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In this study, we aim to construct explicit forms of convolution formulae for Gegenbauer kernel filtration on the surface of unit hypersphere. Using the properties of Gegenbauer polynomials, we reformulated Gegenbauer filtration as the limit of a sequence of finite linear combinations of hyperspherical Legendre harmonics and gave a proof for the completeness of the associated series. We also proved existence of fundamental solution of the spherical Laplace-Beltrami operator on the hypersphere using the filtration kernel. An application of the filtration on a one-dimensional Cauchy wave problem was also demonstrated.

Introduction

Spherical harmonic analysis is basically the spectral theory of a differential operator such as the spherical Laplacian, which we denote by ∆ S n , on the hypersphere. In this analysis, spherical harmonics play salient roles. Spherical harmonic analysis is a process of decomposing a function on a sphere into components of various wavelengths using surface spherical harmonics as base functions, [START_REF] Bogdanova | Stereographic wavelet frames on the sphere[END_REF] and [START_REF] Bulow | Spherical diffusion for 3d surface smoothing[END_REF].

The role of classical orthogonal polynomials such as the Gegenbauer polynomials as reproducing kernels for the spaces of spherical harmonics of a given degree, or more generally, as providing an explicit construction of symmetry adapted basis functions for those spaces has been studied extensively, see e.g. [START_REF] Camporesi | Harmonic Analysis and Propagators on Homogeneous spaces[END_REF], [START_REF] Bezubik | A new form of the spherical expansion of zonal functions and Fourier transforms of SO(d)-Finite Functions[END_REF] and [START_REF] Omenyi | Global Analysis on Riemannian manifolds[END_REF]. Also [START_REF] Strasburger | A generalization of the Bochner identity[END_REF] studied the connection of the Fourier transform on the Euclidean space to the Hankel transform obtained via restriction to SO(n)-finite functions and various integral identities of the Hecke-Bochner type resulting there. The generalized concept of convolution on groups is intimately related to the concept of filtering on homogeneous spaces. Some insight into spherical filtering with particular emphasis on wavelet transform can be found in [START_REF] Driscoll | Computing Fourier transforms and convolutions on the 2sphere[END_REF], [START_REF] Antoine | Wavelets on the 2-sphere: A group theoretical approach[END_REF], [START_REF] Bogdanova | Stereographic wavelet frames on the sphere[END_REF] and more recently in [START_REF] Dai | Convolution Operator and Spherical Harmonic Expansion[END_REF] and [START_REF] Claessens | Spherical harmonic analysis of a harmonic function given on a spheroid[END_REF].

The goal of the present paper is to present a novel form of the Gegenbauer kernel filtration of harmonic functions on the hypersphere. It is known, in general, that there is no explicit expression for fundamental solution of a Laplace-type operator on a Riemannian manifold, see e.g. [START_REF] Aubin | Some nonlinear problems in Riemannian geometry[END_REF] and [START_REF] Cohl | Fourier and Gegebauer expansion for a fundamental solution of Laplace's equation in hyperspherical geometry[END_REF]. In this work, we aim to demonstrate that with the Gegenbauer filtration kernel, a closed form of fundamental solution can be constructed. This puts in limelight signal processing methods on non-Euclidean spaces and in particular on the hypersphere. The most basic is the notion of Fourier transform, that on the sphere corresponds to the expansion of functions into series of familiar spherical harmonics. Vast amount of literature is available on such expansions, mostly from quantum mechanics and mathematical physics, see e.g. [START_REF] Szekeres | A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry[END_REF], [START_REF] Assche | Functionals of Gegenbauer polynomials and D-dimensional hydrogenic momentum expectation values[END_REF], [START_REF] Cohl | Fourier and Gegebauer expansion for a fundamental solution of Laplace's equation in hyperspherical geometry[END_REF], [START_REF] Drake | Spherical harmonic transform algorithm[END_REF] and [START_REF] Healy | FFTs for the 2-sphere: Improvements and variations[END_REF]. We also derive some general formulae for the Gegenbauer filtration of functions on S n , including recent generalizations of Fourier spherical harmonic expansions and discuss their function theoretic consequences.

In next subsections, we fix basic notations and concepts before proceeding to present our results in subsequent sections.

The hypersphere

The hypersphere, S n-1 = {x ∈ R n : x T x = 1}, n > 3 in R n is a set of points whose Euclidean distance from the origin is equal to unity. The hypersphere S n-1 may be parameterized by a set of hyperspherical polar coordinates.

If (x 1 , x 2 , • • • , x n ) are Cartesian coordinates in R n , then we define the angles θ 1 , θ 2 , • • • θ n-1 with θ 1 , θ 2 , • • • , θ n-2 ∈ [0, π] and θ n-1 ∈ [0, 2π] such that x 1 = cos θ 1 x 2 = sin θ 1 cos θ 2 x 3 = sin θ 1 sin θ 2 cos θ 3 x 4 = sin θ 1 sin θ 2 sin θ 3 . . . x n-1 = sin θ 1 sin θ 2 • • • sin θ n-2 cos θ n-1 x n = sin θ 1 sin θ 2 • • • sin θ n-2 sin θ n-1 .                    (1) 
This is a natural generalization of spherical polar coordinates in R 3 . In the familiar case of S 2 ⊂ R 3 , θ 1 corresponds to the elevation and θ 2 corresponds to the azimuth.

The surface area of the hypersphere satisfies the recursive relation

|S n | = 2π n+1 2 Γ( n+1 2 ) , n ≥ 3, (2) 
see e.g. [START_REF] Jost | Riemannian Geometry and geometric analysis[END_REF] and [START_REF] Lee | Introduction to smooth manifolds[END_REF] for details. Let H l,n denote the space homogeneous Legendre polynomials of degree l in dimension n. We call function f ∈ H l,n such that ∆ S n f = 0 a hyperspherical harmonic, where ∆ S n is the spherical Laplacian defined as

∆ S n := 1 sin n-1 θ ∂ ∂ θ sin n-1 ∂ ∂ θ + 1 sin 2 θ ∆ S n-1 . (3) 
The space of hyperspherical harmonic polynomials restricted to the unit hypersphere, S n , is denoted by Y l,n . So, any Y l ∈ Y l,n is related to a homogeneous harmonic h l ∈ H l,n by h l (rξ ) = r l Y l (ξ ) where r = |h l |. So, they have the same dimension.

Hyperspherical harmonics

To construct a Gegenbauer kernel for filtration on the hypersphere, one needs to clarify the concept of Gegenbauer polynomials, which we denote by C α l for degree l and index α, expressible through hyperspherical Legendre polynomials {P l,n (x)

: l = 0, 1, 2, • • • }.
Definition 1.1. The function P l,n is hyperspherical Legendre polynomial of degree l in n dimension and it is given by

P l,n (t) := l!Γ( n -1 2 ) [ l 2 ] ∑ j=0 (-1) j (1 -t 2 ) j t l-2 j 4 j j!(l -2 j)!Γ( j + n-1 2 ) , t ∈ [-1, 1]; (4) 
where [x] is the smallest integer greater or equal to x ∈ R. It is orthogonal with respect to the weight function

(1 -x 2 ) α-1 2 on the support interval [-1, 1].
The Rodrigues representation of P l,n is

P l,n (t) = (-1) l R l,n (1 -t 2 ) 3-n 2 d l dt l (1 -t 2 ) l+ n-3 2 with n ≥ 2, (5) 
where the Rodrigues constant R l,n is given by R

l,n = Γ( n-1 2 ) 2 l Γ(l + n-1 2 )
.

We remark that for n = 3, one recovers from (5) the standard Rodrigues representation formula for the standard Legendre polynomials as

P l,3 (t) = 1 2 l l! d dt l (t 2 -1) l , l ∈ N 0 . (6) 
Moreover, [START_REF] Morimoto | Analytic Functionals on the sphere[END_REF] proved an integral representation of P l,n to be

P l,n (t) = |S n-3 | |S n-2 | 1 -1 t + i(1 -t 2 ) 1 2 )s l (1 -s 2 ) n-4 2 ds; l ∈ N 0 , n ≥ 3, t ∈ [-1, 1]. ( 7 
)
3

We recall that P l,n (t) ∈ H l (S n ) and note that the dimension, d l (n), of H l (S n ) is given by the formula

d l (n) = l + n n - l + n -2 n = (2l + n -1)(l + n -2)! l!(n -1)! , for l ∈ N.
with index α See e.g. [START_REF] Avery | Hyperspherical harmonics: applications in quantum theory[END_REF], [START_REF] Atkinson | Spherical harmonics and approximations on the unit sphere: An introduction[END_REF], [START_REF] Wogu | Weyl Transforms, Heat Kernels, Green functions and Riemann Zeta functions on compact Lie groups[END_REF], [START_REF] Omenyi | On the second variation of the spectral zeta function of the Laplacian on homogeneous Riemannian manifolds[END_REF], [START_REF] Omenyi | Global Analysis on Riemannian manifolds[END_REF] and [START_REF] Morimoto | Analytic Functionals on the sphere[END_REF] for details. A generalisation of P l,n is the l degree Gegenbauer polynomial, C α l , in index α defined by

C α l (t) := l + 2α -1 l Γ(α + 1/2) √ πΓ(α) 1 -1 (t + i(1 -t 2 ) l/2 s) l (1 -s 2 ) α-1 ds, α > 0, l ∈ N 0 . (8)

Technical lemmas and Basic Assumptions

In what follows, we briefly review basic technical lemmas and assumptions on hyperspherical harmonic polynomials that will lead us to the main result of this work.

Lemma 2.1. (Addition lemma). Let {ψ l, j : 1

≤ j ≤ d l (n)} be an orthonormal basis of H l (S n ), i.e: S n ψ l, j (x) ψl,m (x)dV g (x) = δ jm ; 1 ≤ j, m ≤ d l (n). (9) 
Then

d l (n) ∑ j=1 ψ l, j (x) ψl,m (y) = d l (n) |S n | P l, (n-1) 2 (x • y). (10) 
For proof, one may see [START_REF] Omenyi | Global Analysis on Riemannian manifolds[END_REF], [START_REF] Omenyi | On the second variation of the spectral zeta function of the Laplacian on homogeneous Riemannian manifolds[END_REF] and [START_REF] Morimoto | Analytic Functionals on the sphere[END_REF]. This means in particular that P l,(n-1)/2 (x • y) is a harmonic function on S n with eigenvalue λ l = l(l + n -1) for the eigenvalue problem ∆ S n P l,(n-1)/2 (θ ) = λ l P l,(n-1)/2 (θ ).

Lemma 2.2. [START_REF] Morimoto | Analytic Functionals on the sphere[END_REF] The hyperspherical harmonic polynomials are orthogonal:

S n P l,n (ξ • η)P j,n (ξ • η)dV n (ξ ) = |S n | d l (n) if l = j. 0 if l = j. (11) 
An interesting assumption comes from the projection of integrable function onto the space of spherical harmonics on the hypersphere. We make the following definition. We make the following definition.

Definition 2.3. A projection F l,n of f ∈ L 1 (S n-1 ) into Y l,n is defined to be (F l,n f )(ξ ) := d l (n) |S n-1 | S n-1 P l,n (ξ • η) f (η)dS n-1 (η), η ∈ S n-1 . ( 12 
)
Lemma 2.4. If f ∈ L 2 (S n-1 ) then for any ξ ∈ S n-1 we have

||(F l,n f )|| L 2 (S n-1 ) ≤ || f || L 2 (S n-1 ) .
Proof. Let f ∈ L 2 (S n-1 ) and ξ ∈ S n-1 given, we have

|(F l,n f )(ξ )| 2 ≤ d l (n) |S n-1 | S n-1 |P l,n (ξ • η)| 2 dS n-1 (η) • S n-1 | f (η)| 2 dS n-1 (η) =⇒ ||(F l,n f )|| L 2 (S n-1 ) ≤ d l (n)|| f || L 2 (S n-1 ) .
Similarly,

||(F l,n f )|| L 2 (S n-1 ) ≤ d l (n) |S n-1 | || f || L 2 (S n-1 ) . These imply that ||(F l,n f )|| L 2 (S n-1 ) ≤ || f || L 2 (S n-1 )
.

The orthogonal decomposition of the hyperspherical harmonics ( 9) and the addition lemma (2.1) imply that any f ∈ L 2 (S n-1 ) can be uniquely represented as

f (ξ ) = ∞ ∑ l=0 f l (ξ ); with f l ∈ Y l,n ; l ≥ 0. ( 13 
)
We call f l ∈ Y l,n hyperspherical component of f given by

f l (ξ ) = d l (n) |S n-1 | S n-1 f (η)P l,n (ξ • η)dS n-1 (η); η ≥ 0. ( 14 
)
Lemma 2.5. [START_REF] Morimoto | Analytic Functionals on the sphere[END_REF] The Gegenbauer function C α l is indeed a polynomial and has a representation in terms of the hyperspherical harmonics as 

Results and Discussion

We now present the main results of this study. Let f ∈ C(S n-1 ). We define

f (ξ ) := S n-1 δ (1 -ξ • η) f (η)dS n-1 (η)
, ξ ∈ S n-1 using a Dirac delta function δ (t) whose value is defined as

δ (t) := 0 if t = 0 +∞ if t = 0.
and satisfies

S n-1 δ (1 -ξ • η)dS n-1 (η) = 1 ∀ξ ∈ S n-1 .
One can construct a sequence of kernel functions G l (t) such that G l (ξ • η) approaches δ (1ξ • η) and is such that for each l ∈ N, the function

S n-1 G l (ξ • η)dS n-1 (η)
is a linear combination of spherical harmonics of order less than or equal to l. One possibility is to choose G l (t) proportional to

(1 + t) l 2 l . Thus, we let

G l (t) = α l,n 1 + t 2 l
where α l,n is a scaling constant so that

S n-1 G l (ξ • η)dS n-1 (η) = 1 ∀ξ ∈ S n-1 . ( 16 
)
Proposition 3.1. The constant α l,n is given by

α l,n = (l + n -2)! (4π) n-1 2 Γ(l + n-1 2 ) . ( 17 
)
Proof. From

S n-1 1 + t 2 l dS n-1 (η) = |S n-1 | 1 -1 1 + t 2 l (1 -t 2 )
n-3

2 dt we deduce on change of variables: s = 1+t 2 that

S n-1 1 + t 2 l dS n-1 (η) = 2 n-2 |S n-2 | 1 0 s l+ n-3 2 ds
and from (2) we know that

|S n-2 | = 2π n-1 2 Γ( n-1 2 )
. Moreover,

1 0 s l+ n-3 2 (1 -s) n3 2 ds = β l + n -1 2 , n -1 2 = Γ(l + n-1 2 )Γ( n-1 2 ) Γ(l + n -1)
.

Thus,

S n-1 1 + ξ • η 2 l dS n-1 (η) = (4π) n-1 2 Γ(l + n-1 2 )Γ( n-1 2 ) Γ(l + n -1)
.

Therefore, α l,n has the proposed value. Now we introduce a filtration operator G l,n defined as follows:

(G l,n f )(ξ ) := α l,n S n-1 1 + ξ • η 2 l f (η)dS n-1 (η), ∀ f ∈ C(S n-1 ).
We express (G l,n f )(ξ ) as a linear combination of spherical harmonics of order less than or equal to l. To do this, write

α l,n 1 + t 2 l = l ∑ k=0 µ l,k,n d l (n) |S n-1 | P l,n (t) (18) 
and thus from ( 15)

α l,n 1 + t 2 l = l ∑ k=0 µ l,k,n C n-2 2 l (t). (19) 
To determine the coefficients {µ l,k,n } l k=0 , we multiply both sides by the function P j,n (t)(1t 2 ) n-3 2 , 0 ≤ j ≤ l, integrate from t = -1 to t = 1 and use the orthogonality condition of P l,n to obtain

µ l,k,n = α l,n |S n-2 | 1 -1 1 + t 2 l P l,n (t)(1 -t 2 ) n-3 2 dt.
Computing this following the same procedure as in derivation of α l,n we get

µ l,k,n = l!(l + n -2)! (l -j)!(l + j + n -2)! .
So we have the definition of Gegenbauer filtering given by

(G l,n f )(ξ ) = l ∑ k=0 µ l,k,n (F l,n f )(ξ ) ( 20 
)
where F is the projector defined in [START_REF] Dai | Convolution Operator and Spherical Harmonic Expansion[END_REF]. In order words, G l,n is a linear combination of spherical harmonics of order less or equal to l. We also observe that for t ∈ [-1, 1),

lim l→∞ α l,n 1 + t 2 l = 0.
Now we state and prove one of the main results of this study.

Theorem 3.2. The Gegenbauer filtration operator G l,n is complete. That is, let f ∈ C(S n-1 ) then lim

l→∞ ||G l,n f -f || C(S n-1 ) = 0.
Proof. Using modulus of continuity, we have

ω( f ; δ ) := sup{| f (ξ ) -f (η)| : ξ , η ∈ S n-1 , |ξ -η| ≤ δ }, δ > 0,
and since f ∈ C(S n-1 ), we have that ω( f ; δ ) → 0 as δ → 0. Denote

M := sup{| f (ξ ) -f (η)| : ξ , η ∈ S n-1 , |ξ -η| ≤ δ } < ∞.
Let ξ ∈ S n-1 be arbitrary but fixed. Using ( 16), we have

(G l,n f )(ξ ) -f (ξ ) = α l,n S n-1 1 + ξ • η 2 l [ f (η) -f (ξ )]dS n-1 (η) = I 1 (ξ ) + I 2 (ξ ),
where

I 1 (ξ ) = α l,n η∈S n-1 :|ξ -η|≤δ 1 + ξ • η 2 l [ f (η) -f (ξ )]dS n-1 (η)
and

I 2 (ξ ) = α l,n η∈S n-1 :|ξ -η|>δ 1 + ξ • η 2 l [ f (η) -f (ξ )]dS n-1 (η).
We bound each term as follows.

I 1 (ξ ) ≤ ω( f ; δ )α l,n S n-1 1 + ξ • η 2 l dS n-1 (η) = ω( f ; δ )
and

I 2 (ξ ) ≤ Mα l,n |S n-1 | 1 - δ 2 2 l .
In bounding I 2 (ξ ), we used the relation

|ξ -η| > δ =⇒ ξ • η < 1 - δ 2 2
for ξ , η ∈ S n-1 . Thus, for any δ ∈ (0, 1), applying Theorem (3.2), we have

lim sup l→∞ ||G l,n f -f || C(S n-1 ) ≤ ω( f ; δ ).
Note that ω( f ; δ ) → 0 as δ → 0. So the statement holds.

Using the operator (20), we can recast Theorem (

Theorem 3.3. For any f ∈ C(S n-1 ),

f (ξ ) = lim sup l→∞ l ∑ k=0 µ l,k,n (G k,n f )(ξ )
uniformly in ξ ∈ S n-1 . If G k,n f = 0 for all l ∈ N 0 , then f must be the zero function.

Theorem (3.3) and the orthogonality of the hyperspherical polynomials imply that {Y n l : l ∈ N 0 } is the only system of source spaces in C(S n-1 ) since any primitive space not identical to one in Y n l , l ∈ N 0 is orthogonal to all and is therefore trivial. The inner product of two complex valued functions on the surface of S n-1 is

f , h S n-1 = S n-1 f (ξ , η)h(ξ , η) * dS n-1 (η)
where * denotes complex conjugation. Using the fact that the Gegenbauer filtration is rotation invariant over SO(n), one can move h to any point (ξ 0 , η 0 ) ∈ S n-1 . Then we define a generalised convolution as a function on the rotation group SO(n) to be

(h * f )(R) = S n-1 f (ξ , η)h R (ξ , η) * dS n-1 (η)
for R ∈ SO(n) and where h R is h rotated by R defined as h R (A) = h(R -1 A). Thus, every well-behaved function f ∈ L 2 (S n-1 ) admits the expansion

f (ξ , η) = ∞ ∑ α=0 ∑ l,m fl,m (ξ , η)C α l (ξ , η)
where the generalised Fourier transform on the surface of the hypersphere fl,m is defined to be fl,m (ξ ) =

S n-1 η∈SO(n) f (R)ρ l,m (R)dS n-1 (η).
Here, ρ(R) is a function on SO(n) containing fixed matrix valued functions called the irreducible representations of SO(n).

As a consequence of ( 12), we observe that for a suitable ψ, we have

(F l,n ψ)(ξ ) = d l (n) |S n-1 | S n-1 P l,n (ξ • η)ψ(η)dS n-1 (η) = d l (n) |S n-1 | |S n-1 | d l (n) ψ l (ξ ) = d l (n) ∑ j=1 ψ l , ψ l, j S n-1 ψ l, j (ξ ) ⇒ (F l,n ψ)(ξ ) = d l (n) ∑ j=1 ψl ψ l, j (ξ ). (21) 
This leads to another interesting result of this work that Gegenbauer filtration on S n-1 coincides with convolution on S n-1 . Particularly, convolution of two functions on the hypersphere equals the multiplication of their Fourier coefficients. This is the next Theorem (3.4) below.

Theorem 3.4. Let f , h ∈ L 2 (S n-1 ) and G l,n the Gegenbauer filtration operator. Then the spectrum of the Gegenbauer kernel convolution is given by f

* h(l, α) = Γ(l + n -2)(2l + n -2) l!Γ(n -1) f (l, α) ĥ(l, 0). (22) 
A special case of this property has been proved for the special case of convolutions on S 2 , see e.g. [START_REF] Driscoll | Computing Fourier transforms and convolutions on the 2sphere[END_REF], [START_REF] Bulow | Spherical diffusion for 3d surface smoothing[END_REF] and [START_REF] Bezubik | A new form of the spherical expansion of zonal functions and Fourier transforms of SO(d)-Finite Functions[END_REF]. We get a proof for this generalisation on the hypersphere, S n-1 .

Proof. Since f , h ∈ L 2 (S n-1 ) and by definition of the Gegenbauer filtration,

f * h(l, α) = S n-1 f * h(ξ )G l,n (ξ )dS n-1 (ξ ) = S n-1 SO(n) f (Rη)h(R -1 ξ )dR G l,n (ξ )dS n-1 (ξ ).
After rearranging the integrals and using lemma (2.2) we get

f * h(l, α) = SO(n) S n-1 h(R -1 ξ )(F l,n )(F j,n )C α l C α j (ξ )dS n-1 (ξ ) f (RN)dR Figure 1. A For t = 1, u(x, 1) =      1 2 (x + 1) if -1 ≤ x < 0, 1 2 (1 -x) if 0 ≤ x ≤ 1, 0 if otherwise +      1 2 (x -1) if 1 ≤ x < 2, 1 2 (3 -x) if 2 ≤ x ≤ 3, 0 if otherwise.
and so we have the profile sketch as Figures ( 2), ( 3) and (4). 

=      1 2 (x + 2) if -2 ≤ x < -1, 1 2 (-x) if -1 ≤ x ≤ 1, 0 if otherwise +      1 2 (x -1) if 2 ≤ x < 3, 1 2 (3 -x) if 3 ≤ x ≤ 4, 0 if otherwise.
and so we have the profile sketch as figures ( 5), ( 6) and ( 7) below. The captions Figures E, F and G are the wave profile at t = 2, the synthesised profile at t = 2 and the Gegenbauer convolved output, respectively. 

Conclusion

We studied the Gegenbauer kernel filtration of harmonic functions on the hypersphere. We showed that under the filtration, an explicit expression for fundamental solution of a Laplacetype operator on a Riemannian manifold can be constructed. A demonstration of the Gegenbauer filtration kernel with a closed form fundamental solution was shown. This brings to limelight an extension of signal processing methods on Euclidean spaces to non-Euclidean spaces of higher dimensions such as closed Riemannian manifolds, for example, the hypersphere.
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where N is the north pole. This implies that from the addition Lemma (2.1),

which is 0 unless α = 0. This follows since the measure on SO(n) is rotation-invariant. Therefore,

)dR ĥ(l, 0).

Finally using the relationship between C α l and the hyperspherical harmonics P l,n expressed in [START_REF] Healy | FFTs for the 2-sphere: Improvements and variations[END_REF], we conclude that [START_REF] Strasburger | A generalization of the Bochner identity[END_REF] holds.

In computing a fundamental solution, u l say, of Laplace's equation on S n we know that

where δ (ξ , ξ ) is the Dirac delta distribution on the manifold S n . The Dirac delta distribution on the Riemannian manifold S n is defined for an open set U ⊂ S n with ξ , ξ ∈ S n such that

Using the standard hyperspherical coordinates (1) on S n , the Dirac delta distribution is given by

This gives us another main result of this work.

Theorem 3.5. The Gegenbauer harmonics C ν l are complete and there exists a fundamental solution ψ of the spherical Laplace-Beltrami equation (??) on S n which admits Gegenbauer filtering.

Proof. The completeness relation for hyperspherical harmonics in standard hyperspherical coordinates (1) follows from their orthogonality:

Therefore, through [START_REF] Wogu | Weyl Transforms, Heat Kernels, Green functions and Riemann Zeta functions on compact Lie groups[END_REF], we can write

Moreover since G l,n is harmonic on its domain for fixed

) and therefore has a unique expansion in hyperspherical harmonics, namely

where u ν l : [0, π] n → C. Furthermore, substitute (25), ( 26) into [START_REF] Szekeres | A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry[END_REF] and use the definition of ∆ S n satisfying (??) to obtain

This indicates the existence of

From (26), the expression for a fundamental solution of the Laplace-Beltrami operator in standard hyperspherical coordinates on the hypersphere is therefore given by

Using the addition theorem for hyperspherical harmonics, the equation ( 27) can now be simplified. Therefore,

where γ is the geodesic angle between ξ and ξ .

As an application, consider the Cauchy wave problem

By the d'Alembert formula, (see e.g. [START_REF] Pinchover | An introduction to partial differential equations[END_REF]), u(x,t) = 1 2 f (x + t) + 1 2 f (xt). With the aid of MATHEMATICA, we compute and plot the Gegenbauer filtration of u at t = 1 and t = 2 using the synthesized product of the real parts of C