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ABSTRACT2

Digital twins in mechanics of materials usually involve multimodal data in the sense that3
an instance of a mechanical component has both experimental and simulated data. These4
simulations aim not only to replicate experimental observations but also to extend the data.5
Whether spatially, temporally or functionally for various possible uses of the components. Related6
multimodal data are scarce, high dimensional and a physics-based causality relation exists7
between observational and simulated data. We propose a data augmentation scheme coupled to8
data pruning, in order to limit memory requirements for high-dimensional augmented data. This9
augmentation is desirable for digital twining assisted by artificial intelligence when performing10
nonlinear model reduction. Here, data augmentation aims at preserving similarities in terms11
of validity domain of reduced digital twins. In this paper, we consider a specimen subjected12
to a mechanical test at high temperature, where the as-manufacturing geometry may impact13
the lifetime of the component. Hence, an instance is represented by a digital twin that includes14
a 3D X-Ray tomography data of the specimen, the related finite element mesh and the finite15
element predictions of thermo-mechanical variables at several time steps. There is thus, for each16
specimen, geometrical and mechanical information. Multimodal data, which couples different17
representation modalities together, are hard to collect and annotate them requires much more18
effort. Thus, the analysis of multimodal data generally suffers from the problem of data scarcity.19
This problem is particularly pronounced when considering digital twins of thermo-mechanical tests,20
which are very complex to implement in large amounts.The proposed data augmentation scheme21
aims to train a recommending system that recognizes a category of data available in a training set22
that has already been fully analysed by using high fidelity models. Such a recommending system23
enables the use of a ROM-net for fast lifetime assessment via local reduced order models.24

Keywords: High dimensional data, Model Order Reduction, Data Pruning, Oversampling, Computational Mechanics, Lifetime25
Prediction26

1 BACKGROUND

A Digital Twin (DT) is an ultra-realistic model in geometric details, including manufacturing anomalies, or27
in material Bellinger et al. (2011), specific to an instance of an engineering system or of a component in28
a system. More precisely, when considering model-based engineering systems, DT integrate ultra-high29
fidelity simulations, maintenance history and all available historical among real data. Those information30
are used to mirror the life of their respective ”flying twin”, as proposed in Glaessgen and Stargel (2012) for31
aeronautical applications. In this paper, we consider Real Instances of Mechanical Components (RIMC)32
that undergo thermo-mechanical loadings in an experiment that reflects what an aircraft engine imposes33
to a high pressure turbine blade. The as-manufactured geometries are observed by X-Ray Computed34
Tomography (CT) that generates 3D accurate digital images of RIMC. A numerical model is a DT only if35
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its corresponding RIMC exists. How to make the best use of existing data while exploiting the information36
with classical mathematical models is an important issue. Data-driven modelling is emerging as a powerful37
paradigm for physical and biological systems Zhang et al. (2019). In various industrial fields related to38
structural mechanics, most of numerical models incorporate scientific knowledge about mechanics of39
materials. Hence, the numerical instance of a DT incorporates multimodal data. Each modality of data has40
its own ambient space related either to material parameters, geometrical and morphological representation41
or boundary and initial conditions for partial differential equations. One important modality is related to42
the synthetic data forecast by model-based numerical simulations, predicting the lifetime of the RIMC for43
instance, upon observational data. Such synthetic data support decision in engineering for maintenance,44
operating optimization or decommission of RIMC. With the development of Non Destructive Testing45
(NDT) in the manufacturing industry, we can expect a growing activity on image-based DT Seon et al.46
(2020); Launay et al. (2021a) for accurate descriptions of as-manufactured geometries and microstructural47
properties of structural components. Such data are crucial for lifetime predictions Aublet et al. (2022).48
Unfortunately, image-based DT in material science is so complex and time-consuming, so that in practice,49
this task does not scale with the frequency of quality inspection in manufacturing. This is a major scaling50
issue for online DT of as-manufactured structural components, where lifetime prediction is strongly51
affected by geometrical defects. Another issue is the curse of dimensionality related to the dimension of the52
geometrical ambient space, so that a dense sampling of this space is unaffordable. So, learning regression53
for lifetime prediction from observational data, as in cross-modal predictions (Launay et al., 2021a), may be54
not relevant for such image-based modelling. In this work, we augment multimodal data in order to train a55
ROM-net Daniel et al. (2020). A ROM-net learns a piecewise linear latent-space for model order-reduction.56
It incorporates a classifier, in its first layers, that recommend the selection of a local reduced-order model57
(LROM), from a digital image of the RIMC, where each LROM has its own label. In this paper, we assume58
that the latent space has a structure of vector bundle that is locally trivial. This means that LROM’s have59
a validity domain larger than the support of training data Ryckelynck et al. (2015). In the sequel, DTs60
that have similar validity domains for their specific LROM are termed ROM-similar. Therefore, ROM-net61
predictions should be accurate when the input data have ROM-similar data in the dictionary of LROM.62
Unfortunately, the multimodal data related to image-based DT are very scarce, compare to the dimension63
of the ambient spaces of these data. Furthermore, we need to prove the efficiency of digital twining assisted64
by artificial intelligence prior getting more data related to manufactured components. Hence ROM-net,65
or more precisely the classifier of the ROM-net, needs augmented data (Lecun et al., 1998). A review on66
image-data augmentation schemes is available in Shorten and Khoshgoftaar (2019). Both image warping67
and oversampling augmentations are proposed in the literature, so that labels are preserved. Here, the68
multimodal data involved in digital twining require to account for the causality relation that exists between69
the model-based predictions and observational image data. In data warping augmentation, alone, the70
causality relation between observational data and simulated data is not preserved. Hence, labels that refer71
to LROM can’t be preserved by data warping. So, we propose a dedicated oversampling procedure based72
on ROM-similarity. A schematic view of the assumed piecewise linear latent space is shown in Figure73
??. In this figure, ROM-similar data are aligned on the same slope. We consider both experimental data74
and simulated data related to the lifetime of a realistic structural component, composed of CMSX4-PLUS75
super alloy, undergoing cyclic loading and plastic strains at high temperature. The next section details the76
proposed scheme for multimodal data oversampling. In Section 3 two examples are provided. The first77
one is an augmentation around a defect in a 2D picture which affect the local strain fields. In the second78
example, we give a detailed description of the considered multimodal data for an academic example and79
for a mechanical component undergoing cyclic loading at high temperature for its lifetime characterization.80
The ambient spaces related to the multimodal data in this paper are realistic regarding manufactured parts81
of the aeronautics industry Aublet et al. (2022).82

2 METHODS

The multimodal data involved in a DT are denoted by µ for material or metallurgical parameters, µ� for83
digital images, p for the lifetime prediction and a matrix u ∈ RN×nt of model-based simulated data over84
nt time steps. The residuals of the physics-based equations read:85

r(u; k,µ,µ�) = 0, k = 1, . . . nt, p− `(u) = 0 (1)
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where r(·; k, ·, ·) ∈ RN , k = 1 . . . nt is a given series of complex physics-based equations that forecast86
primal variables u[:, k] (i.e. displacements in mechanical models) and ` is a much less complex function for87
lifetime prediction knowing u. nt is the number of residual vectors required to predict the nt columns of u.88
For instance, nt is the number of loading steps in a mechanical problem. Residuals r setup the causality89
relation between the multimodal data.90

The solution manifold of all u fulfilling equation 1, for given µ and µ�, is denoted by E. For reduced91
order modelling purpose, we assume that E has a structure that the data augmentation scheme has to92
preserve. This structure is a vector bundle of rank N . It is a family of vector spaces of dimension N93
parametrized by a base space denoted by M . In the proposed framework, M is the manifold of primal94
variables u for digital twins. The vector bundle is assumed to be locally trivial, in the sense that the95
local vector space is constant on subsets of M . In the sequel, these subsets of M have a dedicated label96
y and this label refers to a local reduced basis V(y) ∈ RN×N . An instance of a DT is denoted by97

X(i) = {µ(i),µ
(i)
� ,u(i), p(i)}, with u(i) ∈M . Its label is denoted by y(i) and V(y(i)) is the local reduced98

basis attached to the ith DT. The reduced basis V(y(i)) contains the left eigenvectors of the truncated99
singular value decomposition of u(i). It is an orthogonal reduced basis. The original set of DTs indices is100
denoted byDt0. The set of indices related to augmented data is denoted byDaug, such thatDt0∩Daug = ∅.101

Augmented data X(a), a ∈ Daug, are admissible, if they preserve the structure of E in the following sense:102
it exists i ∈ Dt0 such that:103

u(a) ∈ span(V(y(i))) (2)

y(a) = y(i) (3)

r(u(a); k,µ(a),µ
(a)
� ) = 0, k = 1, . . . nt, p(a) − `(u(a)) = 0 (4)

This admissibility criteria involves, in Equation 3, the usual constrain that preserve labels of original104
data. We acknowledge that the proposed data augmentation scheme does not improve the sampling of the105
base space M . Its purpose is to augment the number of instances that share the same labels. Figure ??106
is illustrating the structure of manifold E. In this figure, the sampling points on manifold M are the red107
points. The local vector spaces are represented as green lines. The desired augmented data are represented108
by blue crosses. The labels have also been represented on each axis to this plot.109

Usually, N is large and can range from 105 to 107. The higher the resolution of digital images, the110
higher the dimensions of µ� and u. In practice, r and u are related to a finite element mesh of the digital111
image µ�. For such high dimensional multimodal data, preserving memory storage capabilities while112
performing data augmentation is the main issue to achieve feasible augmentations. The storage limits of113
high dimensional multimodal data was not in the scope of previous papers on simulated data augmentation114
Daniel et al. (2021); Launay et al. (2021b). Without solving this issue, no data oversampling is possible115
here. Therefore, to limit the memory requirement and computational time, oversampling is coupled to a116
data pruning technique Hilth et al. (2019) and numerical approximations. The method intends to restrict117
Equation 2 and Equation 4 to sets of selected rows among the complete set of rows. These sets are denoted118
respectively F and F . In order to have a consistent selection of these sets of rows, the data pruning119
procedure accounts for the finite element description of the residual r and the spatial interpolation of the120
primal variable u. This interpolation uses finite element shape functions denoted by (ϕj)j=1,...N . The121
interpolated primal variable reads:122

ũ(ξ; k,µ,µ�) =
N∑
j=1

ϕj(ξ) u[j, k](µ,µ�) ∀ ξ ∈ Ω (5)

where Ω is the geometrical domain occupied by the DT and ξ is the position vector in this domain. In123
image-based DTs, the finite element shape functions and the domain Ω are specific to each instance of124

µ
(i)
� , for i in Dt0. But this dependence is not included in notations here, for the sake of simplicity. The125

data pruning procedure proposed in Hilth et al. (2019) introduces a reduced domain denoted by ΩR. This126
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reduced domain is the support of finite element shape functions related to F :127

ΩR = ∪j∈Fsupp(ϕj) (6)

and F is the set of indices of the variable u restricted to ΩR, so that the residual restricted to F can be fully128
computed using solely u[F ]. For the sake of simplicity this restricted residual is denoted by r(u[F , :]; ·)[F ].129
It is important to note that ΩR must cover the region of interest for geometrical variations.130

For pruned data, approximation errors in Equation 2 must be tolerated. We propose a two steps131
augmentation technique, that contains: 1) a random sampling step of parameters µ,µ� in the vicinity of132

(µ(i),µ
(i)
� )i∈Dt0 ; 2) a screening step in accordance with the admissibility criteria for pruned data. The133

admissibility of pruned augmented data fulfill the following equations:134

γ(a)[:, k] = argming∈RN‖u(a)[F , k]−V(i)[F , :] g‖, k = 1, . . . nt (7)

η(a) =
‖u(a)[F , :]−V(i)[F , :] γ(a)‖F

‖u[F , :]‖F
(8)

s = 1− η(a) > stol (9)

y(a) = y(i) (10)

r(u(a)[F , :]; k,µ(a),µ
(a)
� )[F ] = 0, k = 1, . . . nt (11)

u(a)[j, :] = u(i)[j, :] ∀ j ∈ F\F (12)

p = `(V(i) γ(a)) (13)

where ‖ · ‖F is the Frobenius norm. Here we assume that V(i)[F , :] is full column rank. The above135
computation of the reduced coordinates γ(a) is known as the Gappy POD Everson and Sirovich (1995).136
Again, we assume that u is supported by the mesh of the ith DT, so that the evaluation of η(a) makes137
sense. Equation (9) is checking the ROM-similarity of the augmented data. Equation (12) in finite element138
modelling is termed a Dirichlet boundary condition. Other interesting boundary conditions are proposed in139
Hilth et al. (2019) for hyper-reduction. stol is an hyper-parameter of the augmentation scheme.140

Remark: It is possible to update the vector bundle after the data augmentation. The accuracy of the141
LROM that we can compute after data augmentation is not directly related to the threshold used here for142
the ROM-similarity. For instance, after data augmentation, we can aggregate in a matrix û(i) the primal143
variable having the same label, for both original and augmented data. Therefore, a truncated singular value144
decomposition of û(i) can given a very accurate reduced basis for the category of data y = y(i).145

3 RESULTS AND DISCUSSION

3.1 Modelling the local mechanical response of voids in an elastic material146

In a previous work Ryckelynck et al. (2020), we published 2D DTs of voids in elastic bodies. In this147
example, we augment the data around two DTs from this previous work. The augmentation ratio is 100148
for each DT, prior fulfilling the constrains for the construction of Daug . Here, mechanical variables are149
structured data similar to digital images Launay et al. (2021a). But not all data augmentation techniques150
proposed in the literature for digital images are relevant for reduced digital twining. For instance rotation151
and shear transformations must be consistent for both geometrical and mechanical data. In this example, the152
domain Ω is a square (on the left in Figure 1). The manufacturing process creates voids and each instance153
of void is placed in the centre of Ω. The mesh is specific to each DT in order to capture the geometry of the154
void (at the centre of Figure 1). In this mesh a phase field represents the void: if φ(ξ) > 0 then ξ is in the155
void, else ξ is outside the void (1 ≥ φ ≥ 0). In mechanical equations of elasticity for digital twining, the156
Young modulus reads E(ξ) = Eo (1− φ(ξ)), where Eo is the Young modulus in the bulk. In this simple157
example, we restrict our attention to the prediction of shear strains around each void, under a macroscopic158
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shear strain. The reduced domain in shown on the right in Figure 1. Here, the cardinal of F is only 30%159
smaller than N . Simulation errors of shear strains is about 18% when solving equations (11)-(12) instead160
of equation (1). The mechanical problem has 3 time steps t0, t1, t2. In the first time step a longitudinal161
traction is imposed to the boundaries of Ω. In the second time step it is transverse traction. In the last time162
step, we impose a shear strain at the boundaries of Ω.163

Multimodal data are the 2D image of the void (i.e. the image of φ) and the mechanical shear strain164
in ΩR. These data are shown in Figure 2 and Figure 3 for Digital twins i = 1 and i = 2 respectively.165
Augmented image-data are obtained by usual shear and rotation of the void image. The resulting phase166
field is denoted by φ′. The mechanical expression of the strain tensor is the symmetric part of the gradient167
of the displacement field u. This strain tensor is denoted by ε, ε(u) = (∇u +∇uT )/2. The solution of168
elastic equations (11)-(12) forecasts the augmented value for the shear strain ε(u′). We can see on the full169
order simulations, on Figures 2 and Figure 3, that the mechanical strains are highly dependent on the void170
morphology.171

Two examples of augmented data are shown in Figure 4 and Figure 5. In these examples, it is clear that172
the mechanical variables do not follow the warping imposed to µ�, especially far from the void. Local173
reduced bases have 3 modes. The reduced basis of the first DT is shown in Figure 6. The ROM-Similarity174
of augmented data is shown in Figure 7. Only one augmented data in D̃(1) fails to be ROM-Similar. They175
are 28 for the second DT. Blue and red curves are well separated. None of augmented data for one DT is176
ROM-Similar to the other DT.177

3.2 Application on fatigue specimen observed via X-ray computer tomography178

In this subsection, we consider a mechanical specimen subjected to a mechanical test at high temperature,179
where as-manufacturing geometry may impact the lifetime of the specimen. The DT includes a 3D X-Ray180
tomography of the specimen (Figure 8), the related finite element mesh (Figure 9) and the finite element181
predictions of thermo-mechanical variables that are modified at several time steps during the test (on the182
pruned mesh in Figure 12). The problem of data scarcity is particularly pronounced for this kind of DTs. In183
this example, N > 3.105, m = 20, and the target reduced dimension of LROM is setup to N = 6 in order184
to have stol = 0.99. In this example, µ is a vector of 3 angles related to single crystal CMSX4-PLUS of the185
specimen as presented in Aublet et al. (2022). This parameter is augmented randomly using angle variations186
below 12o. Usual image warping techniques are not relevant on the 3D tomographic image of DT. Hence, a187
random mesh morphing have been applied to the mesh of the DT in order to augment observational data188
µ�. The geometrical variations were generated around a DT i using a Gaussian perturbation on geometrical189
parameters with the following model. For a parameter q, the new value p′ was randomly chosen in the190
vicinity of q with a common log-normal X law centred on q with a standard deviation of 0.2 ∗ q such as191
p′ ∈ X (q, 0.2∗ q). We generated 10 meshes around each DT and 10 cycles of triangular thermo-mechanical192
loading were applied. An example of node displacement for this morphing step is shown in Figure 10. Most193
finite elements removed for the data pruning are located around a cooling hole in the specimen (Figure 11).194
To ensure the consistency of HROM equations 11 under Neumann boundary conditions, some sets have to195
be preserved during the pruning. Card(F ) is twice smaller than N , so the memory saving factor is 2. The196
prediction error of finite element simulation using the pruned mesh is 10% in ΩR. Data augmentation has197
been performed for two DTs X(1) and X(2). After augmentation, the ROM-similarity is computed twice198
for all augmented data. This enables to check the labels of augmented data. The original DTs are quite199
ROM-similar, so values of s are close to 0.99. They are reported in Figure 13. Labels of augmented data200
are consistent with the ROM-Similarities. However, all ROM-Similarities are very high in this example.201

Here, we consider a time-dependent problem due to plasticity computed with a Crystal Plasticity model202
developed by Méric and Cailletaud in Méric et al. (1991). This kind of problem implies a temporal analysis203
with initial important spread on the domain (low values with importation gradients) at the first times and204
then, a localization due to a mechanical defect such as a hole as shown in Figure 9. This localization205
implies local variations of displacement fields around the defect which needs a higher value of N to catch206
the information in LROM. As we performed a truncature with N = 6, we can’t gather the local information207
on plasticity. The development of ROM-Similarity criteria is still a work in progress in plasticity. Here,208
V(y(1)) and V(y(2)) seem pretty similar hence the close ROM-Similarities reported in Figure 13.209
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4 CONCLUSION

The proposed data augmentation method is very versatile for multimodal data that includes simulated data210
in the framework of image-based digital twining. It requires the access to the finite element model used211
for digital twining. The method assumes that the latent space hidden in the multimodal data is piecewise212
linear, so that nonlinear model reduction uses local reduced bases. The validity domains of this reduced213
bases enable the definition of similarities, termed ROM-Similarity, between multimodal data. The pruning214
technique, used to limit memory requirement for high-dimensional augmented-data, has an hyper-parameter215
ΩR. The larger the domain ΩR the more accurate the evaluation of ROM-Similarities. The smaller ΩR216
the higher the memory savings. The development of ROM-Similarity criteria is still a work in progress in217
plasticity.218
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Figure 1. The finite element mesh of one digital twin (on the left), a focus on the phase field of the void at
the center of this mesh (center), the mesh of the reduced domain ΩR (right).
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Figure 2. Multimodal data for digital twin i = 1, on top left µ(1)
� , on the right the 3 components of the

strain tensor ε(u(1)) at 3 time instants t0, t1, t2.

Figure 3. Multimodal data for digital twin i = 2, on top left µ(2)
� , on the right the 3 components of the

strain tensor ε(u(2)) at 3 time instants t0, t1, t2.
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Figure 4. Example of augmented multimodal data for digital twin i = 1, on the left original data, on the
right augmented data, on first row µ�, second row the shear strain at time t2.

Figure 5. Example of augmented multimodal data for digital twin i = 2, on the left original data, on the
right augmented data, on first row µ�, second row the shear strain at time t2.
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Figure 6. Strain components of the LROM for digital twin i = 1, on top left µ�, on the right ε(V(1).
Here, t0, t1, t2 stand for the indices of the vectors that span the LROM.

Figure 7. ROM-Similarity for all instances of augmented data in D̃(i). Augmented data related to digital
twin 1 have indexes ranging from 1 to 100, Augmented data related to digital twin 2 have indexes ranging
from 101 to 200. The dashed line is the constrain η(i)(u′) < α εtol.

Frontiers 11



Aublet et al. Multimodal data augmentation for Digital Twining

Figure 8. X-Ray computer tomography image of the mechanical specimen.

Figure 9. 3D finite element mesh based on the X-Ray computer tomography image.
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Figure 10. Example of node displacements along axial direction for mesh morphing according to
augmented data for geometrical variations ∆µ�.

Figure 11. Finite element mesh restrained to ΩR (N /card(F) = 2). Most removed elements are located
around the hole.
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Figure 12. Shear strain forecast by the finite element model, in ΩR, at the maximum mechanical loading
of the specimen.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Oversampling index

0.975

0.980

0.985

0.990

0.995

1.000

Ro
m

-s
im

ila
rit

y

y1
y2

Figure 13. ROM-Similarity for all instances of augmented data in D̃(i). Augmented data related to digital
twin 1 have indexes ranging from 0 to 9, Augmented data related to digital twin 2 have indexes ranging
from 10 to 19.
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