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Abstract 19 

Grape berry ripening is a complex process, and predicting the quality of wine starting from the 20 

ripening kinetics of grape berries is a challenging task. To tackle this problem, we present a 21 

decision-support system based on coupling expert know-how with probability laws 22 

encapsulated in a probabilistic model, a dynamic Bayesian network. The proposed approach 23 

predicts the ripening kinetics of grape berries starting from initial measurements and weather 24 

conditions, and then exploits the information to evaluate the potential of the wine that will 25 

produced from them. The results show that the dynamic Bayesian network predicts the total 26 

acidity concentration and the sugar content of the grape berries with a small amount of error 27 
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(mean of 6% for total acidity concentration, 10% for sugar content) that is considered satisfying 28 

by the experts, making it possible to predict the ideal moment for harvesting the grapes up to 29 

two weeks in advance. Moreover, feeding the results from the probabilistic model to a fuzzy 30 

expert model, the predicted trajectories are compared to an ideal trajectory described by wine 31 

experts and formalized mathematically. From this comparison, it is possible to anticipate drifts 32 

in wine sensory quality right from the step of grape ripening. 33 

 34 

Keywords: Chenin Vineyard, Decision Support System, Dynamic Bayesian Network, Fuzzy 35 

Logic, Grape Berry Ripening, Model Coupling, Wine Quality. 36 

 37 

Highlights 38 

 We propose a system to predict grape berries ripening and wine potential. 39 

 The tool is based on a coupling between expert know-how and probability laws. 40 

 Predictions from the system are considered satisfying by the experts. 41 

 RMSE is less than 10% for all variables. 42 

 The predictions help experts decide the date of harvesting. 43 

 44 

 45 
 46 

1. Introduction 47 

The ripening of grape berries is a complex process, including physicochemical and biochemical 48 

reactions. Still more complex is predicting wine quality from the grape berries maturation 49 

kinetics. Reactions during the ripening depend on multiple factors, with weather being the most 50 

influential, especially in the last weeks preceding the harvest. Since berries ripeness plays a 51 

major role in determining wine potentialities, correctly predicting the ripening process and 52 

determining the ideal harvesting date is a significant challenge for the wine industry. While the 53 



expert consensus is that choosing an appropriate moment for harvesting has a considerable 54 

impact on the final quality of the wine, the exact effect has still not been exactly quantified 55 

(Van Leeuven, 2010). In this particular context, we define the wine potential of the grapes as 56 

their capacity of producing a wine of at least acceptable quality, provided that the rest of the 57 

processing is performed correctly. In other words, a good wine potential of the grapes is a 58 

necessary, but not sufficient condition for obtaining high-quality wine.  59 

The ripeness of grape berries can be evaluated resorting to different measurable quantities, for 60 

example their sugar content, the color of their seeds, or their sensorial characteristics. Some of 61 

these quantities can be measured exactly resorting to chemical means, while others require an 62 

expert evaluation on a symbolic ordinated scale. In the last decade, new sensors have been 63 

developed to easily measure grape characteristics such as color, sugar content, and aromatic 64 

potentialities, (Ben Ghozlen et al., 2010), (Geraudie et al., 2010). Nevertheless, most of the 65 

analyses are in practice still carried out in laboratory, with time-consuming and expensive 66 

procedures required for a close monitoring of the grape berries ripeness and never used for on 67 

line prediction. Literature reports relatively few contributions attempting to characterize the 68 

link between the grape ripeness and a global indicator of wine quality. Interesting studies like 69 

(Niimi et al., 2021) have worked on parameters determined by preprocessing techniques for 70 

mid-infrared (MIR) spectra of grape berries to model sensory properties of different wines, 71 

using Partial Least Squares (PLS) regression models. But the problem is also the cost and time 72 

consuming of such approaches, considering the equipment needed to acquire the data. Some 73 

studies like (Jensen et al., 2008) have linked grape phenolic composition to wine phenolic 74 

composition and color of wines using multivariate analysis. Nevertheless it is in this case too 75 

specific enough to be used directly for decision help directly at the field. 76 

 77 



On the other hand, the development of mathematical models to predict or characterize different 78 

mechanisms taking place during winemaking has been widely treated in literature. For example 79 

the tool « Epicure » developed by the French Vineyard Institute (IFV) for managing 80 

phytosanitary risks (Raynal, et al. 2010), or a work on the prediction of kinetics of fermentation 81 

in wine processes like (Goelzer et al., 2009). For the grape ripeness prediction, a model has 82 

been developed by (Baudrit, et al., 2015), (Perrot, et al., 2015) linking chemical indicators to 83 

weather conditions on Cabernet Franc grape berries. The approach presented in this paper is an 84 

extension of this latter work, with several important differences: (i) the target grape berries are 85 

for the Chenin wine, and this also reflects on the different structure of the dynamic Bayesian 86 

network; (ii) in contrast with the approach outlined in (Perrot, et al., 2015), no expert system is 87 

used to integrate the data set, as the available quantity of data is larger in this case; (iii) for the 88 

first time, a link between variables related to grape berries ripening and wine quality is 89 

provided, thanks to a fuzzy system. 90 

Few other works have been developed in this domain, except PLS approaches (Claverie, et al., 91 

2008) to link climatic and pedologic variables to chemical indicators of ripeness. Nevertheless, 92 

those approaches used mathematical classifiers to link two different spaces: climatic and 93 

pedologic ones but are not models of prediction of the kinetics of the physicochemical 94 

compounds. An interesting study have been developed by (Petropoulos et al., 2017), based on 95 

the development of a fuzzy tool linking different physicochemical and sensory parameters of 96 

the grape berries to the wine quality. It was nevertheless developed for wine classification and 97 

not for decision support during harvesting. 98 

 99 

In this work, we present a novel decision-support system able to predict 15 days before the 100 

maturation process, considering chemical indicators, by observing the weather conditions. The 101 

predicted indicators’ values are then used to evaluate the wine potential, according to the 102 



winemaker goal. This model relies on probability laws encapsulated in a dynamic Bayesian 103 

network formalism learned on available data and a fuzzy expert model based on expertise. 104 

 105 

2. Materials and Methods 106 

2.1 Experimental data 107 

Experimental data are gathered by the IFV institute from Chenin vineyards located in the French 108 

region of “Vallee de la Loire” over several years, with weekly sample collections from July to 109 

September before grape harvesting season. The data range from 1989 to 2017 (more precisely 110 

1989, 1995-2001, 2016-2017) with land plots distributed between two geographical places, 111 

“Anjou” and “Touraine” (see Figure 1), for a total of 30 vineyards and between 2 and 5 points 112 

by kinetics for each vineyard according to the year of the experiment. 113 

 114 

Figure 1: The geographical distribution of the Chenin vineyards considered in this work. 115 

2.2 Variables of the model 116 

The inputs used for the probabilistic model used in proposed approach are weather conditions 117 

(see Table 1): Temperature (°C), rainfall (mm) and relative humidity (%) were supplied by 118 

Meteo France meteorological stations located near and/or on the vineyards. Insolation (quantity 119 

of solar radiation, in hours) was provided by one meteorological station located at Montreuil-120 

Bellay, in the middle of the geographical area of the study. 121 

 122 



 123 

Table 1: Weather conditions, used as inputs of the proposed approach. With HRmin is the 124 

lowest air humidity observe during the week, HRmax is the highest air humidity observe during 125 

the week, Tmin is the lowest air temperature observe during the week, Tmax is the highest air 126 

temperature observe during the week 127 

 128 
 129 

 130 

The outputs of the probabilistic models include both physicochemical and sensory 131 

measurements. The physicochemical measurements have been selected after a discussion with 132 

wine experts, as those considered essential: sugar content (s) measured in g/l, total acidity 133 

concentration (ac) in gH2SO4/l, and malic acid concentration (ac_m) in g/l, (Barbeau, 2003), 134 

(Riou, 1994). Their variations during a week (defined as the difference between data collected 135 

in two subsequent time points) are also considered: variation in sugar content (Var_s), variation 136 

in total acidity concentration (Var_ac), and variation in malic acid concentration (Var_ac_m). 137 

Each week, a lot of 200 berries of Chenin, with pedicels, were randomly selected from each 138 

vineyard according to the method of Vine and Wine French Institute (ITV-France) (Cayla et 139 

al., 2002) in order to limit the effects of the grape heterogeneity. With the set of 200 berries of 140 

each sampling, a crushing was realized with a blender, then the must was filtered through a 141 

Whatman paper filter. Sugars content (g/l) was measured with a refractometer; total acidity 142 

concentration (g/l eq. H2SO4) was measured by the titration method and malic acid (g/l).  143 



 144 

2.3 Expert knowledge 145 

Two types of experts were interviewed: 3 scientists and 2 winegrowers working on the two 146 

areas considered in this study. Each expert was interviewed during one or two sessions 147 

(spanning 2–3 hours each). Each of the elicitation sessions was attended by one expert and one 148 

or two interviewers. Three hours were allocated for each interview. Notes were taken and 149 

audiotapes were recorded. After each session, the tapes were re-played several times to make 150 

sure the notes were accurate and complete. To build the interview, adapted methods proposed 151 

by (Sicard et al., 2011) were applied. The elicitation process was based on a set of 152 

predetermined structured open-ended questions used to direct the interviews. Questions were 153 

designed according to techniques based on survey methods with the aim of optimizing the 154 

expression of expert knowledge. The objective was to ask clear and simple questions without 155 

ambiguities and that did not implicitly direct the expert towards a specific answer. Questions 156 

were also asked in such a way to encourage simulation of the expert’s situation using the 157 

explicitation interview method developed by (Vermersch, 1994) (i.e. cognitive interviews, 158 

(Moody, Will, & Blanton, 1996)). We paid particular attention to context reinstatement as 159 

recommended in these methods. This involves having the expert think about and describe their 160 

feelings during the episodes being recalled. 161 

Previous works (Perrot et al., 2015) had access to a larger number of experts, but it is important 162 

to remark that in the past the aim was to integrate the available data on grape berries ripening 163 

with an expert system, while in the current approach the objective is to link grape berries 164 

ripening kinetics to wine quality, creating a completely novel model. For this particular task, 165 

the availability of domain experts is relatively scarcer. 166 

 167 



2.4 Mathematical formulation 168 

The predictive model used in this work is a coupling between two models: a probabilistic 169 

graphical model, dynamic Bayesian networks in particular, and a fuzzy expert model. The first 170 

one is relevant to formalize mathematically, the implicit information, contained in the available 171 

experimental data. With the second one, it is possible to interact with the wine experts of Chenin 172 

vineyards and ultimately formalize the explicit knowledge, encoded through expert interviews 173 

and know-how. 174 

2.4.1 Introduction to the modeling approaches 175 

The first model used in our approach is a Dynamic Bayesian Network (DBN), a probabilistic 176 

graphical model able to describe phenomena developing over time (Jensen & Nilsen, 177 

2010)(Pearl, 1988). The structure of a DBN is an oriented graph, representing correlations 178 

between variables, which in our case was created by interacting with human experts of the 179 

Chenin wine. Once the structure of a DBN is fixed, it is then possible to compute its parameters 180 

starting from a training dataset: the parameters are conditional probability tables, assessing the 181 

probability for variables taking a specific value, knowing the values of the variables they 182 

depend on. For our specific application, the values of the variables need to be discretized. 183 

Differently from a classical Bayesian Network, a DBN makes it possible to estimate variable 184 

values over several subsequent time steps. In our case, each time step is equivalent to one week 185 

in the grapes ripening processes. DBNs have been successfully adopted for several agri-food 186 

applications (Baudrit, et al., 2015) (Perrot, et al., 2015). 187 

Coupled to this first model, a fuzzy expert model is set up to mathematically describe the 188 

explicit knowledge of the experts concerning the complex link between the maturation of the 189 

grape berries and the wine potential. 190 



 191 

2.4.2 The DBN algorithm 192 

More formally, a DBN is a graph-based model of a joint multivariate probability distribution, 193 

capturing properties of conditional independence between variables. Like a BN, a DBN is a 194 

directed acyclical graphs (DAG) where the nodes represent variables, and the missing arcs 195 

represent conditional independences between variables. In DBNs in particular, nodes 𝑋(𝑡) =196 

(𝑋1(𝑡), … , 𝑋𝑛(𝑡)), represent 𝑛 discrete random variables, indexed by time 𝑡 , providing a 197 

compact representation of joint probability distribution 𝑃 for a finite time interval [1, 𝜏]. In 198 

other words, the joint probability 𝑃 can be written as the product of the local probability 199 

distribution of each node and its parents, as follows, Equation 1: 200 

𝑃(𝑋(1), … , 𝑋(𝜏)) =  ∏ ∏ 𝑃(𝑋𝑖(𝑡)|𝑈𝑖(𝑡))𝜏
𝑡=1

𝑛
𝑖=1  [1] 201 

Where 𝑈𝑖(. ) denotes the set of all parents of node 𝑋𝑖(.), and 𝑃(𝑋𝑖(. )|𝑈𝑖(. )) describes the 202 

conditional probability function associated with random variable 𝑋𝑖(. ) given the values of 𝑈𝑖(. ) 203 

. 𝑋𝑖(𝑡) is termed “slice”, and it represents the set of all variables at time 𝑡. This factorization of 204 

the joint probability distribution, based on information from the graph, makes it possible to 205 

straightforwardly represent large models, and use them for practical applications. In other 206 

words, DBNs represent the beliefs of possible trajectories of the variables involved in a dynamic 207 

process.  208 

In order to make the problem treatable, DBNs assume the first-order Markov property: the 209 

parents of a variable in time slice 𝑡 must appear in either slice 𝑡 − 1 or 𝑡. As a consequence, for 210 

the first-order homogeneous Markov property, the conditional probabilities are time-invariant, 211 

meaning that 𝑃(𝑈(𝑡)) = 𝑃(𝑈(2)) ∀ 𝑡 ∈ (1, 𝜏). In order to fully specify a DBN, we will then 212 

need to define the intra-slice topology (within a time slice), the inter-slice topology (between 213 

two time slices), as well as the parameters (i.e. conditional probability functions) just for the 214 



first two time slices. The structure of a model can be explicitly built on the basis of knowledge 215 

available in the literature and parameters can be automatically learned without a priori 216 

knowledge on the basis of a dataset, a process termed parameter learning. The techniques for 217 

learning DBNs are generally extensions of the techniques for learning BNs. Specialized 218 

literature reports several methods to learn the structure or the parameters of a DBN from 219 

substantial and/or incomplete data (Geiger & Heckerman, 1997); (Heckerman, 1999). In our 220 

work, the topology of the graph is obtained from expert knowledge; for parameter learning, we 221 

consider the simplest and most commonly adopted methodology, simply evaluating the co-222 

occurrence rate of values of variables in the training data. 223 

Once a DBN is fully specified, it can be used to estimate marginal probabilities for target 224 

variables, through a process also known as Bayesian inference (Equation 2): 225 

𝑃(𝑋(𝑡)/𝑂(𝑡′) = 𝑜(𝑡′)), ∀ 𝑡′ ∈ [1, 𝜏]     [2] 226 

Where 𝑋 is a set of variables whose values we are interested in predicting, and 𝑂 is a set of 227 

variables whose values are known (for example, in food processing 𝑋 might be the variables 228 

representing the physicochemical properties of a product and 𝑂 might be the variables 229 

representing the observed environmental conditions). In general, given a way of calculating 230 

𝑃(𝑋(𝑡)|𝑂(𝑡′)) from the knowledge of 𝑃(𝑋(𝑡′)|𝑂(𝑡)), inference in a DBN is performed using 231 

recursive operators and Bayes’ theorem, updating the belief state of the DBN as new 232 

observations become (Murphy, 2002). 233 

2.4.3 The fuzzy expert algorithm 234 

The second model used in our approach comes from the theory of fuzzy sets. Fuzzy logic was 235 

originally proposed by (Zadeh, 1965), and it is an extension of set theory by the replacement of 236 

the characteristic function of a set by a membership function whose values range between 0 and 237 

1. Soft transitions between sets are thus obtained and make it possible to represent gradual 238 



concepts, as well as the representation and the inference of linguistic rules stemming from 239 

expertise. This type of formalism is particularly adapted for taking human linguistic and 240 

reasoning processes into account (Perrot et al., 2006). Fuzzy models can be written in an easy 241 

form to understand for an expert, ie linguistic rules. Similarly, an essential fuzzy notion is the 242 

fuzzy membership function. A fuzzy set E in universe of discourse U can be defined by 243 

Equation 3: 244 

  
 

E u, (u) \ u E

:U 0,1

E

E

 






  [3] 245 

μE is thus the membership function of set E, and it represents the set of membership grades 246 

(μE(u)) of a numerical variable u mapped to a fuzzy set E. This function makes it possible to 247 

link real numerical variables to a given linguistic variable. The value of the membership grade 248 

is a real number within the interval [0;1], expressing the translation from one space X to another 249 

space Y. It was set up with the experts. This notion gives the way to link a numeric variable to 250 

a linguistic variable often manipulated by the operators. In fact, fuzzy memberships are used to 251 

describe how much an object belongs to a linguistic notion. Going back to an example: 252 

Suppose a value of sugar of 195 g/l belonging to the symbol “not target” with a membership 253 

degree of 0.5 and to the symbol “target” with a membership degree of 0.5. It would mean that 254 

the maturation will be mitigated for this value of sugar.  255 
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Membership functions can be expressed through various representations. The representations 257 

most widely used are triangular (Equation 4) for a given triplet series of parameters a1, a2, a3. 258 

On the basis of the definition of the fuzzy subsets, the fuzzy Tnorm, is used in this paper to 259 

aggregate the information associating the three input variables of the fuzzy algorithm: the sugar 260 

content, the total acidity concentration and the malic acid concentration, to the output: the wine 261 

potential. Those input variables are joined by a connector “AND” (a classical mathematical 262 

logical interpretation of the join) using the fuzzy Tnorm (Equation 5). 263 

Tnorm(μ0,μ1,...,μn) =∏μi     [5] 264 

Where μi are the input variables (three in our case study: sugar content, total acidity and malic 265 

acid concentrations). 266 

 267 

2.4.4 Models evaluation 268 

The DBN previously introduced will be evaluated with a leave-one-out cross-validation 269 

(LOOCV), where the model is repeatedly trained on the whole dataset, minus one sample, and 270 

the remaining sample is used for testing. The procedure is repeated until each sample has been 271 

used for testing. Considering the mean and standard deviation on the results of a LOOCV 272 

provides a better estimate of the model’s capabilities than just considering a random split of the 273 

available data between a training set and a test set (Geisser, 1993). 274 

For the choices made in this study, before training the model, it is necessary to discretize the 275 

real-valued variables in the dataset (see subsection 3.1.1). However, in order to evaluate the 276 

performance of the model’s predictions against the ground truth, the results of the model will 277 

have to be converted back into real values. Recalling that the predictions of a DBN model for 278 

variable 𝑥 will consist in a series of probabilities 𝑃𝑖 for each possible discrete class 𝑖 =279 



0, 1, … , 𝑛𝑥 associated with variable 𝑥 , the predicted outcome can be converted to a real value 280 

using the following Equation [6]: 281 

𝑥𝑖𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = ∑ 𝑥𝑖̅𝑃𝑖
𝑛𝑥
𝑖=1        [6] 282 

Where 𝑥𝑖̅ is the average value of all samples of variable 𝑥 that fall under class 𝑖. 283 

The first metric used to evaluate the quality of the predictions against the ground truth is the 284 

root mean squared error (RMSE), Equation [7]: 285 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑥𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁
𝑖=1 − 𝑥𝑖

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)²  [7] 286 

Where 𝑁 is the number of predictions considered for target variable x , and 𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 indicates 287 

its observed value. In this study, we will also use the relative RMSE (RRMSE) that expresses 288 

the RMSE as a percentage of the range of observed values for the target variable, and it is thus 289 

more informative as an error metric (Equation 8): 290 

𝑅𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

(𝑥𝑚𝑎𝑥
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)−(𝑥𝑚𝑖𝑛

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
× 100     [8] 291 

 292 

Where 𝑥𝑚𝑎𝑥
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and 𝑥𝑚𝑖𝑛

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 are the highest and lowest values observed for variable x, 293 

respectively. 294 

For the fuzzy algorithm, the results are evaluated as classification accuracy in percentage, 295 

expressing the number of points classified correctly within the range of precision fixed by the 296 

experts, over the total amount of points classified.  297 

3 Results 298 

The results presented in this section include both the numerical assessment of the models’ 299 

predictions, and the trained models themselves. The models are considered an output of this 300 

work, as they will be exploited by experts in the field to predict the best moment for harvesting 301 

grapes, once they have reached the proper degree of ripeness. 302 



3.1 Description of the Chenin vineyard global model 303 

  304 

The Chenin vineyard model is based on a coupling between a DBN expressing the kinetics of 305 

ripening of the Chenin grape berries and a Fuzzy expert model expressing the expert knowledge 306 

on empirical laws linking kinetics of maturation and wine sensory potentialities. We first built 307 

a Chenin Dynamic Bayesian Network (Chenin_DBN), which makes it possible to obtain 308 

reliable dynamic predictions of sugar content, total acidity, and malic acid concentrations by 309 

measuring air temperature, rainfall, relative humidity, and insolation hours in the three weeks 310 

preceding the harvest. 311 

Once we predict the maturation indicators, we evaluate the wine potentialities according to the 312 

winemaker expectation, by means of a Chenin Fuzzy expert model (Chenin_FEM), linking the 313 

maturity indicators to global wine quality trajectories (see Figure 2).  314 

 315 

Figure 2: The Chenin vineyard model developed in this work consists of two coupled models: 316 

one for the prediction of the physicochemical variables using a DBN (Chenin_DBN), and 317 

another based on a Fuzzy expert theory (Chenin_FEM) dedicated to the prediction of the 318 

potentialities of the wine for being in the target required by the winemaker. 319 



3.2 The Chenin_DBN model 320 

The three key elements of the proposed Chenin_DBN model are: (i) its structure, defining the 321 

relationships between the problem’s variables, (ii) the choice of discretization for each variable, 322 

(iii) the parameters, expressed by conditional probability tables (CPTs), which describe how 323 

the probabilities of variables assuming a given value change, depending on the values of the 324 

variables they depend on. The structure of the network has been defined on the basis of expert 325 

knowledge, building upon previous works on different wines that led to the development of the 326 

software PREVIMAT (Brousset et al., 2009; Baudrit et al., 2015). 327 

3.2.1 Network structure of the Chenin_DBN 328 

The first part of the model developed, inspired by previous work on Cabernet-Franc and Gamay 329 

wines (Baudrit et al., 2015) predicts physicochemical indicators starting from weather 330 

conditions (Figure 3). For each physicochemical ripeness indicator, the climatic variables 331 

playing a key role in their kinetics are selected from expert knowledge and literature. In 332 

particular, relative humidity only affects the two acidities (total acidity concentration and malic 333 

acid concentration), sunshine influences sugar content, while temperature and rainfall have an 334 

impact on the three variables considered: sugar content (s), total acidity concentration (ac), 335 

malic acid concentration (ac_m). 336 

 337 



 338 

Figure 3: Representation of the Chenin_DBN, in the form of two generic slices that can be 339 

unrolled on several slices representing the different step times. DBNs assume the first-order 340 

Markov property, which means that the parents of a variable in time slice t must occur in other 341 

slices and the conditional probabilities are time-invariant. The slice representing the time t (t 342 

measurements) is concerned at the beginning of the iterations by variables that are measured at 343 

time t0. The consecutive slice: time t+1 is dedicated to predictions. If several slices are added, 344 

for example t, t+1 and t+2, it starts at t0 with an initialization where variables are measured, 345 

followed by two slices predicted t+1 and t+2, with t+2 predicted on the basis of the prediction 346 

of t+1. 347 

 348 

As the Chenin_DBN needs to be able to capture dynamical variations of the values over time, 349 

to better predict the three variables it is necessary to define new intermediate state variables. In 350 

particular, having collected the data related to the last two to five weeks (according to the years 351 

of experiment) before the harvest, we can make the assumption that the trajectory in time of 352 

each variable is stable and its variation is constant, given identical meteorological conditions. 353 

In other words, we consider that a month before the harvest, only alterations in the weather can 354 

cause a significant deviation from an established trajectory in time. 355 



More formally, considering each physicochemical variable 𝑥 ∈    {ac, ac_m, s} at time 𝑡 and 356 

𝑡 + 1: 357 

𝑥(𝑡 + 1) =  𝑣𝑎𝑟_𝑥(𝑡 + 1) + 𝑥(𝑡) 358 

And consequently 359 

𝑣𝑎𝑟_𝑥(𝑡) = 𝑥(𝑡) − 𝑥(𝑡 − 1) 360 

As already mentioned, the (absolute) value of a variable can be used as an indicator of the 361 

current stage of ripening, while its variation, as a function of the climatic variables, will dictate 362 

the ripeness trajectory. 363 

Having taken into account the variation of the physicochemical variables over time and the 364 

limitation for certain years to two weeks of history, the Chenin_DBN can now be structured 365 

over the minimum time steps history of the whole kinetics, which is three time steps 𝑡 =366 

{0, 1, 2}, each one spanning a week before the time of the harvest. At time 𝑡 = 0, the value of 367 

each variable is known; for the next two time steps, only the climatic variables are known 368 

(observed), while the physicochemical quantities and their variations are predicted by the 369 

model. The complete structure of the Chenin_DBN for the physicochemical variables, when 370 

considering all variables for the three time steps, is presented in Figure 4.  371 

 372 

Figure 4: The unrolled Chenin_DBN model over time steps 𝑡 = {0, 1, 2}. A physicochemical 373 

variable (𝑡 + 1) , considered at time step 𝑡 + 1 is predicted as a function of its value at the 374 

previous time step 𝑡 and its variation 𝑣𝑎𝑟_𝑥(𝑡) = 𝑥(𝑡) − 𝑥(𝑡 − 1). In turn, 𝑣𝑎𝑟_𝑥(𝑡) is 375 



predicted as a function of the climatic variables at time steps 𝑡 − 1 and 𝑡. It is interesting to 376 

notice that the values of the physicochemical variables are not influenced by each other. 377 

 378 

3.2.2 Variables discretization 379 

As previously described, to create the CPTs of our Chenin_DBN model, it is necessary to define 380 

the discretization of the continuous variables in the problem. In this context, discretizing 381 

variable 𝑥 amounts to finding several intervals {[𝑥1, 𝑥2), [𝑥2, 𝑥3), … , [𝑥𝑛−1,𝑥𝑛)} of continuous 382 

values such that  𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 , with each interval corresponding to a discrete class. 383 

The definition of such intervals has a considerable impact on the performance of the 384 

Chenin_DBN model, so this step is crucial for generalized the approach and to obtain satisfying 385 

predictions. Specialized literature reports different established partial solutions for 386 

discretization: for example, considering quantiles, nested averages, and amplitudes (Dougherty 387 

et al., 1995). 388 

 389 

In our case we opted for test the latter solution, since it makes it possible to create intervals of 390 

similar amplitude for each category of variables in the problem: climatic variables, grape 391 

sensory variables, and variables indicating instantaneous physicochemical quantities, or 392 

variations of physicochemical quantities from a time step to the next. The number of classes 393 

was chosen by selecting a limited but sufficiently representative number of intervals, following 394 

the advice and recommendations of human experts. 395 

For the climatic variables, the following intervals were defined (see Table 1 for the detailed 396 

description of the variables): 397 

● 𝐼𝑛𝑠 =  [[15,30], [30,40], [40,55], [55,60], [60,75]] 398 



● 𝑃𝑙 =  [[0,10], [10,20], [20,30], [30,45], [45,70], [70,100]] 399 

● 𝑇 =  [[0,11], [11,15], [15,17], [17,19.5], [19.5,22]] 400 

● 𝐻𝑅 =  [[60,70], [70,75], [75,80], [80,90], [90,100]] 401 

For the physicochemical variables , an interactive semi-automated discretization approach was 402 

developed, based on the notion of co-occurrence between variable values and their variations. 403 

The methodology is based on a visualization software, EvoGraphDice, coupled with an 404 

evolutionary optimization approach (Boukhelifa et al., 2017). Variations of the variable (for 405 

example var_s for the sugar content) are fixed by the experts. Diagnostic and decisions of the 406 

experts are indeed more based on the physicochemical variations during one week than on the 407 

values themselves. It is then easier for them to describe the values in terms of variations. For 408 

example, the variation var_s of the variable describing sugar content from one week to the next 409 

is fixed on the basis of the expert description. The optimal discretization of the variable itself 410 

like the sugar content for example, is then calculated by optimization, to ensure a repartition of 411 

the var_s classes of interval as homogeneous as possible, for each sugar interval in the data. 412 

Several iterations are performed to reach a good compromise between the values of 413 

discretization proposed by the algorithm of optimization and what is considered to be coherent 414 

according to the expert evaluation. Experts visualize the results of the optimization at each 415 

iteration, and validate or reject the result.  416 

An example of discretization obtained for sugar content is presented in Figure 5. We can see 417 

that classes of s are created by the optimization algorithm after 5 runs of interaction with an 418 

expert, with a good result in terms of repartition of the different classes of Var_s for each class 419 

of s. This homogeneous repartition is required for a good learning of the probability laws in the 420 

DBN model structure. 421 



 422 

Figure 5: Result of the discretization of the variable s (classes equivalence: see Table 2) after 5 423 

iterations and expert’s interactions, var_s being fixed by the expert. The automatic 424 

discretization was used for values ranging from 0 to 210 g/l, generating four classes. Points 425 

with values above 210 g/l are rare, but rather than assigning them all to the same class as the 426 

algorithm proposed, the experts decided to divide the space evenly in three more classes with 427 

an amplitude of 10 g/l, plus one final class for all values above 240 g/l. 428 

All the results of the optimization and thus the discretization proposed for the physicochemical 429 

variables are presented in Table 2. 430 

Table 2: Discretization of the physicochemical variables, fixed by experts for the variation 431 

var_X of variable X, obtained by the experts through interactive optimization. 432 

 Discretization of X Discretization of Var_X 

S (Sugar) ● Class 0 = [∞,156.9] 

● Class 1 = 

[156.9,182.86] 

● Class 2 = 

[182.86,201.8] 

● Class 3 = [201.8,210] 

● Class 4 = [210,220] 

● Class 5 = [220,230] 

● Class 6 = [230,240] 

● Class 7 = [240,+∞] 

● Class 0 = [0, 12], 

● Class 1 = [12, 20] 

● Class 2 =  [20, 35] 

● Class 3 = [35, +∞] 

ac (total acidity concentration) ● Class 0 = [−∞, 5.47] 

● Class 1 = [5.47, 6.33] 

● Class 2 = [ 33, 7.94] 

● Class 3 = [7.94, +∞] 

● Class 0 = [−∞, −1.5] 

● Class 1 = [−1.5, −1] 

● Class 2 = [−1, −0.6] 

● Class 3 = [−0.6, 0] 

ac_m (malic acid 
concentration) 

● Class 0 = [−∞, 3.66] 

● Class 1 = [3.66, 4.6] 

● Class 0 = [−∞, −2.5] 

● Class 1 = [−2.5, −1.5] 



● Class 2 = [4.6, 5.68] 

● Class 3 = [5.68, 6.88] 

● Class 4 = [6.88, +∞] 

● Class 2 = 

 [−1.5, −0.75] 

● Class 3 = [−0.75, −0.5] 

● Class 4 =  [−0.5, 0] 

 433 

 434 

3.2.3 Network parameters 435 

Once the network structure has been defined, and the variables have been properly discretized, 436 

learning the parameters of the Chenin_DBN is a straightforward process. Each node represents 437 

a conditional probability table, describing the different probabilities for variable x to assume 438 

values x1, x2, ... , xN  given the values of the parent variables it depends on, pa(x). By reading 439 

the training data, the frequency of appearance of values for x together with the values for pa(x) 440 

for the same samples, can be directly used as a probability to fill the conditional probability 441 

tables, using the classic strategy of maximum likelihood (Redner &Walker, 1984). 442 

 443 

3.3 The Chenin Fuzzy Expert Model (Chenin_FEM) 444 

The Chenin_FEM is constituted of a set of membership functions adapted to the Chenin 445 

characteristics of variation, and rules of aggregation leading to a quantification of the output of 446 

the model. 447 

3.3.1 Membership functions 448 

The membership functions (see Section 2) set up in the Chenin_FEM are presented in Figure 6 449 

for the three inputs considered: sugar content, total acidity concentration and malic acid 450 

concentration. 451 



 452 
Figure 6: Membership function and associated targets for the three variables manipulated by 453 

the expert to infer the quality of the Chenin vineyard: total acidity concentration, malic acid and 454 

sugar content. 455 

3.3.2 Rules of aggregation 456 

Two experts were interviewed in this study, to find a link between the ripeness of grape berries 457 

and their personal assessment of wine quality. Experts encode their knowledge as a symbolic 458 

trajectory towards ideal wine quality, and assess differences in terms of drift from this 459 

trajectory. The experts classify grape berry ripeness into three categories (that we named Class 460 

1, 2, and 3, see Table 3), in link with three steps of ripening that in their opinion should appear 461 

sequentially at given times during the ripening process. In case of drift from the perceived ideal 462 

category, experts usually perform their corrective actions after the harvesting, either by mixing 463 

grapes from different batches, or changing the parameters of the wine fermentation. 464 

Nevertheless, each expert has their own rules for managing this situation. In this work, we 465 

decided to use the rules of the expert with the longest track record in wine production. 466 

The rules used by the experts for the aggregation of the three terms are presented in Table 3 and 467 

processed according to the fuzzy Tnorm methodology presented in Section 2. 468 



 469 

Table 3: Expert rules of aggregation for the three input variables of the Chenin vineyard: sugar 470 

content (g/l), total acidity concentration (g/l) and malic acid concentration (g/l). The output is 471 

the projection of the class of wine inferred by the aggregation, knowing the values of the input 472 

variables: Class 3 represents the quality of the berries required to obtain wine that is at the very 473 

least of acceptable quality according to the expert. Class 2 means that the maturity of this 474 

vineyard plot is not enough to reach an acceptable wine quality, but it can potentially be still 475 

corrected by pursuing the ripening of the grapes, postponing the date of the harvest if possible; 476 

or, if not possible, by adapting the fermentation process or mixing the berries of different 477 

vineyard plots. Class 1 means that the maturity of the berries have, at the time of measurement, 478 

not the good potential to produce a good wine. It is generally associated with berries at the very 479 

beginning of the ripening step.  480 

Sugar TARGET   NOT 

TARGET 

  

 Malic acid 

TARGET  

Malic acid NOT 

TARGET 

Malic acid 

TARGET 

Malic acid NOT 

TARGET 

Total acidity 

concentration 

    

TARGET 3 2 2 Non existant 

NOT 

TARGET  

1 1 1 1 

 481 

4 Experimental results 482 

This section describes the experimental results obtained by comparing the complete models 483 

developed in Section 3 against the available data. 484 



4.1 Chenin_DBN model predictions for the physicochemical variables 485 

A LOOCV is performed on the dataset. At each iteration the network is trained on the whole 486 

dataset minus one sample, and then tested on that sample. We obtained a mean RRMSE for 487 

each predicted variable.  488 

The results (Table 4) show that it is possible to predict with good results the total acidity 489 

concentration and the sugar content in a range that is satisfying for the experts (10% mean error 490 

for sugar, 6% mean error for the total acidity concentration) and so anticipate the maturation 491 

date up to 15 days in advance. For the malic acid, it seems to be more complex to have a good 492 

prediction with the only variables considered as inputs of the DBN. Other physicochemical 493 

variables, that are harder to measure and were not included in this study, such as characteristics 494 

of the soil, would probably beneficial towards the aim of obtaining better predictions. 495 

Table 4: Results of prediction for the three variables for two time steps: one week (1) or two 496 

weeks (2) in advance. 497 

Variable in the 
unrolled DBN 

model 

RMSE RRMSE % 
ac = [3.4,12.5];   ac_m = [1.7,10] ;   

s = [144,271.8] 

R2 

ac_1 (g/l) 0.536 6 0.668 

ac_2 (g/l) 0.648 7 0.583 

ac_m_1 (g/l) 0.825 9 0.6673 

ac_m_2 (g/l) 0.867 10 0.5302 

s_1 (g /l) 11.37 8 0.702 

s_2 (g/l) 12.87 10  0.67 

 498 

In Figure 7, the model’s predictions of the physicochemical data are compared with the 499 

observed values, for each variable and for the two considered time steps 1 and 2. Even if the R2 500 

value are moderately satisfactory, varying from 0.702 for the sugar to 0.53 for the malic acid, 501 

with cumulative errors for two time steps, scatterplots are relatively well aligned around the 502 

bisector, and most of the errors of the predicted points are within the range of uncertainty of the 503 



measurements defined by the experts. Essentially, 5 vineyards out of 30 were not well predicted 504 

and were not considered for the computation of the correlation coefficients. It is a possible 505 

effect of the lack of data on those land plots with particular behaviors and an increasing 506 

uncertainty. As described above, the proposed approach faces more difficulties for the malic 507 

acid variable, but the results are still acceptable. 508 

 509 

 510 

 511 

 512 

 513 



Figure 7: Scatter plots for the predictions of the physicochemical variables by the Chenin_DBN 514 

model, for the two time steps t=1 and t=2. The error range considered acceptable by the experts 515 

for those variables is represented by the dotted lines in the plots (±0.5𝑔/𝑙  for the total acidity 516 

concentration and malic acid concentration, and ±10𝑔/𝑙 for the sugar concentration). 517 

 518 

4.2 Validation of the Chenin_FEM 519 

The Chenin_FEM model is tested in two separate experiments: Firstly, the predictions of the 520 

fuzzy expert module are tested with inputs observed in the data; Secondly, the outputs of the 521 

DBN presented above are used as inputs of the expert system. In this last case, the uncertainties 522 

pertaining the prediction of the two models are cumulated. 523 

The proposed approach is tested on twenty harvests performed in different batches, equivalent 524 

to twenty samples in the database, are tested from 2016 and 2017, at different time steps of 525 

maturation, and evaluated by a Chenin sensory expert. 526 

The results are presented in Figure 8 for the predictions of Chenin_FEM based (1) on measured 527 

input data and (2) on the Chenin_DBN predictions. The inputs are the physicochemical values 528 

measured or predicted on the berries batch just before the grape harvest: the sugar 529 

concentration, the total acidity concentration and the malic acid concentration. The output is 530 

the prediction of the wine quality, considering those inputs. Inputs are data measured just before 531 

the harvesting of the batch used to produce the wine that is later evaluated by the expert, or 532 

classified by the Chenin_FEM. As the output of the Chenin_FEM is a fuzzy value rather than 533 

a class, we consider the classification correct if the fuzzy value is within 1.0 of the class assigned 534 

by the expert, a classical sensory threshold used by the experts in this experiment. Using this 535 

metric, the classification accuracy is 75% for predictions based on measured data, and 60% for 536 



respectively predictions based data predicted by the Chenin_DBN model. This result is 537 

considered acceptable, as predictions in this uncertain context, trying to establish a global link 538 

between grape berries physicochemical measurements and wine quality, are challenging. Errors 539 

of classification based on measured data appear more often for Class 2 predictions. Those for 540 

classification based on the Chenin_DBN predictions appear more often for Class 1, except one 541 

for Class 3. This second class would probably need to be redefined and optimized, if more data 542 

were available. The results of classification using data predicted by the Chenin_DBN model 543 

are lower than the previous one, which can be explained by a cumulative effect of the error of 544 

the two models (Chenin_FEM and Chenin_DBN). It is particularly true for predictions of Class 545 

1.  546 

 547 

  548 

Figure 8: Predictions of the classes of wine for 20 samples by the Chenin_FEM. The expert 549 

evaluations are in blue, the classifications based on inputs measured on the samples are in 550 

orange, and the classifications based on physicochemical variable values predicted by the 551 

Chenin_DBN are in grey. 552 



 553 

4.3 Coupling the Chenin_DBN model to the Chenin_FEM: towards a decision support 554 

system for wine quality prediction 555 

Coupling the two models has a strong interest for the winemakers, as together they can be used 556 

to take a decision on the best date for harvesting grapes. It is also possible for them to intervene 557 

on the vineyards in the earlier steps of ripening to correct the drift from the ideal trajectory. 558 

Moreover, the experts’ ability to predict the wine potential of the grapes allows them to manage 559 

their action directly on the plants or during the fermentation, with a possible prediction of the 560 

quality of the wine. Their reasoning in this uncertain space is achieved in terms of deviations 561 

from an “ideal” trajectory that they have in mind. This type of reasoning has already been 562 

observed in other traditional food production processes (Sicard et al., 2011). We have elicited 563 

with the expert this “ideal trajectory” and have compared it to the trajectories of three samples 564 

from the available database. Fixed fermentation process conditions were applied. The 565 

trajectories of those three batches are shown in Figure 9, and compared to the ideal expert 566 

trajectory. Thus, we can see that the deviation of the batch REH66 is growing all along the 567 

weeks, with a maximum of a 2-class difference in week 6. It is important to notice that for this 568 

batch, the first measurements were only available at week 4, but previous weeks are very likely 569 

classified in Class 1. As predicted, after processing, the grapes of REH66 produced a wine that 570 

was judged too acid and not aromatic enough by experts, so unsuitable to be a Chenin wine. In 571 

this specific case, corrections could have been applied either before the step of grape ripening 572 

or after, by mixing the grapes with other batches. For the batch NOC52, the trajectory is almost 573 

the ideal one, but a drift is observed during the last week of the ripening. This was due to 574 

unexpected extreme climatic conditions during the week. In this case, the corrective action is 575 

generally performed during the fermentation, and the wine potential is recoverable: in this case, 576 



the wine resulting from the NOC52 grapes was considered of acceptable quality. Lastly, for the 577 

batch CAD57, we can observe that this trajectory is quite the same as the one desired by the 578 

expert, and predictably, after fermentation has led to a wine having the ideal characteristics 579 

required by the experts for Chenin.  580 

 581 

 582 

Figure 9: Ripening trajectories of 3 batches (labeled CAD57, REH66, NOC52) expressed under 583 

the form of a prediction by the fuzzy algorithm of classes of potential towards wine. 584 

Physicochemical measurements are obtained since the beginning of the maturation step. 585 

Predictions of the fuzzy set of expert rules are calculated on these measurements.  586 

Measurements and predictions start at week 4 for the batch REH66, because the ripening 587 

process of those vineyard plots was judged to be late. Week 6 is the one just before the harvest. 588 

The wines produced from these batches were also evaluated by an expert of Chenin. For CAD57 589 

and NOC52 the wine was evaluated to be at a good sensory quality type for a Chenin, better for 590 

CAD57 with more aromatic potentialities and a good equilibrium between aroma and acidity 591 



than NOC52. For REH66, the wine was evaluated not to be at the level of quality attempted for 592 

a Chenin, with too much acidity and not enough aromatic liveliness.  593 

 594 

 595 

Conclusions 596 

This study shows that it is possible and of valuable interest to propose computing tools able to 597 

formalize and capitalize on the knowledge of a food domain, based on data as well as human 598 

know-how and expertise. Even if for these complex processes the uncertainty is high, and 599 

amount of data is relatively small to describe each ripening kinetics, this combination makes it 600 

possible to develop relevant decision support systems based on artificial intelligence. 601 

Interestingly, when compared to (Perrot et al., 2015), the accuracy of the predictive model for 602 

acidity is noticeably lower. While the previous work was carried out on a different quality of 603 

grapes, and considering less variables, the variability in weather for the data in the 2016-2017 604 

period might also have played a role in the lower performance of the model presented. 605 

Part of the difficulties in obtaining reliable predictive models is likely due to the growing impact 606 

of climate change on local weather. Future works will investigate the possibility of integrating 607 

climate-weather models into the proposed approach, in order to better take into account the 608 

evolution of this global phenomenon. 609 
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