
HAL Id: hal-03815520
https://hal.science/hal-03815520v1

Submitted on 15 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Topology of Reionisation times: concepts, measurements
and comparisons to gaussian random field predictions

Emilie Thélie, Dominique Aubert, Nicolas Gillet, Pierre Ocvirk

To cite this version:
Emilie Thélie, Dominique Aubert, Nicolas Gillet, Pierre Ocvirk. Topology of Reionisation times:
concepts, measurements and comparisons to gaussian random field predictions. Astronomy and As-
trophysics - A&A, 2023, 672, pp.A184. �10.1051/0004-6361/202244977�. �hal-03815520�

https://hal.science/hal-03815520v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A&A 672, A184 (2023)
https://doi.org/10.1051/0004-6361/202244977
c© The Authors 2023

Astronomy
&Astrophysics

Topology of reionisation times: Concepts, measurements,
and comparisons to Gaussian random field predictions

Emilie Thélie , Dominique Aubert , Nicolas Gillet, Julien Hiegel , and Pierre Ocvirk

Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, 11 rue de l’Université,
67000 Strasbourg, France
e-mail: emilie.thelie@astro.unistra.fr

Received 15 September 2022 / Accepted 20 February 2023

ABSTRACT

Context. In the next decade, radio telescopes, such as the Square Kilometer Array (SKA), will explore the Universe at high redshift,
and particularly during the epoch of reionisation (EoR). The first structures emerged during this epoch, and their radiation reionised
the previously cold and neutral gas of the Universe, creating ionised bubbles that percolate at the end of the EoR (z ∼ 6). SKA will
produce 2D images of the distribution of the neutral gas at many redshifts, pushing us to develop tools and simulations to understand
its properties.
Aims. With this paper, we aim to measure topological statistics of the EoR in the so-called reionisation time fields from both cos-
mological and semi-analytical simulations. This field informs us about the time of reionisation of the gas at each position; it is used
to probe the inhomogeneities of reionisation histories and can be extracted from 21 cm maps. We also compare these measurements
with analytical predictions obtained within Gaussian random field (GRF) theory.
Methods. The GRF theory allows us to compute many statistics of a field, namely the probability distribution functions (PDFs) of the
field or its gradient, isocontour length, critical point distributions, and skeleton length. We compare these theoretical predictions to
measurements made on reionisation time fields extracted from an EMMA simulation and a 21cmFAST simulation at 1 cMpc/h resolution.
We also compared our results to GRFs generated from the fitted power spectra of the simulation maps.
Results. Both EMMA and 21cmFAST reionisation time fields (treion(r)) are close to being Gaussian fields, in contrast with the 21 cm,
density, or ionisation fraction, which have all been shown to be non-Gaussian. Only accelerating ionisation fronts at the end of the
EoR seem to be the cause of small non-gaussianities in treion(r). Overall, this topological description of reionisation times provides
a new quantitative and reproducible way to characterise the EoR scenario. Under the assumption of GRFs, it enables the generation
of reionisation models with their propagation, percolation, or seed statistics simply from the reionisation time power spectrum. Con-
versely, these topological statistics provide a means to constrain the properties of the power spectrum and by extension the physics
that drive the propagation of radiation.

Key words. large-scale structure of Universe – dark ages, reionization, first stars – methods: numerical – methods: statistical –
galaxies: formation – galaxies: high-redshift

1. Introduction

The epoch of reionisation (EoR) saw the birth of stars and
galaxies. Looking back at the history of the Universe, the first
sources of radiation appear during the EoR, emitting photons
that reionise the cosmic gas and create HII ‘bubbles’ around
galaxies. These bubbles eventually percolate near the end of
the EoR at z = 5.3−6 (Barkana & Loeb 2001; Dayal & Ferrara
2018; Kulkarni et al. 2019; Wise 2019). This epoch marks the
transition from a Universe with totally cold and neutral gas to
the Universe we see today, where the gas is warmer and ionised.

The evolving geometry of the EoR has been widely
investigated in the literature in order to understand physical
processes, such as the growth of structures, the geometry of
the ionised and neutral bubbles, and the percolation process.
Many works focus on the geometry of the ionised and neutral
bubbles and on percolation with Minkowski functionals (or
derived statistics, such as the Euler characteristic, the genus,
or the shapefinders; see Gleser et al. 2006; Lee et al. 2008;
Friedrich et al. 2011; Hong et al. 2014; Yoshiura et al. 2017;
Chen et al. 2019; Pathak et al. 2022), with the triangle correlation
function (Gorce & Pritchard 2019), or with the Morse theory
and persistent homology (Thélie et al. 2022). Other studies

extract the size and shape of the ionised bubbles thanks to the
contour Minkowski tensor (Kapahtia et al. 2018, 2019, 2021).
Counting the numbers of 3D structures in a field (isolated
objects, such as peaks, tunnels, and voids) can be done using
the Betti numbers (Kapahtia et al. 2019, 2021; Giri & Mellema
2021; Bianco et al. 2021; Elbers & van de Weygaert 2023). The
size of the ionised or neutral bubbles has also been investi-
gated with methods, such as the friends-of-friends algorithm
(Iliev et al. 2006; Friedrich et al. 2011; Lin et al. 2016; Giri et al.
2018a, 2019), the spherical average method (Zahn et al. 2007;
Friedrich et al. 2011; Lin et al. 2016; Giri et al. 2018a), the mean
free path method (Mesinger & Furlanetto 2007; Lin et al. 2016;
Giri et al. 2018a, 2019; Bianco et al. 2021), and the granulometry
method (Kakiichi et al. 2017; Busch et al. 2020). In addition, the
low-frequency component of the Square Kilometre Array radio
interferometer1 (SKA-Low; see e.g. Mellema et al. 2013) will
produce 2D tomographic images of the 21 cm HI emission at
many redshifts during the EoR. There have therefore been many
studies exploring the spatial structure of this signal, for exam-
ple using the 21 cm power spectrum (Zaldarriaga et al. 2004;
Furlanetto et al. 2004; McQuinn et al. 2006; Bowman et al. 2006;

1 https://www.skatelescope.org
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Fig. 1. Schematic summarising the use of the reionisation time field (on
the right): it allows us to use only one field instead of a series of many
snapshots of binary ionised fraction (on the left) for example.

Lidz et al. 2008; Iliev et al. 2012; Mesinger et al. 2013;
Pober et al. 2014; Greig & Mesinger 2015, 2017; Liu & Parsons
2016; Kern et al. 2017; Park et al. 2019; Pagano & Liu 2020;
Gazagnes et al. 2021), or the 21 cm bispectrum (Hutter et al.
2020).

Reionisation time field: definition and motivation. Our work
focuses on the reionisation time (or redshift) map. This field is
generated by cosmological simulations and models (e.g. EMMA
and the 21cmFAST semi-analytical code), and corresponds to the
time at which each position of the simulation box is considered
to be reionised, which is when the ionisation fraction exceeds a
50% threshold, as follows:

t∗reion(r) = t(r, xHII = 0.5), (1)

where r is the position, and xHII is the ionised fraction. t∗reion is
measured from the Big Bang, meaning that the cosmic gas is
almost entirely reionised at t∗reion ∼ 1 Gyr. As shown in Fig. 1
and thanks to treion(r), we compress the information about the
evolution of xHII into a single field instead of using a collection of
snapshots. In the reionisation time map, blue regions correspond
to those where the gas reionises first, whereas the red ones are
the last regions where the gas reionises. We focus on 2D treion(r)
maps to study the EoR on the sky as it will be observed (with the
upcoming SKA 2D images for instance).

The field treion(r) holds both spatial and temporal informa-
tion on the reionisation scenario and is therefore often used
to characterise or compare the evolving structure of the reion-
isation provided by models. For example, it can be used to
measure the speed and direction of ionising radiation as it prop-
agates from sources (Deparis et al. 2019; Thélie et al. 2022).
Recently, treion(r) was also used to efficiently generate models of
the reionisation (Trac et al. 2022). This parameter is also valu-
able in investigations of local variations of the reionisation sce-
nario (Trac et al. 2008; Battaglia et al. 2013; Aubert et al. 2018;
Zhu et al. 2019; Sorce et al. 2022) and the consequences of an
inhomogeneous reionisation. These local modulations of reion-
isation histories could possibly manifest themselves in the star
formation histories of low-mass galaxies (Ocvirk et al. 2020) or
their spatial distribution (Ocvirk & Aubert 2011). treion is there-
fore a versatile descriptor of models and in this paper we propose
to revisit its study in a more general manner. In particular, we
show how the topological study of this field can unravel many
properties of the summarised reionisation scenario in a physi-
cally meaningful, quantitative, and reproducible way.

However, we also claim that this field, and the study of its
topology, is not only useful in the strict and limited scope of
reionisation models but also in the context of future observa-
tions. Indeed, in the next decade, radio telescopes, such as SKA,
will map the intergalactic medium (IGM) during the EoR thanks
to the 21 cm radiation coming from neutral hydrogen atoms (e.g.
Koopmans et al. 2015). 21 cm lightcones along the line of sight
will contain a wealth of information on the evolving reionisa-
tion state of the IGM and on the underlying matter density, the
ionisation fraction of the gas, and its thermal state. In Hiegel
et al. (in prep.), we show that it is also possible to reconstruct
2D reionisation time maps from 2D 21 cm images thanks to
a convolutional neural network. Therefore, treion(r) could pos-
sibly be extracted from observations (even though small struc-
tures are smoothed out), thus granting access to the evolution of
the reionisation in the transverse plane, which would comple-
ment line-of-sight studies. More details about these reconstruc-
tions are given in Appendix A. In the future, we intend to use
the framework described in the present paper on the reionisation
time field reconstructed from 21 cm observations.

Topology of the reionisation time field. The topological fea-
tures of treion(r) can be described by analogy with a mountainous
landscape (Gay 2011). Consider a mountainous landscape as a
2D field: for each 2D position of the space, the altitude is the
value of the field. The mountain peaks are the maxima of the
field, the bottoms of the valleys are the minima, and the moun-
tain passes are the saddle points. The skeleton of this field cor-
responds to all the ridge lines, which join each of the passes (i.e.
saddle points) to the peaks (i.e. maxima) and are the lines with
the least slope. The skeleton forms a connected network through-
out the space. With treion(r), many geometrical quantities can be
interpreted physically to describe the evolution of the ionised
and neutral gas during the EoR. Recently, in Thélie et al. (2022),
we studied the 3D topological properties of the EoR, such as
the shape, size, and orientation of ‘peak patches of reionisation’.
Here, we go further and work on a large set of geometrical prop-
erties of the 2D reionisation time fields treion(r), as shown in
Fig. 2.
– Probability distribution function (PDF) of the field values. A
widely used statistic when studying the EoR is the fraction of
ionised volume QHII. We can measure this with the reionisation
time field as it is directly the cumulated distribution function
of the treion(r) values (i.e. the number of cells that has a lower
reionisation time than a given threshold). In other words, it is the
reionisation history; it contains information about the timing of
reionisation, as well as its global evolution.
– PDF of the gradient norm field. Moreover, we can compute
the first derivative of the reionisation time field, and extract the
norm of its gradients. This norm corresponds to the time interval
within which the gas is reionised in each cell of the simulation
boxes (∼∆t/∆x), which is equivalent to the inverse of a velocity
field. An example of this gradient norm field is shown in the
bottom-right panel of Fig. 2. The analysis of this field allows
us to study the ‘velocity’ of the radiation fronts (Deparis et al.
2019).
– Isocontour length. The isocontours of treion(r) delineate the
regions reached at a given time by the HII bubbles. Their length
is interesting because it contains information about the growth
of the ionised bubbles and the decrease in size of the last neu-
tral bubbles. With the bottom left panel of Fig. 2, we see the first
ionised bubbles with the darkest blue contours, their growth with
the lighter blue contours, and their fusion when the blue contours
merge. We also see the last neutral regions being ionised with the
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Fig. 2. Two-dimensional slices related to the EMMA reionisation time field that are smoothed with a Gaussian kernel with a standard deviation of
R f = 6. The top left panel shows treion(r) with its minima (black stars). The top right panel shows treion(r) with its skeleton (black lines). The bottom
left panel shows the isocontours of treion(r), with its minima again in black stars. Here, the reionisation time field is normalised to put its mean at a
value of 0, and its standard deviation at 1. The bottom right panel shows the norm of the gradient of treion(r).

red contours. Here, we have an insight into the percolation pro-
cess of the EoR.
– Reionisation seed count. We can extract the critical points of
the reionisation time field, and in particular its minima. These
points correspond to the sources of radiation (first zones that
reionise) and are shown on the example field of Fig. 2 with the
black stars on the left panels. As expected, the critical points
are within the bluest zones, which reionise first, and are also in
the middle of the first blue isocontours. Their distribution as a
function of time allows us to know the time of appearance of
these reionisation seeds. For instance, we can infer the moment
when the maximum number of sources lights up. This distribu-
tion should also correlate with the star formation rate.

– Reionisation patches. We can extract the void patches from
the reionisation time field (or the peak patches from the reioni-
sation redshift field). These patches contain all of the cells that
are linked to the treion(r) minima by a negative gradient. Thanks
to them, we can study the extent of the radiative influence of a
reionisation seed with size distributions. Their shape and orien-
tation with respect to the density filaments informs us about the
direction of propagation of the reionisation fronts. As we studied
these patches in Thélie et al. (2022), we do not focus on them in
this paper.
– Distribution of the skeleton lengths. We also calculate the dis-
tribution of the length of the skeleton of treion(r). An example
skeleton is shown with the black lines in the top right panel of
Fig. 2. As explained before, they connect the maxima of a field
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by passing through its saddle points as ridge lines. The skele-
ton of the reionisation time field treion(r) physically corresponds
to the front lines between the propagating radiation that comes
from the reionisation seeds. It therefore indicates the extent to
which the photons can propagate from a source and ionise the
medium before reaching an opposite ionising front coming from
another source: it is the percolation lines between patches of
reionisation. The skeleton length distribution with respect to the
time tells us about the length of merging radiation fronts at a
given time.

In this work, we study all of these properties (except the
reionisation patches) through measurements in treion(r) maps that
are extracted from simulations obtained with the EMMA cosmo-
logical code and the 21cmFAST semi-analytical code.

Gaussianity of the reionisation time field. We also analyse
the gaussianity of the reionisation time field (treion(r)), and there-
fore of the reionisation process. The EoR is known to be ruled by
strongly non-Gaussian phenomena that are probed in different
ways in the literature. Many studies look at this non-Gaussian
nature of the EoR directly through the 21 cm PDF, sometimes
using skewness, kurtosis, and quantile analyses (Mellema et al.
2006; Ichikawa et al. 2010; Dixon et al. 2016; Ross et al. 2019;
Banet et al. 2021). Other studies use higher-order statistics,
such as the bispectrum or trispectrum (Majumdar et al. 2018;
Shaw et al. 2020). The density or ionisation fraction fields are
also studied for their non-Gaussian features (Iliev et al. 2006).
The non-gaussianities of the EoR are generally said to be due
to the non-linear structure formation (Bernardeau et al. 2002),
to be present at all scales, and to increase in importance as the
reionisation process proceeds. Moreover, some studies show that
non-gaussianities are increased within the HII bubbles due to
high ionisation and high densities (Iliev et al. 2006; Dixon et al.
2016; Majumdar et al. 2018), which could be due to an inside-
out process of ionisation (Iliev et al. 2006). Ross et al. (2019)
also explains that the quasi-stellar objects (QSOs) and the X-ray
heating can be another cause of non-gaussianity. Overall, under-
standing the source of non-gaussianities will help us to obtain
a broader comprehension of the EoR physical processes, and to
put constraints on the reionisation parameters (Shaw et al. 2020;
Greig et al. 2022).

In this study, we compare the measured statistics on
treion(r) mentioned above to Gaussian random field (GRF) the-
ory predictions. This theory allows us to compute statistics of
Gaussian-distributed field (Rice 1944; Longuet-Higgins 1957;
Doroshkevich 1970; Bardeen et al. 1986; Hamilton et al. 1986;
Pogosyan et al. 2009a,b; Pichon et al. 2010; Gay et al. 2012;
Cadiou et al. 2020) or weakly non-Gaussian fields (Matsubara
2003; Pogosyan et al. 2011; Gay et al. 2012; Cadiou et al. 2020;
Matsubara & Kuriki 2021). Rice (1944) first introduced the GRF
theory to extract statistics from the 1D random noise of elec-
tronic devices. Longuet-Higgins (1957) later used the same the-
ory, but this time on random waves on 2D surfaces. It is only later
that Bardeen et al. (1986) used the GRF theory in astrophysics
in order to study 3D structure formation in a cosmological con-
text simply using information in a a power spectrum. More
recently, Gay et al. (2012) extracted many statistics of 2D and
3D cosmological fields thanks to this theory, for example count-
ing the peaks on synthesised cosmic microwave background
(CMB) maps to study their non-gaussianities. Some widely used
statistics in the context of the EoR can be analytically calcu-
lated thanks to the GRF theory, such as Minkowski functionals,
the derived genus or Euler characteristics, and Betti num-
bers (Schmalzing & Gorski 1998; Matsubara 2003; Lee et al.

2008; Gay et al. 2012; Kapahtia et al. 2019; Matsubara & Kuriki
2021). For example, Lee et al. (2008) computed the genus of the
neutral hydrogen field xHII to study the evolution of the EoR
through many phases.

Here, we compare the statistics of the EoR that we mea-
sure on treion(r) with the analytic predictions of the GRF the-
ory for the first time. The advantage of GRFs is that all of the
field information is compressed within their power spectrum:
we therefore envision the prospect of summarising the timing
and the evolution of the EoR with treion(r) or its power spec-
trum. A Gaussian treion(r) has interesting applications. For exam-
ple, associated evolving ionisation fields can easily be generated
if we know the treion(r) power spectrum; one can imagine hav-
ing a new class of fast-forward models of the reionisation pro-
cess within which we could vary astrophysical parameters (that
are hopefully encoded in the power spectrum of the reionisa-
tion time field). Conversely, the properties of the aforementioned
topological statistics could be used to constrain the power spec-
trum under the GRF assumption, and by extension the physics
that drives the propagation of radiation. Also, with a Gaussian
treion(r), its power spectrum could be directly retrieved from mea-
surements of its topological statistics. This could be interesting
in the case where the power spectrum has not been properly
measured. For instance, with the reconstructed reionisation time
maps from 21 cm observations by the CNN mentioned above
and in Appendix A, the power spectrum would be suppressed on
small scales due the CNN smoothing, and combining the diverse
statistics measured in treion(r) could help to obtain the proper
power spectrum. Finally, by comparing the measurements and
predictions, we show in this paper the extent to which it is real-
istic to suppose that treion(r) is a Gaussian field, and we also infer
a few causes of non-gaussianities.

Organisation of the paper. We start by describing the EMMA
and 21cmFAST simulations we used in Sect. 2, as well as some
generated GRFs. Subsequently, Sect. 3 presents every topolog-
ical characteristic we studied with the GRF theory. We study
the behaviour of each of these characteristics with the gener-
ated GRFs, and measure them using the EMMA reionisation time
fields. The same analyses are also presented for a 21cmFAST sim-
ulation in Sect. 4. In Sect. 5 we present our conclusions about
this work and introduce a few perspectives. Appendix A presents
some details about how we can reconstruct reionisation time
maps from observation-like data. Appendix B details the calcu-
lation of the spectral moments from a specific power spectrum.
Appendix C is the full calculation to obtain the PDF of the norm
of the gradient of a GRF. Some results are also shown for the
reionisation redshift field in order to compare it to the reionisa-
tion time field in Appendix D. The cosmology parameters used
are (Ωm,Ωb,ΩΛ, h, σ8, ns) = (0.31, 0.05, 0.69, 0.68, 0.81, 0.97),
as given by Planck Collaboration VI (2020).

Notations. Throughout this paper, we use the following
notations, which were introduced in Pogosyan et al. (2009b),
Gay et al. (2012). We use F to denote the studied field, which
refers to the reionisation time fields. In this study, we work with
normalised fields using the momenta of F and its derivatives:

σ2
0 =

〈
F2

〉
, σ2

1 =
〈
(∇F)2

〉
, and σ2

2 =
〈
(∆F)2

〉
. (2)

We introduce thereafter notations for the normalised fields
and its derivatives:

x =
F
σ0
, xi =

∇iF
σ1

, and xi j =
∇i∇ jF
σ2

, (3)
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Table 1. Average and standard deviation of both EMMA and 21cmFAST
reionisation time and redshift fields.

t∗reion σ
t∗reion
0

R f – 1 2 6

EMMA [Myrs] 790 107 91.6 62.2
21cmFAST [Myrs] 801 165 149 97.5

z∗reion σ
z∗reion
0

R f – 1 2 6
EMMA 6.99 0.82 0.67 0.43
21cmFAST 6.40 1.32 1.17 0.74

Notes. The standard deviations are computed thanks to the expression
given in Appendix B, and depend on the power-spectrum parameters of
the fields.

with i, j ∈ {1, 2} for 2D fields. Here, we mainly work on the
reionisation time field t∗reion(r), which we normalise as follows:

x = treion =
t∗reion − t∗reion

σ0
, (4)

where t∗reion is the mean of the field. In addition, the normalised
reionisation time fields are denoted x in the following work.
However, when we refer to the values of the field, we use the
following notation:

ν = x(r). (5)

As we work on normalised reionisation time fields, when ν < 0,
we probe moments before the average reionisation times, and
when ν > 0, we probe those after the average reionisation time.
Also, low values of ν therefore refer to early reionisation times,
and large values of ν to late reionisation times.

We also introduce dimensionless spectral parameters:

R0 =
σ0

σ1
, R∗ =

σ1

σ2
, and γ =

R∗
R0

=
σ2

1

σ0σ2
. (6)

These parameters can be analytically expressed if the power
spectrum of the field is known. The calculation is shown in
Appendix B for a specific type of power spectrum.

2. Simulated data

2.1. EMMA simulation

In this work, we used a 5123 cMpc3 h−3 cosmological simula-
tion with a resolution of 1 cMpc3 h−3, as detailed in Gillet et al.
(2021). This simulation was obtained with the cosmological
code EMMA (Electromagnétisme et Mécanique sur Maille Adap-
tative, Aubert et al. 2015), which is an adaptive mesh refine-
ment (AMR) code that couples hydrodynamics and radiative
transfer, and in which light is described as a fluid (resolved
using the moment-based M1 approximation; Aubert & Teyssier
2008). The EMMA simulation follows the cosmology given by
Planck Collaboration VI (2020) and has no AMR, no reduced
speed of light, and a stellar particle mass of 108 M�.

As this work is focused on 2D fields, 100 slices of 5122

cMpc3 h−2 in size (spaced one from another by 5 slices)
are extracted from the treion(r) field. Slices are smoothed with
a Gaussian kernel of standard deviation R f ∈ {1, 2, 6} (see
Sect. 2.3.2), and normalised as described in Sect. 1. The aver-
age and standard deviation of the EMMA reionisation time field
are given in Table 1.

Table 2. Angular resolutions corresponding to the size of the smoothing
kernel applied to our simulation at a redshift z = 6.905.

Simulations SKA

R f 1 2 6 –
∆x [cMpc] 1.48 2.96 8.88 8.3
∆θ [arcmin] 0.57 1.14 3.42 3.11

Notes. The angular and spatial resolutions are also given for the radio-
telescope SKA at the same redshift for a maximum baseline of 2 km
(Giri et al. 2018b).

2.2. 21cmFAST simulation

We compare the statistical measurements of the EMMA simu-
lation to those of a semi-analytical simulation generated with
21cmFAST2 (version 3.0.3; Mesinger et al. 2011; Murray et al.
2020). The size of the simulation box generated is 2563 cMpc3 h−3,
again with a resolution of 1 cMpc3 h−3. The reionisation model
used varies by only two parameters from the default ones: the
ionising efficiency of high-redshift galaxies ζ = 40, and the
virial temperature Tvir = 105 K. Here, ζ controls the number
of photons emitted by galaxies: the higher it is, the faster the
reionisation. Tvir is the minimum virial temperature allowing
a halo to start forming stars. Those parameters are chosen to
approximately match the reionisation history of the 21cmFAST
simulation with that of the EMMA simulation. 21cmFAST can pro-
vide us with the reionisation redshift maps that we can convert
into reionisation time maps (with a given cosmology), similar to
the EMMA ones. From this 3D simulation, 51 slices (of size 2562

cMpc2 h−2) can be extracted (again spaced from each other by
5 slices), and they are also smoothed and normalised the same
way the EMMA slices are. The average and standard deviation of
the 21cmFAST reionisation time field are given in Table 1.

2.3. Choices for the simulation data sets

2.3.1. Reionisation time and redshift fields

We also extracted the reionisation redshift fields zreion(r) from
both EMMA and 21cmFAST simulations. The following statisti-
cal analyses are performed on both reionisation time and red-
shift fields. In the main text, we only present the results of the
treion(r) field, and we briefly present a similar analysis of zreion(r)
in Appendix D.

2.3.2. Smoothing

As mentioned above, we apply different smoothings on the
reionisation time fields. We use Gaussian kernels with different
standard deviations. We chose to smooth the fields for the fol-
lowing reasons:
– The future observed images from the SKA for example will
have a lower spatial resolution than what we simulate here with
R f ∈ {1, 2} (see the angular resolutions given for the different
kernel sizes in Table 2 compared to the equivalent values for
SKA), and so SKA will not be able to probe the smallest scales
of our simulations.
– In order to compute the field momenta or spectral parameters,
we need to integrate over power spectra, which leads to possible
divergence (see the shape of the spectra in Sect. 2.4). Smoothing

2 https://github.com/andreimesinger/21cmFAST
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Fig. 3. Two-dimensional slices of the EMMA reionisation time field (first row) and the 2D GRFs obtained with the corresponding power spectrum
(second row). Each column corresponds to different smoothings, with from left to right, R f ∈ {1, 2, 6}. All the fields are normalised.

the fields circumvents this divergence problem, and is also well
accounted for in the GRF theory.
– We use the discrete persistent structure extractor (DisPerSE3;
Sousbie 2011), which assumes that the input field defines a
Morse function, without large zero-gradient patches. As in
Thélie et al. (2022), we use it here to extract the critical points
and the skeleton of treion(r), and smoothing the field removes
such patches.
– The EMMA reionisation time fields are represented in the first
row of Fig. 3 for the different smoothings. The Gaussian smooth-
ing filters out the smallest structures, while keeping the global
shape of the larger scales: we ‘gaussianise’ the fields. Therefore,
smoothing the reionisation time fields allows us to pinpoint the
scales that are at the origin of non-Gaussian features in our mea-
surements.

2.4. Gaussian random fields

A GRF is a Gaussianly distributed field and if it has a null aver-
age, its PDF can be written as follows:

P(x)dnx =
1

(2π)n/2 · det(C)
1
2

exp
(
−

1
2

x ·C−1 · x
)

dnx, (7)

where x is a n-D vector function of the position and C = 〈x ⊗
x〉 is the covariance matrix. For instance, x could be expressed
as follows: x = (x, x1, x2, . . .) with the dimensionless field x =
F/σ0, and its first derivatives as defined in Eq. (3).
3 http://www2.iap.fr/users/sousbie/web/html/indexd41d.
html

To generate and analytically study this kind of field, we only
need its power spectrum, as this defines a GRF entirely. From
the power spectrum Pk, we also have access to the momenta, as
follows (Bardeen et al. 1986; Pogosyan et al. 2009b; Gay 2011):

σ2
i =

2π
d
2

Γ
(

d
2

) ∫ ∞

0
k2iPkkd−1dk, (8)

where i ∈ N corresponds to the number of times the field is
derivated, and d is the dimension of the field. The analytical
derivation of the momenta is presented in Appendix B for a spe-
cific form of power spectrum detailed below.

We use the average power spectrum of the slices of our sim-
ulated fields: they are represented in logarithmic scales in Fig. 4
for the EMMA and 21cmFAST reionisation time fields. We use the
following expression to fit these power spectra:

Pk =

{
A1kn1 if k ≤ kthresh

A2kn2 if k > kthresh
, (9)

where A1 and A2 are the amplitude of each part, and n1 and n2
are the power of each part. kthresh is the threshold separating the
two parts of the power spectrum. We obtain the parameters given
in Table 3 after fitting the EMMA and 21cmFAST reionisation time
power spectra. In Fig. 4, the dashed lines represent the average
expected power spectra in logarithmic scales of treion(r),which fit
both simulations curves relatively well. This figure also demon-
strates that there are more large structures in the 21cmFAST field
than in the EMMA field, and also fewer small structures.
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Fig. 4. Fitting (in dashed lines) of the reionisation time power spectra.
The straight lines correspond to the power spectrum measured on the
fields of each simulation (EMMA in blue and 21cmFAST in brown). The
fittings are done on the average logarithmic power spectrum of every
2D slice for each field. The fields are not normalised when the fitting is
carried out.

Table 3. Parameters defining the power spectra of the reionisation time
and redshift fields (treion(r) and zreion(r)) for both EMMA and 21cmFAST
simulations.

A1 n1 A2 n2 kthresh

EMMA
treion 6.70 × 1016 −0.83 4.34 × 1015 −2.03 0.10
zreion 4.03 −0.75 0.38 −1.80 0.10

21cmFAST
treion 1.83 × 1017 −0.75 2.87 × 1015 −2.96 0.15
zreion 6.17 −0.91 0.25 −2.86 0.20

Notes. These are obtained from a fitting of the power spectrum of the
fields in order to generate GRFs in the same units as the reionisation
times (years) or redshift before they are normalised.

The smoothed power spectrum of our GRF is defined as
follows:

Psmoothed
k =

A1kn1 e−2R2
f k2
/ 2π k ≤ kthresh

A2kn2 e−2R2
f k2
/ 2π k > kthresh

, (10)

where R f is the standard deviation of the kernel (i.e. size of
the kernel) expressed as the number of cells in the following
analyses.

We also generate multiple sets of 100 runs (with different
seeds) of GRFs with the power spectrum of both EMMA and
21cmFAST treion(r) (for which, the parameters are given in the
Table 3). For each power spectrum, three sets of GRFs with dif-
ferent smoothing are created, with the following kernel sizes:
R f ∈ {1, 2, 6}. In addition, the GRFs are all normalised the same
way as the simulations. Figure 3 shows example GRF maps (sec-
ond row) with different smoothing (see each column): while dif-
ferences can be spotted, such GRFs are close to the EMMA
fields. Figure 5 shows the expected power spectra and those mea-
sured in the simulations: the GRF and treion(r) curves are very
similar. When we increase the kernel size R f (see the purple,
blue, and green curves), larger and larger scales are smoothed,
as expected.
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k

GRFs
EMMA - treion

Rf = 1
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Rf = 6

Fig. 5. Power spectra of the GRFs (coloured dotted lines) and EMMA
reionisation times (coloured crosses). All 100 runs have been averaged
to show a mean power spectrum for each set of simulations. The theo-
retical power spectra are shown both with and without an incorporated
smoothing by the dashed and straight red lines, respectively. Three dif-
ferent smoothings are represented with R f ∈ {1, 2, 6}.

3. Topological measurements on EMMA simulations
and comparisons to GRF theory predictions

In this section, we extract several topological statistics from the
EMMA reionisation time field treion(r). We also derive their expres-
sion and compare them to the different runs of GRFs in order to
statistically check the behaviour of our theoretical curves and our
measurements.

3.1. Filling factor of the field: PDF and reionisation history

3.1.1. Measurements on the reionisation time field

The filling factor of the reionisation time field treion(r) shows
the reionisation history (or fraction of ionised volume QHII)
of the simulation box. This quantity allows us to study the
global evolution of the ionisation of the gas during the EoR
and can be directly extracted from the treion(r) map by count-
ing the number of values lower than a time threshold, which
gives us the cumulated PDF of the treion(r) values. The treion(r)
PDF tells us about the distribution of reionisation times in the
box: it also incorporates reionisation evolution information. If
both not-cumulated and cumulated distributions are symmetric
with respect to the average reionisation time, this means that the
reionisation evolves in the same manner throughout the whole
EoR. If they are asymmetric and if the PDF has its peak at a
larger time, then reionisation begins slowly before accelerating.
On the contrary, if the PDF has its peak at a smaller time, then
reionisation starts rapidly before slowing down.

3.1.2. GRF theoretical expression

We can almost directly compute the filling factor of a Gaussian
field with the Gaussian field theory because it only requires the
PDF of the value of the field (Gay et al. 2012):

P(x)dx =
1

2π
e−

1
2 x2

dx. (11)

To calculate the filling factor, the PDF only depend on the nor-
malised field x = F/σ0. Now, this statistic is the number of field
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Fig. 6. Fraction of ionised volume for the different smoothings (in
colours). The median of every run is computed for each field. The
dashed lines correspond to the GRFs, and the crosses are for the EMMA
reionisation time field. The black lines are the theoretical predictions.
The shaded areas and the error bars represent the dispersion around the
median (1st and 99th percentiles) of the GRFs and treion(r), respectively.
Here, ν represents the value of the normalised reionisation times.

values exceeding a given threshold ν. Applied to our reionisation
time fields, the number of values that are higher than a given
threshold is the same as the number of cells that are still neu-
tral. This number therefore directly corresponds to the fraction
of neutral gas volume QHI. However, in our case, we are inter-
ested in the fraction of ionised volume QHII = 1−QHI. This latter
corresponds to the number of values that are lower than a given
threshold, as follows:

QHII(ν) =

∫ ν

0
P(x)dx =

1
2

erf
(
ν
√

2

)
, (12)

where erf(ν) = 2
√
π

∫ ν

0 e−y
2
dy.

3.1.3. Comparison of the measurements and the predictions

We show the filling factors in Fig. 6 and the PDFs in Fig. 7: the
crosses (and error bars) are the EMMA measurements, the dashed
lines (and the shaded areas) are the GRFs measurements, and
the GRF predictions are shown in black. Firstly, in both figures,
the GRF distributions closely follow the predictions by the GRF
theory. The filling factor measurements on the EMMA reionisa-
tion time fields are relatively close to the predictions, depict-
ing a rather symmetric reionisation process. However, in Fig. 7,
the PDFs measured on the EMMA treion(r) maps are not symmet-
ric, the peak being shifted towards later times; the filling fac-
tors or cumulated PDFs hide this imprint of non-gaussianity. At
the same time, when we smooth the fields on larger areas (i.e.
R f increases), the distributions tend to become more symmetric
around the mean reionisation time ν = 0 (i.e. close to the GRF
predictions).

Therefore, the regions that ionise after the average time of
the simulation (ν = 0, or around 790 Myr or a redshift of 7; see
Table 1) cause the asymmetry. This means that the reionisation
process is slightly slower at early times and accelerates after-
wards. Mellema et al. (2006) or Dixon et al. (2016) showed that
asymmetry arises towards the end of the EoR using the bright-
ness temperature field. This asymmetry is also a key parameter
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Fig. 7. Probability distribution function of the median of every run of
the fields for the different smoothings (in colours). The dashed lines cor-
respond to the GRFs, and the crosses are for the EMMA fields. The black
lines are the theoretical predictions. The shaded areas and the error bars
represent the dispersion around the median (1st and 99th percentiles) of
the GRFs and treion(r), respectively. Here, ν represents the value of the
normalised reionisation times.

in the newly developed code AMBER (Trac et al. 2022), in which
we can directly tune an asymmetry parameter of the reionisation
history. We see here that the non-gaussianity of the reionisation
fields are filtered out with the smoothing, and are therefore hid-
den in the time differences on small-scale structures, and at later
times.

3.2. PDF of the gradient norm field: Ionising front velocities

3.2.1. Measurements on the reionisation time field

In this section, we analyse the norm of the spatial gradients of
each field that we define as follows, for a GRF or a reionisation
time field F:

‖∇x‖ =
1
σ1

√
(∇1F)2 + (∇2F)2 = R0

√
(∇1x)2 + (∇2x)2, (13)

where ∇ix for i ∈ {1, 2} are the two components of the gradi-
ent of the field x = F/σ0, and R0 is given in Eq. (6). Numeri-
cally, the gradients of the fields are computed thanks to Fourier
transforms. Each component of the gradient is obtained as
follows:

∇ix = F −1[x̃ × iki], (14)

where x̃ = F [x] is the Fourier transform of the field, and
k2 = k2

1 + k2
2. We should note that here we observe a 3D phe-

nomenon in 2D, which means that the gradient norm is probably
underestimated as we miss the third direction component of the
front velocities. Figure 8 shows gradient norm maps of the reion-
isation time fields in the first row, and gradient norm maps of the
GRFs in the second row for each smoothing (R f ∈ {1, 2, 6}, see
the columns). The two maps are relatively similar at first glance
for R f ∈ {2, 6}. However, some disparities start to be visible for
the smallest smoothing kernel R f = 1 again: the reionisation
time field has larger structures than the corresponding GRF.

The gradient norm of ttreion(r) is linked to the reionisa-
tion velocity field defined by Deparis et al. (2019), which is
the inverse of the spatial derivative of the reionisation time
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Fig. 8. Two-dimensional slices of the norm of the EMMA reionisation time gradient (first row) and the norm of the GRF gradient obtained with the
corresponding power spectrum (second row). Each column corresponds to different smoothings, with from left to right, R f ∈ {1, 2, 6}.

field; it contains information about the ionising front velocity,
and Deparis et al. (2019) showed that these fronts move for-
ward in two stages: they are first slowed down by dense neutral
gas and their speed is lower than the speed of light. How-
ever, when reaching the end of the EoR, the fronts accelerate
because radiation reaches under-dense regions. This means that
as time increases, the speed of the reionisation fronts increases,
or conversely, the gradient norms of the reionisation time field
decrease.

3.2.2. GRF theoretical expression

The PDF of the gradient norm of a Gaussian field ‖∇F‖ only
depends on the field (x = F/σ0) and its first derivatives (x1 and
x2 as defined in Eq. (3)), as

P(x, x1, x2)dxdx1dx2 =
2

(2π)3/2 e−(
1
2 x2+x2

1+x2
2)dxdx1dx2. (15)

This joint PDF is obtained relatively easily with Eq. (7) with a
three-dimensional covariance matrix (as shown in Appendix C).
From this expression, thanks to an integral over the field values
and a change of variable, we can retrieve the PDF of the norm of
the field gradient:

2πP(w)wdw = 2we−w2
dw with w2 = x2

1 + x2
2. (16)

3.2.3. Comparison of the measurements and the predictions

Firstly, the 2D distributions of the gradient norm of treion(r)
with respect to the field values provide insight into the radi-

ation front velocities at each time of the EoR. The first row
of Fig. 9 shows these 2D PDFs for the EMMA reionisation time
field and their corresponding GRFs are shown in second row.
Each smoothing kernel size is represented with R f ∈ {1, 2, 6} in
the columns. The GRF cases are symmetric around their mean
reionisation time ν = 0, as expected. We again see the asym-
metry mentioned above for the EMMA reionisation time fields:
the peak of the distributions is shifted towards the later times
and lower velocities, especially for smaller smoothings. This
asymmetry enables us to see the acceleration of the ionising
fronts as the EoR progresses. If we integrate along the y-axis,
we retrieve the PDF of the gradient norm, which is shown in
Fig. 10. The dashed lines represent the GRF measurements, the
GRF prediction is shown with the black line, and the crosses
are for the EMMA reionisation time fields. The GRF measure-
ments are superimposed on the predictions, and the EMMA mea-
surements slightly underestimate the gradients norm because of
the acceleration of the radiation fronts at the end of the EoR.
On both 2D and 1D distributions, the GRF measurements are
independent of the smoothing, as expected given that Eq. (15)
does not depend on the kernel size. For the EMMA measure-
ments, increasing the kernel size brings them closer to the
predictions.

Our measurements on the EMMA reionisation time field there-
fore reflect the increase in the ionising front velocities as time
increases, which is probably a strong cause of the asymmetry of
our reionisation time field distributions, and therefore of the non-
gaussianity of the process. In any case, this phenomenon mainly
impacts the small scales of treion(r) as it tends to be filtered out
with large smoothing.
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Fig. 9. Two-dimensional PDFs of the gradient norms with respect to the values of the fields of every run for each field and different smoothings
(R f ∈ {1, 2, 6}, see each column). The first row shows the EMMA reionisation times, and the second row their corresponding GRFs. The grey-scale
lines are the isocontours of the histograms. Here, ν represents the value of the normalised reionisation times.

3.3. Isocontour length: Size evolution of ionised and neutral
bubbles

3.3.1. Measurements on the reionisation time field

The isocontours of the reionisation time field tell us how far
radiation propagates at a specific time. The first row of Fig. 11
shows the isocontours of the EMMA reionisation time field and the
second row shows those of its corresponding GRFs. The three
columns correspond to the three smoothings applied to the slices.
The bluest contours represent the earliest times, and the reddest
ones represent the latest times. The number of contours per level
visually decreases as the size of the Gaussian kernel increases
(because small structures disappear when increasing R f ).

The isocontour length L of treion(r) informs us about the
extent of a reionisation time level. In Fig. 11, we can see that,
as the reionisation time increases, the isocontours first encom-
pass larger and larger regions (blue contours); when the mean
reionisation time ν = 0, they begin to encompass smaller and
smaller regions (red contours). Their length therefore contains
information on the size of the ionised and neutral bubbles, on the
percolation of the ionised bubbles, and on the different reionisa-
tion stages.

3.3.2. GRF theoretical expression

The average 2D isocontour length allows us to characterise the
levels of a field by a measurement of their length; moreover, it is
one of the Minkowski functionals (Schmalzing & Gorski 1998;
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w = || treion||
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Fig. 10. Filling factors of the gradient norms of the fields for the differ-
ent smoothings (in colours). The median of every run is computed for
each field. The dashed lines correspond to the GRFs, and the crosses are
for the EMMA reionisation time fields. The black lines are the theoretical
predictions. The shaded areas and the error bars represent the dispersion
around the median (1st and 99th percentiles) of the GRFs and treion(r),
respectively. Here, w represents the value of the gradient norm of the
reionisation times.

Matsubara 2003), which have often been used to quantify the
topology of the EoR (see e.g. Gleser et al. 2006; Lee et al. 2008;
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Fig. 11. Isocontours of 2D slices of the EMMA reionisation time field (first row) and of the 2D GRF obtained with the corresponding power spectrum
(second row). Each column corresponds to a different smoothing, with R f ∈ {1, 2, 6} from left to right. All fields are normalised. Eight levels of
contours are represented with the colours.

4 3 2 1 0 1 2 3 4
0.00

0.02

0.04

0.06

0.08

0.10

0.12 EMMA
GRF
Prediction
Rf = 1
Rf = 2
Rf = 6

Fig. 12. Distribution of the isocontour length for the different smooth-
ings (in colours). The median of every run is computed for each field.
The dashed lines correspond to the GRFs, and the crosses show the
EMMA reionisation time field. The black lines are the theoretical pre-
dictions. The shaded areas and the error bars represent the dispersion
around the median (1st and 99th percentiles) of the GRFs and treion(r),
respectively. Here, ν represents the value of the normalised reionisation
times.

Friedrich et al. 2011; Hong et al. 2014; Yoshiura et al. 2017;
Chen et al. 2019; Pathak et al. 2022). The isocontour length at

a level ν can be defined as follows (Schmalzing & Gorski 1998;
Matsubara 2003; Gay et al. 2012):

L(ν) =

〈
1

R0
δ(x − ν)(x2

1 + x2
2)1/2

〉
=

〈
1

R0
δ(x − ν)w

〉
, (17)

where δ is the Dirac delta distribution; x, x1, and x2 are the nor-
malised field and first derivatives as defined in Eq. (3); w2 =
x2

1 + x2
2; and R0 is defined in Eq. (6) and corresponds to the ratio

of the two first spectral momenta. This latter appears due to the
normalisation of the field and its derivatives.

As L depends both on the field and its first derivative, we
need to use P(x, x1, x2), as defined in Eq. (15), in order to calcu-
late it. This probability is expressed as follows:

2πP(x,w)wdxdw =
2
√

2π
e−(

1
2 x2+w2)wdxdw. (18)

Now, we compute the isocontour length by integrating the quan-
tity of Eq. (17) over the field and gradient norm values:

L(ν) =

∫ ∞

−∞

dx
∫ ∞

0
dw

2π
R0

P(x,w)δ(x − ν)w2 =
1

2
√

2R0
e−

1
2 ν

2
.

(19)

3.3.3. Comparison of the measurements and the predictions

The isocontours length L(ν) distributions are shown in Fig. 12
with dashed lines for the GRFs, black lines for the GRF pre-
diction, and crosses for the EMMA reionisation time field treion(r)
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for the three smoothings. The measurements of the GRF dis-
tributions closely follow the GRF prediction curves, as well as
the EMMA measurements. The contours grow in length until the
mean reionisation time ν = 0 and then their length decreases.
The measurements and predictions vary with the smoothing: the
larger the Gaussian kernel, the smaller the lengths of the iso-
contours. Indeed, with small R f , there are many more isocon-
tours per reionisation level (i.e. more small structures), making
a longer total length of isocontours than for large R f .

As expected, the evolution of isocontour length with time
traces the evolution of the ionised bubbles and neutral regions.
At the beginning of the EoR, the first ionised bubbles appear
because the gas starts to be ionised. These bubbles are seen as the
dark blue contours in the bottom-left panel of Fig. 11. As reioni-
sation progresses, the bubbles grow, traced by the larger contours
represented by light blue levels in the same figure. The contours
increase in length, and sometimes two small dark blue contours
merge into one, providing insight into the percolation process.
At ν ∼ 0, the isocontours have reached a maximum length, with
the ionised regions intertwined with the neutral regions. Subse-
quently, the isocontour length L decreases while the isocontours
start to encompass the last neutral regions, until L is close to
zero at the moment when there is almost no more neutral gas.
The process we mention here is very close to what Chen et al.
(2019) found, namely several phases during the reionisation pro-
cess, starting with an ionised bubble stage followed by an ionised
fibre stage where the bubbles merge into long fibres throughout
the box. Then, there is the sponge stage, which is the moment
when the ionised fibres are intertwined with the neutral fibres.
The process ends by a neutral fibre stage and a neutral bubble
stage.

With these statistics, the EMMA reionisation times do not
show significant imprints of non-gaussianities as their isocon-
tour length follows the GRF predictions, and more so for the
largest smoothing.

3.4. PDF of minima values: Reionisation seed counts

3.4.1. Measurements on the reionisation time field

In order to compare our simulations to the predicted reion-
isation seed count, we use the topological code DisPerSE
(Sousbie 2011), which allows us to extract the critical points of
a field. DisPerSE relies on the Morse theory to get topologi-
cal information from the fields by studying differentiable func-
tions. It is run on every 2D slice of reionisation time fields, as
well as on every GRF generated, with a 10−5 − σ persistence
threshold4.

We focus on the minima of the reionisation time field. We
call these the ‘seeds’, or equivalently the ‘sources’ of reionisa-
tion because these are the first regions where the gas is locally
reionised. We can measure the number of minima at a reioni-
sation time (i.e. the PDF of the treion(r) values at its minima).
Counting these reionisation seeds informs us about the evolu-
tion of the EoR: for example, if the PDF peaks at early times,

4 The value of the persistence parameter chosen here is very low in
order to apply no selection on the extracted critical points. It is a thresh-
old controlling the maximal distance between the field values in a
maximum–minimum pair within the extracted features by DisPerSE.
The persistence allows us to control the significance of the extracted
topological features, and therefore the smoothness of the features. It can
be used to override the noise of the input field. More details are given
by Sousbie (2011) or Thélie et al. (2022).

the majority of the reionisation seeds appear at the beginning
of the EoR, whereas if the PDF is uniformly distributed, then
sources steadily contribute to reionisation throughout the whole
EoR.

3.4.2. GRF theoretical expression

The PDF of the minima of the reionisation time field can also
be derived with the GRF theory. To compute it, we need a joint
PDF of the field that is dependent on the field, and on its first and
second derivatives. Indeed, the critical points correspond to the
zeros of the first derivative, and the sign of the second deriva-
tive gives us information on the type of critical point (it is pos-
itive for minima). The calculation is in six dimensions in 2D
and requires changes of variables to make the covariance matrix
diagonal:

u = −(x11 + x22), v =
1
2

(x11 − x22), ζ =
x − γu√
1 − γ2

, (20)

where γ = σ2
1/(σ0σ2), and x, x11, and x22 correspond to the

dimensionless field and derivatives as defined in Eq. (3). The
full calculation is presented in Gay (2011) and the resulting PDF
is the following:

P(ζ, x1, x2, u, v, x12) =
16

(2π)3 e−Q(ζ,x1,x2,u,v,x12), (21)

with

Q(ζ, x1, x2, u, v, x12) =
1
2
ζ2 + x2

1 + x2
2 +

1
2

u2 + 4v2 + 4x2
12, (22)

where x1, x2, and x12 are dimensionless derivatives of the field
as defined in Eq. (3).

The average extrema density is given by the following
expression (which is explained in Gay 2011):

∂next

∂ν
=

〈
1

R2
∗

∣∣∣x11x22 − x2
12

∣∣∣ δ(x1)δ(x2)δ(x − ν)
〉
. (23)

The non-trivial part of the minima distribution calculation is the
6D integration involved in Eq. (23). A version of this integra-
tion for 3D fields is detailed in Appendix A of Bardeen et al.
(1986). Additional constraints (on the eigenvalues of the hes-
sian matrix of the field) are required to make Eq. (23) a distribu-
tion of minima. Here, we only give the resulting distribution of
minima:

∂nmin

∂ν
=

exp
(
−ν2

2

)
√

2πR2
∗

1 − erf

 γν√
2(1 − γ2

 K1(ν, γ)

+
exp

(
−3ν2

6−4γ2

)
√

2π(1 − 2
3γ

2)R2
∗

1 − erf

 γν√
2(1 − γ2)(3 − 2γ2)

 K2

−
exp

(
−ν2

2(1−γ2)

)
√

2π(1 − γ2)R2
∗

[
1 + exp

(
ν2

2(1 − γ2)

)]
K3(ν, γ),

(24)
where R∗ is defined in Eq. (6), and

K1(ν, γ) =
γ2(ν2 − 1)

8π
, K2 =

1

8π
√

3
, and K3(ν, γ) =

γ(1 − γ2)ν
2(2π)3/2 .

(25)
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3.4.3. Comparison of the measurements and the predictions

The PDFs of the minima values are shown in Fig. 13, with
dashed lines showing the GRFs, full black lines the predictions,
and crosses the EMMA reionisation time field. The three smooth-
ings are represented (see the three R f values in different colours).
The theoretical PDFs are centred around early reionisation times
(i.e. ν < 0) because we look for minima. The GRFs and EMMA
treion(r) fields closely follow the expected curves. When the fields
are smoothed with a larger kernel (increasing R f ), the least sig-
nificant minima get smoothed out, decreasing the number of
counted minima. We also note that smoothing on larger areas
causes the distributions to be shifted towards smaller values of
the field (i.e. towards the beginning of the EoR).

With these results, we can see that when the EoR begins
(smallest ν), there are a few reionisation seeds that represent
the first radiation sources of the Universe. The further the reion-
isation progresses, the more the number of reionisation seeds
increases as more and more galaxies are created. This num-
ber continues to increase until some intermediate time, where
the minima distributions peak, which happens before the aver-
age reionisation time at the mean reionisation time ν = 0. The
distributions then decrease because more and more intergalactic
gas is reionised by the already existing radiation sources, until
it is all reionised. At this time, no more new seeds of ionisa-
tion front propagation appear, although there can be new sources
in already reionised places. The impact of the smoothing is that
only the most exceptional and early reionisation seeds remain in
the smoothed fields – because they are sufficiently significant –,
while the other ones are filtered out. This means that these excep-
tional seeds reionise the other ones in an inside-out way. Glob-
ally, there is little to no imprint of non-gaussianities with this
statistic within the error bars.

3.5. Skeleton length: Regions of ionising front percolation

3.5.1. Measurements on the reionisation time field

Thanks to DisPerSE, we can also extract the skeleton of treion(r)
from every reionisation time field and GRF using the same per-
sistence value as in Sect. 3.4. The skeleton is, as explained in
Sect. 1, the network formed by all the segments joining the max-
ima and saddle points together along the ridge of the field. In 2D,
the skeleton corresponds to the edges of the reionisation patches,
which are regions under the radiative influence of a reionisation
seed. These edges, or the place where the patches intersect, are
also the front lines between the radiation fronts of reionisation.
Looking at the skeleton (in black) in the top right panel of Fig. 2,
we can see that it seems to be preferentially aligned diagonally
on the map, which is due to diamond shapes produced around
sources that are caused by the M1 approximation used in EMMA
to model the radiative transfer (Aubert & Teyssier 2008).

We are interested in the length distribution of the skeleton
as a function of time. As an example, if the distributions are as
narrow as a Dirac distribution, then the reionisation seeds are
uniformly distributed in space, which in turn means that all the
radiation fronts encounter opposite fronts all at the same time. If
the Dirac distribution peaks at ν < 0, then the percolation hap-
pens at early times, and if it peaks at ν > 0, then the percolation
happens at late times. Otherwise, if the distribution is wider, the
seeds are not uniformly distributed and the merger of the reion-
isation patches happens throughout the reionisation process. If
there were many ionised bubbles at early times and then a sin-
gle growing bubble, then the distribution would be asymmetric.
As the skeleton is the place where radiation fronts meet, it is
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Fig. 13. Distribution of the critical points of the fields for the different
smoothings (in colours). The median of every run is computed for each
field. The dashed lines correspond to the GRFs, and the crosses are for
the EMMA reionisation time fields. The black lines are the theoretical
predictions. The shaded areas and the error bars represent the dispersion
around the median (1st and 99th percentiles) of the GRFs and treion(r),
respectively. The black dotted vertical lines represent the average of the
predictions. Here, ν represents the value of the normalised reionisation
times.

impacted by the front velocities: if the fronts propagate faster,
they can reach more-distant regions, meaning that the reionisa-
tion patches are larger. If ones assumes a simple 2D lattice of
circular patches of radius R, it is expected to have a total skeleton
length per unit surface of L ∼ 2πR/πR2 ∼ R−1; a scenario with
large patches should lead to small L values. Also, the accelerated
fronts can cause the percolation to happen more rapidly in the
remaining neutral regions, causing the distribution to decrease
more sharply at the end of the EoR, and to therefore be asym-
metric with respect to time. Generally speaking, these distribu-
tions tell us whether the ionising fronts percolate in a longer or
shorter period of time.

3.5.2. GRF theoretical expression

The analytical calculation of the skeleton-length distribution
has been described by several authors, such as Pogosyan et al.
(2009b), Gay (2011), Gay et al. (2012). The calculations are pre-
sented in detail by Pogosyan et al. (2009b) for example. In sum-
mary, the skeleton corresponds to all the points for which the
gradient is aligned with an eigenvector of the hessian of the field,
H = ∇∇F, following the gradient in the direction of the positive
eigenvalue of the hessian5. This definition can be mathematically
written as follows:H ·∇F = λ∇F, where λ is the positive eigen-
value of the hessian. In an equivalent way, a point is on a critical
line if s = det(H · ∇x, λ∇x) = 0, with the dimensionless field
x (= F/σ0). The skeleton-length distribution can therefore be
written as follows:
∂Lskel

∂ν
=

〈
1
R∗
δ(s)|∇s|δ(x − ν)

〉
, (26)

5 Returning to our representation of the topology through a mountain
landscape, the skeleton, and therefore the ridge lines, are referred to
as critical lines in topology. Walking on a ridge line is coming from a
pass and going in the direction that goes up to the peak: this means that
we follow the gradient in the direction of the positive eigenvalue of the
hessian. In addition, we note that, if we were to follow the gradient in
the direction of the negative eigenvalue of the hessian, we would be on
the anti-skeleton, aiming at reaching a minima.

A184, page 13 of 21



Thélie, E., et al.: A&A 672, A184 (2023)

4 3 2 1 0 1 2 3 4

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

dL
sk

el
/d

EMMA
GRF
Prediction
Rf = 1
Rf = 2
Rf = 6

Fig. 14. Distribution of the skeleton length of the fields for the different
smoothings (in colours). The median of every run is computed for each
field. The dashed lines correspond to the GRFs, and the crosses are for
the EMMA reionisation time fields. The black lines are the theoretical
predictions. The shaded areas and the error bars represent the dispersion
around the median (1st and 99th percentiles) of the GRFs and treion(r),
respectively. The black dotted vertical lines represent the average of the
predictions. Here, ν represents the value of the normalised reionisation
times.

with |∇s| giving the length of the critical lines, and R∗ given in
Eq. (6). The integration of Eq. (26) involves the PDF of the field,
and its first, second, and third derivative. The ‘stiff approxima-
tion’ allows us to neglect the derivatives of higher than third
order, which simplifies the calculations. The critical lines are
therefore considered to be relatively straight: the total length of
the skeleton may therefore probably be reduced with this approx-
imation. The final expression of the skeleton length per unit of
the total field surface is therefore

∂Lskel

∂ν
=

1
√

2πR∗
exp−

ν2
2

[
1

8
√
π

(
√
π + 2γν)

1 + erf

 γν√
2(1 − γ2)


+

√
1 − γ2

2
√

2π
exp

(
−

γ2ν2

2(1 − γ2

)]
,

(27)

with γ defined in Eq. (6).
The total skeleton length of a field can be obtained by inte-

grating the distribution of Eq. (27) over all values of ν. The
resulting expression is (Pogosyan et al. 2009b; Gay 2011)

Ltot =

1
8

+

√
2

4π

 1
R∗
. (28)

3.5.3. Comparison of the measurements and the predictions

The skeleton-length PDFs are shown in Fig. 14 with dashed
lines for the GRFs, full black lines for the predictions, and
crosses for the EMMA reionisation time field. The colours rep-
resent the three different smoothings (see the three R f values
in different colours). The ‘stiff approximation’ leads to discrep-
ancies between the measurements and the predictions. In addi-
tion, the analytical calculation of the skeleton length is local
and DisPerSE gives a global skeleton (Pogosyan et al. 2009b;
Gay et al. 2012), meaning that the predictions tend to under-
estimate the skeleton length by probably missing filaments.

For these reasons, we multiply our measurements by a nor-
malisation factor6 to match the prediction amplitude following
Gay et al. (2012). Still, the shape of the distributions seems to
be conserved, as the renormalised measurements on the GRFs
are almost perfectly superimposed on the predicted curves. The
measurements on the reionisation time fields from EMMA are also
relatively close to the predictions, especially when increasing R f .
The PDFs increase until reaching a maximum after the aver-
age reionisation time (ν > 0), before decreasing again. They
are not centred on the average reionisation time ν = 0; instead
they are shifted to later times when the smoothings increase, and
are asymmetric, except for the highest smoothings (R f = 6), for
which the measured EMMA distributions are ‘symmetrised’ thanks
to the smoothing, and therefore closer to the predictions.

With this statistic, we can again follow the evolution of the
EoR from the point of view of merging radiation fronts. Dur-
ing the first stages of the EoR, the ionised bubbles grow, and the
radiation fronts start to reach farther out, increasing the skeleton
length. At a reionisation time of ν > 0, the distribution peaks
when the ionising fronts percolate on the longer length; at this
moment there are large ionised fibres. Subsequently, most gas is
reionised, and there is less percolation of ionised bubbles, mean-
ing that fewer ionised fronts encounter other fronts, until the gas
is totally ionised at the end of the EoR (ν ∼ 3 as in the reioni-
sation history). With small smoothing kernel sizes (R f ∈ {1, 2}),
we retrieve the asymmetry that results from the increase in the
radiation front velocities at the end of the EoR, as expected.

4. Predictions from Gaussian random field theories
compared to 21cmFAST simulations

In this section, we compare the theoretical statistics described
in Sect. 3 to the 21cmFAST reionisation time field. For the sake
of brevity, we only show the 2D histograms of the field val-
ues and its gradient norms, the fraction of the ionised volume
of gas, and the skeleton length distribution for the 21cmFAST
reionisation time fields and the GRFs generated with the cor-
responding power spectrum. Indeed, the 21cmFAST reionisation
fields give similar results to the EMMA ones: the semi-analytical
generated field is generally close to the GRF predictions. This
latter field depicts an almost Gaussian behaviour in every statis-
tic and smoothing studied in this paper, as for the EMMA simu-
lation, albeit slightly less Gaussian for the minima and skeleton
length distributions. Again, increasing the Gaussian kernel size
(i.e. increasing R f ) tends to ‘gaussianise’ the reionisation time
field.

The first row of Fig. 15 shows the 2D histograms for treion(r)
and the second row shows the GRFs. Each column represents a
different Gaussian smoothing with R f ∈ {1, 2, 6}, respectively.
Figure 16 shows the fraction of ionised volume, and Fig. 17
shows the PDF of the skeleton length. Both figures show the
GRF predictions in black, the 21cmFAST reionisation time fields
in coloured crosses, and the GRF measurements in coloured
dashed lines. In the 21cmFAST field, there are more imprints of
non-gaussianities: the gradient norms decrease dramatically at
higher times (i.e. the front velocities increase dramatically). This
decrease was already the case in the EMMA simulation, but it is
much more pronounced in the present case. For the two smallest
smoothings, this non-gaussianity imprint also appears in the QHII
statistic (see Fig. 16), where the gas seems to be totally reionised

6 The normalisation factor is given by the ratio between the total length
of the measured skeleton over the one of the prediction. It depends on
the smoothing via the spectral parameter R∗ (see Eq. (28)).
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Fig. 15. Two-dimensional PDFs of the gradient norms with respect to the values of the fields of every run for each field and different smoothings
(R f ∈ {1, 2, 6}, see each column). The first row corresponds to the 21cmFAST reionisation times, and the second row to their corresponding GRFs.
The grey-scale lines are the isocontours of the histograms. Here, ν represents the value of the normalised reionisation times.

earlier than in the predictions or in the skeleton length PDFs
(see Fig. 17), where at later times, the distributions depart from
the predictions. Moreover, 21cmFAST does not explicitly model
radiation propagation (Zahn et al. 2011), which means that the
front velocities are not limited by the speed of light, for exam-
ple. This is not the case in EMMA, and could explain the small
gradient values at late times.

Nevertheless, even if the 21cmFAST measurements of
Figs. 16 and 17 are not superimposed on the predictions, they
remain within the measurement error bars. For the two small-
est smoothing kernels, the 21cmFAST skeleton length distribu-
tions (Fig. 17) peak at a lower skeleton length value than the
EMMA distributions (Fig. 14). This means that at a given time,
the skeleton lengths are smaller in the 21cmFAST simulation
than in the EMMA simulation: there are less percolation places
in the 21cmFAST simulation than in the EMMA simulation at a
given moment. As already mentioned, a shorter skeleton length
implies larger patches for a simple lattice model; this would be
consistent with the results obtained in Thélie et al. (2022), where
21cmFAST patches were usually found to be larger than the ones
found in the EMMA simulation for similar models.

5. Conclusion and perspectives

In this work, we extract topological statistics from 2D reioni-
sation time (and redshift in Appendix D) maps produced based
on an EMMA cosmological simulation and on a 21cmFAST semi-
analytical simulation (which have approximately the same reion-
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Fig. 16. Fraction of ionised volume of the fields for the different
smoothings (in colours). The median of every run is computed for each
field. The dashed lines correspond to the GRFs, and the crosses are for
the 21cmFAST reionisation time fields. The black lines are the theo-
retical predictions. The shaded areas and the error bars represent the
dispersion around the median (1st and 99th percentiles) of the GRFs
and treion(r), respectively. Here, ν represents the value of the normalised
reionisation times.

isation history). Reionisation time maps contain a wealth of spa-
tial and temporal information about the reionisation process. The
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Fig. 17. Distribution of the skeleton length of the fields for the differ-
ent smoothings (in colours). The median of every run is computed for
each field. The dashed lines correspond to the GRFs, and the crosses are
for the 21cmFAST reionisation time fields. The black lines are the the-
oretical predictions. The shaded areas and the error bars represent the
dispersion around the median (1st and 99th percentiles) of the GRFs and
treion(r), respectively. The black dotted vertical lines represent the aver-
age of the predictions. Here, ν represents the value of the normalised
reionisation times.

fraction of ionised volume (i.e. the filling factor of the treion(r)
map) contains information on the global timing and evolution
of the reionisation process. The PDF of the gradient norm map
informs us about the velocity of the radiation fronts. The aver-
age isocontour length of the field allows us to follow the perco-
lation process. The critical point distributions inform us about
the timing of the appearance of reionisation seeds. The skele-
ton lengths tell us about the moment, duration, and place of
the percolation of ionisation fronts. We also apply the GRF
theory (Rice 1944; Longuet-Higgins 1957; Doroshkevich 1970;
Bardeen et al. 1986; Gay et al. 2012) in the context of the EoR
to compare GRF predictions to measurements of these statistics
in simulations. We generate GRFs from a fitted power spectrum
of each simulation to check our simulation measurements.

We show that the topological statistics extracted from the
EMMA and 21cmFAST reionisation time maps are relatively close
to the GRF predictions, and are even closer when the maps
are smoothed on larger areas. This means that treion(r) can be
assumed to be Gaussian with a good level of approximation,
and that we have therefore developed a simple tool that allows
us to quickly generate fields related to reionisation. This result
is surprising in a context where many other EoR fields have
been shown to be highly non-Gaussian, such as the 21 cm or
the density fields (see e.g. Mellema et al. 2006; Iliev et al. 2006;
Majumdar et al. 2018; Ross et al. 2019). We find the major dif-
ferences between the EMMA cosmological simulation and the
21cmFAST semi-analytical simulation reionisation time fields to
be caused by the increase in the velocity of the fronts at the end
of the EoR.

The topological statistics applied to the reionisation time
field can therefore be used to characterise the evolution of
the EoR. The reasonable agreement between GRF predictions
and model measurements also suggests that it may be pos-
sible to generate histories of reionisation on the sky from
the simple knowledge of the power spectrum of the reionisa-
tion time field. Such generated histories would automatically

come with a set of topological statistics (number of reionisa-
tion seeds, skeleton length, Minkowski functionals, etc.) fully
determined by the power spectrum within the framework of
GRF theory. In addition, we show here that the reionisation evo-
lution can be inferred from the power-spectrum parameters (or
the spectral parameters R0, R∗, and γ) only, as long as the scales
are sufficiently large for the reionisation time field to be close to
a GRF. Finally, the topological statistics discussed here directly
depend on the power-spectrum parameters (amplitudes, slopes,
characteristic scales) in the GRF approximation. The physics of
the propagation of reionisation, which is presumably encoded
in the power spectrum, can be constrained even in situations where
the power spectrum cannot be easily estimated, for example
by fitting peaks, isocontours, or skeleton statistics with their
Gaussian predictions. As such, these statistics can be used to con-
strain the power spectrum, even in situations where the reionisa-
tion time fields suffer from noise or poor resolution, for example.

However, our studies show that this similarity with GRF pre-
dictions operates on large scales of about 8 cMpc/h, which is
similar to the SKA resolution at these redshifts. We still see small
imprints of non-gaussianities on the smaller scales. Indeed, at
the end of the EoR, the radiation fronts propagate increasingly
quickly because of the remaining neutral voids. This velocity
increase makes the process asymmetric with respect to the mean
reionisation time, and it is poorly reconstructed with the sym-
metric theory that is the GRF theory. As the regions that remain
to be ionised decrease in size as the EoR comes to an end, this
phenomenon remains at small scales, and the velocity increase
gets smoothed out with the largest smoothing. To take these
asymmetries into account, we could add non-Gaussian terms in
our expressions with the Gram-Charlier expansion (Gay et al.
2012; Cadiou et al. 2020). Also, it could be interesting to investi-
gate how reduced-speed-of-light approximations (Deparis et al.
2019; Ocvirk et al. 2019) influence the statistics presented here
and could lead to an even better agreement with GRF predic-
tions. In any case, our results are probably resolution-dependent
and we could verify this with models of higher resolution.

Finally, the reionisation time or redshift fields are not directly
observable. In the next decade, the SKA observatory will pro-
vide 21 maps of the EoR that will be of similar resolution to our
simulation smoothed with R f = 6. For this reason, we are creat-
ing a method to be presented in a future paper (Hiegel et al., in
prep.) to reconstruct 2D reionisation redshift maps from 2D 21
cm maps (that are taken at a given redshift), and from which we
can compute the reionisation time maps. With these maps, we
will be able to infer the topological characteristics of the reioni-
sation process as we do here with simulations.
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Appendix A: Reconstruction of reionisation times
from 21 cm

In this paper, we discuss the reionisation time field that informs
us about the time at which the gas is reionised at each posi-
tion. This field holds spatial and temporal information about the
reionisation process. Even though the field is primarily avail-
able only via EoR models, our aim is to be able to also work
on an ‘observed’ reionisation time field from 21 cm maps. For
example, the SKA will collect the (redshifted) 21 cm signal to
produce 2D images on the plane of the sky at many redshifts (or
frequencies) along the line of sight. These images will therefore
contain the differential brightness temperature δTb relative to a
background radio temperature, and map the distribution of neu-
tral hydrogen at different redshifts. On the left panel of Fig. A.1,
we show an example of a 21cmFAST 21 cm map at a redshift
of 11. In Hiegel et al. (in preparation), we aim to reconstruct
the reionisation times from this signal and this Appendix sum-
marises what has been achieved so far towards this objective.

We used a convolutional neural network (CNN) algorithm
that can learn and detect complex patterns within images. In par-
ticular, we developed a U-net that takes an image as input and
reconstructs another image as output: in our case, the inputs are
2D 21 cm maps at a given redshift (such as the one in the left
panel of Fig. A.1) and the CNN will learn to construct outputs

that will be as close as possible to the corresponding 2D reion-
isation time maps (such as the one in the middle panel of Fig.
A.1). We therefore constructed data sets of 50 21cmFAST sim-
ulations that have a size of 256 cMpc/h with a resolution of 1
cMpc/h, from which we extract 128×128 images. These images
are split into a training set on which the CNN will learn to recon-
struct treion(r) and a validation set to check its performance. In
that paper, we do not smooth the reionisation time maps.

With this U-net, we are able to reconstruct reionisation time
maps from observation-like maps with levels of correspondence
to the true maps that vary with the observational redshift. For
z ∈ [8− 12], 65% to 96% of treion(r) signal is well reconstructed.
The reconstructed map shown in the right panel of Fig. A.1 was
obtained with 21 cm maps taken at z = 11, which is one of the
redshifts that returns the best results. We can see that in the pro-
cess, and even for the best reconstructions, the small scales are
smoothed out of the predicted treion(r) maps compared to the true
ones, which is to be improved in future works. In Hiegel et al. (in
preparation), we quantify the performance of the CNN via many
diagnostics and show for example that we can extract an ionisa-
tion history that is consistent with the ones from the 21cmFAST
simulations. This means that we can extract information about
the evolution of the reionisation process and its topology simply
from a 21 cm map obtained at a single redshift.
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Fig. A.1. Example reconstruction of a 2D reionisation time map from a 2D map of the 21 cm signal taken at a redshift of z = 11. The left and
middle panels are the brightness temperature and reionisation time fields generated by a 21cmFAST simulation. The right panel is the reconstruction
of the reionisation times with the neural network designed to reproduce the true reionisation time map of the middle panel. Both treion(r) maps are
dimensionless.
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Appendix B: Calculation of the moment of a field
and its derivatives from a given power spectrum

In this work, we use the spectral moments σi (for i ∈ N) of the
field of interest in order to normalise our fields, or because they
appear in spectral parameters (defined in Eq. 6). These moments
are only defined by the power spectrum of the field. The zeroth-
order moment of a field is simply the standard deviation of the
field, the first-order moment is the standard deviation of the first
derivative of the field, and so on, as written in Eq. 2.

The moments can be expressed as follows (Bardeen et al.
1986; Pogosyan et al. 2009b; Gay 2011):

σ2
i =

2π
d
2

Γ
(

d
2

) ∫ ∞

0
k2iPkkd−1dk, (B.1)

where i ∈ N corresponds to the number of derivation of the field,
and d is the dimension of the field (in our case, d = 2). In our
case, we are interested in the power spectra of the reionisation
field, which are defined in Eq. 9, and which have two slopes
in logarithmic scales (in his thesis, Gay (2011) presented the
calculation for a power spectrum with one slope in logarithmic
scales). To do so, we need the gamma functions, defined below:

γ(a, x) =

∫ x

0
ta−1e−tdt and Γ(a, x) =

∫ ∞

x
ta−1e−tdt. (B.2)

The integral within the moments can then be separated into two
integrals where the cut is at the threshold kthresh separating the
two parts of the power spectrum:

σ2
i =

2π
d
2

Γ
(

d
2

) [∫ kthresh

0
k2iPkkd−1dk +

∫ ∞

kthresh

k2iPkkd−1dk
]

=
A22π

d
2

Γ
(

d
2

) [
A1

A2

∫ kthresh

0
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f k2
dk

+
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f k2

dk
]

=
A22π

d
2

Γ
(

d
2

) [
A1

A2

 1
√

2R f

d+2i+n1 ∫ 2R2
f k2

thresh

0
k

d+n1
2 −1ekdk

+

 1
√

2R f

d+2i+n2 ∫ ∞

2R2
f k2

thresh

k
d+n2

2 −1ekdk
]
.

(B.3)

Now using the gamma functions defined above, we have the fol-
lowing expression for the spectral moments:

σ2
i =

A22π
d
2

Γ
(

d
2

) [
A1

A2

 1
√

2R f

d+2i+n1

γ

(
d + n1

2
+ i, 2R2

f k
2
thresh

)

+

 1
√

2R f

d+2i+n2

Γ

(
d + n2

2
+ i, 2R2

f k
2
thresh

)]
.

(B.4)

The moments σ2
i have the same units as the power spectrum,

but it is worth mentioning that the spectral parameters R0, R∗,
and γ remain dimensionless. We also note that they are only
dependent on the dimension and the power spectrum parameters:
σ2

i = σ2
i (d, A1, n1, A2, n2,R f ).

Appendix C: Calculation of the PDF of the gradient
norm of a field

Our fields of interest being Gaussian, we reiterate that their PDF
can be written as follows:

P(x)dnx =
1

(2π)n/2 · det(C)
1
2

exp
(
−

1
2

x ·C−1 · x
)

dnx, (C.1)

where x is a n-D vector function of the position and C = 〈x ⊗ x〉
is the covariance matrix. To compute a PDF depending on the

field and its first derivative, we use x =

 x
x1
x2

.
The covariance matrix of a 2D field F is the following:

C =


〈
F2

〉
〈F ∇1F〉 〈F ∇2 F〉

〈∇1F F〉
〈
(∇1F)2

〉
〈∇1F ∇2F〉

〈∇2F F〉 〈∇1F ∇2F〉
〈
(∇2F)2

〉


=

σ
2
0 0 0

0 1
2σ

2
1 0

0 0 1
2σ

2
1

 .
(C.2)

Using the normalised variables x, x1, and x2, the covariance
matrix becomes:

C =

1 0 0
0 1

2 0
0 0 1

2

 . (C.3)

All the components of the PDF are now known, and after
calculations, it is expressed as follows (and Eq. 15 is retrieved):

P(x, x1, x2)dxdx1dx2 =
2

(2π)3/2 e−(
1
2 x2+x2

1+x2
2)dxdx1dx2. (C.4)

As we are interested in PDFs that only depend on the first
derivative of F, an integration on the field values x is done

(thanks to the Gaussian integral
∫ ∞
−∞

e−αy
2
dy =

√
π
α

):

P(x1, x2)dx1dx2 =
1
π

e−(x2
1+x2

2)dx1dx2. (C.5)

Moreover, we are interested in the norm of the gradient of the
field, which is why we make a change of variable and introduce
w2 = x2

1 + x2
2. This is, more precisely, a change of variables in 2D

polar coordinates:

∀θ ∈ [0, 2π],
{

x1 = w cos(θ),
x2 = w sin(θ).

(C.6)

With this change of variable, and as the PDF is independent of
the introduced angle θ, we can write:

P(x1, x2)dx1dx2 = P(w, θ)wdwdθ = 2πP(w)wdw = 2we−w
2
dw,

(C.7)

with a rewritten PDF depending only on the norm of the gradient
of the field:

P(w) =
1
π

e−w
2
. (C.8)
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Appendix D: Reionisation redshift field analyses

The reionisation time and redshift fields are related to the same
expression linking time and redshift:

z(t) =
1

a(t)
− 1, (D.1)

with a the scale factor. With this definition, they have opposite
monotonies, which has consequences for a topological study.
Indeed, there are small differences between the two fields :
treion(r) increases more rapidly as zreion(r) decreases, and this
causes some distinction in gaussianity analyses.

The aim of this Appendix is only to present a few results
for the reionisation redshift field (zreion(r)), which presents some
differences from the reionisation time field. To remain brief, we
focus on the EMMA zreion(r). From the same simulation described
in Sect. 2.1, we can extract 100 slices of the reionisation redshift
field that are also smoothed with a Gaussian kernel of standard
deviation R f ∈ {1, 2, 6}, and normalised as below:

zreion =
z∗reion − z∗reion

σ
z∗reion
0

, (D.2)

with z∗reion the mean of each field. σz∗reion
0 is the expected standard

deviation of the field. The average and standard deviation of the
reionisation redshift fields are given in Table 1. The power spec-
trum of the reionisation redshift field is also fitted as described
in Sect. 2.1, and the resulting parameters are shown in Table 3.

We again generate 100 GRFs with the proper power spec-
trum to compare zreion(r) to them; these GRFs are also smoothed
and normalised as described in Sect. 2.4. The resulting predic-
tions for the reionisation time field are also calculated for the
reionisation redshift field and shown below. The expressions are
slightly modified for zreion(r), changing some integral limits or
signs.

Filling factor
From Eq. 11, we can calculate the fraction of ionised vol-

ume of the reionisation redshifts in the same way as we did for
the reionisation times. Here, the number of values that have a
redshift higher than the threshold is equivalent to the number
of cells that have already reionised. This therefore corresponds
directly to the fraction of ionised volume QHII, as written below:

QHII(ν) =

∫ ∞

ν

P(x)dx =
1
2

erfc
(
ν
√

2

)
. (D.3)

Filling factor of the gradient norm
As in the previous section, the filling factor of the gradient

norm of redshift fields can be obtained from the joint PDF of Eq.
15, and is defined as follows:

f (ν) =

∫ ∞

ν

2πP(w)wdw = e−ν
2
. (D.4)

Isocontour length
As it is symmetric, the isocontour length is the same for the

reionisation time and redshift fields, for which the expression is
reiterated below:

L(ν) =
1

2
√

2R0
e−

1
2 ν

2
. (D.5)

Distribution of the maxima
The maxima of the reionisation redshift slices and the GRFs

can be extracted with DisPerSE, as explained is Sect. 3.4. Their
distribution can be theoretically calculated the same way as for
the minima (as described in Sect. 3.4.2). We obtain the following
distribution, where only some signs have changed:

∂nmax

∂ν
=

exp
(
−ν2

2

)
√

2πR2
∗

1 + erf

 γν√
2(1 − γ2

 K1(ν, γ)

+
exp

(
−3ν2

6−4γ2

)
√

2π(1 − 2
3γ

2)R2
∗

1 + erf

 γν√
2(1 − γ2)(3 − 2γ2)

 K2

+
exp

(
−ν2

2(1−γ2)

)
√

2π(1 − γ2)R2
∗

[
1 + exp

(
ν2

2(1 − γ2)

)]
K3(ν, γ).

(D.6)

Distribution of the anti-skeleton length
As the reionisation redshift field has an opposite monotony

compared to the reionisation time field, the skeleton of treion(r) is
equivalent to the anti-skeleton of zreion(r). The anti-skeleton joins
minima together passing through saddle points, and can also be
extracted from the fields thanks to DisPerSE. The distribution
of the anti-skeleton lengths are calculated in the same way as
the skeleton-length distribution. Gay et al. (2012) informs us that
this results in the same expression as that for the skeleton length
(see Eq. 27) but with ν that becomes −ν, as follows:

∂Lskel

∂ν
=

1
√

2πR∗
exp−

ν2
2

[
1

8
√
π

(
√
π − 2γν)

1 + erf

 −γν√
2(1 − γ2)


+

√
1 − γ2

2
√

2π
exp

(
−

γ2ν2

2(1 − γ2

)]
.

(D.7)

Results
In this short result section, we only show figures that high-

light the discrepancies between the reionisation time and red-
shift fields. We begin with the 2D histograms of the gradient
norm of zreion(r) versus zreion(r) for the EMMA simulation in Fig.
D.1. On the first row, there are the cosmological fields, and on
the second row, there are the GRFs. There is again a ‘symmetri-
sation’ when the size of the Gaussian kernel increases (i.e. R f
increases), although it is less pronounced than for the reionisa-
tion time field (see Fig. 9). On Fig. D.2, we show the maxima
PDF of the EMMA reionisation redshift fields (with the crosses)
of the corresponding GRFs (with the dashed lines), and the pre-
diction (in black). Comparing these to the minima PDF of the
EMMA reionisation time field (see Fig. 13), we can see that the
treion(r) minima PDFs are closer to the GRF ones than the zreion(r)
maxima PDFs, which again shows that treion(r) is more Gaus-
sian than zreion(r). With these PDFs, we can again see the effect
of the non-linear relation between zreion(r) and treion(r), which
affects the x-axis. Indeed, for the smallest smoothing, the differ-
ence between the time and redshift of reionisation is evident:
zreion(r) underestimates the number of critical points (that are
reionisation seeds) with respect to treion(r). These figures glob-
ally show that the reionisation time field is more Gaussian than
the reionisation redshift field, which is due to the non-linear rela-
tion between time and redshift, and which affects all the statistics
studied in this paper.
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Fig. D.1. Two-dimensional PDFs of the gradient norms with respect to the values of the fields of every run for each field and different smoothings
(R f ∈ {1, 2, 6}, see each column). The first row corresponds to the EMMA reionisation redshifts, and the second row to their corresponding GRFs.
The grey-scale lines are the isocontours of the histograms. Here, ν represents the value of the normalised reionisation redshifts.
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Fig. D.2. Distribution of the critical points of the fields for the different
smoothings (in colours). The median of every run is computed for each
field. The dashed lines correspond to the GRFs, and the crosses are for
the EMMA reionisation redshift fields. The black lines are the theoretical
predictions. The shaded areas and the error bars represent the dispersion
around the median (1st and 99th percentiles) of the GRFs and treion(r),
respectively. The black dotted vertical lines represent the average of the
predictions. Here, ν represents the value of the normalised reionisation
redshifts.
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