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Abstract: The Southern Alps are the retro-vergent belt of the European Alps that developed from Late
Cretaceous subduction to Neogene times. The most prominent Alpine thrusts and folds, nowadays
sealed off by the Adamello intrusion, were already developed before the continental collision and
clasts derived from the eroded pre-collisional wedge can be found in the Cretaceous foredeep
sequences. In contrast, the thermal state attained by the Southern Alps during the long-lasting
Alpine evolution is still unknown. This contribution provides evidence for Alpine metamorphism
in the northern part of the central Southern Alps. Metamorphic conditions are determined for
the alkaline Edolo diabase dykes that emplaced in the exhumed Variscan basement rocks before
being deformed during the Alpine convergence (D3). The Alpine foliation in the Edolo diabase
dykes is marked by actinolite, biotite, chlorite, epidote, albite, and titanite and it developed under
greenschist facies conditions at temperature of 350–420 °C and pressure ≤0.2 GPa. The T/depth ratio
indicates a minimum of 50–60 °C/km that is compatible with thermal gradients characteristic of arc
settings. Based on radiometric ages from the literature, these conditions were attained during the
Alpine subduction.

Keywords: upper plate metamorphism; Alpine subduction; alkaline magmatism

1. Introduction

Crustal thickening due to continental collision is well documented in the external
domains of the Alps since the late Eocene (e.g., [1–3] and refs. therein). At that time, flysch
deposits and molasses filled the Alpine foreland basins (e.g., [4] and refs. therein) and
collisional structures developed in the Helvetic domain under greenschist facies conditions
(e.g., [5–9]). Differently, crustal thickening in the Alpine retro-belt (the Southern Alps)
started as early as the Late Cretaceous during oceanic subduction and lasted up to post-
collisional stages in Eocene to Neogene times [10,11].

Alpine metamorphic minerals are already recognized in the central Southern Alps, but
a tectonic interpretation of the Alpine metamorphism is lacking [12–21]. In this contribution,
we quantify the Alpine metamorphism in the northern part of the central Southalpine
basement, focusing on the alkaline Edolo diabase dykes [22] and combining high-resolution
structural analysis with mineral chemistry and P-T estimates. The P-T conditions estimated
for the metamorphism in the Edolo diabase dykes are here used to depict the thermal state
affecting the Alpine retro-belt during the Alpine convergence.

2. Geological Setting

The Alpine convergence involved the subduction of the Alpine Tethys Ocean un-
derneath the Adria plate and the subsequent continental collision with the European
lithosphere in Cretaceous to Oligocene times [1–3]. The Southalpine domain is that portion
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of Adria plate that was affected by thrusting and folding at shallow crustal levels in the
Alpine retro-belt [23].

The Southalpine domain west of the icarie fault consists of Variscan basement rocks
and early Permian to Cretaceous sedimentary sequences (Figure 1; [16,19,24,25] and refs.
therein). To the north, this domain is separated from the other tectonic units of the Alps
by the Periadriatic fault system (Figure 1), a regional scale dominantly strike-slip system
that has been active at least since the Oligocene, concurrently with the Bregaglia and
Adamello calc-alkaline intrusions [26–29]. This tectonic lineament separates continental and
oceanic units belonging to the axial part of the chain that during the Alpine convergence
experienced intense deformation and metamorphism (the Austroalpine and Penninic
domains) from rocks belonging to the upper plate (the Southalpine domain) that recorded
deformation at shallow structural levels (e.g., [30–33]).

The basement of the central Southern Alps consists of different tectono-metamorphic
units (TMUs) that heterogeneously record the Variscan evolution and, in the Como Lake
area, also the high thermal signature of the Triassic rifting [16,34–36]. The dominant fabric
in the Variscan basement in the Adamello area is the late-Variscan S2 foliation, which
developed under greenschist facies conditions during coupling of Variscan basement rocks
retaining contrasting tectono-metamorphic evolutions (TMUs; [25,36,37] and refs. therein).
A minimum age for S2 is constrained by the deposition of Permian siliciclastic sequences,
which contain clasts deriving from the Variscan TMUs [19,24,25,38–43]. Variscan Pre-D2 fo-
liations are marked by epidote-amphibolite and/or amphibolite facies minerals ([24,25,37]
and refs. therein).

The main Alpine feature of the central Southern Alps is the south-verging Orobic–
Porcile–Gallinera thrust system (Figure 1) that has brought Variscan basement rocks onto
Permian to Mesozoic covers (e.g., [15,18,20,44–48]). In the footwall, anticlines involving
basement and Permian–Mesozoic sequences - i.e. Orobic, Trabuchello–Cabianca, and
Cedegolo anticlines (Figure 1) - are interpreted as fault-bend folds formed during on-going
southward thrusting in pre-Oligocene times [11,13,14]. In the hanging wall, the most
prominent Alpine structures are steeply dipping chevron folds in the Variscan basement
(e.g., [16,21,47]). The Adamello calc-alkaline batholith, dated at 43–33 Ma ([49] and refs.
therein), crosscuts the Orobic–Porcile–Gallinera thrust system and Cedegolo anticline
(Figure 1; [13,14]). A further reactivation of the Periadriatic fault system and Orobic–
Porcile–Gallinera thrust system, mostly as dextral strike-slip or transpressional faults, has
been envisaged since the late Eocene ([11] and refs. therein).

The age of the syn-subductive activity of the Orobic–Porcile thrust system is con-
strained by 40Ar/39Ar dating of pseudo-tachylytes at 80–43 Ma ([10] and refs. therein),
whereas Cenomanian–Campanian flysches in the southernmost part of the central Southern
Alps testify the erosion of both basement and cover units on an active margin propagating
southwards [50]. Poorly investigated greenschist facies mylonites are supposed to have
accommodated first increments of crustal shortening before the Oligocene (e.g., [17,20,47]).
Barometric estimates on pseudotachylites along the Southern Grigna Fault (Figure 1) in-
dicate that this portion of central Southern Alps was buried up to depth equivalent to
0.1–0.2 GPa during the Alpine convergence [51].

Calc-alkaline mafic dykes are widespread in the central Southern Alps (Figure 1),
where they crosscut regional scale thrusts and folds in the Variscan basement and Permian
to Mesozoic sedimentary sequences [52,53]. The age of these intrusives ranges between 42
and 34 Ma [52,53], confirming that most of the central Southern Alps architecture already
existed before the Oligocene [10,11,13,14].

Other mafic dykes, historically known as “Edolo diabases” [22,53], occur between the
Periadriatic fault system and Gallinera Thrust (Figure 1). These dykes are characterized
by alkaline affinity and are crosscut by the Adamello tonalite. For these reasons a Triassic
emplacement is supposed by Italian authors of the past century [22]. Magmatic minerals
are dark brown amphibole and biotite, pink clinopyroxene, plagioclase, ilmenite, magnetite,



Geosciences 2022, 12, 312 3 of 14

and rare quartz. Mineral assemblages and whole rock composition [22,53] allow classifying
the Edolo diabases as camptonites, a type of alkaline lamprophyres [54,55].

Figure 1. Tectonic outline of the central Southern Alps (modified after [11,24,36] and refs. therein).
Projected coordinate system: WGS84-UTM32N. Abbreviations–CE: Cedegolo anticline; GL: Gallinera
thrust; MF: Musso fault ; OA: Orobic anticline; OT: Orobic thrust; PT: Porcile thrust; SGF: Southern
Grigna fault; TC: Trabuchello–Cabianca anticline; VGT : Val Grande fault. Adamello ages are from [49];
Bregaglia ages are from [28]; Alpine pseudo-tachylyte ages are from [10]; Tertiary calc-alkaline dyke
ages are from [53].The light green arrow points the studied area.

3. Field Occurrence

The studied rocks are located between the Gallinera Thrust and the Periadriatic fault
system in the northern part of the central Southern Alps (Figure 1). This area comprises
Variscan basement rocks including metapelites, quartzites, minor metabasites, and marbles,
in which the dominant fabric is the S2 Variscan foliation marked by low greenschist facies
minerals. Upper greenschist to epidote amphibolite facies minerals are relics in low strain
domains [19,21]. South of the Gallinera Thrust, S2 is truncated by Permian cover sequences
(e.g., [19,25]).

The Alpine deformation (D3) in the Variscan basement results in localized chevron
folds of metric wavelength (Figure 2), locally associated with differentiated axial plane
foliation (S3). D3 structures are intersected by the Adamello towards the east and by
calc-alkaline mafic dykes in different localities [13,14,16,17,19,21,47,53,56]. Biotite- and
amphibole-bearing S3 Alpine foliation has been already described in pre-Alpine mafic
dykes at the junction between the Porcile and Orobic thrusts [20]. D3 structures are
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interpreted as syn-kinematic with the Orobic–Porcile–Gallinera thrust system [16,17,21,47]
whose age is constrained between 80 and 43 Ma ([10] and refs. therein).

The Edolo diabase occurs in up to 50 m-thick dykes that are mostly characterized
by medium grained phaneritic texture (Figure 2), whereas the thinnest dykes are por-
phyritic [21,22]. The intrusive contacts with country rocks are characterized by fine grain
size. Locally, the dykes host albite-rich late-intrusive veins. The Edolo diabase dykes
truncate S2 in the host Variscan basement rocks and are weakly folded (D3) and intersected
by the Alpine foliation S3 (Figure 2).

Figure 2. Mesotructural characters of foliated Edolo diabase dykes and Variscan country rocks.
(A): a meter-thick dyke intruded into Variscan basement rocks near Edolo; (B,C): detail of Alpine S3
foliation developed within a dyke. (D): D3 chevron-type Alpine folds in Variscan metapelites; (E): a
dyke intersecting S2. S2 is affected by Alpine folding (D3), S3 is developed in the dyke. The dyke
wall (DW) is at low angle with S3.

4. High Resolution Mapping

Structural mapping has been performed at 1:1000 scale along the road-cut between
Nembra and Vico villages, less than 2 km west of Edolo (Figure 3). Here, the Edolo
diabase dykes are hosted in micaschists, quartz-schist, and quartzite. NNW-dipping S2 is
the dominant fabric of the host rocks and is marked by chlorite, white mica, and quartz
ribbons; in low-strained domains, the older Variscan foliation (S1) is preserved along D2
isoclinal fold limbs. Alpine D3 folds are chevron-type and metric in wavelength, with
sub-horizontal NE-SW trending axes (A3), axial planes (PA3) steeply dipping towards NW
or SE (Figure 3), locally associated with an axial plane foliation (S3). The orientation of D2
and D3 structures in the studied area is compatible with that of D2 and D3 structures north
of the Orobic–Porcile–Gallinera thrust system (Figure 3; [16,18,20,21,47,48,57]). Geometric
compatibility and coherent overprinting relationships between D2 and D3 allow us to
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interpret D3 structures as Alpine in age, in agreement with the detailed structural analysis
performed at regional scale. (e.g., [19,21] and refs therein).

Meter-thick E-W striking Edolo diabase dyke walls are steeply dipping and truncate
S2 (Figure 3). Although the limited exposure precludes continuous dyke wall mapping
along strike, the detailed structural analysis reveal that the dykes are gently folded during
D3, in contrast to the prominent D3 folds recorded in the country rocks. Despite of gentle
folding, S3 is locally developed within the Edolo diabase dykes (Figure 3). Within the
dykes, S3 strike deviates at least 20° from that of the dyke walls and matches the orientation
of PA3 and S3 in the host rocks (Figure 3). Kink-bands, cataclastic shear zones, and minor
faults intersect all the structures and lithotypes (Figure 3).

Figure 3. Structural map along the road cut from Nembra to Vico villages. Red stars locate samples.
Projected coordinate system: WGS84-UTM32N. Stereonets (Schmidt equal-area, lower hemisphere)
are referred to different structures and rock types (ED: Edolo diabase). Smaller projections represent
structural data included for comparison [21]. Light colours indicate intepreted rock distribution
below cover. Red stars locate samples for this study. Mineral chemical analyses are provided for
samples Ge8 and Ge11.
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5. Microstructure

Edolo diabase dykes are composed of euhedral to subhedral crystals of magmatic (I)
clinopyroxene (CpxI), amphibole (AmpI), brown biotite (BtI), plagioclase (PlI), ilmenite
(IlmI), and apatite (Figure 4). The dyke margins are often porphyritic with millimeter-
sized phenocrysts of AmpI, CpxI, and BtI in an aphanitic groundmass. Cores of magmatic
amphiboles are dark brown (AmpI1), locally with pale brown rims (AmpI2). CpxI is pale
pink, core to rim zoned (CpxI1 to CpxI2) and locally rimmed by BtI, AmpI1, or AmpI2. Rare
ilmenite grains (IlmI) are included in CpxI, AmpI, and BtI. Magmatic plagioclase (PlI) is
zoned, with simple to polysynthetic growth-twinning at cores and no twinning at rims. In
the phaneritic dykes, interstitial domains between laths of PlI are filled by BtI, AmpI2, rare
quartz grains, and magmatic epidote (EpI, Figure 4). At rims, EpI is partially replaced by
fine-grained aggregates of metamorphic epidote.

Figure 4. Microstructures of Edolo diabase dykes (plane-polarized light and back-scattered electron
images). (A): CpxI and BtI wrapped by S3. S3 is marked by AmpM2, BtM2, ChlM2, and trails of EpM2

and TtnM2. BtI is parallelized to S3. AmpM2 fills syn-kinematic fractures and pressure shadows
around CpxI; (B): CpxI and AmpI are pervasively replaced by ChlM1, AmpM1, and titanite. Fractures
in AmpI and CpxI are syn-kinematic with S3 and filled by AmpM2 and ChlM2; (C): AmpI, BtI, IlmI,
PlI, and CpxI (rimmed by Amp I2) are wrapped by S3 that is marked by AmpM2, ChlM2, and EpM2.
Boudin necks are filled by AmpM2, PlI is rimmed by PlM2; (D): S3 marked by AmpM2, ChlM2,
and PlM2. AmpM2 fills pressure shadows around zoned AmpI; (E): Interstitial EpI between PlI
laths; (F): Relics of EpM1 within S3 marked by AmpM2, BtM2, ChlM2, EpM2, and stylolitic films of
TtnM2; (G): Relics of magmatic minerals and AmpM1-rich layers within inflected S3; (H): Relic of
CpxI wrapped by S3 supported by AmpM2, BtM2, EpM2 and minor ChlM2; (I): Micro-boudins of
AmpI aligned in S3 foliation: boudin necks are filled by AmpM2 and ChlM2. In the AmpM1-rich
layer to the right, dark gray cores of AmpM1 (Al- and Fe-poor) are rimmed by light gray AmpM2 (Al-
and Fe-rich), which marks S3.
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Magmatic minerals are locally replaced by post-magmatic mineral assemblages,
namely M1 and M2. M1 minerals display coronitic texture and pre-date the Alpine foliation
S3. AmpI, BtI, and CpxI are rimmed by coronitic pale green/colorless amphibole (AmpM1),
chlorite (ChlM1), titanite (TtnM1), epidote (EpM1), pyrite, and rare calcite (Figure 4). M1
minerals are interpreted as related to late- to post-magmatic hydrothermal circulation,
which affected the dykes soon after their emplacement.

The Alpine S3 foliation in the Edolo diabase dykes is pervasive in centimeter-thick
cleavage bands and is marked by M2 minerals (Figure 4), including amphibole (AmpM2),
biotite (BtM2), chlorite (ChlM2), epidote (EpM2), plagioclase (PlM2), and titanite (TtnM2)-
rich stylolitic films. M2 minerals fill D3 syn-kinematic boudin necks and pressure-shadows
around magmatic and M1 minerals (Figure 4). M2 minerals also support micro-shear
surfaces at a low angle with S3. In the high strained domains magmatic plagioclase
grains are fractured. Pre-Alpine AmpM1-rich veins are transposed along S3 (Figure 4). M2
minerals form coronae around magmatic and M1 hydrothermal minerals in the low-strained
domains.

In quartzites, the dominant S2 foliation is marked by preferred orientation of medium-
to coarse-grained quartz lithons and films rich in opaque minerals and rare white mica.
In quartz-schists, white mica and elongated opaque mineral films mark the dominant
foliation S2. Often these rocks record D3 Alpine thight folds with quartz layers thickened
in the hinge zone. In micaschists, the pervasive S2 foliation is marked by white mica and
chlorite. Rare tourmaline shows sharp grain boundaries against white mica marking S2.
Only locally, quite fresh biotite is particularly abundant in the films of S2 along with relict
biotite crystals between films. Quartz occurs in micro-lithon domains. White mica and
biotite prophyroclasts are wrapped by S2, the latter partially replaced by chlorite and white
mica and quartz filling the strain-shadows. Relict porphyroclasts are completely replaced
by white mica and chlorite. Folded S1 foliation is marked by quartz layers and white mica
films. S2 foliation is crenulated by D3 Alpine folds and the rare crenulation cleavage S3 is
marked by white mica and chlorite.

6. Mineral Chemistry

Two foliated (S3) samples of Edolo diabase (Ge8, Ge11; Figure 3) were analyzed at
Università degli Studi di Milano with a JEOL 8200 Super Probe (WDS) at 15 kV accelerating
voltage and with a beam current of 5 nA; natural silicates served as standards. Amphibole
formulae are calculated using Locock’s amphibole classification spreadsheet [58] and
following IMA 2012 recommendations. Clinopyroxene formula is recalculated at 4 cations
and 6 O, feldspar at 4 O, epidote at 8 cations and 12.5 O. Biotite and chlorite are recalculated
at 11 and 7 O, respectively. Representative mineral analyses are in Table S1.

6.1. Magmatic Minerals

CpxI1 (XMg = 0.69–0.78) and CpxI2 (XMg = 0.63–0.68) are diopside, with CpxI1 slightly
Al- and Ti- richer (Al = 0.14–0.30 apfu, Ti = 0.04–0.08 apfu) than CpxI2 (Al = 0.05–0.18,
Ti = 0.00–0.04 apfu).

AmpI1 (Figure 5) is ferri-kaersutite, Ti-rich ferro-pargasite, or Ti-rich magnesio-hornblende,
with Si = 5.99–6.34 apfu, Ti = 0.45–0.64 apfu, and Al = 1.90–2.32 apfu. AmpI1 is character-
ized by Na varying from 0.40 to 0.86 apfu and K from 0.18 to 0.25 apfu, as reflective of the
alkaline affinity of the Edolo diabase dykes (cfr. [59]). AmpI1 XMg in sample Ge8 (0.45–0.49)
is slightly lower than in sample Ge11 (0.49–0.66).

AmpI2 (Figure 5) is (Ti-rich) ferro-pargasite similar to AmpI1 in terms of Si, Al, Na,
and K contents, but markedly Ti poorer (Ti = 0.14–0.44 apfu) and Fe richer (XMg = 0.16–0.33),
with the lowest XMg values in sample Ge8. BtI is characterized by AlVI from 0.00 to 0.38
apfu and Ti from 0.37 to 0.78 apfu. BtI XMg in sample Ge8 (0.43–0.44) is lower than in
sample Ge11 (0.44–0.49).
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Zoned PlI is An40−58 at core, An10−38 between core and rim, and An7−8 at rim. EpI
filling interstices between PlI is characterized by Fe3+ = 0.36–0.53 apfu and AlVI = 2.47–
2.64 apfu; EpI rimming BtI is Fe3+ richer (0.54–0.59 apfu) and AlVI poorer (2.41–2.46 apfu).

Figure 5. Composition of magmatic (I1, I2) and metamorphic (M1, M2) minerals in the Edolo diabase.
Compositional variations in I1 and I2 minerals are reported as blue and light blue shaded areas,
respectively. Compositions of M1 and M2 minerals are plotted as circles (sample Ge11) and squares
(sample Ge8). Red shades highlight different microstructural sites occupied by hydrothermal M1

minerals. Black shades highlight different microstructural sites occupied by Alpine M2 minerals.
(A): Al/(Al + Si) vs. Na/(Na + Ca) amphibole diagram. Compositional end-members are reported as
stars; (B): Enlargement of A. (C): Fe vs. Mg amphibole diagram. XMg isolines are reported as dashed
lines; (D): Enlargement of C; (E): Ti vs. AlVI biotite diagram; (F): AlVI vs. Fe3+ epidote diagram.

6.2. Metamorphic Minerals

Even though the magmatic evolution comes along with strong compositional het-
erogeneities at the grain scale, hereafter we focus on the compositional trends observed
in metamorphic minerals. Furthermore, a more detailed microstructural classification is
proposed in Figure 5 to show the reader the local effects of the inherited compositional
heterogeneities.

AmpM1 (Figure 5) is actinolite with Si = 7.78–7.93 apfu, AlVI = 0.02–0.09 apfu, and
very low to negligible Ti and Na content (Ti = 0.00–0.02 apfu, B Na = 0.01–0.05 apfu,
A Na = 0.00–0.04 apfu). XMg in AmpM1 is higher in sample Ge11 (0.71–0.77) than in sample
Ge8 (0.65–0.53), with the lowest XMg values where AmpM1 replaces Fe-rich AmpI2. ChlM1

is characterized by AlIV = 0.92–1.09 apfu and XMg = 0.46–0.56; EpM1 by Fe3+ = 0.85–
0.93 apfu and AlVI = 2.07–2.14 apfu.

AmpM2 (Figure 5) is actinolite or magnesio-ferri-hornblende, with Si = 7.42–7.83 apfu,
AlVI = 0.04–0.17 apfu, and Ti < 0.04 apfu. The Na content in AmpM2 (BNa = 0.02–0.10 apfu,
A Na = 0.02–0.13 apfu) is higher than in AmpM1. Even in this case, AmpM2 XMg in
sample Ge11 (0.59–0.81) is generally higher than in sample Ge8 (0.53–0.64), with AmpM2
replacing AmpI2 characterized by the Fe-richest compositions. BtM2 (XMg = 0.49–0.54)
is characterized by Si = 5.38–5.70 apfu, AlVI = 0.46–0.61 apfu, and Ti = 0.06–0.16 apfu
(Figure 5). In ChlM2 (XMg = 0.49–0.55 in sample Ge8, and 0.56–0.59 in sample Ge11) Si is
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2.63–2.91 apfu and AlIV is 1.10–1.37 apfu. EpM2 is characterized by Fe3+ = 0.75–0.85 apfu
and AlVI = 2.15–2.24 apfu (Figure 5). PlM2 is An2−7.

Consistent compositional trends characterize the transition from late- to post-intrusive
hydrothermalism (M1) to Alpine metamorphism (M2) associated with S3 development:

1. decrease in Fe3+ and increase in AlVI from EpM1 to EpM2,
2. increase in AlIV from ChlM1 to ChlM2,
3. decrease in Si and increase in AlVI , ANa, and BNa content from AmpM1 to AmpM2.

These trends are diagnostic of a prograde metamorphic evolution through the green-
schist facies in mafic rocks (e.g., [60,61] and refs. therein).

7. Metamorphic Evolution

Mineral associations and compositional trends suggest that the metamorphic evolution
of the Edolo diabase dykes entirely took place under greenschist facies conditions. It is
well known that, under these conditions, equilibrium is often attained only at a very local
scale in mafic rocks due to slow reaction progress in the absence of fluids and P-T estimates
come along with a wide margin of error [62]. In addition, we have already shown that local
compositional heterogeneities inherited from the magmatic evolution persist in these rocks
(Figures 4 and 5), making it unwise to use bulk rock data to represent local equilibrium
volumes. Taking into account these reasons, we try to constrain the P-T evolution of the
Edolo diabase by matching different thermo-barometric methods involving chlorite and
amphibole. For chlorite the thermometers that are most suitable in low- to very low-
grade rocks [63,64] and avoid the issue of Fe oxidation-state determination (see [64] for a
discussion) have been used, even though T > 350 °C should be considered with caution.
The same approach was applied in selecting the amphibole thermometers, recalculating
the minerals following the procedures suggested by respective authors [65–67] and using
only those thermobarometers where greenschist facies conditions are considered.

Chlorite and amphibole thermometry constrain late- to post-intrusive hydrothermal
conditions (M1). According to ChlM1 thermometry (Table 1; [63,64]), temperatures are
slightly lower than 300 °C, while AmpM1 thermometry suggest temperatures at around
350 °C (Table 1; [65]).

The physical conditions of Alpine metamorphism (M2) are constrained by chlorite and
amphibole thermobarometry. ChlM2 thermometry [63,64] returns temperatures between
300 and 420 °C (Table 1). However, these authors reccomend caution when dealing with
results above 350 °C. Temperatures above 350 °C are indicated by AmpM2 thermometry
([65], Figure 6), whereas pressures up to 0.2 GPa are indicated by AmpM2 barometry
([66,67], Figure 6).

A further constrain on the P-T evolution of the Edolo diabase dykes comes from the
country rocks, where S3 is marked by chlorite and white mica. We thus consider the biotite
appearance at a temperature of 420 °C [62] as the upper temperature boundary for the
Alpine metamorphic evolution of the Edolo diabase. Therefore we suggest that Alpine P-T
conditions are constrained between T = 350–420 °C and P ≤ 0.2 GPa (Figure 6).
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Table 1. Thermobarometric constraints on M1 and M2 minerals.

Metamorphic
Stage Microstructure TChl [63,64] TAmp−Pl [65,67] PAmp [66,67]

M1
230–290 °C

(n = 3)
290 °C < T �

490 °C (n = 12)
�0.2 GPa

(n = 12)

M2
300–420 °C

(n = 16)
350 °C ≤ T <

490 °C (n = 41)
≤0.2 GPa
(n = 41)

Figure 6. Thermobarometric constrains on M2 minerals. (A): amphibole−plagioclase thermometer
of [65]; (B): amphibole−plagioclase thermo−barometer of [67]; (C) amphibole barometer of [66];
(D): P-T conditions accountable for M2 minerals development (black box). KFASH and KMASH
reactions are taken from [62,68].

8. Discussion

North of the Orobic–Porcile–Gallinera thrust system, the alkaline Edolo diabase dykes
are crosscut by Alpine S3 foliation. In the dykes, S3 is marked by Al- and Na-rich actinolite
(AmpM2), biotite (BtM2), chlorite (ChlM2), epidote (EpM2), albite (PlM2), and titanite.
In the host metapelites, S3 is instead marked by white mica, chlorite, and opaque min-
erals. S3 development is kinematically correlated with the development of the Orobic–
Porcile–Gallinera thrust system (D3) and chevron-type D3 folding in the Variscan basement
rocks [16,20,21,47,48].

Taking into account textural and compositional heterogeneities in the samples, their
influence on the determination of equilibrium P-T conditions, and the intrinsic error of
the thermo-barometric methods at low grade metamorphic conditions, we suggest that
S3 developed in the Edolo diabase at T = 350–420 °C and P ≤ 0.2 GPa, as indicated by
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overlapping thermo-barometric estimates. These P-T conditions are the first quantitative
estimates of Alpine metamorphic conditions in the Southern Alps that were attained during
a prograde evolution following a former re-equilibration stage (M1) at T ≤ 350 °C related
to post-intrusive hydrothermal circulation.

Metamorphic assemblages that suggest P-T conditions similar to those estimated for
the Edolo diabase dykes are also described in the pre-Alpine mafic dykes at the junction
between the Orobic and Porcile thrusts ([20], Figure 1), indicating that also the western
edge of the Orobic–Porcile thrust nappe recorded the same metamorphic imprint during
the Alpine convergence. The onset of south-verging shortening (syn-D3) in the Southern
Alps occurred during oceanic subduction, as indicated by the 80–43 Ma 40Ar/39Ar ages of
the Orobic–Porcile thrusts [10,11] in comparison with the ages of HP rocks in the exhumed
Alpine subduction zone ([1–3] and refs. therein). This time interval is therefore consid-
ered for the upper greenschist facies Alpine metamorphism (M2) recorded in the Edolo
diabase dykes.

The obtained P-T conditions suggest a minimal T/depth ratio of 50–60 °C that is
compatible with volcanic arc geothermal gradients (e.g., [69–71], Figure 7). Such perturbed
thermal state in the upper-plate of the Alpine subduction system can also explain the
genesis of the syn-subductive magmatism south of the Periadriatic fault system, in the
Veneto volcanic province (∼40 Ma, [72] and ref. therein) and in the southern Adamello
pluton (43–41 Ma, [73,74]).

Figure 7. Metamorphic conditions attained by the Edolo diabase dykes during post-emplacement
(M1) and Alpine syn-D3 (M2) evolution. Metamorphic facies after [75]–Z: zeolite; PP: prehnite-
pumpellyite; B: blueschist; GR: greenschist; EA: epidote amphibolite; A: amphibolite; E: eclogite; G:
granulite. P-T trajectories are–1: active arc volcanoes; 2: normal geothermal gradients at plate interior;
3: “warm” subduction zones; 4: “cold” subduction zones ([69] and refs. therein). "Alpine subduction
metamorphism" locates metamorphic conditions recorded by rocks involved in the Alpine subduciton
system.

9. Conclusions

In this contribution we investigated the thermal state attained by the upper plate
of the Alpine subduction system, i.e., the central Southalpine domain, looking at the
structural and metamorphic evolution retained by the Edolo diabase dykes north of the
Orobic–Porcile–Gallinera thrust system and south of the Periadriatic fault system. The
dykes retain two metamorphic events, the first (M1) at T < 350 °C interpreted as due to a
post-intrusive hydrothermal activity and the second (M2) at T = 350–420 °C, P ≤ 0.2 GPa,
which is syn-kynematic with the development of D3 south-verging Alpine thust system
between 80 and 43 Ma. M2 metamorphism developed under a thermal state compatible
with a syn-subductive volcanic arc. South of the Periadriatic fault system, which borders the
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exhumed Alpine subduction zone, magmatic bodies emplaced intersecting D3 structures
during active Alpine subduction in Eocene times.
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