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Abstract—Sensori-motor theories, inspired by work in neu-
roscience, psychology and cognitive science, claim that actions,
through learning and mastering of a predictive model, are a key el-
ement in the perception of the environment. On the computational
side, in the domains of representation learning and reinforcement
learning, models are increasingly using self-supervised pretext
tasks, such as predictive or contrastive ones, in order to increase
the performance on their main task. These pretext tasks are action-
related even if the action itself is usually not used in the model. In
this paper, we propose to study the influence of considering action
in the learning of visual representations in deep neural network
models, an aspect which is often underestimated w.r.t. sensori-
motor theories. More precisely, we quantify two independent
factors: 1- whether or not to use the action during the learning
of visual characteristics, and 2- whether or not to integrate the
action in the representations of the current images. Other aspects
will be kept as simple and comparable as possible, that is why we
will not consider any specific action policies and combine simple
architectures (VAE and LSTM), while using datasets derived from
MNIST. In this context, our results show that explicitly including
action in the learning process and in the representations improves
the performance of the model, which opens interesting perspectives
to improve state-of-the-art models of representation learning.

Index Terms—Sensori-motor theory, Representation learning,
Predictive learning, Deep learning

I. INTRODUCTION

Sensori-motor theories are based on substantial evidence in
neuroscience, developmental psychology and cognitive science.
The main claim is that actions, and more especially the sensory
changes induced by motor actions, play a key role in learning
a predictive model of the world and in perceiving it [23]]. For
example, a kitten that cannot walk, i.e. it only passively receives
a visual flow, will learn defective visual representations [|14].
The role of action is also emphasised in the notion of affordance
in psychology [9]], where an object is not defined by a set
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of properties but by its elicited interactions for the agent.
According to the sensori-motor contingencies theory, acting
may even play a role in some form of consciousness [25].
These concepts are also related to the theories of enactivism
and embodiment that states that the body, as the structure to
interact with the world, is required for an intelligent behavior to
arise [[8]. While contributing to the learning of representations,
the actions could also be aimed at perceiving relevant regions
of the environment, which would make perception an active
process. This way the actions would be required to accumulate
evidence of the current state of the world as unified in the
free energy principle e.g. [7]. With regard to vision, this is for
example the role of saccades which allow to get successive
glimpses over a visual scene [6].

Since some years, deep learning achieves state-of-the-art
performance in multiple domains such as visual recognition,
natural language processing, game playing etc. [20]. Initially,
these data-driven approaches were mainly supervised, e.g. by
using a Convolutional Neural Network (CNN) to classify ob-
jects in images [[13|]. Contrary to human beings that perform
saccades to perceive a scene, most CNN models have a trans-
lation invariance property that allows them to process the whole
image at once. Then, deep architectures have been adapted to
the reinforcement learning framework [27]. Here, actions are
considered through sequential decision making, but are not ex-
plicitly included neither in the perception nor in the building of
representations. More recently, self-supervised approaches have
emerged. They propose to use a pretext task during learning,
usually making close the representations of inputs considered
similar, to improve performance of a predefined task or in the
context of unsupervised learning. In computer vision, some of
the similar inputs generation processes can be interpreted as
the resulting from movements [18]. In reinforcement learning,
temporal prediction of consequences of action is often used as
a pretext task.

Thus, sensori-motor theories and the recent and promising



trend of including action-related pretext tasks in deep learning
seem to point towards a benefit of action in representation
learning and perception, at different degrees. Yet the precise
quantification of the impact of action in representation learning
is still barely known. In this article, we propose to open
this research question by studying two independent factors: 1-
whether or not to use action in the learning of visual features
and 2- whether or not to use action in the computation of the
current image representation. To keep the study tractable, we
restrain ourselves to simple deep architectures as illustrative
examples. Moreover, to put apart the question of the action
decision process, which would introduce a retro-action loop
during learning, the model will perform random actions.

Section [II| introduces existing works related to representation
learning considering actions. In section [[TI] we derive from our
research objectives the different neural network architectures
and loss functions used in our study. The protocol and hyper-
parameters used and the obtained results are presented in
section [[V] Finally, we draw our conclusions and expose various
perspectives for future works (section [V)).

II. RELATED WORK

Multiple works in robotics considered action while learning
predictive models of the environment for achieving a variety
of tasks such as object manipulation, recognition or grasping.
The benefits of such interactive perception are mainly to get
access to some objects characteristics requiring manipulation as
weights for example and to enrich and structure the regularities
in the inputs (see [5] for an in-depth survey). Considering
explicitly sensori-motor contingencies can even push these
properties a step further. Arranging sensori-motor schemes
hierarchically leads to the learning of the complex concept
of container, that could be reused across environments [12].
Sensory representation learning can be shaped by action,
through the notion of compensating movements, i.e. that some
displacements in the sensory inputs can be reversed via motor
actions. A deep architecture, designed with this principle, is
able to learn the underlying spatial structure of the input [[19].

In computer vision, recent visual representation learning
methods rely on either contrastive or predictive pretext tasks. In
contrastive ones, models usually learn to embed multiple views
of an image into similar representations [4f]. The generation
process used to obtain these views can be related to some form
of action [18]], such as cropping which can be linked to head
movement and eye saccades. However, these methods include
the actions neither to build nor to learn the representations.
Such tasks can also rely on predicting the motion that led
from the actual view to the future one [2f, in this case the
action can be seen as a supervision signal, however it is
not directly integrated in the representations. For predictive
tasks, they generally aim at predicting future inputs based
on historical ones, as in [24] where a contrastive predictive
task has been successfully applied to vision, audio, natural
language processing, and reinforcement learning. Such tasks
are well suited for environments with a temporal aspect, as in

the context of reinforcement learning where the prediction of
future observations from historical observations and actions has
shown to learn good representations [[11]].

While most computer vision models have been focused
on treating full images at once, only few works consider
processing sub-parts of images. Such models that only process
glimpses of images were initially introduced for computational
advantage, but also open the possibility of making models
actively perceiving the world by choosing where to look. This
idea of processing glimpses of an image has been applied to
classification two ways: either by dedicating a neural network
to each glimpse w.r.t. its temporal index [26]], or by letting a
recurrent network learn to perform saccades in a reinforcement
learning environment [22]. Later, these models have been
enhanced to perform multiple object recognition, as in [3]
where the model learns to classify objects from left to right
by moving a virtual glimpse sensor over the image, or in [1]
where the model classifies objects sequentially while determin-
ing an affine transformation to produce the next glimpse to
locate the next object. Moreover, [10] also used glimpses for
image generation both to “read” and “’write” images, iteratively
generating the result with small patches while showing strong
representational and generational capacities.

III. STUDIED MODELS
A. Overview

1) Problem statement: In this article we consider a system
that receives visual saccades to perceive its environment. At
each step, the system only takes as input a sub-part of the image
and the action to come. The action defines the 2D position of
the center of the next visual input. In order to decorrelate the
action policy from the learned representations, it is the same for
all models and consists in a random sampling from an uniform
distribution. We note x; the observed glimpse (i.e. image sub-
part) at time ¢, a; the next action performed, i.e. the position
of the next observed glimpse x; .

2) General overview of the model: The task the model has
to perform mixes the prediction of the future visual input for a
given action and the reconstruction of the current visual input.
We note Z; (resp. Z41) the reconstruction by the model of
the glimpse z; (resp. x;41). All the model variations that we
study are relying on the same modules, each one addressing a
specific point of the combined task:

e The first is a convolutional Variational Auto-Encoder
(VAE) [17], which reduces the dimensionality of the
current glimpse by projecting it in a latent space and then
reconstructing it.

e The second is a Long Short-Term Memory (LSTM) neural
network [[16]. As the system only gets partial glimpses of
the environment, it needs to integrate the current observa-
tion with past ones to construct a global representation of
the observed image. Its output is what we consider as the
representation of the current image.

e The third, which we call the recoder, is a neural network
we introduce, to generate a latent embedding of the next
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Fig. 1. PreLSTM — The input x; passes through the encoder, transforming x¢
in its latent representation z.,. Then z,, passes through the decoder, giving
2+ the reconstructed input produced by the VAE. On the other side, the action
a¢ is concatenated with z;, and is then fed to the LSTM, which outputs I;
the global representation of the image. From this representation the recoder
computes zg,,, and finally, by passing through the decoder, the constructed
prediction Z¢1 of the next glimpse =¢1.

glimpse w.r.t. the action to come and the representation
from the LSTM. This embedding is used to reconstruct
the next visual input. From a technical perspective, the
functioning of the recoder is similar to a VAE’s encoder
by generating a distribution from which the recoded latent
embedding is sampled. As it is the case for the VAE, this
distribution is regularized.

In the next two sections, we will describe the 4 models
compared in this article, that vary over two axes:

1) whether or not to use the action in the LSTM repre-
sentations, i.e. to make the representations sensori-motor
(Sec. [II-B),

2) whether or not to use the action during the learning of the
visual characteristics by the VAE’s encoder, i.e. making
the learning of the visual characteristics partly sensori-

motor (Sec. [[II-C).

B. Influence of action in the representations

1) With action: The PreLSTM architecture, illustrated in
Fig. [1} integrates the actions before the LSTM. While com-
bining observed glimpses, by providing the action the LSTM
will construct sensori-motor representations. Indeed, the content
of the action is forced to pass through the LSTM in order
to get used by the recoder, forcing the representation to be
a mix of sensory and motor information. Note that to ensure
that the dimensions of the VAE’s latent space and the LSTM’s
output are constant across all model variations architectures, in
addition to keep similar computational capacity between both
architectures, one Fully-Connected (FC) layer is placed before
and after the LSTM.

2) Without action: The PostLSTM architecture, see Fig. @,
is similar to the PreLSTM one except that it concatenates the
action after the LSTM. This makes the latent representation I,
purely visual, as the action is no more directly used to construct
the representation. Note that the recoder still has access to the
information of the performed action and the representation as
in PreLSTM.
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Fig. 2. PostLSTM — The whole network works the same way as in PreLSTM
except that z;, is directly fed to the LSTM, and that the action a; is
concatenated with [; before passing through the recoder.

C. Influence of action in the learning

1) With action: The first method jointly optimizes the pa-
rameters of the whole neural network during training end-to-
end. The overall loss of the model L;,; (Eq.[3) is composed of
the loss of the VAE L,,. (Eq. E]) consisting in the reconstruc-
tion of the current glimpse, and the loss of the recoder L.
(Eq. ) which represents the prediction of the future glimpse.
While minimizing this loss, information from the action is
backpropagated through the whole architecture including the
visual features learned by the VAE.

£vae = th - if715H2 + ﬁvaeDKL[N(lffxﬁJzt)HN(Oa 1)] (l)

Crec = ||$t+1 _jt+1||2 +BrecDKL[N(NIt+17Uﬂ?tﬂ)HN(Ov 1)}
(2)
‘Ctot = AC'uae + Erec (3)

Lyae 18 the loss of a Beta-VAE [[15]]. The first term is the
Mean Squared Error (MSE) between the input glimpse x
and its reconstruction ;. The second term, used as a regu-
larization weighted by (4., is the KL-Divergence between the
distribution created by the VAE, N (ps,,0,,) and the standard
normal distribution, (0, 1). L, is derived from L., where
the MSE is between the next glimpse x;;; and its recoded
reconstruction Z;41, while the regularized distribution is the
one created by the recoder N (fig,,,,04,,,) and is weighted
by Brec-

2) Without action: In order to analyze if the action has an
impact on the extracted visual features, we propose a separated
two-step learning procedure.

In the first step, the VAE is trained without actions so that the
learned features are purely visual. To have a fair comparison,
the prediction task, that requires actions, is replaced by a second
reconstruction of the current glimpse. For this purpose, we
use a temporary architecture which instead of having a classic
recoder, has an identity recoder (see Fig. E]), that recodes the
current perceived glimpse from the LSTM. The loss Ly ctrain
(Eq. ), used for this first step, is composed of Lyq. (Eq.
the loss of the Beta-VAE, but also of L,..;q4 (Eq. E]) the loss
of the identity recoder.
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Fig. 3. Temporary architecture used in the first step (VAE training) of the
two-step separated training, at the end only the weights of the encoder and
decoder are kept and frozen and the identity recoder, is replaced by the one of
PreLSTM or PostLSTM architectures.

Lrcerd = H‘Lt - j:&HQ + ﬁrchKL[N(:u;,,a O';,)HN(O, 1)] 4
ﬁpretrain = ‘Cvae + ACrec[d (5)

In L, ccrq, the MSE is between the input glimpse z; and its
recoded reconstruction &}, and the distribution of the identity
recoder N (pt,,0,:) is regularized.

In the second step, we replace the LSTM/identity recoder
by a normal predictive one (i.e. either the PreLSTM or the
PostLSTM architecture) while freezing the VAE’s weights to
train only the LSTM/recoder using the loss L,¢. (Eq. [2).

IV. EXPERIMENTS
A. Datasets

1) 28 x 28 MNIST: The MNIST digits dataset [21] is
composed of 28 x 28 pixels images that contain centered white
hand-written digits on a black background. We used a number
of 15 glimpses per image for this dataset.

2) 60 x 60 MNIST: To make the digits unrecognizable at the
first glimpse, we use images of MNIST resized to 60 x 60 pixels.
This way, patches are no more digit fragments, but strokes and
curves. For this dataset, we used a number of 30 glimpses per
image as images are bigger.

3) 60 x 60 Cluttered Translated MNIST: In this dataset [22]
(named 60 x 60 CT MNIST hereafter), images are 60 x 60
black background with a 28 x 28 MNIST digit randomly
placed on them, and where four 8 x 8 clutters (extracted from
other MNIST digits) are also randomly added on them. This
dataset is the hardest since clutters and digit positions are
totally unpredictable if never seen. This stochasticity makes the
predictive task way harder. We used a number of 50 glimpses
per image as the task is harder.

Note that for every dataset we split the train set in 5-
folds, leading to 48k (resp. 12k) images for the training (resp.
validation) and we used the test set with 10k samples.

B. Evaluation

To evaluate and compare the representations learned by the
different models, we trained a classifier taking the LSTM output
as input and measured the respective classification accuracy

of the digits, averaged over 10 executions. We used a MLP
composed of two hidden layers of 32 neurons each (one with
Dropout p = 0.5), and the ReLU activation function. The
training was done a posteriori, thus the weights of the rest
of the model were frozen. This classifier was trained on all
representations produced by the LSTM from the successive
glimpses. Thus, we can study how the performance evolves
when new glimpses are integrated in the model.

We also tracked the loss of the different models on the
predictive and reconstruction tasks, and complete our quanti-
tative evaluation with a more qualitative one based on t-SNE
projections of the LSTM representations after the last glimpse.

C. Implementation details

1) Glimpses and actions: Glimpses are patches of the
observed image extracted using a cropping window with a
fixed size of 14 x 14 pixels. The position of this window is
determined by the performed actions, and cannot be out of the
image. Actions are 2D vectors encoding the continuous absolute
position of the center of this cropping window, and they are
uniformly sampled from the action space.

2) Models hyperparameters: The CNN used for the encoder
(see section is composed of three 2D convolution layers
and a FC layer, with ReLU as activation function. Convolution
layers have respectively 8, 16, and 32 output channels, and
kernels of size 3, 3, and 5. The output of the last convolution
is flattened, and passed through the FC whose output dimension
is 128. The dimension of the latent space z is 16, therefore the
output size of FC generating ;1 and o is also 16 for both the
encoder and the recoder. The decoder is composed of a 16 to
128 FC followed by a mirror version of the encoder’s CNN
where input and output sizes are swapped, order is reversed
and convolution layers are transposed ones. The LSTM has
an input and hidden size of 128. Therefore, in the PreLSTM
the FC before the LSTM has an input size of 18 (16+2) and an
output size of 128, while the input size is 16 in PostLSTM (see
section [[II-BI)). Finally, the FC after the LSTM in PreLSTM
has an input size of 128 and output size of 128, while the input
size is 130 (128+2) in PostLSTM.

We used the Adam optimizer with a learning rate of 0.001 for
both the self-supervised and the classification tasks, and have
chosen Byqe = Brec = 0.5 as it showed better performances.
Models are trained for 200 epochs (200 epochs for the VAE
then again 200 epochs for the LSTM/recoder, in the case of a
separated training), while the a posteriori classification task is
trained with 75 epochs for all models. We used a batch size of
128 in all configurations.

D. Results

The classification performance on the 3 datasets for the
various models with increasing number of perceived glimpses
is presented in Fig. fi] This metric allows us to compare the
representations learned by the different models on the presence
of semantic information through the ease of separation.

Firstly, we observe that the models not using the action
during the learning of the VAE’s encoder (-Sep suffix) perform
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Fig. 4. Classification accuracy versus number of received glimpses, for the
various models on the 3 datasets.

worse than their counterpart using the action (no suffix). The
presence of this trend for both architectures and for all datasets
shows that considering the action in the learning of visual
characteristics seems to be beneficial for the extraction of
meaningful features.

Secondly, we can see that all models integrating the action in
the LSTM (PreLSTM architectures) perform better than their
equivalent ones integrating the action after the LSTM (PostL-
STM architectures), except for the 28 x 28 MNIST dataset. In
this last case, they are similar when both performing an end-
to-end training (no suffix), which may be due to the simplicity
of the dataset. This difference of performance between Pre and
Post architectures tends to show that considering the action
in the representations, i.e. in the LSTM, helps to build better
representations of the environment. Moreover, as this trend
accentuates as the dataset becomes harder, the presence of the
action in the representations seems to be more important for
complex tasks. However, this difference of performance may
also be explained by the fact that in the PreLSTM architectures
the LSTM can use the action as an additional information to
integrate the glimpses using their position in a global internal
picture. Yet this may not be enough to explain all the differences
as we observe the strongest difference on the 60 x 60 CT
MNIST dataset where the position is less important as digits
are small enough to get mostly captured by one glimpse.
Note that all the observed trends are clearer after a certain
amount of glimpses. This can be explained by the fact that the
models need to temporally integrate the glimpses in order to
build the representations. As all models start with an empty
representation their few first representations may have similar
results, but the more and the better they integrate the glimpses
the better the representations would be.

The evolution during the training of the reconstruction error
for the predictive task on the validation set is shown in Fig. [3}
The results show the same trends as the ones on the accuracy,
confirming the findings about the importance of including the
action both in the learning of visual features and in the repre-
sentations. However, we note that having better reconstruction
loss does not necessarily imply better learned representations.
For instance, the PostLSTM model on the 28 x 28 MNIST
dataset has a higher error compared to the PreLSTM, while
both have similar results on the classification task.

Finally, Fig. [6] shows the t-SNE projection of the represen-

30 60 90 120 150 180 30 60 90 120 150 180 30 60 90 120 150 180

Fi

g. 5. Evolution of the reconstruction error for the predictive task in validation.

tations for all models and for all datasets. We consider that
the representations are better if the clusters are separable, i.e.
with few outliers and with some space between them, and if
they are expressive, i.e. clusters are spread and detailed. For
each architecture, clusters of the end-to-end trained model (no
suffix) are clearer and have less outliers than the ones trained
in two steps (-Sep suffix). This shows that visual features
learned with the action led to easier separable representations.
We also observe that the models using the action to build the
representations (PreLSTM and PreLSTM-Sep) are always able
to cluster the representations with a varying quality depending
on the dataset, where PostLSTM and PostLSTM-Sep models
produce mixed representations for the hardest datasets. These
results are in line with those found previously.

V. CONCLUSION AND PERSPECTIVES

In this article, we studied the impact of action in visual
representation learning in deep networks. Our questioning is
raised by recent deep learning methods, which are increasingly
using pretext tasks based on transformations that are action-
related. Yet, these methods are not considering these actions to
build their representations while sensori-motor theories, based
on substantial evidence in many fields, claim that action is
essential to perception. For this purpose, we studied and crossed
two independent factors: 1- whether or not to use the action
during the learning of visual features, and 2- whether or not
to integrate the action in the building of image representations.
By comparing these four configurations, we show that models
including action during the learning of visual characteristics
always perform better than their counterpart. We also observe
that variations integrating the action directly in the representa-
tions tends to perform better, a trend that is more prominent
for harder datasets.

These results are in line with sensori-motor theories and open
perspectives to improve state-of-the-art representation learning
methods by integrating the action both in the representations
and during the learning. An other interesting perspective could
be to study the influence of the action policy, in active learning
and active perception contexts, on the learned representations.
In the future, we want to extend the test-bed we elaborated
for the study and make use of these first promising results to
explore if it transfer to state-of-the-art representation learning
methods and for more general problems studied by community
(robotic, open world environments, etc.).



60x60 MNIST 28x28 MNIST

60x60 CT MNIST

(1]

[2]

[3]
[4]

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

PreLSTM POStLSTM

PreLSTM-Sep

POStLSTM-Sep

(@0 01 @2 @3

04

®5

®6 @7 ©38

Fig. 6. t-SNE of the latent LSTM encoding for all models and datasets.

REFERENCES

Ablavatski, A., Lu, S., Cai, J.: Enriched deep recurrent visual attention
model for multiple object recognition. In: IEEE Winter Conference on
Applications of Computer Vision (WACV). pp. 971-978 (2017)
Agrawal, P., Carreira, J., Malik, J.: Learning to see by moving. In:
Proceedings of the IEEE international conference on computer vision.
pp. 3745 (2015)

Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual
attention. arXiv preprint arXiv:1412.7755 (2014)

Bardes, A., Ponce, J., LeCun, Y. Vicreg: Variance-invariance-
covariance regularization for self-supervised learning. arXiv preprint
arXiv:2105.04906 (2021)

Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal, S.,
Sukhatme, G.S.: Interactive perception: Leveraging action in perception
and perception in action. IEEE Transactions on Robotics 33(6), 1273—
1291 (2017)

Friston, K., Adams, R., Perrinet, L., Breakspear, M.: Perceptions as
hypotheses: saccades as experiments. Frontiers in psychology 3, 151
(2012)

Friston, K., Mattout, J., Kilner, J.: Action understanding and active
inference. Biological cybernetics 104(1), 137-160 (2011)

Froese, T., Ziemke, T.: Enactive artificial intelligence: Investigating the
systemic organization of life and mind. Artificial Intelligence 173(3-4),
466-500 (2009)

Gibson, J.J., Carmichael, L.: The senses considered as perceptual systems,
vol. 2. Houghton Mifflin Boston (1966)

Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw:
A recurrent neural network for image generation. In: International Con-
ference on Machine Learning. pp. 1462-1471. PMLR (2015)

Guo, Z.D., Pires, B.A., Piot, B., Grill, J.B., Altché, F., Munos, R., Azar,
M.G.: Bootstrap latent-predictive representations for multitask reinforce-
ment learning. In: International Conference on Machine Learning. pp.
3875-3886. PMLR (2020)

Hay, N., Stark, M., Schlegel, A., Wendelken, C., Park, D., Purdy, E.,
Silver, T., Phoenix, D.S., George, D.: Behavior is everything: Towards
representing concepts with sensorimotor contingencies. In: Proceedings
of the AAAI Conference on Artificial Intelligence. vol. 32 (2018)

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]
[22]

(23]

[24]
[25]
[26]

[27]

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 770-778 (2016)

Held, R., Hein, A.: Movement-produced stimulation in the development
of visually guided behavior. Journal of comparative and physiological
psychology 56(5) (1963)

Higgins, 1., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M.,
Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with
a constrained variational framework (2016)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural com-
putation 9(8), 1735-1780 (1997)

Kingma, D.P, Welling, M.: Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013)

Laflaquiere, A.: A sensorimotor perspective on contrastive multiview
visual representation learning. IEEE Transactions on Cognitive and De-
velopmental Systems (2021)

Laflaquiere, A., Garcia Ortiz, M.: Unsupervised emergence of spatial
structure from sensorimotor prediction. arXiv e-prints pp. arXiv—1810
(2018)

LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436—
444 (2015)

LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database (2010)
Mnih, V., Heess, N., Graves, A., Kavukcuoglu, K.: Recurrent models of
visual attention. arXiv preprint arXiv:1406.6247 (2014)

Mossio, M., Taraborelli, D.: Action-dependent perceptual invariants: From
ecological to sensorimotor approaches. Consciousness and cognition
17(4) (2008)

Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748 (2018)

O’Regan, J.K., No&, A.: A sensorimotor account of vision and visual
consciousness. Behavioral and brain sciences 24(5), 939 (2001)
Ranzato, M.: On learning where to look. arXiv preprint arXiv:1405.5488
(2014)

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, 1., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering
the game of go without human knowledge. nature 550(7676), 354-359
(2017)



	Introduction
	Related work
	Studied models
	Overview
	Problem statement
	General overview of the model

	Influence of action in the representations
	With action
	Without action

	Influence of action in the learning
	With action
	Without action


	Experiments
	Datasets
	2828 MNIST
	6060 MNIST
	6060 Cluttered Translated MNIST

	Evaluation
	Implementation details
	Glimpses and actions
	Models hyperparameters

	Results

	Conclusion and perspectives
	References

