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About integer-valued variants of the theta and 6j symbols

Robert Coquereaux

Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
Centre de Physique Théorique

Abstract

These notes contain essentially a rewriting of several properties of two well-known quantities,
the so-called theta symbol (or triangular symbol), which is rational, and the 6j symbol, which is
usually irrational, in terms of two related integer-valued functions called gon and tet. Existence
of these related integer-valued avatars, sharing most essential properties with their more popular
partners, although a known fact, is often overlooked. The properties of gon and tet are easier
to obtain, or to formulate, than those of the corresponding theta and 6j symbols, both in the
classical and quantum situations. Their evaluation is also simpler (the paper displays a number
of explicit formulae and evaluation procedures that may speed up some computer programs).
These two integer-valued functions are unusual, in that their properties do not appear to be
often discussed in the literature, but their features reflect those of related real-valued functions
discussed in many places. Some of the properties that we shall discuss seem however to be new,
in particular several relations between the function gon and the inverse Hilbert matrices.
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1 Introduction

This set of notes started as a a pedagogical exercise, or as a self-directed learning activity. The
purpose was to present the notions underlying the definitions and properties of several well-known
functions of mathematics and theoretical physics, namely the so-called triangular (or trihedral, or
theta) symbols and 6j symbols, in very simple terms.

These functions are used by several communities working in often quite distinct fields, for
instance elementary quantum physics, chemistry, spin networks and spin foams, particle physics,
quantum gravity, topological field theory, geometry of 3-manifolds, representation theory of semi-
simple Lie groups, weak Hopf algebras, category theory, and even quantum computing, to mention
just a few. Quite often the various definitions of these functions, and the writing of their properties,
appears as rather involved, in the sense that they require some familiarity with specific scientific
domains. The terminology itself is not fully standardized because several objects bearing the same
name often differ by normalization prescriptions or have a meaning that has not be stable along
the years.

The main observation is the following: there exists a variant of the theta symbols (triangular
symbols) that makes them integer-valued, and there is also a variant of the 6j symbols that makes
them integer-valued. The integrality of these two variants comes from the fact that they can be
written as multinomial coefficients (or sums of multinomials). The “usual” theta and 6j symbols
are related to their respective integer-valued variants by normalization coefficients that have an
elementary geometrical interpretation. This fact is certainly known by experts (or aficionados) but
it is often overlooked, and the absence of such a description in the literature —with some rare
exceptions, like [12]— is quite surprising.

We therefore decided to write a kind of compendium of formulae involving these integer-valued
avatars of the theta and 6j symbols. The paper does not contains many proofs because most
formulae displayed in the following pages come from well-documented properties of the theta and
6j symbols but they are usually simpler and look more natural when written in terms of their
integer-valued variants. We also decided to give a name to these two integer-valued functions: in
order to avoid the notation tri (or θ) for the variant of the triangular function, we decided to call it
gon (also because it can be generalized to polygons), and to call tet the integer-valued variant of the
6j-symbol. As already mentioned, most formulae to be found in the next pages are nothing but a
re-writing of known relations, however we shall discover a few others along the way; in particular we
shall discover unexpected relations with the coefficients of inverse Hilbert matrices (see sec. 2.1.9).
A double triangle identity discussed in sec. 2.1.5 does not seem to be much discussed in other places
either.

It turns out that the q-number generalization of the two integer-valued functions gon and tet
is very simple to obtain, and we shall describe them as well (the “classical” 6j symbols are used
in elementary quantum physics, but their quantum analog are not !). The first part of this paper
is devoted to the definition and study of the “classical” functions gon and tet whereas the second
part (more sketchy) is devoted to their “quantum” counterpart. Several comments are gathered in
the last section (Miscellaneous) where the reader will in particular find a very brief summary of the
spin network formalism —that we shall not use in the main body of the text, but which is related
to our previous discussions.

There is a huge literature on the mathematics of the triangular and 6j symbols, most of the
corresponding results are rather old and now belong to the folklore. Selecting references is not
an easy task, some being more appropriate than others for readers with a specific background;
we shall nevertheless mention here a few classical textbooks. General or historical ones belong
to the physics literature, we can mention [15], [24]. The mathematically oriented reader having
particular applications in mind will find useful informations in [7], [17], [19], [31]. One can also look
at the appropriate sections of Wikipedia. Finally we included a short appendix that briefly recalls
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the historical motivation behind the definitions of various families of coefficients (Clebsch-Gordan
coefficients, 3j symbols, 6j symbols) and where we display a few relations that are standard, but
not every reader is expected to be familiar with the subject. We shall sometimes refer to this
appendix for notational purposes and when we need to make contact between the functions gon or
tet discussed in the main body of the text and more traditional quantities.

2 Classical version

2.1 The classical gon function

2.1.1 Admissible triplets

Let pa, b, cq be a triplet of non-negative integers. We first assume that this triplet is triangular,
meaning that it obeys triangular inequalities: the numbers a, b, c are such that a ` b ´ c ě 0,
b` c´ a ě 0 and c` a´ b ě 0. These integers can therefore serve as the side lengths of an integer
triangle (possibly degenerate, either because one edge is zero or because one of the triangular
inequalities is an equality). We also assume that the perimeter a ` b ` c is even. A triplet of
non-negative integers a, b, c obeying the above two constraints is called admissible.

Notice that a` b´ c “ pa` b` cq ´ 2c is a difference of two even integers; hence a` b´ c is an
even integer, and this is true as well for b` c´ a and c` a´ b. One can therefore introduce three
new non-negative integers m,n, p as follows:

m “
1

2
pc` a´ bq, n “

1

2
pa` b´ cq, p “

1

2
pb` c´ aq.

Then a “ m` n, b “ n` p, c “ p`m. The semiperimeter σ of the triangle pa, b, cq reads

σ “ pa` b` cq{2 “ m` n` p,

and we have m “ σ ´ b, n “ σ ´ c, p “ σ ´ a. Notice that pa, b, cq admissible implies m ě 0,
n ě 0, p ě 0, but this does not imply that pm,n, pq should be triangular: m,n, p can be arbitrary
non-negative integers. It is clear from the above that there is a one to one correspondance between
the triplets pa, b, cq and the triplets pm,n, pq. We find convenient to refer to the first as external
variables, and to the next as internal variables; the external variables label edges of triangles,
whereas the internal variables should be thought as labels for the segments displayed on fig. 1.

It is sometimes useful — and anyway traditional in physics — to introduce the spin variables
j1 “ a{2, j2 “ b{2, j3 “ c{2. One hasm “ j3`j1´j2, n “ j1`j2´j3, p “ j2`j3´j1. These so-called
spin variables j1, j2, j3 are either integers or half-integers. Notice that m` n` p “ j1 ` j2 ` j3.

One can interpret also a, b, and c (twice the spin variables) as the components of the highest
weights defining three irreducible representations (irreps) of SUp2q in the basis of fundamental
weights — since SUp2q has only one fundamental weight this basis has only one element. We shall
usually denote the irreducible representations themselves by their highest weight. The dimension
of the irrep with highest weight component equal to x “ 2j is dimpxq “ x ` 1 “ 2j ` 1. In
this interpretation, a triplet of representations pa, b, cq is admissible if c (for instance) enters the
decomposition of the tensor product a b b as a sum of irreducible representations, equivalently, if
abbbc contains the trivial representation, i.e., if and only if c P t|a´b|, |a´b|`2, . . . , a`b´2, a`bu.
As it will appear many times, we give a name to the previous set: for non-negative integers u, v,
we call

â

ru, vs “ t|u´ v|, |u´ v| ` 2, . . . , u` v ´ 2, u` vu (1)
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2.1.2 The elementary gon function (triangular function)

For an admissible triplet pa, b, cq, the function gonpa, b, cq is defined in terms of the variables m,n, p,
introduced previously, as a particular multinomial coefficient:

Definition 1.

gonpa, b, cq “ Multinomialpm,n, p, 1q “
pm` n` p` 1q!

m!n!p!
(2)

Explicitly,

gonpa, b, cq “

`

1
2pa` b` cq ` 1

˘

!
`

1
2pa` b´ cq

˘

!
`

1
2pa´ b` cq

˘

!
`

1
2p´a` b` cq

˘

!
(3)

Since Multinomialpm,n, p, 1q, also written Mpm,n, p, 1q for short, is a multinomial coefficient,
the value of gonpa, b, cq for an admissible triplet is automatically an integer. By construction, the
function gon is symmetric in its three arguments. Using the semi-perimeter variable σ introduced
previously and the fact that Mpm,n, p, 1q “ pσ ` 1qMpm,n, pq we can also write gon as follows:

gonpa, b, cq “ pσ ` 1qMpσ ´ a, σ ´ b, σ ´ cq (4)

where Mpσ ´ a, σ ´ b, σ ´ cq is the multinomial coefficient σ!
pσ´aq!pσ´bq!pσ´cq! .

The reader familiar with the theory of spin networks will have recognized that the function gon
is, up to sign, equal to one of the avatars (one of the evaluations) of the so called theta graph, usually
denoted C. One should however be cautious because there are several evaluations prescriptions for
the evaluation of spin networks, differing by normalization factors. We shall give a brief account
of this theory in sec. 4.1 (see also 2.1.7) and compare the different prescription types. Among
them, one may be called the “integer evaluation prescription”, precisely because the evaluation
gives an integer. In particular the evaluation of the C graph with edges a, b, c, using this particular
prescription, is denoted CZpa, b, cq and it is enough, for the moment, to mention that

CZpa, b, cq “ p´1qσ gonpa, b, cq.

We extend the definition of the function gonpa, b, cq by declaring that it vanishes if its three
arguments do not build an admissible triplet of non-negative integers (this is also what is done
for C in the theory of spin networks). Another possibility, given three arbitrary real positive
numbers a, b, c, could be to introduce the same variables m,n, p as before but use Gamma functions
rather than factorials in the definition (2) of gon; even more generally one could think of using the
multivariate Euler Beta function B with three arguments, Bpm,n, pq “ ΓpmqΓpnqΓppq{Γpm`n`pq,
and consider the function defined as 1{ppσ ` 2qB pσ ´ a` 1, σ ´ b` 1, σ ´ c` 1qq. However, we
shall not explore such possibilities here.

In section (2.1.6) we shall generalize the notion of admissibility and extend the definition of the
gon function in such a way that it admits an arbitrary number of compatible arguments.

2.1.3 Particular cases and elementary relations

‚ In the degenerate case a “ b, c “ 0, one has m “ p “ 0 and n “ a “ b, therefore gonpa, a, 0q “
n ` 1 “ a ` 1, which is equal to dimpaq if the integer a is interpreted as the component of the
highest weight labelling an irreducible representations of SUp2q.
‚ From the definition of gon and taking a “ b “ c even, one finds immediately m “ n “ p “ a{2
and gonpa, a, aq “Mpn, n, n, 1q “ p3n` 1q!{n!3, which is the OEIS sequence A331322.
‚ From the definition 2, simple manipulations lead to the following expressions (involving bino-
mial coefficients) that do not look symmetric in the variables a, b, c but show, incidentally, that
gonpa, b, cq is divisible by pa` 1q, by pb` 1q, and by pc` 1q:

gonpa, b, cq “Mpm,n, p, 1q “

pp`m` 1q
´m` n` p` 1

n

¯´p`m

p

¯

“pm` n` 1q
´m` n` p` 1

p

¯´m` n

m

¯

“ pn` p` 1q
´m` n` p` 1

m

¯´n` p

n

¯

,
(5)
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‚ From the Pascal’s simplex relation Mpm´1, n, p, 1q`Mpm,n´1, p, 1q`Mpm,n, p´1, 1q “ pm`n`pq{pm`
n` p` 1qMpm,n, p, 1q one obtains immediately

gonpa´ 1, b, c´ 1q ` gonpa´ 1, b´ 1, cq ` gonpa, b´ 1, c´ 1q “
1
2
pa` b` cq

1
2
pa` b` cq ` 1

ˆ gonpa, b, cq

‚ From the identity Bpm` 1, n, pq `Bpm,n` 1, pq `Bpm,n, p` 1q “ Bpm,n, pq for the multivariate Euler
Beta function one also obtains:

1

gonpa` 1, b, c` 1q
`

1

gonpa` 1, b` 1, cq
`

1

gonpa, b` 1, c` 1q
“

1
2
pa` b` cq ` 3

1
2
pa` b` cq ` 2

ˆ
1

gonpa, b, cq

‚Mpm,n, pq is the coefficient of xmynzp in the expansion of px` y ` zqm`n`p, and Mpm,n, p, 1q “
pm ` n ` p ` 1qMpm,n, pq, therefore gonpa, b, cq is equal to pσ ` 1q times the coefficient of
xσ´ayσ´bzσ´c in the expansion of px`y`zqσ where σ is the semi-perimeter of the triangle pa, b, cq.

2.1.4 SUp2q O-blades and honeycombs

m

n

p

a b

c

a
n

b

c

Figure 1: Left: A generic O-blade for SUp2q. Right: A degenerate case a “ b, c “ 0.

In sec. 2.1.1 we called external variables the integers pa, b, cq labelling an admissible triplet, and
internal variables the integers pm,n, pq that are such that a “ m`n, b “ n` p, c “ p`m. If a, b, c
are thought as labels for highest weights of SUp2q irreps, we know that the concept of admissibility
can be interpreted as coming from the requirement that c appears in the decomposition of a b b
as a sum of irreps. Replacing SUp2q by SUpNq, N ě 2, leads to analogous considerations but for
the fact that multiplicities appearing in the decompositions of the tensor products of irreps can
be larger than 1; this difficulty triggered the invention of several types of pictographs (Berenstein-
Zelevinsky diagrams [3], Ocneanu O-blades [25], Knutson-Tao honeycombs [20]) that are such that
the number of distinct pictographs, for a given admissible triplet of highest weights pa, b, cq, is
precisely equal to the associated multiplicity. This is not the right place to give the definitions
and properties of these combinatorial tools but we want to mention that the admissible triangles
considered previously can be understood as particular cases of such pictographs when the chosen
Lie group is SUp2q. For illustration, we display a generic SUp2q O-blade in fig. 1; notice that pa, b, cq
indeed labels its external edges and pm,n, pq its internal ones. For SUpNq O-blades with N ą 2,
the number of internal edges is larger than the number of components of the three chosen highest
weights, but for N “ 2, they are equal.

In the SUp2q case the above picture also provides a combinatorical interpretation for the func-
tion gonpa, b, cq. Let us replace a single internal edge labelled n by n parallel strands, or wires,
(with an analogous replacement for m and p), this leads to a picture where we have distributed
σ “ m ` n ` p distinct wires wj among three directions A,B,C, with m objects along the first
direction, n objects along the second, and p objects along the third. The number of such partitions
is the multinomial coefficient Mpm,n, pq and each choice can be specified by an anagram of the
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word Apm timesqBpn timesqCpp timesq or by a triple Aps1q, Bps2q, Cps3q where the si are increas-
ing sequences of integers of lengths m,n, p building a set partition of t1, 2, . . . , σu, for instance
Ap2q, Bp1, 4q, Cp3, 5, 6q. The extra factor pm`n` p` 1q leading from Mpm,n, pq to Mpm,n, p, 1q,
i.e. to gonpa, b, cq comes from a marking of the wires (or the choice of an orientation) with the con-
straint that, for each partition, if the wire wj is marked, all wires wj with i ă j should be marked
as well. Parallel wires can be interpreted as tensor products of copies of the fundamental represen-
tation of SUp2q giving rise, after appropriate symmetrization, to arbitrary irreducible ones; such
graphical interpretations are among the foundational building blocks of topological quantum field
theory (TQFT) and recoupling theory, see also our short discussion of Hom-spaces and intertwiners
in 4.3, but here is not the right place to discuss those topics further.

2.1.5 A topological identity of the gon function: the double triangle identity

The following proposition will not come as a surprise for people working in recoupling theory but
we could not find a reference where it is explicitly stated. The proof of this duality property is
obtained after performing elementary changes of variables in the finite sums involved in eq. 6 or 7,
below, and by using the definition of gonpa, b, cq as a multinomial, but one has to consider many
cases that depend upon the relative values of a, b, c, d, and of their pair-wise sums or differences.
The proof, that is left to the reader, is therefore elementary but rather lengthly and cumbersome.

Consider a quadrilateral pa, b, c, dq, it can be thought as the union of two triangles pa, b, sq and
pc, d, sq glued along the diagonal u, or as the union of two triangles pa, d, tq and pb, c, tq glued along
the other diagonal t (fig. 2). We have:

Proposition 1.

ÿ

sPS

gonpa, b, sq
1

s` 1
gonpc, d, sq “

ÿ

tPT

gonpa, d, tq
1

t` 1
gonpb, c, tq (6)

In the first sum, s runs over the set S of integers such that both pa, b, sq and pc, d, sq are admissible
triplets; in second sum, t runs over the set T of integers making admissible both pa, d, tq and pb, c, tq.
The above sums are also equal to

ÿ

uPU

gonpa, c, uq
1

u` 1
gonpb, d, uq (7)

where u runs over the set U of integers making admissible both pa, c, uq and pb, d, uq.
Quadrilateral function: the left or right hand side of eq. 6, or the expression 7, defines the number
gonpa, b, c, dq which is an integer for each quadruplet.
About integrality: We already know that gonpa, b, cq is divisible by pc` 1q, therefore each term of
the sums (6) or (7) is also an integer, and, consequently, their sum gonpa, b, c, dq as well.

To illustrate the above proposition let us take pa, b, c, dq “ p3, 4, 6, 11q, therefore S “ t5, 7u, T “
t8, 10u, U “ t7, 9u; the sum over S reads 388080`2522520, the sum over T reads 1108800`1801800,
the sum over U reads 748440` 2162160, and the three sums are indeed equal.

In terms of SUp2q representation theory, using integers labelling (highest weights of) irreducible
representations, S denotes the intersection of the set of irreps that appear in the decomposition
into irreps of the tensor products ab b and cbd, T denotes the intersection of the set of irreps that
appear in ab d and bb c, and U denotes the intersection of the set of irreps that appear in ab c
and bb d. Using the notation (1) we have explicitly S “

Â

ra, bs X
Â

rc, ds, T “
Â

ra, ds X
Â

rb, cs,
and U “

Â

ra, cs X
Â

rb, ds.
A quadruplet of non-negative integers (labelling irreps) is called admissible when the tensor

product ab bb cb d contains the trivial representation —we shall say more about this notion in
sec. 2.1.6. If the quadruplet is not admissible, gonpa, b, c, dq vanishes.
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=

a

b

c

d

a

b

c

ds t

Figure 2: The duality equation

Intuitively, one either couples the irreps a and b to give the possible s’s that, themselves, couple
to the irreps c and d, or one first couples a and d, to give the possible t’s that couple to b and c. This
“coupling” can be interpreted in terms of composition of equivariant homomorphism (intertwiners)
which are briefly discussed in section 4.3. Using particle physicists parlance, one can say that
gonpa, b, c, dq is invariant upon interchange of the s, t, and u channels (the symbols s, t, u refer to
the Mandelstam variables introduced in the 50’s to study duality properties in particle diffusion
processes [22]).

A combinatorial interpretation of the above quadrilateral function can also be given, along
the same lines as the ones discussed for gonpa, b, cq itself in sec. 2.1.4, by drawing a square with
either one diagonal or the other, by replacing edges and the chosen diagonal by wires relating the
four corners, and interpreting each contribution to the above sums as a counting of the possible
distributions of wire labels (obeying a marking constraint similar to the one discussed in 2.1.4)
among five directions: the four sides of the quadrilateral and the chosen diagonal.

Some readers will have noticed that, up to a possible replacement of gon by the theta net
of sec. 2.1.7, a single contribution to the above sums, like the term gonpa, b, sq gonps, c, dq{ps `
1q, is ubiquitous in recoupling theory and in the theory of spin networks where it appears as a
normalization coefficient for one of the “double triangles” that make a tetrahedron (see sec. 2.2.1).

2.1.6 Definition of the function gon for arbitrary admissible polygons and multisets

It is convenient in the present discussion to consider multisets (in a multiset, order does not matter
and repetitions are allowed). We denote multisets either by square brackets or by braces, like sets,
while adding an index to elements to denote their multiplicity (which can be absent it is equal
to 1), for instance r2, 2, 2, 3, 3s “ t23, 32u. Consider now a multiset rais of non-negative integers
such that

ř

ai is even and 2 maxpaiq ď
ř

ai. Such a multiset will be called admissible. We define
recursively the function gon on arbitrary admissible multisets as follows:

Definition 2. Let rais be an admissible multiset and u, v, two non-negative integers such that the
multiset rai, u, vs obtained by adjoining u and v to rais is also admissible. Then we set

gonpai, u, vq “
ÿ

x

gonpai, xq
1

px` 1q
gonpx, u, vq, (8)

where x belongs to the intersection of the sets
Â

ru, vs and tm,m ` 2,m ` 4,m ` 6 . . . ,maxpaiqu,
where m “ maxp2 maxpaiq ´

ř

ai, 0q.
This formula defining gon on the admissible multiset rai, u, vs assumes that rais possesses at

least two elements; the base case of the recursion is known from the already defined function gon
on admissible triplets. One could remove the admissibility requirement from the above definition,
indeed the value of gon on a non admissible multiset would automatically vanish because of the
appearance of non admissible triplets on the right hand side of eq. 8. For this definition to make
sense for a given admissible multiset, i.e. for the obtained function to be a symmetric function of
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its arguments, one has to show that the result is independent of the method used to recursively
construct this multiset in terms of smaller ones; the proof (left to the reader) comes from the double
triangle identity and from the symmetry property of the elementary gon function.

From a group theoretical point of view, the condition of admissibility for a multiset rais can
be interpreted, or defined, from the requirement that the tensor product bai of the SUp2q irreps
defined by the ai’s (thought of as highest weights) should contain the trivial representation. The
two sets whose intersection has to be taken to select the x’s that enter eq. 8 have the following
interpretation: the first set is the set of highest weights of those irreps of SUp2q that appear in
the decomposition of ub v into irreducible components; the second is the set of (distinct) highest
weights that appear in the decomposition of bai into irreps, equivalently it is the underlying set of
the multiset

Â

rais; it can be determined iteratively by using associativity of the representation ring.
The obtained list of highest weights builds a multiset

Â

rais with usually non-trivial multiplicities
since, for a product involving more than two irreps, the multiplicities can be bigger than 1 but
in the recursive definition (8) one does not take multiplicities into account. The factor px ` 1q in
the denominator can be interpreted as the dimension of the representation labelled by the highest
weight x.

The definition of gon given in eq. 8 has a natural geometrical interpretation that can also be
used as a definition. Consider an arbitrary polygon with (non-negative) integer sides, we define the
function gon on this polygon as follows. By inserting diagonals, the polygon can be triangulated in
many ways. Choose some triangulation and label the diagonals c in such a way that c belongs to
the set

Â

ra, bs for each of the triangles ta, b, cu that countain c (at most 2); this defines a labelling
of the triangulation. For a given labelling, take the product of the triangular gon functions over
all the 2-simplices of the triangulation, divided by a product of factors px ` 1q where the x’s are
the lengths of the diagonals (1-simplices) entering the chosen triangulation; the last step is to sum
this product over all possible labellings of the chosen triangulation. The duality property of the
elementary gon function, interpreted geometrically as in fig. 2, ensures that the obtained result
is independent of the chosen triangulation. The polygon is called non-admissible if the obtained
value is equal to 0 (this can be traced back to the occurence of non-admissible triangles in the
triangulation). The obtained gon function is symmetric as a function of the edges of the polygon
(proof: use this symmetry for the known elementary gon function defined on triangles).

A pentagonal example. Consider the multiset r11, 3, 4, 1, 5s. It is indeed admissible and the
value of gon can be obtained by introducing two diagonals like in fig 3 and summing over the three
triangles. Using br1, 4s “ t3, 5u, br3, 5s “ t2, 4, 6, 8u, br5, 11s “ t6, 8, 10, 12, 14, 16u, one finds
gonp11, 3, 4, 1, 5q “

gonp6,5,11q gonp6,3,3q gonp3,4,1q
p6`1qp3`1q `

gonp1,4,5q
p5`1q p

gonp3,5,8q gonp8,11,5q
p8`1q `

gonp3,5,6q gonp6,11,5q
p6`1q q “ 18295200.

One could instead use eq. 8, first calculating gon on the quadrilateral of fig 4 (left) and complet-
ing the picture by adding one single triangle with two possible values (4 and 6) for the diagonal,
indeed

Â

r5, 1s “ t4, 6u and
Â

r4, 11, 3s “ t41, 62, 83, 104, 124, 143, 162, 181u. The same value of gon would be
obtained as gonp11,3,4,4q gonp4,1,5q

p4`1q `
gonp11,3,4,6q gonp6,1,5q

p6`1q . We could also choose another diagonal, like

in fig 4 (right), and calculate gonp3,4,1,6q gonp6,5,11q
p6`1q `

gonp3,4,1,8q gonp8,5,11q
p8`1q since the possible values of

this diagonal are 6 and 8, indeed,
Â

r11, 5s “ t6, 8, 10, 12, 14, 16u and
Â

r3, 4, 1s “ t01, 22, 42, 62, 81u. The dis-
played polygons may be misleading since most triangles of this triangulation are degenerate – the
figures are not metrically correct. One should also remember that gon is symmetric, the order of
arguments (sides of the n-gon) is therefore irrelevant.

2.1.7 The CK function

In the Temperley-Lieb recoupling theory, in topological field theory, or in the theory of spin net-
works, one introduces the following function CK , [17] :

CKpa, b, cq “ p´1qm`n`p
pm` n` p` 1q!m!n!p!

pm` nq!pm` pq!pn` pq!
(9)
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8

5

3
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1

+ +

“ 18295200

Figure 3: Evaluation of gon on the 5´ plet p11, 3, 4, 1, 5q (pentagon)

11
3

4
1

54, 6

11
3

4
1

5
6, 8 == 18295200

“ 18295200

Figure 4: Other evaluations of gon on p11, 3, 4, 1, 5q

This function is usually denoted Θ and often called “the theta net”, but there are several possible
evaluation procedures in the theory of spin networks, this is why we added the suffix K to the Θ
symbol (see our discussion in section 4.1). It is also sometimes called the trihedron coefficient [23].
Its relation with the gon function is immediate. One has:

CKpa, b, cq “ p´1qm`n`p
Mpm,n, p, 1q

Mpm,nqMpn, pqMpp,mq
“ p´1q

a`b`c
2

gonpa, b, cq
`

a
1
2
pa`b´cq

˘`

b
1
2
pb`c´aq

˘`

c
1
2
pc`a´bq

˘

(10)
M with two arguments denotes the binomial coefficient, for instance Mpm,nq “

`

m`n
n

˘

“
`

a
1
2
pa`b´cq

˘

.

Notice that gonpa, b, cq is a positive integer whereas CKpa, b, cq is a rational number that can
have both signs, it is usually not an integer.

In the degenerate case a “ b, c “ 0, one has m “ p “ 0, n “ a “ b, so CKpa, a, 0q “ p´1qapa`1q,
which, up to sign, is the dimension of the SUp2q irrep with highest weight a (this signed quantity
is often denoted ∆paq in the literature).

2.1.8 gonpa, a, b, bq and the hypergeometric function

Let us find a closed expression for gonpa, a, b, bq. The intersection of
Â

ra, as “ t0, 2, . . . , 2au and
Â

rb, bs “ t0, 2, . . . , 2bu is t0, 2, . . . , 2 minpa, bqu. From the recursive definition of the gon function,

we have gonpa, a, b, bq “
ř2 minpa,bq
t“0, t even gonpa, a, tq 1

t`1 gonpt, b, bq, where gonpa, a, tq and gonpt, b, bq are
already known, therefore

gonpa, a, b, bq “

2 minpa,bq
ÿ

t“0, t even

`

1
2p2a` tq ` 1

˘

!
`

t
2 !
˘2 `1

2p2a´ tq
˘

!

1

t` 1

`

1
2p2b` tq ` 1

˘

!
`

t
2 !
˘2 `1

2p2b´ tq
˘

!
(11)

By using the series expansion of the hypergeometric function pFq one can rewrite the above finite
sum as follows:

gonpa, a, b, bq “ pa` 1qpb` 1q 5F4

ˆ

1´ pa` 1q, 1´ pb` 1q, 1` pa` 1q, 1` pb` 1q,
1

2
; 1, 1, 1,

3

2
; 1

˙

(12)
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In the particular case with a “ b, and setting j “ t{2 one obtains

gonpa, a, a, aq “
a
ÿ

j“0

Γ pa` j ` 2q2

p2j ` 1qΓ pj ` 1q4 Γ pa´ j ` 1q2
(13)

The sequence a P N ÞÑ gonpa, a, a, aq P N starting from a “ 0, namely 1, 16, 381, 10496, 307505,
9316560, 288307285, 9052917760, 287307428985, 9192433560080, . . . can be recognized as the sequence
OEIS A189766.

2.1.9 The function gon and Hilbert matrices

Remember that the Hilbert matrix H of order n is defined as the nˆ n matrix Hpnq with matrix
elements Hpnqpi, jq “ 1{pi` j ´ 1q.
For instance

Hp3q “

¨

˝

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

˛

‚

Proposition 2. The value gonpn, n, n, nq is equal to the trace of the inverse of the pn`1q-th order
Hilbert matrix.

Example :

Hp3q´1
“

¨

˝

9 ´36 30
´36 192 ´180
30 ´180 180

˛

‚, tr pHp3q´1
q “ 381, gonp2, 2, 2, 2q “ 381.

Entries of the inverse of the Hilbert matrix can be expressed in closed form using binomial
coefficients (see for instance [16]), summing over diagonal elements leads to eq. 13, hence the result.
Another way to prove this result is to rely on the OEIS data basis since one of the expressions of
tr pHpn ` 1q´1q for the generic term of the sequence A189766 of [26], written in terms of an
hypergeometric function, coincides with (12) when a “ b. Admittedly, a more conceptual proof
should be looked after.

We now define the shifted Hilbert matrix of order n, and shift s P N, as the nˆn matrix Hpn, sq
with matrix elements Hpn, sqpi, jq “ 1{pi` j ´ 1` sq.
For instance

Hp5, 3q “

¨

˚

˚

˚

˚

˝

1
4

1
5

1
6

1
7

1
8

1
5

1
6

1
7

1
8

1
9

1
6

1
7

1
8

1
9

1
10

1
7

1
8

1
9

1
10

1
11

1
8

1
9

1
10

1
11

1
12

˛

‹

‹

‹

‹

‚

One has Hpn, 0q “ Hpnq. One may consider Hpn, sq as a n ˆ n submatrix of the infinite Hilbert
matrix, with the diagonal element 1{ps` 1q as its upper left corner.

Notice that Hp5, 3q´1
“

¨

˚

˚

˚

˝

19600 ´141120 352800 ´369600 138600
´141120 1058400 ´2721600 2910600 ´1108800
352800 ´2721600 7144200 ´7761600 2993760
´369600 2910600 ´7761600 8537760 ´3326400
138600 ´1108800 2993760 ´3326400 1306800

˛

‹

‹

‹

‚

Summing over all entries of the diagonal of the inverse of the shifted Hilbert matrix (they can
again be deduced from [16]) leads to eq. 11. Summing over appropriate rows (see below) leads to a
multinomial coefficient that one recognizes as the value of gonpa, b, cq. In this way one obtains the
next two propositions:

Proposition 3. For all non-negative integers a, b, one has

gonpa, b, a, bq “ tr pHpminpa, bq ` 1, |a´ b|q´1
q

Example: gonp4, 7, 4, 7q “ trpHp5, 3q´1q “ 18066760.

The value gonpa, b, cq itself can be obtained from the inverse of a shifted Hilbert matrix by
summing the matrix elements of an appropriate row:
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Proposition 4. Without loss of generality, let us assume that the admissible triplet pa, b, cq is such
that a ď b ď c, then one has

gonpa, b, cq “

∣∣∣∣ÿHpa` 1, b´ aq´1rrpc` a´ bq{2` 1ss

∣∣∣∣
where M rrjss denotes the row j of a matrix M , and

ř

M rrjss the sum over the corresponding
matrix elements. Warning: we know that gon is symmetric in its arguments, but the right hand side
of the previous equality is not, hence the importance of ordering the arguments a, b, c as indicated.

Example: gonp4, 7, 9q “ 9240, to be compared with
ř

Hp5, 3q´1rr4ss “
ř

t´369600, 2910600,´7761600, 8537760,´3326400u “ ´9240.

2.1.10 Other properties of the function gon

From the function gon to special Clebsch-Gordan and Wigner 3j symbols. The relation
expressing Clebsch-Gordan coefficients in terms of 3j symbols (and conversely) is recalled in the
appendix, eq. 59. We write it here using in-line Mathematica notations.

ClebschGordanptj1,m1u, tj2,m2u, tj,muq “
a

2j ` 1p´1qj1´j2`mThreeJSymbolptj1,m1u, tj2,m2u, tj,´muq (14)

The arguments j1, j2, and j, in this formula, are spin variables (half-integers). Remember that
the arguments of the gon functions, called a, b, c, . . . in the previous sections, are twice the spin
variables. The spin j is allowed to take values from |j1 ´ j2| to j1 ` j2 and the (half-integer)
arguments mi run from ´ji to `ji, one has also m “ m1 ` m2, otherwise the Clebsch-Gordan
coefficient vanishes. If both j1 and j2 are integers (the so-called orbital case), j has to be an integer
as well, and choosing arguments m1 “ m2 “ m “ 0 is allowed; one can therefore consider the
particular values

ClebschGordanptj1, 0u, tj2, 0u, tj, 0uq “
a

2j ` 1 p´1qj1´j2 ThreeJSymbolptj1, 0u, tj2, 0u, tj, 0uq (15)

An explicit expression for (15) was obtained long ago, see formula 3.194 of the book [5], vol
VIII, the authors attribute this expression to Racah — notice that they call “Wigner coefficients”
what everybody nowadays would call “Clebsch-Gordan coefficients”. Using eqs. (5), one can then
rewrite their expression in terms of the gon function and therefore express the above particular
Clebsch-Gordan coefficients as follows:

ClebschGordanptj1, 0u, tj2, 0u, tj, 0uq “ cos
´

pj1 ` j2 ´ jq
π

2

¯

a

2j ` 1
1

`

1
2
pj ` j1 ` j2q ` 1

˘

gonpj1, j2, jq
a

gonp2j1, 2j2, 2jq
(16)

Notice that the cos term in (16) is either 0, or a sign (˘1), and that these special Clebsch-Gordan
coefficients vanish if pj1, j2, jq is not an admissible triple, in particular if j1 ` j2 ` j is odd. From
a computational point of view, their evaluation in Mathematica using the function gon (as defined
in section 2.1.2) is about ten times faster than the one using the built-in ClebschGordan function.

Notice that since we know how to write the gon function (with three arguments) in terms
of sums of coefficients of an inverse and shifted Hilbert matrix, one can also relate the special
Clebsch-Gordan coefficients (15) to Hilbert matrices by using the formulae of section 2.1.9.

An expression of gon using a Dyson - MacDonald identity. This identity states that
the Laurent polynomial

ś

1ďi‰jďkp1´ti{tjq
si has constant term equal to the multinomial coefficient

Mps1, s2, . . . , skq. It was first conjectured by Dyson [10] and later proved by Wilson [39], Gunson
[14], Good [13] (the conjecture was then generalized by MacDonald [21], with a general proof given
by Cherednik [8]).

With m,n, p defined in terms of a, b, c as in 2.1.1, one can use this identity with k “ 4 to express
the function gonpa, b, cq, written as the multinomial coefficient with four parts Mpm,n, p, 1q, as the
constant term of a Laurent polynomial; one can also set t1 “ uvw t4, t2 “ vw t4, t3 “ w t4 and
trade the four variables ti for the three variables u, v, w. Therefore we have:
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Proposition 5. : gonpa, b, cq can be obtained as the constant term of (17) or (18)
ˆ

1´
1

w

˙

p1´uqm
ˆ

1´
1

u

˙n

p1´vqn
ˆ

1´
1

v

˙p

p1´wqp
ˆ

1´
1

vw

˙

p1´uvqmp1´vwqn
ˆ

1´
1

uv

˙p ˆ

1´
1

uvw

˙

p1´uvwqm

(17)
One could also write gonpa, b, cq as pm ` n ` p ` 1q times the multinomial coefficient with three

parts Mpm,n, pq and use the Dyson-MacDonald identity with k “ 3 to write the latter as the
constant term of another multivariate Laurent polynomial. One can then set t1 “ uv t3, t2 “ v t3
and trade the three variables ti for the two variables u, v. With that choice, gonpa, b, cq is recovered
as the constant term of

pm` n` p` 1q

ˆ

1´
1

u

˙n ˆ

1´
1

v

˙p ˆ

1´
1

uv

˙p

p1´ uqmp1´ vqnp1´ uvqm (18)

Admittedly these expressions are a bit heavy and more complicated than the explicit result itself;
one hope was to use them to obtain similar expressions for the multivariable generalizations of gon,
but this is not known to the author.

Asymptotics of gon. Using the Stirling formula for the factorial leads to the following

Proposition 6. : When k goes to infinity, we have

gonpka, kb, kcq „kÑ8
σ2

2πA

ˆ

σσ

mmnnpp

˙k

(19)

where A “
?
σmnp is the area (Heron formula), σ is the semi-perimeter of the triangle pa, b, cq,

and m,n, p are the usual variables m “ σ ´ b, n “ σ ´ c, p “ σ ´ a. The next term of the above
expansion is of order Op1{kq.

One can work out the asymptotic expansion of CK as well, and find

CKpka, kb, kcq „kÑ8 p´1qk σ
k3{2σA

?
2π

a

pm` nqpm` pqpn` pq

ˆ

σσmmnnpp

pm` nqm`npn` pqn`ppp`mqp`m

˙k

2.2 The classical tet function

2.2.1 Admissible tetrahedra

Consider ppa, b, cq, pd, e, fqq, a pair of triplets of non-negative integers. We shall say that this defines
an admissible tetrahedron T if the following constraints are obeyed: the first triplet pa, b, cq is an
admissible triple, as defined in section 2.1.1, and the triplets pb, d, fq, pa, e, fq, pc, d, eq are also
admissible. Warning: the triplet pd, e, fq that appears as the second argument of T is usually not
admissible. We shall often write this tetrahedron as

T “
`

a b c
d e f

˘

.

Such a pair of triplets (the first being admissible) can be displayed as a tetrahedron T , as follows:
the components of the first argument, i.e., the triplet pa, b, cq, refer to edges defining one of the
triangular faces of T , and the components of the second argument pd, e, fq, in this order, denote
respectively the edges of T that are skew (i.e., opposite) with respect to a, b, c, see fig. 5. Obviously,
the same tetrahedron can be obtained by choosing, as a first argument, any of its four triangular
faces, and as a second argument, the triplet of edges that are skew with respect to the three edges
of the chosen face. The above notation for a tetrahedron being not unique we think of T as an
equivalence class of such pairs of triplets under the action of the tetrahedral group.

The triangular conditions on faces ensure that the four faces of T can indeed be realized as
actual euclidean triangles. Warning: these conditions are not sufficient to imply that an admissible
tetrahedron, in the above sense, can be realized as an euclidean tetrahedron of R3, indeed, the
Cayley-Menger determinant defined by the edges may not be positive. Notice also that our “edges”
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e
d

f

a
b

c

Figure 5: A labelled tetrahedron (external variables are associated with its edges).

may vanish (degenerated cases). For all these reasons one should maybe write “possibly degenerated
admissible integer-sided non-congruent facial sextuples” rather than “admissible tetrahedra” but
we shall nevertheless stick to the shorter terminology.

Removing one column in the symbol
`

a b c
d e f

˘

of T (there are three possibilities) gives a labelling

for the three closed skew quadrilaterals, for instance
`

a b
d e

˘

refers to the quadrilateral pa, b, d, eq.
This gives rise to the so-called recoupling coefficients, see sec. 2.2.10.

2.2.2 The integer valued tet function (the tetrahedral function, also denoted ,Z)

We shall first define a function tet on the set of admissible tetrahedra T (if the argument is not
admissible, the value of tet is set to 0).

For the four triangular faces of T we introduce the semi-perimeter variables

σp1q “
1

2
pa` b` cq;σp2q “

1

2
pb` d` fq;σp3q “

1

2
pa` e` fq;σp4q “

1

2
pc` d` eq. (20)

For the three closed (and skew) quadrilaterals defined from the edges of T we also introduce
the semi-perimeter variables

τp1q “
1

2
pa` b` d` eq; τp2q “

1

2
pa` f ` d` cq; τp3q “

1

2
pe` f ` b` cq. (21)

Moreover we set

mσ “ maxpσp1q, σp2q, σp3q, σp4qq; mτ “ minpτp1q, τp2q, τp3qq.

Then we define:

Definition 3.

tetpT q “

¨

˝

mτ
ÿ

s“mσ

p´1qsps` 1q!
´

ś4
i“1ps´ σpiqq!

¯´

ś3
u“1pτpuq ´ sq!

¯

˛

‚ (22)

The above expression, taken here as a definition of tet, is simply related to the known value
of the so-called tetrahedral net; this will be discussed in the next subsection. From the definition
of the four σpiq variables (triangles) and of the three τpuq variables (quadrilaterals), one finds
ř

i σpiq “
ř

u τpuq “ a` b` c` d` e` f , therefore
ř

ips´ σpiqq `
ř

jpτpjq ´ sq ` 1 “ s` 1. The
previous expression can therefore be rewritten as a signed sum of multinomial coefficients:

tetpT q “
mτ
ÿ

s“mσ

p´1qsMps´ σp1q, s´ σp2q, s´ σp3q, s´ σp4q, τp1q ´ s, τp2q ´ s, τp3q ´ s, 1q (23)
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From the right hand side of eq. 22, or of eq. 23 it is clear that the values obtained for the double
triplets ppa, b, cq, pd, e, fqq, ppb, d, fq, pe, a, cqq, ppa, f, eq, pd, c, bqq, ppc, d, eq, pf, a, bqq, are the same, so
that tet is indeed a function of T . Since we can rewrite this expression as a sum of multinomials,
it is clear that tet is integer-valued.

Examples:
tetpp8, 20, 24q, p15, 13, 17qq “ 332385335268386400,
tetpp14, 41, 33qp50, 23, 21qq “ ´671777611858249170324639542553600.

It is instructive to express the function tet in terms of the internal triangular variables (i.e., the
m,n, p of section sec. 2.1.1) rather than in terms of the external triangular variables (i.e., the a, b, c
of sec. 2.1.1, aka highest weights of SUp2q irreps). Calling 1, 2, 3, 4 the four faces of the tetrahedron
T , and mi, ni, pi the internal triangular variables of the face i, we see that the semi-perimeter σpiq
of the face i is the perimeter of the triangle pmi, ni, piq since σpiq “ mi`ni` pi, and that the τpuq
are the perimeters of the squares:

τp1q “n1 ` n2 ` n3 ` n4

τp2q “m1 `m2 `m3 `m4

τp3q “ p1 ` p2 ` p3 ` p4

(24)

The internal variables associated to the four triangles and the three squares contributing to the
evaluation of tet can be seen in fig. 6 (to be contrasted with the external variables displayed in
fig. 5).

Figure 6: The four triangles and the three squares that contribute to the evaluation of tet (internal
variables, by definition, are associated with their edges).

2.2.3 The TET function (also denoted ,K)

In the Temperley-Lieb recoupling theory, in topological field theory, or in the theory of spin net-
works, one introduces the following TET function, also called tetrahedral net or tetrahedral network
[17], chapter 8, or tetrahedron coefficient [23]; it can also be denoted ,K (see sec. 4.1). Warning:
TET is denoted Tet in [17], it should not to be confused with the symbol tet used in the present
paper.
Consider again a tetrahedron T written for instance as ppa, b, cq, pd, e, fqq. With the same variables
σpiq, τpjq, mσ, mτ , as in sec. 2.2.2, one defines:

TETpT q “
J

E
ˆ

¨

˝

mτ
ÿ

s“mσ

p´1qsps` 1q!
´

ś4
i“1ps´ σpiqq!

¯´

ś3
j“1pτpjq ´ sq!

¯

˛

‚ (25)
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where

J “

i“4,j“3
ź

i“1,j“1

pτpjq ´ σpjqq! and E “ a!b!c!d!e!f !

In [17] or [23] the expression (25) results from a calculation that we do not need to comment
or repeat because in the present paper we take this expression as a definition of TETpT q.

Obviously TETpT q, given by 25, differs from tetpT q, given by 22, by a T -dependent prefactor;
dropping the argument T we have:

TET “ J{E ˆ tet (26)

Because of this prefactor J{E the function TET is usually rational-valued but not integer-valued.
For the first tetrahedron example considered in 2.2.2 we find TETpp8, 20, 24q, p15, 13, 17qq “ 477531

92176448 .

2.2.4 From the function tet to 6j symbols (also denoted ,U)

One potentially confusing issue is that, apart from the possible replacement of spin variables j by
highest weight variables 2j, the quantities that are called “6j symbols” in many articles of the
mathematical literature (in particular in those fields related to Temperley-Lieb recoupling theory
or in the theory of invariants of 3-manifolds), and also in several papers discussing topological
quantum field theory or spin networks, differ from the original Wigner’s 6j symbols used in most
physics textbooks, in [19], or in the computation program Mathematica. The two kinds of symbols
sometimes appear in the same reference: both are for instance discussed in [7] where the first are
simply called “6j symbols” and denoted with curly braces, whereas the last are called “normalized 6j
symbols” and denoted with square brackets; these notational conventions are not universal either
since, in many textbooks (and in the present paper, see the appendix), the curly braces denote
“6j symbols” that coincide with the normalized ones of [7]. We also adopt the in-line notation
SixJSymbol for these (normalized) symbols, like in eq. 28 but the reader should remember that the
arguments of the latter are spin variables, i.e., half-integers, in order to agree with what is done in
quantum mechanics or in Mathematica.
In order to ease the comparison with papers using un-normalized 6j symbols, like [7], [17] or [23],
we introduce in eq. 27 the notation SixJSymbolUN to denote the latter.
The relation between the function TET and the 6j symbols of SUp2q is known: eq. 27, below,
can be found for instance in [17] and [23], and both eqs. 27 and 28 appear in [7]. These last two
equations give immediately a relation between SixJSymbol and SixJSymbolUN but we shall not
need it (this relation is also given in Lemma 2.7.10 and 2.7.12 of [7]).

SixJSymbolUN ppa{2, b{2, c{2q, pd{2, e{2, f{2qq “ p´1qcpc` 1q
TETppa, b, cq, pd, e, fqq

CKpa, b, cqCKpc, d, eq
(27)

SixJSymbolppa{2, b{2, c{2q, pd{2, e{2, f{2qq “
TETppa, b, cq, pd, e, fqq

Nppa, b, cq, pd, e, fqq
(28)

where

Nppa, b, cq, pd, e, fqq “

b

|CKpa, b, cqCKpb, d, fqCKpa, e, fqCKpc, d, eq| (29)

This tetrahedral normalizing factor N makes unitary the recoupling transformation between six
spins. The presence of the square root makes irrational (in general) the values of the 6j symbol.

For instance, using the previously calculated value of TET and Npp8, 20, 24q, p15, 13, 17qq “
405
?

115
442

392
one

obtains SixJSymbolpp8{2, 20{2, 24{2q, p15{2, 13{2, 17{2qq “ 53059

23940
?
50830

.

From the relation between CK and gon, and from the relation between tet and TET, one finds:
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Proposition 7. 6j symbols can be expressed in terms of the integer-valued functions gon and tet
as follows

SixJSymbolppa{2, b{2, c{2q, pd{2, e{2, f{2qq “
tetppa, b, cq, pd, e, fqq

a

gonpa, b, cq gonpb, d, fq gonpa, e, fq gonpc, d, eq
(30)

Example: Using the values of gonp8, 20, 24q, gonp20, 15, 17q, gonp8, 13, 17q, gonp24, 15, 13q respectively equal to

1181079900, 1044074631600, 42325920, 21903663600, and the value obtained for tetpp8, 20, 24q, p15, 13, 17qq in sec. 2.2.2,

we recover the above SixJSymbolpp8{2, 20{2, 24{2q, p15{2, 13{2, 17{2qq.
The functions tet, TET, and SixJSymbol can be understood as coming from different evaluation

prescriptions for the same spin network , (see the summary in sec. 4.1).

2.2.5 tet and the hypergeometric function

As mentioned in the appendix, an explicit expression for 6j symbols was obtained by Racah [30], as
a formally infinite sum (for given arguments, only finitely many terms of this sum are nonzero) times
a pre-factor involving triangular functions simply related to the function gon. From the general
definition of hypergeometric functions pFq it was then observed (see the thesis [37], pp 29-30, and
[38]) that the expression found by Racah could be written in terms of the hypergeometric function

4F3. Formulating this last result in terms of the integer-valued functions tet, see the formula 31
below, is a simple matter of redefinition (using the relation 30) and of change of variables.

General case. Define

Cpj1, j2, j3, j4, j5, j6q “
p´1qj1`j2`j4`j5p1` j1 ` j2 ` j4 ` j5q!

pj1 ` j2 ´ j3q!p´j3 ` j4 ` j5q!pj2 ` j4 ´ j6q!pj1 ` j5 ´ j6q!p´j1 ` j3 ´ j4 ` j6q!p´j2 ` j3 ´ j5 ` j6q!

and

Fpj1, j2, j3, j4, j5, j6q “
4F3p´j1 ´ j2 ` j3, j3 ´ j4 ´ j5,´j2 ´ j4 ` j6,´j1 ´ j5 ` j6;´j1 ´ j2 ´ j4 ´ j5 ´ 1,´j1 ` j3 ´ j4 ` j6 ` 1,´j2 ` j3 ´ j5 ` j6 ` 1; 1q

where 4F3 is the hypergeometric function.

Proposition 8. The following relation holds:

tetppa, b, cqpd, e, fqq “ lim
uÑ0

Cpa
2
`u,

b

2
`u,

c

2
,
d

2
,
e

2
`u,

f

2
`uqˆFpa

2
`u,

b

2
`u,

c

2
,
d

2
,
e

2
`u,

f

2
`uq (31)

For admissible tetrahedra the hypergeometric contribution F gives a result proportional to 1{u
when u goes to 0, whereas the coefficient C gives a result proportional to u when u goes to 0. This
is why we have to use a limiting procedure if we calculate tet from eq. 31.

The particular values tetpp2n, 2n, 2nq, p2n, 2n, 2nqq. We consider the case where all the
arguments of tet (integers) are equal, this corresponds geometrically to a regular tetrahedron.
Notice that p in tetppp, p, pq, pp, p, pqq cannot be odd, because the first triplet should define an
admissible triangle (3p should be even). From eq. 31 one finds:

Proposition 9. Assuming that p is even and setting tetp2nq “ tetpp2n, 2n, 2nq, p2n, 2n, 2nqq, one
finds tetp0q “ 1 and

tetp2nq “
p4n` 1q!

pn!q4
4F3p´n,´n,´n,´n; 1, 1,´4n´ 1; 1q (32)

or, equivalently,

tetp2nq “
p´1qnp1` 3nq!

pn!q3
4F3p´n,´n,´n, 2` 3n; 1, 1, 1; 1q (321)
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This sequence starts as 1, 96,´17010,´20160000,´5259003750, 2819345937408, 3019973370942528, . . .
Wilson polynomials, introduced in [38], see also [41], generalize several families of orthogonal

polynomials. Assuming t ě 0, they are defined as follows in terms of the generalized hypergeometric
function 4F3 and the Pochhammer symbols puqn “ Γpu` nq{Γpuq:

W pn, pa, b, c, dq, tq “ pa`bqnpa`cqnpa`dqn 4F3p´n, a`b`c`d`n´1, a´
?
t, a`

?
t; a`b, a`c, a`d; 1q

(33)
One can therefore re-write (321) as:

tetp2nq “
p´1qnp1` 3nq!

pn!q3
W pn, p´n, n` 1, n` 1, n` 1q, 0q (322)

2.2.6 About speed and computational software

Using Mathematica 13.0 we compared timings for the evaluation of tetpp50, 30, 76q, p92, 48, 84qq which

is equal to 370574512884046997485176381045189319801237495334758378762795196256000 using three dif-
ferent methods on a MacBook Pro (yr 2018): (a) From our definition of tet given by eq. 22,
(b) From eq. 30 and the pre-defined SixJSymbol function, (c) From eq. 31 and the predefined
hypergeometric PFQ function. The result was obtained in 0.000244 s using (a), in 0.002975 s
using (b), and in 22.341579 s using (c). In the regular case (i.e., when all the arguments are
equal), one can use eq. 32 rather than eq. 31 and the timings become similar. Conversely,
one can obtain the value of SixJSymbolppj1, j2, j3q, pj4, j5, j6qq from eq. 30, using tet defined by
eq. 22 and gon calculated from eq. 3. With a fresh Mathematica session, the calculation of
SixJSymbolpt4, 10, 12u, t15{2, 13{2, 17{2uq “ 53059

23940
?

50830
using the built-in SixJSymbol command

took 0.00909 s (and 0.00183 s if re-evaluated) whereas it only took 0.00035 s when using our func-
tions gon and tet.

2.2.7 A topological identity of the tet function: the double tetrahedron identity

We now move to the integer analog of the well-known Biedenharn-Elliott identity —the latter (also
called pentagon identity) is usually written for 6j symbols, which, in general, are not integer valued.
It was originally proven [4, 11] by considering the coupling of four orbital momenta, and derived in
[5], vol 9, pp 22-30, as a consequence of associativity of one of the two products that the authors
define on a particular family of tensor operators. The identity written below for the integer-valued
tet function is a rewriting of the Biedenharn-Elliott identity, using eq. 30.
Let us consider the triangular bipyramid B obtained by gluing two tetrahedra ppb, h, kq, pg, a, eqq
and ppc, d, hq, pg, e, fqq along the common base pe, g, hq. We want to associate a number hedpBq
(actually an integer) to such bipyramids.

A first possibility is to define a new function hed1 as follows:

hed1pa, b, c, d, e, f, g, h, kq “
tetppa, b, cq, pd, e, fqq tetppa, b, cq, pg, h, kqq

p´1qpa`b`cq{2 gonpa, b, cq
(34)

Intuitively, the factor p´1qpa`b`cq{2 gonpa` b` cq in the denominator comes from the fact that
the two tetrahedra share the same triangular base.

One can however obtain the same triangular bipyramid by introducing a diagonal x, from “top”
to “bottom”, and gluing three tetrahedra ppc, e, dq, px, g, hqq, ppb, d, fq, px, k, gqq and ppa, e, fq, px, k, hqq.
This is illustrated in fig. 7. Another natural definition for a function hed would therefore be as
follows:

hed2pa, b, c, d, e, f, g, h, kq “

ÿ

xPbrd,gsXbrf,ksXbrh,es

tetppc, e, dq, px, g, hqq tetppb, d, fq, px, k, gqq tetppa, e, fq, px, k, hqq p´1qxpx` 1q

p´1qpx`d`gq{2 gonpx, d, gq p´1qpx`f`kq{2 gonpx, f, kq p´1qpx`e`hq{2 gonpx, e, hq

(35)
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The three tetrahedra appearing in hed2 share three triangles giving the factor that appear in the
denominator. The summation is performed over the common edge pxq, giving a factor p´1qxpx`1q
in the numerator; this factor can be thought of as coming from the fact that the edge pxq is a
degenerated triangle, so that its inserted contribution is p´1qppx`0`xq{2qgonpx, 0, xq “ p´1qxpx`1q.

Proposition 10. One has: hed1pa, b, c, d, e, f, g, h, kq “ hed2pa, b, c, d, e, f, g, h, kq.

This value depends neither on the order chosen for enumerating the triangular faces of B nor
on the order of the edges describing these faces. One can therefore define a function hedpBq on
bipyramids, either by eq. 34 or by eq. 35.

Example.
Consider the bipyramid B defined by pa, b, c, d, e, f, g, h, kq “ p28, 26, 6, 23, 19, 31, 39, 33, 17q
From eq 34 one finds hedpBq “ 1395161475725373449470726604935680000.
The same value is obtained from eq 35, with x running in the set
Â

r23, 39s X
Â

r31, 17s X
Â

r33, 19s “ t16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48u.

a
b

c

d

e

gh

x

f

k

x

h
g

k

c

f

d
e

a

b

Figure 7: Bipyramid. Left: as a union of two tetrahedra. Right: as a union of three tetrahedra.

Remarks. As already mentioned, the identity (35) for double-tetrahedra is nothing else than
the Biedenharn-Elliott identity in a new guise, since the latter is usually written in terms of 6j sym-
bols which, unlike tet, are not usually integer valued. It is tempting to try to use this “topological
identity” (thought of as a 2-3 Pachner move, see [27]), to obtain an integer valued function func-
tion that would coincide with tet on integer tetrahedra, with hed on integer bipyramids, and that
could be generalized to arbitrary polyhedra with admissible integer sides ( this is why the function
defined by (34) or (35) was called hed, as a mnemonic shortening of polyhedron.). However, trying
to develop such a 3-dimensional analog of what we did when we extended the triangle function
gon to arbitrary admissible polygons does not work because, as we shall see below (sec. 2.2.8),
when performing a barycentric subdivision, one needs to introduce an extra factor (a division by
δ2 in a 1-4 Pachner move) that is not fully determined by the values attributed to the sides of the
chosen polyhedron. We shall say nothing in these notes about the Turaev-Viro method (that was
developed in the quantum framework) which leads to invariants of 3-manifolds, see [34].

In spite of the fact that the Biedenharn-Elliott identity plays an important role in the theory
of spin networks, one should mention that the function hed introduced above is not associated
with such a network (see sec. 4.1), indeed, the 1-skeleton of the bipyramid is not a 3-valent graph,
some vertices being 4-valent —by way of contrast, all Wigner 3nj symbols are associated with
(particular) 3-valent graphs.
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2.2.8 Barycentric subdivision

Given an admissible tetrahedron T “
`

a b c
A B C

˘

, its admissible triangles (faces) are: pa, b, cq, pA,B, cq,
pa,B,Cq, pA, b, Cq. Choose some point in R3 (not a vertex of T ); in order to obtain a geometrical
interpretation of the construction we may think of that point as belonging to the inside of the
tetrahedron T , it therefore defines a subdivision of the latter into a union of four tetrahedra, each
one sharing three vertices of T and the chosen extra vertex. One therefore constructs the four
tetrahedra: T1 “

`

a b c
α β γ

˘

, T2 “
`

A B c
β α δ

˘

, T3 “
`

C A b
α γ δ

˘

, T4 “
`

a B C
δ γ β

˘

, see fig 8.
Let us list the faces of all of them:
T1 : pa, b, cq, pα, β, cq, pa, β, γq, pα, b, γq, T2 : pA,B, cq, pβ, α, cq, pA,α, δq, pβ,B, δq,
T3 : pC,A, bq, pα, γ, bq, pC, γ, δq, pα,A, δq, T4 : pa,B,Cq, pδ, γ, cq, pa, γ, βq, pδ,B, βq.

Figure 8: Barycentric subdivision

Among the admissible triangles of the tetrahedra T1, T2, T3, T4, some are “already known” be-
cause they are also faces of T ; notice also that some triangles appear twice in the above lists. For all
the Ti’s to be admissible one needs to impose admissibility on the following six new faces: tpα, β, cq,
pa, β, γq, pα, b, γq, pA,α, δq, pβ,B, δq, pγ, δ, Cqu. Given an admissible tetrahedron T there is an in-
finite number of possible barycentric subdivisions defined by a quadruple pα, β, γ, δq, however, if
one internal edge (for instance δ) is fixed to some integer value, there is only a finite set of triplets
pα, β, γq for which the above six triangular conditions will be obeyed. The cardinality of this set
of triplets depends of course on the given tetrahedra T ; it increases with the value of the chosen δ
and stabilizes when δ reaches some value δmax.
Let us illustrate this comment with the following example:

Take T “ pp2, 1, 3q, p1, 2, 2qq. Then, for δ “ 0, 1, 2, 3, 4, 5, . . . one obtains the following possibili-
ties for the triplets pα, β, γq:

`

1 2 2
˘

,

¨

˚

˚

˚

˚

˝

0 3 1
2 1 1
2 1 3
2 3 1
2 3 3

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 2 0
1 2 2
1 4 2
3 0 2
3 2 2
3 2 4
3 4 2
3 4 4

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 1 1
2 1 3
2 3 1
2 3 3
2 5 3
4 1 3
4 3 3
4 3 5
4 5 3
4 5 5

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

3 2 2
3 2 4
3 4 2
3 4 4
3 6 4
5 2 4
5 4 4
5 4 6
5 6 4
5 6 6

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

4 3 3
4 3 5
4 5 3
4 5 5
4 7 5
6 3 5
6 5 5
6 5 7
6 7 5
6 7 7

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, . . .

The cardinality of the set of solutions is 1, 5, 8, 10, 10, 10, . . . and stabilizes at 10 when δ ě δmax “ 3.
Given T , choosing δ amounts to choose a finite family of subdivisions (triangulations) of T .

Since each subdivision involves four tetrahedra sharing six faces, and since these faces share four
new edges α, β, γ, δ, one is led to consider the expression:
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Definition 4.

P pδq “
ÿ

α,β,γ

P1P2P3

where

P1 “
tetppa, b, cq, pα, β, γqq tetppa,B,Cq, pδ, γ, βqq tetppC,A, bq, pα, γ, δqq tetppA,B, cq, pβ, α, δqq

gonpa, β, γq gonpA,α, δq gonpα, b, γq gonpβ,B, δq gonpα, β, cq gonpγ, δ, Cq

P2 “ p´1qαpα` 1qp´1qβpβ ` 1qp´1qγpγ ` 1qp´1qδpδ ` 1q

P3 “ p´1q
1
2 pa`β`γqp´1q

1
2 pα`A`δqp´1q

1
2 pα`b`γqp´1q

1
2 pβ`B`δqp´1q

1
2 pα`β`cqp´1q

1
2 pγ`C´δq

(36)

The sum
ř

α,β,γ runs over all the triplets pα, β, γq that make admissible the six triangles defined
by the choice of the edge δ —see the previous discussion.

Proposition 11. 1
pδ`1q2

P pδq is independent of δ, and,

@δ P N,
1

pδ ` 1q2
P pδq “ tetppa, b, cqpA,B,Cqq (37)

Let us illustrate this property with the example previously considered.
One finds tetpp2, 1, 3q, p1, 2, 2qq “ ´24 from the definition of tet. Then, for the triplets pα, β, γq
previously displayed, which are associated with successive choices of δ “ 0, 1, 2, 3, 4, 5, . . ., one
obtains the following contributions to the sum

ř

α,β,γ of eq. 36:

`

´24
˘

,

¨

˚

˚

˚

˚

˝

´24
´64

3
´32

3
40
3

´160
3

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´24
12
´60
´24
´30
´30
30
´90

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´32
3

20
3

´160
3

64
3

´108
´60
´192

5
´288

5
252
5

´672
5

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´30
18
´90
30
´168
´108
´140

3
´280

3
224
3

´560
3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´288
5

168
5

´672
5

192
5

´240
´168
´384

7
´960

7
720
7

´1728
7

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, . . .

Summing over the columns gives the following values for P pδq “ ´24,´96,´216,´384,´600,´864.
Dividing these sums by 1{pδ ` 1q2 gives back the constant value ´24.

2.2.9 Playing with a cube

In this subsection we consider a cube (actually a parallelepiped) decorated with a family of com-
patible non-negative integers, to which we attach a quantity, that we call cube, using some kind
of statistical sum involving the integer-valued functions gon and tet previously discussed. This
quantity does not seem to be related with standard constructions (in particular it is not an integer
variant of the cube function that one knows how to define in the theory of spin networks); as a
matter of fact this subsection is not very much related to the other topics discussed in these set of
notes, and we could (maybe should) have removed it from the manuscript. It remains, however,
that we find cube interesting, and we hope that some reader will find a way to incorporate this
quantity naturally in a general framework, or find some use for it.

Consider a cube in R3. Its standard triangulation yields six 3-simplices (six congruent birect-
angular tetrahedra); however one can find a triangulation containing only five 3-simplices: slice off
four corners (not edge-related), this makes four congruent three-right-angled tetrahedra, and what
is left inside is a regular tetrahedron, see fig. 9. As it is well known, 5 is the minimal number of
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Figure 9: Minimal triangulation of the cube

simplices in a triangulation of a 3-cube. Looking at fig. 9 we see that the following simplices (tetra-
hedra) are formed: r0, 1, 2, 4s, r1, 2, 3, 7s, r2, 4, 6, 7s, r1, 4, 5, 7s, and r1, 2, 4, 7s. With the previous
labels to denote vertices we use pairs of labels to denote the edges (and a natural ordering to avoid
double counting). In terms of edges we have the following sub-tetrahedra: pp01, 12, 20qp24, 04, 14qq,
pp24, 46, 62q, p67, 27, 47qq, pp14, 45, 51q, p57, 17, 47qq, pp12, 23, 31q, p37, 17, 27qq, pp12, 24, 41q, p47, 17, 27qq.
Only the last one is regular, the others are rectangular. There are four shared faces that build the
regular tetrahedron, with six common edges, 12, 14, 17, 24, 27, 47, and four common points: 1,
2, 4, 7. The 12 given cube edges are 01, 13, 32, 20 45, 57, 76, 64 04, 15, 26, 37. The new edges
appearing in the triangulation are 6 diagonals (the edges of the regular tetrahedron), namely: 14,
17, 27, 24, 12, 47.

An interesting cube function could be defined as follows. We suppose given 12 non-negative
integers for the edges of the cube, actually a parallelepiped. We first determine all the sets of four
rectangular tetrahedra defining a possible dissection by imposing admissibility conditions on the
tetrahedra. The number of such sets is finite. For each such possibility we take the product of the
functions tet for the five tetrahedra of the dissection, we then divide by the gon functions associated
with the four common faces (triangles) of the fifth tetrahedron, and multiply the obtained result
by the contribution pxij ` 1q of the six new edges. Finally we sum over these possibilities, each of
them corresponding to the six new edges that appear in the dissection (the diagonals of the faces
of the cube).
Examples. Assuming that all 12 edges are equal to n, we call cubepnq the result. One finds
cubep0q “ 1, cubep1q “ ´63488 (a sum over 15 possibilities), cubep2q “ `5580307647 (a sum over
127 possibilities), cubep3q “ ´297180797599744 (a sum over 648 possibilities).
One may of course consider parallelepipeds with unequal edges. For instance one can choose the
edges x01 “ 2, x13 “ 1, x23 “ 2, x02 “ 1, x45 “ 2, x57 “ 1, x67 “ 2, x46 “ 1, x04 “ 1, x15 “ 1,
x26 “ 1, x37 “ 1, and obtain 1994112 as the value for the corresponding “cube” function .

The above “cube function” is not a priori related to the cube function that one can define as
a spin network (evaluation of the latter makes sense, see sec. 4.1, since the 1-skeleton of the 3-
dimensional cube is indeed a trivalent graph). For a cube with all edges equal to n, the latter, and
its asymptotics, were considered by Don Zagier (appendix of [12]). Its values for the first values of
n are: 1, 6144, 505197000, 77414400000000, . . .

2.2.10 Other properties of the function tet

Regge symmetry of the function tet. Let us consider the four semi-perimeters of the non-planar
quadrilaterals defined by a tetrahedron (see fig. 5): p12 “ pa` b` d` eq{2, p23 “ pb` c` e` fq{2,
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p31 “ pa` c` d` fq{2.

Proposition 12. For each choice of such a quadrilateral, the tet function is invariant when its ar-
guments, that are also edges entering the chosen quadrilateral, are simultaneously shifted as follows
by the corresponding semi-perimeter:

tetppa, b, cq, pd, e, fqq “ tetppp12 ´ a, p12 ´ b, cq, pp12 ´ d, p12 ´ e, fqq

tetppa, b, cq, pd, e, fqq “ tetppa, p23 ´ b, p23 ´ cq, pd, p23 ´ e, p23 ´ fqq

tetppa, b, cq, pd, e, fqq “ tetppp31 ´ a, b, p31 ´ cq, pp31 ´ d, e, p31 ´ fqq

(38)

Proof: Using the relation between the function tet and the 6j symbols (see eq. 30), one ob-
tains the above property from the fact that the latter are known to be invariant under the same
transformation (Regge symmetry). For a modern treatment of these symmetries, see [6].

Asymptotics of the function tet. Expanding on the work of Wigner [35], an asymptotic
formula relating the value of the 6j-symbol, when the dimensions of the representations are large, to
the volume of an Euclidean tetrahedron whose edge lengths are these dimensions, was conjectured
in [29] (Ponzano-Regge formula). The proof, together with an interpretation in terms of geometric
quantization, was obtained in [31], see also [32]. This formula assumes that all the arguments are
large but it is also interesting to study what happens when one or more arguments stay constant
whereas the others increase. One may picture the various asymptotic regimes in terms of vertices
or in terms of edges of an associated tetrahedron, and the various asymptotic regimes may be called
r1, 1, 1, 1s (all the edges are large), r1, 1, 2s (one edge stay small), r2, 2s (two edges stay small) and
r1, 3s (three edges stay small). The r1, 3s case was explicitly considered in one section of [29], where
the formula below, eq. 39, was proved (this expression had already been mentioned in [1]). Sketch
of the proof: express the 6j symbols as a sum of products of four 3j symbols (as before), write the
3j’s in terms of factorials, and use the Stirling formula to study the chosen asymptotic regime.
For given compatible arguments a, b, c, d, e, f , the asymptotic equivalent, when r goes to infinity,
of a r-shifted and rescaled 6j symbol can be written in terms of a Wigner 3j symbol as follows:

a

p2rq SixJSymbolppa, b, cq, pd`r, e`r, f`rqq „rÑ8 p´1q
pa`b`c`2pd`e`fqqThreeJSymbolppa, e´fq, pb, f´dq, pc, d´eqq.

(39)

The interested reader can obtain an expression giving an asymptotic equivalent for the tet
function in terms of one 3j symbol (or of one Clebsch-Gordan coefficient) and several appropriate
gon factors from eq. 39 by expressing the 6j symbol in terms of the tet function using eq. 30.

Recoupling coefficients, Racah coefficients, cells, and orthogonality. Let T be an admis-
sible tetrahedra labelled with integers a, b, c, d, e, f (twice the spin variables), as in fig. 5. Choose a
pair of opposite edges, the two other pairs of opposite edges building a closed (and skew) quadrilat-
eral. Obviously there are three possible choices. For instance we may choose the pair carrying the
labels pb, eq, the corresponding quadrilateral being pa, c, d, fq; also denoted

` a c
d f

˘

: This quadrilat-
eral is obtained by removing one column in the symbol specifying the tetrahedron T , the position
of this column in the symbol is actually not relevant: it may be the second column if we denote
T by

`

a b c
d e f

˘

but it will be for instance the third column if we denote the same tetrahedron by
`

a c b
d f e

˘

. For the choice pb, eq, a quantity of interest is

Ube “ p´1qpa`c`d`fq{2
a

pb` 1qpe` 1q SixJSymbolpT q. (40)

It is proportional to the 6j symbol but the removed column gives an extra square root, and the
left-over quadrilateral gives a sign. The choice of another pair of opposite edges in T leads to
similar coefficients Ube, Uad, Ucf . From now on, for definiteness, we choose the edge pb, eq. This
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number is called a recoupling coefficient [40], or a unitary Racah coefficient (see [5], vol 1, p 111,
or [15], p 314). The Racah coefficient itself is Wbe “ p´1qpa`c`d`fq{2 SixJSymbolpT q, it differs from
Ube by a square root and from the associated 6j symbol by a possible sign. Another notation
used in the literature for the same Racah coefficient, using spin variables and displaying the six
arguments, is W pa{2, c{2, f{2, d{2; b{2, e{2q but the order of arguments is not unique because of
the tetrahedral symmetries of T . Racah coefficients were defined in [30], see also the discussion in
[5], vol 1, p 101, or in [40]. We only mention them here in order to avoid confusion with similar
quantities, indeed it is not uncommon to see the name of Racah associated with distinct families
of objects (the 6j’s, the un-normalized version of the 6j’s, the recoupling coefficients, or the Racah
coefficients themselves).

In terms of the two integer-valued functions gon and tet, the recoupling coefficients read as
follows (using eqs. 40 and 30):

Ube “
p´1qpa`c`d`fq{2

a

pb` 1qpe` 1q tetrpa, b, cq, pd, e, fqs
a

gonpa, b, cq gonpa, e, fq gonpb, d, fq gonpc, d, eq
(41)

Proposition 13. For given non-negative integers a, c, d, f , consider the matrix U with matrix
elements Ube as in 41, where pb, eq belongs to the set of pairs of non-negative integers for which
the tetrahedron T “ ppa, b, cq, pd, e, fqq is admissible. Then we have the following proposition: The
matrix U is orthogonal i.e. U.UT “ UT .U “ 1.
This is nothing but a rewriting of the orthogonality property for the recoupling coefficients, which
itself can be traced back to a similar property (discussed in many places) for the associated 6j
symbols.

Remark: The quantities U may also be called “cells” because they describe the pairing defining
a bigebra structure (actually a weak Hopf algebra) on the vector space B of double triangles;
this is a particular case of a much more general construction (“Ocneanu cells”). In a nutshell,
one considers formally the graded vector space generated by admissible triplets pa, b, cq pictured
as triangles (the grading is defined by b, which is displayed horizontally), and its corresponding
graded endomorphism algebra B. A particular basis of the latter is conveniently described in terms
of “horizontal double triangles”: an horizontal double triangle of type b is a pair of two triangles
sharing the same edge b, displayed horizontally. Dually we have also “vertical double triangles”
(spanning the dual of B) where the common edges are displayed vertically. The numbers U define
a non trivial pairing: they are used to define a coalgebra structure on B. The obtained bigebra
is infinite dimensional since the grading b ranges over N. The theory has been developed in the
quantum case ( when q is a root of unity, B is finite dimensional); a brief account is given in
[9], which also contains a study of several explicit examples. In the classical case, the existence
and properties of the two algebra structures was discussed in [5], vol 2, using another language
and notations. In the present notes we are mostly interested in the arithmetic properties of the
integer-valued functions gon and tet, so this is not the right place to discuss the above in more
details.

Expressing the function tet in terms of Clebsch-Gordan coefficients. Since the integer
valued function tet differs by normalization factors only from the 6j symbol, see eq. 30, and since
the latter can be written as a multiple sum over a product of Clebsch-Gordan coefficients (or of 3j
symbols), see the Appendix (sec. 4.4), it is clear that one can also express tet as a sum involving
products of Clebsch-Gordan coefficients. This is left as an exercise.

3 Quantum version

The notions and properties discussed in the previous section have a q-analog counterpart. In the
present section we shall only give the corresponding definitions, state the analogous properties, and,
only in a few cases, provide sketch of proofs.
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3.1 q-numbers and q-factorials

If n is a real number, in particular if it is a positive integer, and q is complex, there are two variants
of q-numbers that we recall below.

rnsq “
qn ´ q´n

q ´ q´1
and rrnssq “

1´ qn

1´ q
(42)

Here we only use the first convention, and sometimes ommit the surrounding square bracket, setting
nq “ rnsq. There are also two variants of q-factorials, that of course differ by prefactors: rss!q “
śn“s
n“1rnsq and rrsss!q “

śn“s
n“1rrnssq. They are related as follows: rrsss!q2 “ qnpn´1q{2 rss!q. Warning:

the pre-defined function QFactorialrs, qs of Mathematica, which is displayed in this program (using
the so called“traditional form”) as rssq!, coincides with our rrsss!q. We shall only use the first notion
of q-factorial (i.e., our rssq!) in the following.

3.2 The quantum gonq function

3.2.1 q-admissible triplets

q-admissibility. If q is a root of unity with q “ exppiπ{κq, with κ an integer larger or equal to 2,
so that qκ “ ´1, we do not only assume that the triplet pa, b, cq is admissible in the classical sense,
i.e., triangular and a` b` c even, but we also assume that a` b` c ď 2κ´ 4. It is standard to call
“level” the integer ` “ κ´ 2.

3.2.2 The elementary quantum gonq function (triangular function)

The quantum q-triangle function (i.e., the gonq function with three arguments) is defined as follows:

Definition 5.

gonqpa, b, cq “

“

1
2pa` b` cq ` 1

‰

!q
“

1
2pa` b´ cq

‰

!q
“

1
2pa´ b` cq

‰

!q
“

1
2p´a` b` cq

‰

!q
(43)

When q is a root of unity we assume that pa, b, cq is q-admissible, otherwise we set gonqpa, b, cq “ 0.

Example:

gonqp3, 7, 8q “
7q 8q 9q 10q

12q 2q
, whose classical limit (i.e., q Ñ 1) is gonp3, 7, 8q “ 2520, explicitly reads:

´

q12 ` q8 ` q4 ` 1
¯ ´

q12 ` q10 ` q8 ` q6 ` q4 ` q2 ` 1
¯ ´

q16 ` q14 ` q12 ` q10 ` q8 ` q6 ` q4 ` q2 ` 1
¯ ´

q18 ` q16 ` q14 ` q12 ` q10 ` q8 ` q6 ` q4 ` q2 ` 1
¯

q29

3.2.3 Duality property: a topological identity of the gonq function.

Proposition 14. Like in the classical case we have the duality property:
ÿ

sPS

gonqpa, b, sq
1

rs` 1sq
gonqpc, d, sq “

ÿ

tPT

gonqpa, d, tq
1

rt` 1sq
gonqpb, c, tq (44)

where S (resp. T ) denote the set of integers s (resp. t) making q-admissible both triplets pa, b, sq
and pc, d, sq (resp. both pa, d, tq and pb, c, tq).
The above sums are also equal to

ř

uPU gonqpa, c, uq
1

ru`1sq
gonqpb, d, uq where u runs over the set U

of integers making q-admissible both pa, c, uq and pb, d, uq. Any one of these three sums defines the
same q-quadrilateral function gonqpa, b, c, dq.

As in the classical case, the identity 44 comes from an isomorphism between the vector spaces of
intertwiners HomSUp2qqpVabVb, VcbVdq or HomSUp2qqpVabVd, VbbVcq and HomSUp2qqpVabVbb
Vc b Vd,Cq. The word “duality” comes from the Frobenius duality (or reciprocity) briefly recalled
in our discussion in 4.3. We are not aware of any published purely q-deformed combinatorial proof
of this identity.
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3.2.4 Extension of the function gonq to arbitrary q-admissible multisets

Like in the classical case, the above topological property allows one to extend the definition of gonq
to arbitrary q-admissible multisets, by choosing some triangulation of any polygon whose edges
are elements of this multiset. One takes the product of the triangular gonq functions over all the
2-simplices of the triangulation, divided by a product of factors rx ` 1sq where the x’s are the
lengths of the diagonals (1-simplices) entering the chosen triangulation. Property (44) ensures that
the result is independent of the choices. In the root of unity case, q-admissibility can be re-phrased
in terms of representation theory of the quantum group SUqp2q by imposing that the product of the
simple objects defined by the arguments (in the associated appropriate monoidal category) contain
the trivial representation.

The above leads to the recursive definition:

Definition 6.

gonqpx1, x2, . . . , xn, u, vq “
ÿ

x

gonqpx1, x2, . . . , xn, xq
1

rx` 1sq
gonqpx, u, vq (45)

where the sums runs over elements x of the intersection of the underlying sets associated with the
multisets brx1, x2, . . . , xns and bru, vs.
As before the notation

Â

rais refers to the multiset of highest weights that appear in the direct sum
decomposition (irreps) of the chosen tensor products. In the root of unity case, the determination
of

Â

rais is quite subtle because some of the multiplicities can be smaller than in the classical case
if the chosen level is not chosen big enough, and some of the highest weight classically present in
the decomposition can even disappear. We shall not discuss that issue further in the present paper
since it is discussed at length in articles devoted to the study of quantum groups or of conformal
field theory. As in the classical case, the symmetry property of gonq comes from the previous double
triangle identity 44 and from the symmetry property of the elementary gonq function.

Example: We look at the pentagonal example defined by the set t11, 3, 4, 1, 5u that we already
considered in the classical case. If q is a root of unity we assume that we choose a level big
enough in order not to worry with the possible disappearance of some representations. Using any

triangulation one finds gonqr11, 3, 4, 1, 5s “
6q7q8q9q10q11q12qp1q5q6q`10qp4q6q`3q13qqq

14q2
2
q3

2
q4q

.

Explicitly, this reads:

q
´70

´

q
4
´ q

2
` 1

¯2 ´

q
8
` 1

¯ ´

q
8
´ q

4
` 1

¯ ´

q
8
´ q

6
` q

4
´ q

2
` 1

¯ ´

q
8
` q

6
` q

4
` q

2
` 1

¯2 ´

q
10
` 2q

8
` 3q

6
` 3q

4
` 2q

2
` 1

¯2 ´

q
12
` q

6
` 1

¯

´

q
12
` q

10
` q

8
` q

6
` q

4
` q

2
` 1

¯ ´

q
20
` q

18
` q

16
` q

14
` q

12
` q

10
` q

8
` q

6
` q

4
` q

2
` 1

¯

´

q
28
` q

22
` q

20
` q

18
` q

16
` q

14
` q

12
` q

10
` q

8
` q

6
` 1

¯

The reader can check that the classical limit (q Ñ 1) of this expression is equal to 18295200, as it
should (see sec. 2.1.6). After multiplication by q raised to some appropriate power (70 in the above
example) we obtain a polynomial in q. It is actually monic symmetric unimodal in the variable q2.

3.2.5 The CK,q function

The q-analog of the classical theta net whose definition was recalled in section 2.1.7 is discussed in
many places, see for instance [17] , [7]. Its expression is given by the quantum analog of eq. 9, the
factorials being replaced by q-factorials:

CK,qpa, b, cq “ p´1qm`n`p
rm` n` p` 1s!q rms!qrns!qrps!q
rm` ns!qrm` ps!qrn` ps!q

(46)

Its relation with the elementary gonq function is given by the q-analog of eq. 10.
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3.2.6 The function gonq and quantum Hilbert matrices

The q-Hilbert matrix Hq of order n is defined as the n ˆ n matrix Hqpnq with matrix elements
Hqpnqpi, jq “ 1{ri` j ´ 1sq.

For instance Hqp3q “

¨

˚

˝

1
r1sq

1
r2sq

1
r3sq

1
r2sq

1
r3sq

1
r4sq

1
r3sq

1
r4sq

1
r5sq

˛

‹

‚

“

¨

˚

˚

˝

1 q
q2`1

q2

q4`q2`1
q

q2`1
q2

q4`q2`1
q3

q6`q4`q2`1
q2

q4`q2`1
q3

q6`q4`q2`1
q4

q8`q6`q4`q2`1

˛

‹

‹

‚

.

Several formulae have been obtained in the literature for the entries of the inverse Hilbert
matrix, classical (see for instance [16]), or quantum (see [2]). The corresponding trace, calculated
for instance using eq. 33 of [2], gives the same result as gonqpn, n, n, nq calculated from eq. 44.

Proposition 15. The value gonqpn, n, n, nq is equal to the trace of the inverse of the pn ` 1q-th
order quantum Hilbert matrix.

Example:

Hqp3q´1 “

¨

˚

˚

˚

˚

˝

pq4`q2`1q
2

q4
´
pq2`1qpq4`1qpq4`q2`1q

2

q7
pq4`1qpq4`q2`1qpq8`q6`q4`q2`1q

q8

´
pq2`1qpq4`1qpq4`q2`1q

2

q7
pq2`1q

4
pq4`1q

2
pq4`q2`1q

q10
´
pq2`1qpq4`1qpq4`q2`1q

2
pq8`q6`q4`q2`1q

q11

pq4`1qpq4`q2`1qpq8`q6`q4`q2`1q
q8

´
pq2`1qpq4`1qpq4`q2`1q

2
pq8`q6`q4`q2`1q

q11
pq4`1q

2
pq4`q2`1q

2
pq8`q6`q4`q2`1q

q12

˛

‹

‹

‹

‹

‚

TrpHqp3q
´1
q “ gonqp2, 2, 2, 2q “

q24`4q22`13q20`27q18`47q16`63q14`71q12`63q10`47q8`27q6`13q4`4q2`1
q12

with classical

limit gonp2, 2, 2, 2q “ TrpHp3q´1
q “ 381.

Inverting an Hilbert matrix, quantum or not, takes time. In order to obtain the trace of the
latter, the calculation using gon or gonq is much faster.

3.3 The quantum tetq function

3.3.1 Quantum admissible tetrahedra

We already defined admissibility for classical tetrahedra (see sec. 2.2.1). In the quantum case,
and when q is a root of unity, q “ exppiπ{p` ` 2qq, we also impose that the variables labelling
the edges of the tetrahedron should be q-admissible and that the four triplets associated with the
four faces of a tetrahedron T should be q-admissible as well (see sec. 3.2.1). If the individual
arguments x of the function gonq are interpreted as components of SUp2q highest weights defining
three irreducible representations of SUp2qq that should exist at the chosen level `, and have non
vanishing q-dimension (then x ď ``1), the q-admissibility condition on the triplets pa, b, cq, pb, d, fq,
pa, e, fq, pc, d, eq, ensures that those triplets label SUp2q intertwiners that exist at the chosen level.

3.3.2 The elementary quantum tetq function (tetrahedral function)

The definition of the function tetq, for an admissible tetrahedron T is the same as in the classical
case (see eq. 22), but for the fact that factorials (n!) are replaced by q-factorials (rns!q).

Example. With T “ pp14, 41, 33qp50, 23, 21qq, one finds that tetqpT q is equal to

r57s!q
r3s!3qr8s!qr12s!qr27s!q

´
r58s!q

r1s!qr2s!2qr4s!qr7s!qr13s!qr28s!q
`

r59s!q
r1s!2qr2s!qr5s!qr6s!qr14s!qr29s!q

´
r60s!q

r3s!qr5s!qr6s!qr15s!qr30s!q

In the classical case, q “ 1, one recovers tetpT q “ ´671777611858249170324639542553600.
With q “ exppiπ{60q, the tetrahedron T “ pp14, 41, 33qp50, 23, 21qq is q-admissible, and for this
choice of q, the value of tetqpT q, approximatively 1.53314 ˆ 1017, can be exactly expressed as the
largest root of the following eight degree polynomial (all its roots are real):

´ 819146649600` 22429878220800z ` 371125869811200z2 ´ 5461982626291200z3 ´ 69550885171932480z4`

29181297342545280z5 ` 1098435022151631960z6 ´ 153313734949066620z7 ` z8
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3.3.3 A topological identity of the quantum tet function: the double tetrahedron
identity

In the quantum case the two functions hed1,q and hed2,q are defined like the functions hed1 and
hed2 of the classical case, modulo the obvious replacement of tet by tetq and of factorials by q-
factorials (see eqs. 34 and 35); however in the quantum case the sign b appearing in the summation
ř

xPbrd,gsXbrf,ksXbrh,es should be properly understood: if q is a root of unity (i.e., finite level `),
there are usually less contributions to this sum over x than in the classical case (i.e., infinite level);
this can be written explicitly in terms of d, g, f, k, h, e and `. Without taking this precaution in
the sum, the following identity would fail for small levels. Like in the classical case, one has the
following analog of the quantum Biedenharn-Elliott identity:

hed1,q “ hed2,q . (47)

3.3.4 The quantum TETq function (also called ,K,q)

This function is formally defined by the same expressions as in the classical case (see eq. 25), with
simple modifications: factorials should be replaced by q-factorials and the four triangles should be
q-admissible. One defines

TETq “
Jq
Eq
ˆ tetq (48)

where Jq and Eq are again obtained from the classical definition of J and E (sec. 2.2.3) by replacing
factorials by q-factorials.

3.3.5 From the quantum function tetq to quantum 6j symbols

As in the classical case, cf. sec. 2.2.3, several versions of 6j symbols (i.e. normalized or not) can
be found in the literature. It will be enough to mention their normalized version —that we simply
call “quantum 6j symbols”. The relation between them and the function TETq symbols is known
(we refer to lemma 3.11.3 of the book [7] for details). One has:

SixJSymbolqppa{2, b{2, c{2q, pd{2, e{2, f{2qq “
TETqppa, b, cq, pd, e, fqq

Nqppa, b, cq, pd, e, fqq
(49)

where

Nqppa, b, cq, pd, e, fqq “
b

|CK,qpa, b, cqCK,qpb, d, fqCK,qpa, e, fqCK,qpc, d, eq| (50)

Then, using 48 and the relation between CK,q and gonq, one obtains:

Proposition 16.

SixJSymbolqppa{2, b{2, c{2q, pd{2, e{2, f{2qq “
tetqppa, b, cq, pd, e, fqq

b

| gonqpa, b, cq gonqpb, d, fq gonqpa, e, fq gonqpc, d, eq|

(51)

3.3.6 Other properties

The other properties of the classical function tet described in the first part of this paper have a
quantum counterpart. The writing of those properties in terms of q-functions is left to the reader.
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4 Miscellaneous

4.1 Evaluation in spin networks: a very short summary

Quantities called triangular functions (or theta symbols), and 6j symbols, show up in many branches
of physics or mathematics where they are usually defined as CK , and as ,U (or SixJSymbol).
Existence of their integer-valued partners gon and tet is usually not even mentioned but it remains
that the definition of these two functions fits naturally in the theory of spin networks. We give
below a very short summary of the evaluation procedures in this theory in order to ease the
comparison between functions and concepts defined there and the two functions gon and tet —
we write “procedures” with a plural because very often in the literature, only one procedure is
mentioned (they are rare exceptions, for instance [12]).

Classical spin networks. Let Γ be a tri-valent graph and a coloring γ of its edges by natural
numbers (0 is allowed). Γ is assumed to be admissible: at each vertex of Γ the triplet of integers
should be admissible (in particular their sum is even). There are closed graphs (no external lines)
and open graphs. A spin network is defined by a pair pΓ, γq, for instance (C, γ) or (,, γ).

Warning: Starting from the spin network defined by the labelled (i.e., colored) theta graph (C, γ) where

admissibility is imposed on the three edges meeting at each vertex, one obtains by duality an admissible

triangle, like in section 2.1.1, where admissibility is defined around a triangular face. The tetrahedron is a

self-dual figure, but duality permutes the notions of admissibility: the tetrahedron spin-network defined by

the tri-valent graph (,, γ) is, by definition, admissible (as a spin network), but the tetrahedron obtained

from the labels defined by γ (see fig. 10) is usually not admissible in the sense of section 2.2.1, however its

dual, obtained by permuting the two triplets in the notation ppa, b, cq, pd, e, fqq, is.

Any spin network (Γ, γ) can be evaluated. The meaning of the obtained number depends on the
theory (physical or mathematical) in which spin networks are used: in the original Penrose theory
[28], which was a simple model for a quantum space, it was used to calculate the probabilities
of various spin values; in various theories of quantum gravity this number is interpreted as an
amplitude for a quantum state of space-time itself; other interpretations arise in knot theory, or
in the geometry of 3-manifolds. An evaluation procedure is defined for each colored connected
tri-valent graph by the following set of rules :

• A value is set for the loop graph: see below.

• A value is set for the theta graph C: see below.

• A value is set for the tetrahedron graph ,: see below.

• Three rules (called recoupling rules) allow one to simplify the evaluation of Γ on the coloring
γ by replacing a given graph by a sum of products (or ratios) of numbers, which involves only
evaluations of the loop graph, the theta graph, the tetrahedron graph, and, if the original
graph was open, a family of left over graphs which are 3-valent trees or straight lines. As
we do not need these rules in the present paper, we refer the reader to the literature on the
subject, for instance [12].

There are several possible evaluation procedures (at least four kinds). We call them Integer
evaluation ΓZpγq, Penrose evaluation ΓP pγq, Kauffman evaluation ΓKpγq, and Unitary evaluation
ΓU pγq. They differ by normalization prescriptions (see below).

For a given coloring γ of a tri-valent graph Γ we call v1, v2, v3 the values of the three edges
emanating from the vertex v of Γ. Call V pΓq the set of vertices, EpΓq the set of edges, and γpeq the
coloring of the edge e. Define σv “

v1`v2`v3
2 and Θv “ p´1qσv pσv ` 1qMpσv ´ v1, σv ´ v2, σv ´ v3q
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where M denotes the multinomial coefficient. Call

J pΓq “ ΠvPV pΓq pσv ´ v1q!pσv ´ v2q!pσv ´ v3q!,

EpΓq “ ΠePEpΓq γpeq!

N pΓq “ ΠvPV pΓq

a

|Θv|.

(52)

For all evaluation procedures, the evaluation of the loop graph on the integer n is p´1qnpn`1q.
For a spin network (Γ, γ) with integer evaluation ΓZpγq, one defines the other evaluation procedures
as follows:

ΓP pγq “ J pΓq ˆ ΓZpγq, ΓKpγq “
J pΓq
EpΓq

ˆ ΓZpγq, ΓU pγq “
1

N pΓq
ˆ ΓZpγq. (53)

It is therefore enough to specify the integer evaluations ΓZpγq where Γ is either the theta graph C
(dual to the triangle with edges pv1, v2, v3q), or the tetrahedron graph ,, with coloring dual to the
admissible tetrahedron T with labels ppa, b, cq, pd, e, fqq. For these two graphs we set:

CZpγq “Θv “ p´1qσ pσ ` 1qMpσ ´ v1, σ ´ v2, σ ´ v3q “ p´1qσ gonpv1, v2, v3q,

,Zpγq “ tetpT q “ tetppa, b, cq, pd, e, fqq.
(54)

The function gon was defined in eq. 2, and the function tet in eq. 22.

For the theta graph, using 53 and setting

J pCq “ ppσ ´ v1q!pσ ´ v2q!pσ ´ v3q!q
2, EpCq “ v1!v2!v3!, N pCq “ |Θv|, (55)

one finds:

CP pγq “p´1qσpσ ` 1q!pσ ´ v1q!pσv ´ v2q!pσv ´ v3q!,

CKpγq “p´1qσpσ ` 1q!
pσv ´ v1q!pσv ´ v2q!pσv ´ v3q!

v1!v2!v3!
,

CU pγq “p´1qσ.

(56)

For the tetrahedron graph, calling A,B,C,D its vertices and using 53 , one finds:

,P pγq “J p,q tetppa, b, cq, pd, e, fqqwithJ p,q “ ΠvPtA,B,C,Dupσv ´ v1q!pσv ´ v2q!pσv ´ v3q!,

,Kpγq “TETppa, b, cq, pd, e, fqq, with TET as in eq. 25,

,U pγq “SixJSymbolppa{2, b{2, c{2q, pd{2, e{2, f{2qq, see also eq. 30.

(57)

Quantum spin networks. By replacing integers by q-integers, one can develop a quantum
counterpart of the theory of classical spin networks. We refer the reader to the abundant literature
on the subject.

4.2 About integral tetrahedra

Consider a labelled tetrahedron as given by fig. 5. We called admissible tetrahedron a labelled
tetrahedron such that its faces are admissible triplets (in the sense defined in section 2.1.1). The
labels a, b, c, d, e, f are therefore such that: p1q They are non-negative integers, p2q They obey
triangular inequalities such that the four faces are indeed triangles (which are possibly degenerate,
and possibly flat), p3q The perimeters of the four triangular faces are even.

An admissible tetrahedron T , and more generally a labelled tetrahedron obeying at least the
above condition p2q, is called Euclidean, Minkowskian, or flat, if its Cayley-Menger determinant ∆
(58) is positive, negative, or zero. So far we did not impose any constraint on the sign of ∆, so the
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Figure 10: The tetrahedron of fig. 5 and the tetrahedron with a dual labelling.

admissible tetrahedra can be of any of those three types. T is called degenerate if one or several
edges vanish.

∆ “ det

¨

˚

˚

˚

˚

˝

0 a2 c2 e2 1
a2 0 b2 f2 1
c2 b2 0 d2 1
e2 f2 d2 0 1
1 1 1 1 0

˛

‹

‹

‹

‹

‚

(58)

If an admissible tetrahedron is Euclidean, which implies that it has a positive volume V “
a

∆{288 and that it defines (up to isometry) a metric tetrahedron that one can embed in R3,
it defines an Euclidean integer-sided tetrahedron. Notice that the number of non-congruent such
tetrahedra (let us say with given largest side) is smaller than the number given by the OEIS
integer sequence A097125, although this sequence counts the number of non-congruent Euclidean
integer-sided tetrahedra with largest side n, because the latter are not necessarily even (an integer-
sided tetrahedron obeying the condition p3q is called even) whereas ours are. Notice also that an
admissible tetrahedron of Euclidean type has no reason to be Heronian in general (we do not impose
integrality of surface and volume).

4.3 Hom-spaces.

A linear map between two representation spaces that commutes with the group action is, by defini-
tion, an equivariant linear map between these two representations; it is also called an intertwiner.
In other words, an intertwiner is a homomorphism of representation spaces. Let a and b denote
two finite dimensional unitary irreducible representations of some compact group. Their tensor
product a b b is a (usually not irreducible) representation, its decomposition into irreducible rep-
resentations reads ab b “

À

i ci where each of the ci appearing in this direct sum is an irreducible
subrepresentation of ab b. There may be repetitions of the ci that occur in that direct sum (mul-
tiplicity). If the chosen group is the Lie group SUp2q, the multiplicity is always equal to 1, this
is a particular feature of SUp2q. In terms of highest weights of irreps, the fact that c should be
such that |a´ b| ď c ď |a` b| (the law of “coupling of spins”) makes the triplet pa, b, cq admissible
and translates as a usual triangle inequality. In terms of representations spaces, the inclusions of
these irreducible subrepresentations are intertwiners maps; the adjoint γ of such an inclusion γ‹

is a surjective map, so we also have surjective intertwiners from Va b Vb to Vci . The composition
γγ‹ is the identity on Vci whereas the composition γ‹γ is a projector defined in the vector space
VabVb. An intertwiner from ab b to c has a pictorial description as a triangle, with edges labelled
by the irreducible representations a, b and c. These edges are a priori oriented, however Frobenius
reciprocity tells us that one can replace a homomorphism to a representation by a homomorphism
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from its conjugate representation. In the case of SUp2q, an irreducible representation is equivalent
to its conjugate so one may forget about orientation of the edges of the triangle a, b, c and picture
intertwiners as triangles with unoriented edges. The above discussion is of course standard. The
triangle pa, b, cq is a convenient visualization of the space of intertwiners HomSUp2qpVabVbbVc,Cq,
which is 1-dimensional. Intuitively, one can think of this admissible triangle as describing a par-
ticular kind of “relation” between three irreducible representations of SUp2q and one can also think
of an admissible tetrahedron as describing “relations between relations”, where the four faces of
the tetrahedron refer to four compatible intertwiners.

4.4 From SUp2q to SUpNq, or to G.

The SUp2q group (classical or quantum) underlies the various constructions or considerations de-
scribed previously. For instance, from the very beginning, the edges of the triangles, or of the
tetrahedra, are labelled by non-negative integers referring to highest weights of irreducible repre-
sentations of SUp2q. If one replaces the latter by another simple (or semi-simple) Lie group G, of
higher rank, one can of course look for possible generalizations and it is clear that such generaliza-
tions should “exist”. The function gonpa, b, cq, classical or quantum, can be seen as a generalization
from the 1-simplex to the 2-simplex of the function giving the dimension of an SUp2q irreducible
representation (the function dimpaq “ a` 1 P N), and the tet function, classical or quantum, as a
generalization of the latter to the 3-simplex. The dimension function dim is explicitly known for
all irreps of simple Lie groups G, but things get tricky already at the level of the triangle function
gon when G is not SUp2q. Indeed, apart from the fact that one can no longer, in general, identify
a representation with its conjugate, the spaces of intertwiners HomGpVa b Vb b Vc,Cq, equiva-
lently HomGpVa b Vb, Vcq, are no longer 1-dimensional: multiplicities appear —they are given by
the Littlewood-Richardson coefficients in the SUpNq case. In other words, triangles spaces (Hom-
spaces) are not fully specified by a compatible choices of three irreducible representations. From
a combinatorial point of view, if G “ SUpNq and if the space of intertwiners (for given a, b, c) is
of dimension s, one can draw s distinct pictographs (one can use honeycombs, or, equivalently,
O-blades or Berenstein-Zelevinsky diagrams), with three external sides labelled by the same triplet
pa, b, cq of irreps but differing by their “inner” contents. In the G “ SUp2q case one can trade the
three “external edge variables” pa, b, cq for three “internal edge variables pm,n, pq as we did in the
first section. In the rank 2 case, taking G “ SUp3q, there are 2 ˆ 3 “ 6 numerical external edge
variables (the components of the three highest weights a, b, c that one can attach to three copies
of an A2 Dynkin diagram) but the intertwiners themselves are labelled by 8 non-negative —and
non-independent— integer parameters; using a syzygie relation one can get rid of one non-negative
parameter and stay with 7 independent (but not all necessarily positive) parameters. In this SUp3q
case the argument of the gon function (or of the CK function in another normalization) cannot be
specified by the triplet of irreps pa, b, cq alone, because this argument should also specify the choice
of a pictograph (a honeycomb for instance) whose description usually requires one more parameter.
Even in the relatively simple situation of SUp3q the gon function is not known explicitly in full
generality although several people have worked out explicit expressions for it, using one or another
normalization (G. Kuperberg and his student D. Kim (2003), see [18], A. Ocneanu and his student
L. Suciu (1997), see [33]), but this was done only for particular families of irreps a, b, c. In the SUp4q
case (where one needs 3ˆ3`3 “ 12 independent parameters, so 3 more than the components of the
three given highest weights), and more generally for SUpNq, N ą 3, or for other simple Lie groups,
we are not aware of any general explicit result for the triangle function. As for the tetrahedral
function (we remind the reader that for G “ SUp2q, and in the unitary normalization, it is the
usual 6j symbol), the four faces of the tetrahedron should be labelled by appropriate compatible
honeycombs fully specifying the triangle spaces under consideration, but even for SUp3q, and apart
from very few special cases (low dimension of irreps and no multiplicity) worked out by physicists
at the time of the eightfold way, we are not aware of any published general result.
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Appendix: About Clebsch-Gordan coefficients, 3j and 6j symbols

The name “Clebsch-Gordan coefficients” comes from two 19-th century German mathematicians, A.
Clebsch and P. Gordan, who worked on problems of invariant theory. These numbers, in physics,
arise in the quantum treatment of angular momentum: the coupling of two spins. In a more
general setting, let Vj be the vector space of an irreducible and unitary representation (irreps) of
some compact Lie group, the tensor product of two irreps can be decomposed as a sum of irreducible
components. An intertwiner being chosen (an equivariant morphism mapping Vj1 b Vj2 to some
chosen VJ , see the discussion on Hom-spaces in section 4.3), one can evaluate this morphism on the
tensor product of two vectors m1 P Vj1 , m2 P Vj2 and take the inner product of its image with vectors
M P VJ , one obtains a number. We now assume that the group is SUp2q. In that case, and for three
chosen irreps Vj1 , Vj2 , VJ , such an intertwiner is unique up to a scaling factor (no multiplicity);
moreover the labels ji, or J can be chosen as half-integers (spin variables). For vectors mj , or M ,
belonging to an appropriate normalized basis in the representation spaces, the numbers obtained
as before are called Clebsch-Gordan coefficients and denoted ClebschGordanrj1,m1, j2,m2, J,M s
or xj1, j2; m1, m2|J, My. Their properties are described in many textbooks, review articles, and
encyclopedias. Equivalently one can think of the evaluation as being defined on the vector space
Vj1 b Vj2 b VJ , this leads to coefficients called Wigner 3j symbols that are traditionally written
using round braces, as below, and look more symmetrical than the Clebsch-Gordan coefficients; the
relation between both is as follows:

xj1, j2; m1, m2|J, My “
?

2J ` 1p´1qj1´j2`M

˜

j1 j2 J
m1 m2 ´M

¸

(59)

The signifiance of Clebsh-Gordan coefficients in quantum mechanics became clear after the work
of Wigner (1927, in German), see the bibliography in [5]; properties and applications of these
coefficients, and of 3j symbols, were then studied in many articles and textbooks (among classical
textbooks one should certainly mention [35] and [24]).

The 6j symbols were introduced by E.P. Wigner in 1940 in his study of the coupling of three
angular momenta (spins); this work was published much later ([36], 1965), but the usefulness of
these symbols was immediately recognized and their properties discussed in articles and textbooks
(again we can mention [24], 1962). It was also observed that the Wigner 6j symbols were simply
related to another family of coefficients, the Racah coefficients, that had been defined, differently,
by Racah [30], in 1942 (see below). The Wigner 6j symbols are often defined as a sum over a
product of four 3j symbols (or four Clebsch-Gordan coefficients), see eq. 60. A standard notation
for 6j’s uses curly braces, as on the left hand side of equation 60.

The Racah coefficients, introduced in 1942, [30], were defined as a formally infinite sum but for
given arguments, only finitely many terms of this sum are nonzero. We do not use this formula
in this paper but the interested reader is referred for instance to [40] and references therein. As
already mentioned, it was shown long ago that the coefficients defined by the Racah formula are
equal (up to a possible sign) to the Wigner 6j symbols.

Warnings:
‚ Another family of coefficients, the so-called recoupling coefficients, which are sometimes called
unitary Racah symbols, frequently appear in the literature, see the discussion after eq. 40.
‚ Still another variant of the 6j symbols, also called by the same name, and sometimes also denoted
by curly braces, but differing from the Wigner 6j’s by normalization factors, can often be found,
mostly in the mathematical literature. In the few places where both kinds of symbols are used
simultaneously, the authors usually call “normalized 6j symbols” the Wigner ones, i.e. those that
are given by eqs. 28 or 60, although, for other people (and for us), the latter are just“6j symbols”.
This is a confusing issue which is discussed at the beginning of section 2.2.4.
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Although we do not use in this paper the formula expressing Wigner 6j symbols in terms of 3j
symbols, we display it below, for the convenience of the reader.

#

j1 j2 j3
j4 j5 j6

+

“

jk
ÿ

mk“´jk
k“1,...6

p´1q
ř6
k“1pjk´mkq

˜

j1 j2 j3
´m1 ´m2 ´m3

¸˜

j4 j2 j6
m4 m2 ´m6

¸˜

j1 j5 j6
m1 ´m5 m6

¸˜

j4 j5 j3
´m4 m5 m3

¸

(60)

Because of Kronecker constraints coming from the 3j symbol, m3 “ ´pm1`m2q, m6 “ pm2`m4q,
m5 “ m1 `m2 `m4, the previous sum can be written as a sum over three indices only:

#

j1 j2 j3
j4 j5 j6

+

“

j1
ÿ

m1“´j1

j2
ÿ

m2“´j2

j4
ÿ

m4“´j4

p´1q
j1`j2`j3`j4`j5`j6´m1´2m2´3m4

˜

j1 j2 j3
´m1 ´m2 m1 `m2

¸˜

j4 j2 j6
m4 m2 ´m2 ´m4

¸˜

j1 j5 j6
m1 ´m1 ´m2 ´m4 m2 `m4

¸˜

j4 j5 j3
´m4 m1 `m2 `m4 ´m1 ´m2

¸

(601)

Equivalently, in terms of Clebsch-Gordan coefficients,

#

j1 j2 j3
j4 j5 j6

+

“

j1
ÿ

m1“´j1

j2
ÿ

m2“´j2

j4
ÿ

m4“´j4

p´1qj1´j2`j3`j4´j5`j6´m1´m4

p2j3 ` 1qp2j6 ` 1q
xj1, j2; ´m1, ´m2 | j3, ´m1 ´m2y

xj4, j2; m4, m2 | j6, m2 `m4yxj1, j5; m1, ´m1 ´m2 ´m4 | j6, ´m2 ´m4yxj4, j5; ´m4, m1 `m2 `m4 | j3, m1 `m2y

(602)

In order to save space, and also because it is used in the program Mathematica, the display
notation for 6j’s using curly braces is often replaced, in the main body of the present article, by
the in-line SixJSymbol notation, defined as follows:

SixJSymbolppj1, j2, j3q, pj4, j5, j6qq “

#

j1 j2 j3
j4 j5 j6

+

(61)
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