be described further (Figure 3).  484 

 485 

1.6 Postcode groups differ in terms of crop composition, but active substance purchase may 486 

not be solely driven by crop identity  487 

 488 

Groups of postcodes, which by construction are composed of different mixtures 489 

of substances, also differed in terms of proportions of cropland grown with various 490 

crops, such that groups with close pesticide composition sometimes, but not always, 491 

also exhibited similar crop usage (Figure 4). The possible relations between pesticide 492 

composition and crop composition can be visualized either on Figure 4, where crop 493 

composition of groups similar in terms of pesticides purchases are plotted next to each  494 

other, or on the biplot of the log ratio analysis (Figure 5), in which groups with similar  495 

crop composition are plotted next to each other. For example, groups k and l, 496 

characterized by a large proportion of vineyards, were close to each other both in the 497 

log-ratio analysis, which is indicative of similar crop compositions (Figure 5) and in the 498 

hierarchical clustering, which is indicative of similar pesticide purchases (Figure 4). 499 

The same was true for groups b, c and i, and, to a lesser extent, a, characterized by 500 

an appreciable proposition of crops from the legume/flower category. However, some 501 

groups such as h and g were different in terms of substances (not in the same sub-502 

group, Figure 4) while exhibiting comparable proportions of crop types (Figure 4). 503 

Alternatively, some groups that were closely related in terms of substance purchases, 504 

such as groups i and h, could be characterized by dissimilar crop compositions. The 505 
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latter patterns may suggest regionalisation of substance use, such that neighbouring 506 

regions tend to use similar products or substances even with variations in crops grown 507 

(e.g. i and h). 508 

 509 

 510 
Figure 4: A. Distribution of crop type area across groups. The top grey histogram shows the 511 

distribution of total cropland area across groups (in 104 km²). The dendrogram was obtained 512 

using an agglomerative hierarchical clustering on the basis of Ward’s method among groups 513 

(see 2.2.1). B. Biplot of the log ratio analysis relating the proportion of crop types in each group. 514 

Only groups identified as spatially coherent are displayed (see 3.2). For readability, the groups 515 

and crop types are displayed on two different scales: black for crop types, green for groups. The 516 

size of arrows corresponds to the contribution of each group. Groups that appear close to each 517 

other on the biplot have similar crop composition, which can be inferred from the contribution 518 

of each crop type to the axes. 519 

 520 

Despite the abovementioned associations between crop composition and active 521 

substance compositions of groups, we found no significant correlation between 522 

distance matrices: the distance in substance composition among groups was not 523 

correlated with the distance in crop composition, although the relationship was 524 

marginally significant (Mantel test,  = 0.13, P = 0.057). Neither did we found a 525 

correlation between the geographic distance and active substance composition of 526 

groups (Mantel test,  = -0.01, P = 0.53) indicating that adjacent postcode groups do 527 

not necessarily exhibit similar composition of active substances adjacent.  528 

 529 
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DISCUSSION  530 

 531 

A major challenge in pesticide risks assessment is to characterise mixtures of 532 

pesticides used in the field (Lydy et al., 2004), partly because of the large number of 533 

substances used but also because of the limited information on the combinations of 534 

substances contaminating the environment. Here, we developed a methodology to 535 

analyse a newly available database on pesticide purchases across France. It aimed to 536 

identify groups of postcodes with similar compositions of pesticide purchases and 537 

characterise their spatial structure, two critical pieces of information to unravel the 538 

composition of pesticide mixtures. Our method resulted in the clustering of the 5,642 539 

French postcodes into a relatively low number of groups. These groups represent as 540 

many potential pesticide mixtures, which is much lower than the possible combinations 541 

among the 279 substances included in the data. In the following, we discuss how our 542 

findings can help understand the impacts of pesticides in the environment (e.g. by 543 

identifying relevant pesticide mixtures), how this approach can be improved in the 544 

future, and the possible mechanisms underlying the groups. 545 

 546 

1.7 Significance of the identification of highly probable active substances, and of mixtures of 547 

active substances characteristic of postcode groups, for the study of the impacts of 548 

pesticides in the environment  549 

 550 
The identification of active substances that are purchased with high probability in 551 

all (core substances) or a subset (discriminating substances) of postcode groups might 552 

contribute to reducing the potential street light effect, whereby most research efforts 553 

focus on molecules that are either easy to study (Hendrix, 2017) or that were 554 

popularized by previous studies (Tsvetkov and Zayed, 2021). Unsurprisingly, most 555 

core substances identified here are already well-known, widely-used substances. 556 

Glyphosate is the most widely used broad-spectrum herbicide (Jatinder Pal Kaur Gill 557 

et al. 2017; Myers et al. 2016), with associated concerns regarding pervasive direct 558 

and indirect effects (Van Bruggen et al., 2018). Tebuconazole and difenoconazole, two 559 

triazole fungicides, are widely used and studied (Zubrod et al., 2019). Deltamethrin and 560 

lambda-cyhalothrin, two pyrethroids impacting nervous systems (Ray and Fry, 2006; 561 

Soderlund and Bloomquist, 1989), are known to have adverse effects on a large range 562 

of non-target species such as fish, birds and amphibians (Ali et al. 2011). Yet, a 563 



 

21 
 

preliminary literature search on these 12 core substances suggests that the research 564 

effort on their adverse effects on biodiversity is still highly variable. For core herbicides, 565 

a simple search of the molecule name together with “biodiversity” or “ecotoxicology” in 566 

the abstract of articles on ISI Web of Science yields more than two hundred research 567 

articles for glyphosate and around seventy for 2,4-d, but only 2 to 17 articles for 568 

diflufenican, fluroxypyr, MCPA, triclopyr and pendimethalin. For core insecticides, the 569 

same search returns ca. 40 articles for lambda-cyhalothrin and deltamethrin. The four 570 

core fungicides were no exception, with a number of research articles below ten for 571 

thiram, fludioxonil and difenoconazole and around thirty for tebuconazole. Ultimately, 572 

our method eases the bottom-up approach in the laboratory by providing a selection 573 

of understudied substances deserving further attention. 574 

Studying all possible (combinations of) substances is prohibitive (Wolska et al., 575 

2007); beyond the identification of single substances, our approach chiefly contributes 576 

to identifying combinations of active substances that are likely to be encountered in 577 

farmland environments, i.e. pesticide mixtures. The model-based clustering identified 578 

a relatively small number of postcode groups (19 to 24 depending on the temporal 579 

coverage of pesticide data). Each group is characterized by a specific combination of 580 

purchases of active substances and can be interpreted as a potential mixture of 581 

pesticides occurring in the location of the postcodes, under the assumption that all 582 

purchased substances are used within the buying area during the year of purchase 583 

(see “Limitations and perspectives” below). Among the 279 active substances 584 

considered in these analyses, we highlighted the core substances included in most 585 

mixtures and the discriminating substances specific to particular mixtures. Within each 586 

postcode group, both types of substances might be a good starting shortlist of 587 

substances within which one can investigate potential interactive effects on 588 

biodiversity. Indeed, these substances are purchased with high probability in at least 589 

some large groups of postcodes, hence are potentially part of widespread mixtures. 590 

Although this list is much shorter than the total list of authorized active substances, it 591 

still contains 12 core substances, plus 2 to 80 discriminating substances depending on 592 

the postcode group. Since our approach to identifying core and discriminating 593 

substances was based on probability of purchase only, this shortlist of substances 594 

could be narrowed down further by selecting active substances bought in large 595 

quantities (see also “Limitations and perspectives”) or with high toxicity. The 596 

appreciable number of core and discriminating substances composing mixtures is 597 
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anyway consistent with surveys showing that active substances are rarely found alone 598 

in the environment (Silva et al., 2019). It also further substantiates the need for a 599 

broader assessment of the synergistic effects of pesticides on biodiversity, often 600 

completed on a limited set of substances only (Schreiner et al., 2016; Silva et al., 601 

2019). For core substances, for example, some cocktail effects have already been 602 

studied but mostly on pairs of substances (Brodeur et al., 2014; Peluso et al., 2022) 603 

and more rarely for cocktails of three or more substances (Cedergreen, 2014; Glinski 604 

et al., 2018; Van Meter et al., 2018). Focusing on the reasonable number of relatively 605 

complex mixtures identified by the present approach would contribute to improve our 606 

understanding of the synergistic effects of realistic cocktails on organisms.  607 

 608 

 609 

1.8 Limitations & perspectives  610 

1.8.1 Limited spatio-temporal resolution of the BNV-d data  611 

The first limitation of our study is associated with the BNV-d database, which 612 

provides information on quantity and year of pesticide purchase, as well as on the 613 

administrative location of the buyer, but not on the actual date and location of pesticide 614 

treatments, nor on the actual pesticide contamination of the various postcodes. For 615 

simplicity, we assumed that the pesticides were used in the year of purchase and in 616 

the postcode of purchase and that all substance are equally likely to contaminate the 617 

environment. These assumptions may not be verified under all circumstances because 618 

farmers are sometimes known to store some pesticide products despite their high 619 

prices, e.g. to anticipate increased taxes, and because farms are sometimes spread 620 

across several postcodes. Further, not all substances are equally likely to contaminate 621 

the environment, e.g. because they vary in terms of degradability or because weather 622 

conditions such as wind and rain can affect the way they contaminate the environment. 623 

The relationships between pesticide purchase and the ensuing environmental 624 

contamination will therefore need further investigation. Yet, there are a couple of 625 

indications that the assumption of immediate and local use of pesticides is generally 626 

correct. For example, our results are consistent with those of an extensive European 627 

study on soil contamination (Silva et al., 2019) which identified glyphosate and the 628 

fungicides boscalid, epoxiconazole, and tebuconazole as the most frequent and most 629 

abundant contaminants. These substances either belong to the core substances we 630 
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identified (glyphosate and tebuconazole) or to discriminant substances (boscalid and 631 

epoxiconazole) with a high probability of being used over half of the postcode groups.  632 

 633 

Although our estimation of pesticide mixture composition may be roughly correct 634 

at the resolution of a postcode and of a year, the actual use of pesticides in space and 635 

time varies at much finer scales than those of available data. Pesticide substances 636 

bought within a given postcode and year may be spread in contrasting fields and times 637 

and may not be found together in the environment, depending on their half-life and 638 

transport in the environment. The actual mixture composition of a site hence depends, 639 

among others, on the crop cover in the landscape and associated farming practices. 640 

In particular, the amount of organic farming within the identified postcode groups may 641 

affect local heterogeneity in the quantity and composition of substances used, although 642 

pesticides approved for organic farming were generally not part of our analysis and 643 

may add up to pesticides used for conventional farming. Downscaling the BNV-d 644 

database to the field scale is challenging (Cahuzac et al. 2018; Ramalanjaona, 2020), 645 

but it might reveal other patterns than the ones we highlighted here, probably 646 

decreasing the number of substances that are part of local mixtures. Such fine-grained 647 

data on pesticides might be more relevant to assess the impact of pesticide 648 

contamination on biodiversity.   649 

 650 

1.8.2 Going beyond the use of purchase probabilities and arbitrary thresholds to identify the 651 

substances of interest for risk assessment 652 

The method we developed is continuous, with quantitative estimates of purchase 653 

probabilities, as well as mean and variance of quantities purchased per postcode 654 

group. Still, we used arbitrary thresholds to identify core and discriminating 655 

substances. The mixture compositions we highlighted here are thus dependent on the 656 

chosen thresholds. Depending on the question of interest, these thresholds can and 657 

should be adapted. For example, by changing the threshold to 0.80, there are nine 658 

more core substances, and among these substances there are, for example, 659 

imidacloprid and boscalid, both known for high use and effects on biodiversity (Lopez-660 

Antia et al., 2015; Qian et al., 2018; Simon-Delso et al., 2017; Yang et al., 2008). 661 

In addition, most of our interpretation of pesticide mixture composition relies on 662 

the estimated purchase probabilities, but these mixtures were also identified using 663 
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information on the mean and variance of purchased amounts within postcodes, hence 664 

mixtures differ for these variables as well. For example, glyphosate, a core substance 665 

with high purchase probability in all postcode groups, was bought in contrasting 666 

quantities across postcode groups: the average amount was 53.9 kg/km2 and ranged 667 

from 7.8 kg/km2 in group p to 146 kg/km2 in group i. Although the purchase probability 668 

was positively correlated to the mean purchased quantity and negatively to its 669 

variance, the correlation is not strong, and further analysis is needed to fully uncover 670 

variation in substance quantities within the mixtures we identified. 671 

   672 

1.8.3 Taking into account the yearly variation in pesticide use  673 

Our analysis appeared relatively robust to the time period of the pesticide 674 

purchase data, as suggested by the comparison of postcode groups obtained with the 675 

2017 and the 2015-2018 datasets. This strong correlation between the 2017 and the 676 

2015-2018 analysis is not entirely surprising because of the presence of the 2017 data 677 

in both analyses. Yet, adding three years of data into the analysis did not affect much 678 

the composition of postcode groups, which suggests relatively stable patterns of 679 

pesticide purchase in France over a short time period. Nonetheless, we observed 680 

some differences, mainly due to the split of some groups, which were also expected 681 

due to climatic variation, changes in legislation on pesticide use (Urruty et al., 2016) or 682 

changes in crop areas (Levavasseur et al., 2016). A better integration of the temporal 683 

dynamics of pesticide purchases in the characterisation of pesticide mixtures is needed 684 

if we are to monitor pesticide mixtures across France. This can be achieved by applying 685 

the model-based clustering to each year of data separately. Investigating the spatial 686 

stability of groups and mixture compositions across years would contribute to either 687 

estimate annual mixtures or to find temporarily stable mixtures. Finding recurrent 688 

mixtures could facilitate risk assessment over years. Indeed, this could provide key 689 

information on the frequency of mixtures encountered by organisms as repeated 690 

contact might increase risks (Stuligross and Williams, 2021). 691 

 692 

 693 
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1.9 Postcode groups are related to the crop they grow, as well as to other regional factors, 694 

but the underlying mechanisms remain to be fully identified 695 

Although no spatial information was included in the model-based clustering 696 

analysis, the postcode groups exhibited a strong spatial structure, in which most 697 

groups are strongly aggregated and only a few small groups are scattered across 698 

France. Such spatial structure was expected since pesticide use is strongly crop-699 

dependent. For example, acetamiprid, a substance used to protect fruit trees or 700 

grapevine against aphids, is bought with high probability in groups l, e and d,with high 701 

proportion of fruit orchards and grapevines. Similarly, cyproconazole, a substance with 702 

a broader spectrum of use, is bought with high probability in several groups with 703 

contrasting crop compositions (a, b, e, f, g, h, j, k, l, n, o, q, r Figure 4). However, 704 

deviations from this pattern were found: some adjacent postcode groups can have 705 

different sets of crops but similar substance purchases or some spatially distant 706 

postcode groups can have similar sets of crops but different substance purchases. 707 

This observation suggests that local conditions, such as climate or pests, or some 708 

regional patterns in the pesticide market and/or distribution, can drive the purchase of 709 

active substances more than the set of crops grown (Silva et al., 2019; Storck et al., 710 

2017). Hence, the differences among postcode groups were related to a combination 711 

of crop identity effects and other regional effects that will need additional analysis to 712 

be identified. A straightforward perspective for the model-based clustering approach 713 

would thus be to incorporate environmental covariates in the model, and evaluate how 714 

clusters are modified. 715 

 716 

CONCLUSION 717 

 718 

This study shows that a reasonably low number of substance mixtures can be 719 

identified at the scale of France. Pursuing ecotoxicological studies on the synergistic 720 

effects of mixtures will make it possible to identify risks and better understand the 721 

effects of pesticides on organisms. The mapping of these pesticide mixtures enables 722 

the identification of regions under different regimes of pesticide contamination. This 723 

might be particularly useful to plan in situ tests for both pesticide contamination and 724 

effects on biodiversity. Here we did not investigate the effects of cocktails on wild 725 

organisms, and further work should be done on this aspect.  726 
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Figure S1 : Values of BIC as a function of the number of groups in the EM algorithm. Panel a shows the full 
range of number of groups tested (from 1 to 40). Panel b is a closeup around the maximum BIC value
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Figure S2: Distribution of Ƹ𝜏𝑖𝑘, the probability of postcode i to be in group k

Figure S3: Estimated mean ( ො𝜇𝑘𝑗, panel a) and variance ෝ𝜎𝑘𝑗
2 , panel b ) of substance quantities purchased 

in a group as a function of the probability of a substance to be in a group ො𝛾𝑘𝑗. 
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Figure S4: Differences and similarities in the 
clustering of postcodes produced by the mixture 
model with only 2017 substance purchase data (a) or 
2015-2018 data (b). Postcode within a group share 
the same colour. 
Panel (c) shows proximity of the 2017 groups with 
2015-2018 groups on a heatmap, expressed as the 
percentage postcodes from 2017 groups that were 
found in the various 2015-2018 groups. The graph 
should be read vertically: for example, 2017 group i
is split mostly into 2015-2018 groups 16 (53%) and 
20 (40%) In contrast, 79% postcodes of 2017 group e 
are found in 2015-2018 group 14. 
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Figure S5:Variance of probabilities of substances to be in a group as a function of 
their mean probability to be in a group. Colours were set to show other (grey) , 
discriminant (orange) and core (black) substances. 
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Figure S6: Heatmap of probability ො𝛾𝑘𝑗 , that substance 𝑗 is used in postcode 𝑘. Groups were obtained from a 

mixture models optimized by maximum likelihood with an iterative method: Expectation Maximization. Groups 
were ordered by similar composition of substance purchases. Substances belong to four categories: herbicides, 
fungicides, insecticides and other targets. Within each category of substances, substances were ordered in 
increasing number of groups in which they were used. Asterisks (*) highlight core substances.
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CATEGORY FROM LPIS CATEGORY USED

Common wheat Cereals

Barley Cereals

Other cereals Cereals

Miscellaneous Miscellaneous

Arboriculture Orchard

Olive trees Orchard

Fruit Orchard Orchard

Legume flower Legume flower

Maize Maize

Nut Nut

Other oil crops Other oil crops

Protein crops Protein crops

Rapeseed oil Rapeseed oil

Sunflower Sunflower

Grapevine Grapevine

Table S2 : Correspondence table of crop categories
from the LPIS and aggregated crop categories used
in the analyses

Table S1: Complete list of targets 
associated with the “other targets” 
category

Targets or 
actions

Number of 
substances

Acaricide 5

Algicide 1

Attractant 2

Bactericide 1

Nematicide 1

Plant 
activator

1

Plant growth 
regulator

11

Rodenticide 2

Safener 1
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