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ABSTRACT: We investigate LaCo2P2 as an electrocatalytic material for oxygen evolution
reaction (OER) under alkaline and acidic conditions. This layered intermetallic material
was prepared via Sn-flux high-temperature annealing. The electrocatalytic ink, prepared
with the ball-milled LaCo2P2 catalyst at the mass loading of 0.25 mg/cm2, shows OER
activity at pH = 14, reaching current densities of 10, 50, and 100 mA/cm2 under the
overpotential of 400, 440, and 460 mV, respectively. Remarkably, the electrocatalytic
performance remains constant for at least 4 days. Transmission electron microscopy
reveals the formation of a catalytically active CoOx shell around the pre-catalyst LaCo2P2
core during the alkaline OER. The core serves as a robust support for the in situ-formed
electrocatalytic system. Similar studies under pH = 0 reveal the rapid deterioration of
LaCo2P2, with the formation of LaPO4 and amorphous cobalt oxide. This study shows the
viability of layered intermetallics as stable OER electrocatalysts, although further
developments are required to improve the electrocatalytic performance and increase the stability at lower pH values.
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■ INTRODUCTION

The growing worldwide need for clean energy technologies,
aiming to replace rapidly depleting and environmentally
harmful fossil fuels, has been driving extensive research efforts
into the viability of a hydrogen fuel economy. The centerpiece
of these efforts is the decomposition of water into the
constituent elements.1 The overall water-splitting reaction can
be divided into two half-reactions known as hydrogen
evolution reaction (HER) and oxygen evolution reaction
(OER). In practice, however, these electrochemical processes
suffer from a large overpotential, defined as the difference
between the experimental and thermodynamic values of the
electrochemical potential required to drive the water
electrolysis reaction. The overpotential is caused by substantial
kinetic barriers associated with the two-electron HER and
especially with the four-electron OER mechanisms.2,3 A broad
range of electro- and photocatalysts has been investigated to
address this problem.4,5 The state-of-the-art electrocatalysts,
such as RuO2 and IrO2, have afforded a substantial decrease in
the OER overpotential,6 but their use is not sustainable, given
the scarcity and high cost of the platinum group metals.7−9 In
recent years, extensive research efforts have been devoted to
the discovery of sustainable electrocatalysts based on 3d metal
hydroxides, oxyhydroxides, and oxides,4,10−14 chalcoge-
nides,15−17 phosphides,18−23 and borides.24,25

The challenge in developing efficient electrocatalysts based
on 3d metal compounds stems from the decomposition of such
materials under conditions of electrocatalysis in acidic
electrolytes. As a result, examples of such electrocatalysts

that can operate under acidic OER conditions even for a few
hours, without the loss of performance, are extremely rare.
Among the materials mentioned above, transition-metal
phosphides (TMPs) and transition-metal borides (TMBs)
are well known to show high stability toward acids, in the
absence of applied voltage, while OER activity in alkaline
solutions has been demonstrated for several binaries, such as
CoP, Ni2P, NiP2, FeB, Co2B, and Ni2B.

26−31 Hence, TMPs and
TMBs offer appealing alternatives to the more extensively
studied OER electrocatalysts based on 3d metal hydroxides,
oxyhydroxides, and oxides.32

Recently, we have reported a promising performance by
AlFe2B2 in alkaline OER electrocatalysis.29 Our studies
revealed that AlFe2B2 acts as a precatalyst by governing the
formation of a thick and very stable shell of catalytically active
Fe3O4 nanoparticles around the particles of AlFe2B2.
Remarkably, this material far outperformed stand-alone
Fe3O4 nanoparticles by showing a substantially higher long-
term stability, faster reaction kinetics, and a lower overpotential
in the electrocatalytic OER in a 1 M KOH electrolyte.
Interestingly, AlFe2B2 also showed much better catalytic
properties as compared to the Al-free FeB counterpart. We
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attributed this improved performance to the crystal structure of
AlFe2B2, in which layers of Al atoms alternate with [Fe2B2]
slabs (Figure 1a). The catalytically inactive Al layer provides
additional structural stability and increased electrical con-
ductivity within the structure, thus improving the electron-
transfer kinetics and longevity of the catalytic system. At the
onset of the OER, the surface layers of AlFe2B2 undergo
reconstruction due to the partial etching of the Al layers by 1
M KOH and electro-oxidation of the [Fe2B2] slabs to the shell
of Fe3O4 nanoparticles. Nevertheless, the remaining AlFe2B2
precatalyst core provides an excellent structural support and
improved electron-transfer rate between the underlying
electrode and the catalytically active oxide shell.
Despite its excellent performance in the alkaline electro-

catalytic OER, AlFe2B2 is not stable under acidic condi-
tions.33−35 In contrast, many ternary phosphides with related
layered structures (Figure 1b) are known to exhibit high
stability toward acids.36 Building on this knowledge, we have
decided to explore the use of such structures in both acidic and
alkaline water oxidation. Herein, we report a study of OER
electrocatalysis on LaCo2P2, which was previously investigated
by us and a few other research groups as an interesting
ferromagnetic material with the ordering temperature of 132
K.37−40 We demonstrate that, despite its high general stability
in acidic environment, this material quickly deteriorates once
the voltage is applied to drive the OER at pH = 0. On the other
hand, it acts as a stable OER precatalyst at pH = 14, showing
only a slightly higher overpotential but similar electrochemical
kinetics as compared to the reported performance of binary
CoP. We also discuss the possible reasons for our observations
and strategies to improve the stability and electrocatalytic
performance of layered-structure TMPs.

■ MATERIALS AND METHODS
Starting Materials. All manipulations during sample preparation

were carried out in an Ar-filled dry box (content of O2 < 0.5 ppm). A
lanthanum rod (≥99.9%), cobalt powder (99.9%), phosphorus
powder (99.9%), tin powder (99.85%), and concentrated hydro-
chloric acid (36.5−38.0%) were obtained from VWR. The lanthanum
rod was filed to powder immediately before the reaction. Cobalt
powder was additionally purified by heating in a flow of H2 gas at 500
°C for 5 h. Nafion ionomer solution (5% in aliphatic alcohols and
water) and platinum wire (99.9%) were acquired from Sigma-Aldrich,
while the IrO2 (99.99%, #43396) reference material was purchased
from Alfa Aesar. Ultrapure water (18.2 MΩ cm−2) was produced
using a Milli-Q Advantage A10 system (Millipore). For electrolyte
preparation, purified NaOH (98.5%) from Acros Organics and H2SO4
(95−98%) from Sigma-Aldrich were used.

Synthesis. LaCo2P2 was synthesized according to the previously
reported Sn-flux method.37 The starting materials were mixed in the
La/Co/P/Sn = 1.6:2:2:20 ratio (the total mass = 2 g) and sealed in a
fused silica tube of 10 mm inner diameter under vacuum (≈10−4
mbar). The mixture was annealed at 880 °C for 7 days and cooled to
600 °C at 10 °C/min, at which point the tube was quenched into ice
water. The Sn-rich matrix was dissolved in dilute HCl (1:1 v/v) until
the gas evolution ceased. The product was recovered by filtration,
washed successively with water and ethanol, and dried.

Powder X-ray diffraction (PXRD) was carried out on a SmartLab
diffractometer (Rigaku) equipped with a D/teX Ultra 250 1D
detector and a Cu Kα radiation source (λ = 1.54187 Å). Each pattern
was recorded in the 2θ range from 10 to 80° with a step of 0.03° and
the total collection time of 1 h. The analysis of PXRD patterns was
carried out with the SmartLab Studio II (Rigaku).41

Electrocatalyst Preparation. The phase-pure sample of LaCo2P2
was ball-milled at 1725 rpm for 1 h in an 8000 M high-energy mixer/
mill (SPEX), using a stainless steel ball-milling set. The milling
process was performed under Ar atmosphere to minimize surface
oxidation. The PXRD analysis of the ball-milled sample revealed no
new impurity phases, although the diffraction peaks broadened, in
accord with the decreased particle size and increased strain. The
specific surface areas of the ball-milled LaCo2P2 and reference
electrocatalyst were evaluated by measuring N2 physisorption using an
Autosorb iQ2 analyzer (Quantachrome). For that purpose, ≈100 mg
of a sample was placed in the sample holder tube and degassed at 120
°C for 2 h. Subsequently, the sample holder tube was placed into a
liquid N2 bath for the analysis. The specific surface area of the
materials was determined by the Brunauer−Emmett−Teller (BET)
method.

The ball-milled sample of LaCo2P2 was converted to an
electrocatalyst ink by dispersing 5 mg of the material in 50 μL of
Nafion ionomer solution and 1.0 mL of anhydrous ethanol
(Honeywell). The mixture was homogenized for 30 min in a bath
sonicator USC-TH (VWR) and for 1 min with an ultrasonic probe
Vibra-Cell 75185 (Thermo Fisher Scientific). Catalytic anodes were
prepared by depositing the as-derived homogeneous ink on Ni foam
(Heze Jiaotong, 110 pores per in., 0.3 mm thick) for alkaline OER or
Ti felt (Bekaert Fibre Technologies, 20 μm fiber diameter, 1 mm
thick) for acidic OER. Before the ink deposition, both the Ni foam
and the Ti felt were cleaned by sequential 30 min ultrasonication in
acetone, ethanol, and Milli-Q water. Prior to ultrasonic cleaning, the
Ti felt was additionally purified by heating it under Ar atmosphere to
400 °C at 3 °C/min and maintaining it at this temperature for 2 h. In
each case, 640 μL of the ink was loaded in 20 μL batches on the
surface of the Ni foam or the Ti felt current collectors, letting ethanol
evaporate between the batches. The exposed surface area of the anode
was fixed to be 1 cm2, and the total mass of the ball-milled LaCo2P2
catalyst or the reference IrO2 catalyst loaded on the anode was varied
from 0.25 to 3 mg/cm2. Finally, the obtained anode was air-dried.

Electrocatalytic Measurements. Electrochemical studies were
conducted at room temperature using an Autolab PGSTAT302N

Figure 1. Side-by-side comparison of the crystal structures of AlFe2B2 (a) and LaCo2P2 (b).
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potentiostat (Metrohm). The OER performance of the electro-
catalysts was evaluated under moderate Ar bubbling (≈1 bubble/s)
while stirring at 150 rpm in a three-electrode system filled with a
purified 1.0 M NaOH (alkaline OER) or 0.5 M H2SO4 (acidic OER)
electrolyte. The catalytic anode, a calibrated saturated calomel
electrode (SCE), and a Pt wire served as the working, reference,
and counter electrodes, respectively. Unless stated otherwise, all
potentials reported in this work were converted to a reversible
hydrogen electrode (RHE) reference scale according to the following
equation: ERHE = ESCE + 0.059pH + 0.241. An iR correction of 85%
was applied in the polarization experiments to compensate for the
voltage drop between the reference and working electrodes, which
was evaluated by a single-point high-frequency impedance measure-
ment. OER anodic polarization curves were recorded using cyclic
voltammetry (CV) with a scan rate of 5 mV/s. In the case of
electrocatalyst activation, the scan rate was augmented to 50 mV/s.
The catalytic stability of the anodes was evaluated as a function of
time by means of chronopotentiometry at a constant current density
of 10 mA/cm2.
Electrochemical impedance spectroscopy (EIS) was carried out on

stable electrocatalytic systems at an overpotential of 0.42 V in the
frequency range from 105 to 0.01 Hz with a 10 mV sinusoidal
perturbation. The EIS measurements and the interpretation of results
were conducted in accordance with an aqueous electrochemical
assembly, the so-called supported system.42

Chemical Analysis. Inductively coupled plasma-optical emission
spectroscopy (ICP-OES) was carried out using an ICPE-9000
spectrometer (Shimadzu). Each sample was measured three times
to ensure the reproducibility of results.
Transmission Electron Microscopy. Transmission electron

microscopy (TEM), high-resolution TEM (HRTEM), high-angle
annular dark-field scanning TEM (HAADF-STEM), selected area
electron diffraction (SAED), and energy-dispersive X-ray spectrosco-
py in STEM mode (STEM−EDX) were performed using a JEM-
ARM200F microscope (JEOL) equipped with a cold field-emission
gun, a probe, an image aberration correction, a CENTURIO EDX
detector, and a GIF Quantum filter. TEM samples were prepared by
crushing a sample in an agate mortar in ethanol and depositing the
obtained suspension on a copper carbon holey grid.

■ RESULTS AND DISCUSSION
Electrocatalyst Preparation. Bulk LaCo2P2 was prepared

by annealing the constituent elements in Sn flux. After the Sn-
rich matrix had been dissolved in dilute HCl, a phase-pure
material was obtained, as evidenced by PXRD (Figure 2). The

material was ball-milled for 1 h to increase the surface area for
improved catalytic performance. According to the BET
method, the surface area of the ball-milled sample was 9.9
cm2/g. PXRD of the ball-milled material revealed that the
sample remained phase-pure, but the diffraction peaks
broadened due to the well-known combined effects of the
decreased particle size and the strain introduced by ball-
milling. The crystallite size was estimated as D = Kλ/[(ws −
wi)·cos(θ)],

43 where K is a shape factor (set to 0.9), λ is the X-
ray wavelength, θ is the diffraction angle of the observed peak,
and ws and wi are the full widths at half-maximum for the
sample and an instrumental standard (highly crystalline Si
powder), respectively. Using this equation, the lower bound for
the crystallite size was estimated at ≈25 nm. This value does
not represent the actual average crystallite size because the
Scherrer equation does not account for the strain induced by
the ball-milling process, which will necessarily increase the ws
value.
The TEM characterization prior to electrochemical testing

revealed that the sample of ball-milled LaCo2P2, in general,
showed good crystallinity and contained a mixture of
nanosized (≈10 nm) and submicron particles. The STEM−
EDX elemental mappings (Figure 3a) indicate homogeneous
chemical distribution of all constituent elements (La, Co, and
P), as well as a negligible amount of oxygen that can be
attributed to minor surface oxidation. High-resolution
HAADF-STEM (Figure 3b) and TEM (Figure 3c) images,
along with the corresponding Fourier transform (FT) patterns,
confirm the tetragonal structure of LaCo2P2 (space group I4/
mmm, a = 3.8145 Å, c = 11.041 Å, ICSD-624010).

Electrochemical Testing. The electrochemical OER
testing in a purified 1 M NaOH electrolyte revealed that
LaCo2P2 requires initial activation for ca. 100 CV cycles to
achieve steady-state conditions, after which the material
exhibits constant OER performance. Experimentally, it was
found that LaCo2P2 with a loading of 0.25 mg/cm2 was the
most OER-active (Figure S1), reaching anodic current
densities of 10, 50, and 100 mA/cm2 at overpotentials of ca.
400 mV (η10), 440 mV (η50), and 460 mV (η100), respectively
(the blue curve in Figure 4a). A reference state-of-the-art IrO2
catalyst (Figure S2) showed a higher performance at an
industrially relevant loading of 1 mg/cm2 (the red curve in
Figure 4a), but at the same loading as that of LaCo2P2, that is,
at 0.25 mg/cm2, the overpotentials achieved with IrO2 were
quite similar (the yellow curve in Figure 4a). We would like to
emphasize that at the same loading of 0.25 mg/cm2, the BET
surface area of the IrO2 catalyst (25.5 cm

2/g) was substantially
larger than that of the LaCo2P2 material (9.92 cm2/g), while
the cost of the IrO2 catalyst at such loading would be
prohibitively high. Nevertheless, it might still be possible to
achieve lower overpotentials with the LaCo2P2-based catalyst,
if the particle size can be further reduced to increase the
electrocatalytically active surface area. Such an effect could be
achieved, for example, by a solvent-assisted ball-milling
process.
Given these promising results, the kinetic behavior of

LaCo2P2 was investigated using a combination of Tafel and
Nyquist plots. The Tafel plot relates the rate of the
electrochemical reaction to the overpotential as η = b log(j/
j0), where j is the current density, j0 is the exchange current
density (i.e., the current density at zero overpotential), and b is
the Tafel slope, which represents the decade change in the
reaction rate as a function of applied voltage.44 Analysis of the

Figure 2. PXRD patterns for the bulk (red) and ball-milled (blue)
samples of LaCo2P2. The calculated pattern (black) for LaCo2P2 is
provided for comparison.
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Figure 3. TEM analysis of LaCo2P2 particles after ball-milling: (a) low-magnification overview HAADF-STEM image and simultaneous STEM−
EDX elemental mappings acquired at the L-line of La (red) and K-lines of P (purple), O (blue), and Co (green), and their mixture; (b) high-
resolution HAADF-STEM image of a single LaCo2P2 particle viewed along the [111] zone axis (the corresponding FT pattern is shown in the
inset); (c) bright-field HRTEM image of the LaCo2P2 sample, together with the insets showing the FT patterns taken from [100] (A) and [110]
(B) oriented particles.

Figure 4. (a) Alkaline OER anodic polarization curves for Ni foam (after 100 activation cycles), Ni foam-supported ball-milled LaCo2P2 at 0.25
mg/cm2 loading (after 100 activation cycles) and Ni foam-supported reference IrO2 catalyst at 0.25 and 1 mg/cm2 loadings. (b) Respective Tafel
plots. (c) Comparison of Nyquist plots for Ni foam-supported LaCo2P2 and Ni foam-supported reference IrO2 at the applied overpotential η = 420
mV. The inset shows an equivalent electrical circuit model used to fit the Nyquist plots. (d) Chronopotentiometric stability tests under alkaline
OER for Ni foam-supported LaCo2P2 and Ni foam-supported reference IrO2 at the same loading of 0.25 mg/cm2.
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electrocatalytic data according to this equation led to b = 57
mV dec−1 for LaCo2P2 and b = 69 mV dec−1 for IrO2 at the
same 0.25 mg/cm2 loading (Figure 4b). Subsequently, EIS
data were collected at low frequencies (Figure 4c), and the
obtained semicircles were fit with an equivalent circuit model
(Figure 4c, inset) consisting of a resistor (Rs) in series with two
parallel combinations of a resistor (R1, Rct) and a constant
phase element (CPE1, CPE2).45 Rs represents the Ohmic
resistance from the electrolyte and all contacts. The time
constant R1−CPE1 accounts for the interfacial resistance from
the electron transport between the LaCo2P2 material and
supporting Ni foam. Rct−CPE2 is the charge-transfer resistance
(Rct) at the interface between the catalyst and the electrolyte,
and smaller Rct values typically reflect faster charge-transfer
kinetics. The derived parameters, listed in Table 1, reveal that

the LaCo2P2 anode shows a significantly smaller Rct value
(1.470 Ω) as compared to that of IrO2 (2.820 Ω), indicating
that the LaCo2P2 catalyst offers favorable charge-transfer
kinetics, competitive with that of IrO2.
Lastly, we performed chronopotentiometry to study the

stability of LaCo2P2 and reference IrO2 with the same mass
loading of 0.25 mg/cm2 under the alkaline OER conditions
(pH = 14). Over 100 h, LaCo2P2 compares favorably to IrO2
and, more importantly, demonstrates an essentially constant
performance for more than 4 days, driving the current density
of 10 mA/cm2 with η ≈ 400 mV in the 1 M NaOH electrolyte
solution (Figure 4d). Notably, the ICP-OES chemical analysis
of the electrolyte after the stability testing showed the presence
of only 0.077 ppm of Pt admixture, which, most likely, stems
from leaching of the counter electrode.46 Importantly, no
traces of La, Co, or Ni were identified by the chemical analysis
of the alkaline electrolyte, suggesting excellent stability of the
LaCo2P2 catalyst, in particular, and the LaCo2P2/Ni foam
anode assembly, in general.
After the studies of LaCo2P2 under alkaline OER, the

material was tested under acidic OER (pH = 0) to determine
its possible bifunctionality. The electrochemical station and the
sample were prepared in a manner identical to that described
for the alkaline OER, with the catalyst ink deposited on a Ti
felt and 0.5 M H2SO4 used as the electrolyte. Under such
conditions, the LaCo2P2 catalyst showed a much higher
overpotential, η = 1.01 V, at 10 mA/cm2 (Figure 5).
Chronopotentiometric testing (Figure 5, inset) for driving
current density of 10 mA/cm2 showed that LaCo2P2 is not
stable, causing a gradual increase in the overpotential with
time. Thus, this material is impractical as an OER electro-
catalyst under acidic conditions.
Post-electrochemical Testing. PXRD. To monitor

changes to the LaCo2P2 phase under the OER conditions,
the samples obtained after electrochemical testing in the
alkaline and acidic electrolytes were harvested from the Ni
foam and Ti felt, respectively, and subjected to PXRD analysis.
The PXRD patterns obtained for the sample used in alkaline
OER revealed that LaCo2P2 remains stable under the harsh

alkaline conditions (Figure 6a). The large unresolved
amorphous peaks that appear in the low-angle region are due
to a Nafion ionomer admixture in the postcatalytic sample.
The lower bound for the crystallite size, estimated from the
Scherrer equation, decreased from 25 nm before the catalysis
to 19 nm after the catalysis. This change is in agreement with
the OER-induced in situ surface reconstruction that converts
the outer layers of the LaCo2P2 particles to a shell of a
catalytically active oxide−(oxy)hydroxide phase,29,32 as
suggested by the observations made in the TEM studies
discussed below.
In sharp contrast to the alkaline OER testing, the sample

obtained after the acidic OER testing contained predominantly
LaPO4 and minor impurities that could not be assigned due to
the large amorphous peak observed in the low-angle region due
to the Nafion ionomer (Figure 6b). As seen later from the
EDX mapping results, the other impurity is Co-based due to
the high content of Co found in this sample.

Electron Microscopy. The samples obtained after the
alkaline and acidic OER testing were subjected to TEM
imaging and STEM−EDX elemental mapping. In comparison
to the sample prior to testing (Figure 3), an extreme increase
in the oxygen content was observed after 100 h of stability
testing under alkaline conditions (Figure 7a). HAADF-STEM
and SAED were employed to determine the nature of the
oxygen-containing phase formed on the surface of the LaCo2P2
particles. These particles showed well-defined lattice planes
(Figure 7b) with a number of defects, while the respective
SAED (Figure 7b, inset) could be indexed with the lattice
parameters corresponding to the tetragonal I4/mmm structure
of LaCo2P2 (a = 3.814 Å, c = 11.041 Å, ICSD-624010). The
HAADF-STEM image simulation based on this structure
showed a good agreement with the experimental one (Figure
7b, inset). Interestingly, the edge of the LaCo2P2 particle is
decorated by an amorphous layer of several nanometers
thickness, and according to STEM−EDX elemental mapping,
it can be attributed to the CoOx phase. The high-resolution
HAADF-STEM image (Figure 7b) clearly reveals a transition
from the region of the CoOx shell to the layered structure of

Table 1. Impedance Parameters Calculated by Fitting the
Nyquist Plots (Figure 4c)

circuit element LaCo2P2 IrO2

equivalent series resistance (Rs) 1.460 Ω 0.985 Ω
electron-/charge-transport resistance (R1) 0.961 Ω 1.860 Ω
charge-transfer resistance (Rct) 1.470 Ω 2.820 Ω

Figure 5. Acidic OER anodic polarization curves and the continuous
chronopotentiometric profiles (shown as an inset) for the Ti felt, as
well as Ti felt-supported ball-milled LaCo2P2, and Ti felt-supported
reference IrO2 materials, both at 3 mg/cm2 loading.
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the LaCo2P2 core, indicating the in situ surface reconstruction
caused by alkaline OER electrocatalysis.
Under acidic OER conditions, the LaCo2P2 catalyst

underwent a complete change in its morphology, as compared
to the material before electrocatalysis. The particle shape
changed from plate-like (Figure 3a) to needle-like (Figure 7c).
This observation is in agreement with the formation of LaPO4

as the major phase observed by PXRD (Figure 6b). Indeed,
LaPO4 was shown to form rodlike particles47,48 that exhibit an
increasing aspect ratio with decreasing pH.49 The STEM−
EDX elemental mapping of the postcatalytic sample showed an
increase in the O content and a decrease in the La and P
contents, while the content of Co remained relatively high
(Figure 7c). These observations support the PXRD findings,
which showed that LaCo2P2 decomposes during the acidic
OER electrocatalysis to form LaPO4, and also suggest that the

crystalline phosphate particles are surrounded by an
amorphous cobalt oxide phase. This phase was unstable
under the electron beam during TEM measurements even at
low voltage (80 kV), which impeded the high-resolution
imaging to identify the exact nature of this oxidic Co phase.

■ CONCLUDING REMARKS

Based on the results presented above, we rationalize that
LaCo2P2 acts as pre-catalyst in the alkaline water oxidation.
Under the applied voltage at pH = 14, its surface undergoes in
situ reconstruction, most likely, according to the following
equation

+ + +

→ + + +

x4LaCo P 24NaOH (13 4 )O

4La(OH) 6H O 8Na PO 8CoOx

2 2 2

3 2 3 4

Figure 6. PXRD patterns of LaCo2P2 after 100 h of chronopotentiometric testing at 10 mA/cm2 in 1 M NaOH (a) and 0.5 M H2SO4 (b). Broad
amorphous peaks present in both samples are due to the Nafion ionomer. The calculated patterns for LaCo2P2 and LaPO4 are shown as references.

Figure 7. HAADF-STEM images together with simultaneously collected STEM−EDX elemental mappings of La, P, O, Co, and their mixture for
LaCo2P2 particles after OER electrocatalysis in alkaline (a) and acidic (c) electrolytes. (b) High-resolution [201] HAADF-STEM image with the
corresponding SAED (upper corner inset) and the magnified HAADF-STEM image with an overlaid simulated image (bottom corner inset) for
LaCo2P2 particles after alkaline OER electrocatalysis. (d) Low-magnification TEM overview image for the LaPO4 needle-like particles formed after
acidic OER electrocatalysis over LaCo2P2.
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Although this equation is a much-simplified version of what
actually occurs on the surface, it allows us to highlight two
major points. First, during approximately the first 100 CV
cycles of required activation, as established experimentally, the
surface of the LaCo2P2 particles is converted to the oxidic
CoOx shell. The formation of the La(OH)3 phase is postulated
according to the Pourbaix diagram for La at the specific applied
voltage and pH = 14.50 Second, the surface is reconstructed to
the catalytically active amorphous CoOx shell (or perhaps the
CoOOH shell51), as evidenced by the electron microscopy
analysis and the experimentally observed decrease in the
overpotential over the first 100 cycles of the electrocatalysis.
While CoOx serves as an active OER electrocatalyst, the
underlying LaCo2P2 phase provides a robust support, allowing
the catalyst to maintain stability for at least 4 days of
electrocatalysis. In contrast, under acidic conditions, LaCo2P2
rapidly decomposes to LaPO4 and amorphous cobalt oxide or
(oxy)hydroxide, resulting in a rapid increase in the over-
potential.
To determine the effectiveness of LaCo2P2 as an alkaline

OER electrocatalyst, we compared its performance to that of
other Co-based OER electrocatalysts studied under alkaline
conditions (Table 2). The overpotential at 10 mA/cm2 (η10 =
400 mV) observed for the CoOx/LaCo2P2 electrocatalytic
system in the present work is slightly higher than the values
reported for other Co-based electrocatalysts, which typically
show η10 above 300 mV. On the other hand, the Tafel slope of
57 mV, measured for CoOx/LaCo2P2 in this work, is
comparable to the values observed for the other Co-based
systems at similar catalyst loading. Xing et al. added
polythiophene to increase the electrical conductivity of the
catalyst to achieve an overpotential of 338 mV at 10 mA/cm2

and a low Tafel slope of 52 mV/dec.52 Nevertheless, the
stability of such a system is substantially lower than that of
LaCo2P2, as the performance decreased by 5% after 15 h,
whereas our LaCo2P2 catalyst maintained constant perform-
ance for 100 h (Figure 4a, inset). Li et al. achieved good
electrocatalytic results by applying an external magnetic field
during the synthesis of the catalyst (Ni−S−CoFe2O4), which
they attributed to the formation of a larger concentration of
catalytically active sites and an effective electrochemical surface
area on the active site surface.53

Overall, the performance of LaCo2P2 in OER electrocatalysis
is comparable to the previously reported performance by CoP,
as well as to the performance of the IrO2 benchmark. The
presence of the additional La layer does not have a substantial
effect on the electrochemical activity, which is in contrast to

our recent finding for AlFe2B2,
29 where the extra layer of Al

appeared to improve the charge-transfer kinetics in comparison
to the performance of binary iron borides. The lack of
improved kinetics may be attributed to the higher polarity of
the LaCo2P2 structure that contains alternating electropositive
La layers and electronegative [Co2P2] layers. Another
detrimental factor might be the presence of insoluble La(OH)3
in the amorphous surface layer. Lowering the polarity of the
intermetallic structure and using an electropositive element
that forms a more soluble hydroxide might alleviate these
problems. In this vein, ACo2P2 structures that contain alkaline-
earth metals (A) can serve as promising targets for future
studies. These efforts are currently underway in our
laboratories, and the results or such studies will be reported
in due course.
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catalyst electrolyte catalyst loading (mg/cm2) η10 (mV) b (mV/dec) references

LaCo2P2 1 M NaOH 0.25 400 57 this work
IrO2 1 M NaOH 1.0 340 73 this work
IrO2 1 M NaOH 0.25 380 69 this work
co-polythiophene 1 M KOH 1.4 338 52 52
Ni−S−CoFe2O4 1 M KOH n/a 228 72 53
La0.9CoO3−δ 0.1 M KOH 0.24 380 83 54
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CoP (film) 1 M KOH 2.5 345 47 56
CoP (nanoframes) 1 M KOH 0.27 323 50 57
CoP (N-doped carbon) 1 M KOH 0.27 354 60 57
CoP (graphitic carbon) 1 M KOH n/a 345 56 58
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