
HAL Id: hal-03815244
https://hal.science/hal-03815244

Submitted on 14 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Mitigating Poisoning Attacks in Federated
Learning

Elhattab Fatima, Rania Talbi, Sara Bouchenak, Vlad Nitu

To cite this version:
Elhattab Fatima, Rania Talbi, Sara Bouchenak, Vlad Nitu. Towards Mitigating Poisoning Attacks
in Federated Learning. ComPAS’2021 : Parallélisme/ Architecture/ Système MILC-Lyon, Jul 2021,
Lyon, France. �hal-03815244�

https://hal.science/hal-03815244
https://hal.archives-ouvertes.fr


ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

Towards Mitigating Poisoning Attacks in Federated
Learning
Fatma-Zohra El Hattab, Rania Talbi, Sara Bouchenak, Vlad Nitu
INSA Lyon – LIRIS, France
{firstname.lastname}@insa-lyon.fr

Abstract
Federated learning is a new machine learning trend that, guided by privacy goals, distributes
learning across multiple participants who train the model collaboratively without sharing their
data. Nonetheless, it is vulnerable to a variety of attacks such as data and model poisoning. In
these attacks, adversaries attempt to inject a backdoor task in the model along with its main
task during the training phase. After that, the injected backdoor is exploited at inference-time
given a specific trigger. Many state-of-the-art mechanisms that rely on model update auditing
have been proposed to mitigate poisoning attacks. We show in this paper that attackers are still
capable to evade such detectors by crafting model updates that mimic benign ones. In this
paper, we propose ARMOR, a novel mechanism that successfully detects these backdoor at-
tacks in Federated Learning. We describe the design principles of ARMOR based on generative
adversarial networks. And we present ARMOR’s evaluation results on a real world dataset,
which demonstrates that it outperforms its competitors.

1. Introduction

Federated Learning (FL) is a trending framework that allows to carry orchestrated collabora-
tive machine learning without explicitly exchanging training data, thus, improving user data
privacy [13]. Due to its interesting guarantees, it was rapidly adopted in many thriving appli-
cation domains such as next-word prediction [14], speech recognition [4], self-driving cars [9],
and many more. Nonetheless, despite its advantages, it has been demonstrated that Federa-
ted Learning is highly vulnerable to many client-side attacks since it is user-driven [6]. In this
work, we mainly focus on data and model poisoning attacks that target FL robustness [1, 3, 7].
In these attacks, adversaries attempt to inject a backdoor task in the FL model along with its
main task. This backdoor assigns an attacker-chosen label to input data with a specific trigger.
For instance an attacker can bypass a facial-recognition-based authentication system by assi-
gning to his images a wrong identity-label that is authorized to access the system. Detecting
poisoning attacks in Federated Learning is a challenging problem since participants only send
model updates to the FL server instead of sending their raw training data. Consequently, the
FL server holds less information about user behavior to detect malicious participants. Many
state-of-the-art mechanisms have been proposed to mitigate poisoning attacks [2, 8, 10]. Even
though these mechanisms have various poisoning detection rules, they all rely on auditing the
shape of model updates sent by FL participants to find suspicious ones. In this paper, we show
that attackers are still capable of evading such detectors by crafting model updates that mimic
benign FL participants’ updates. We propose ARMOR, a novel attack detector that is based on
GANs, in order to analyze the information that model updates capture about user data, instead
of monitoring model updates’ geometric shapes.



ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

The rest of this paper is organized as follows. Background and problem statement are introdu-
ced in Section 2. ARMOR design principles are described in Section 3. We carry an empirical
evaluation comparing ARMOR with state-of-the-art detectors in Section 4, present related work
in Section 5, and conclude in Section 6.

2. Background and Motivation

2.1. Background on Federated Learning
Federated Learning (FL) is a new trend for machine learning that provides better user data pri-
vacy, by distributing learning across multiple participants who train the model on their local
data [13]. For example, multiple participants can jointly train a next-word predictor for key-
boards without revealing their information, the data is kept on the participant’s device and
only the model parameters are transferred to a FL server (a.k.a. aggregator). This allows parti-
cipants to compute their model updates locally and independently, while maintaining a level
of privacy. Federated learning consists of several global rounds, where a typical learning round

includes the following sequence : (i) A random subset of participants (i.e., clients) is selected
to receive the global model synchronously from the server ; (ii) Each selected client trains the
model on its local data and updates it ; (iii) Model updates are sent from the selected clients
to the server ; (iv) The server aggregates the received model updates (usually by averaging) to
build an improved global model.

2.2. Attacks and Threat Model
In this paper, we are interested in poisoning attacks where an active attacker takes over one
or multiple user devices in order to carry targeted poisoning attacks throughout the training
process, to provoke misclassification of a subset of particular data samples S to a target classCt.
The attacker crafts his data samples by overlaying a pattern P∗ over existing data points and
changing their labels to his target class. We consider two types of poisoning attacks proposed
by Bagdasaryan et al. in [1]. The first one, being the naive approach (data poisoning attacks),
consists in training the model simply on backdoor data as well as correctly labeled data, the
attacker can also play on the parameters of the model, such as the learning rate as well as the
number of local training epochs, etc. in order to maximize the overfitting on the backdoor data.

0 20 40 60 80 100
FL rounds

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Main task - 0% attackers
Main task - 10% attackers
Main task - 50% attackers
Main task - 100% attackers

Target task - 10% attackers
Taget task - 50% attackers
Target task - 100% attackers

FIGURE 1 – Attack effectiveness under various attack
frequencies

The second approach relies on model
replacement, where the attacker am-
bitiously attempts to replace the glo-
bal model with a malicious one by
computing the value of the gradient
descent that allows poisoning the mo-
del. This method guarantees that the
attacker’s contribution remains effec-
tive when aggregated with those of be-
nign participants. Moreover, the results
show that this approach allows ’one-
shot attack’ i.e. the global model has
a high accuracy on the backdoor task
immediately after its poisoning. Fur-
thermore, [1] demonstrates that model
poisoning attacks are much more effec-
tive than data poisoning in FL environ-
ments, where a single, non-complicit malicious participant aims to make the model misclassify



ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

a set of chosen inputs with high confidence.

2.3. Problem Illustration
The goal of poisoning attack is to produce a model that achieves high accuracy on both the

main task and a backdoor task chosen by the attacker to avoid the detection. Furthermore, the
model must maintain high accuracy on the backdoor task for several rounds after the attack,
because the attacker is not always selected in the federated learning process. In Figure 1, even
with 10% of malicious participants in the system, the attack target task is sustainfully injected
in the model without impacting the main task accuracy. However, higher attackers’ percentage
can deteriorate the model utility.

3. Design Principles of ARMOR

3.1. Generative Adversarial Networks
Generative Adversarial Networks (GANs) are models that try to generate the input distribution
of a given model in a way that is as realistic as possible. Roughly speaking, the goal of a GAN
is to predict the features of data samples given a label instead of predicting a label based on
input data’s features. A GAN consists of two models, the first model is called a Generator (G),
and the second is a Discriminator (D). On one hand, the Generator aims to build a model that
generates fake inputs of specific targets that are as realistic as possible. On the other hand, the
Discriminator has the objective of distinguishing between the fake data of the generative model
and the real data. The adversarial training of GANs is done in a way that maximizes both of
the aforementioned objectives until a Nash equilibrium is reached.

3.2. Overview of ARMOR
We propose a novel FL data poisoning detection mechanism called ARMOR that addresses the
threat model described in Section 2.2. Our solution does not make any assumptions neither on
the proportion of attackers in the system, nor on their data distributions.

The insight behind ARMOR is as follows. Let T be a backdoor task that aims to misclassify a
subset of data samples that belong to a source class Cs and that hold a particular data pattern
P∗ into a target class Ct. At an FL round i, if the backdoor task T is successfully injected
within the modelwi, the class-representatives of the target class Ct that can be generated based
on this model, would tend to be confused with the source class Cs, when they are fed to the
models of the previous rounds. Based on this intuition, when auditing a model wi, ARMOR
monitors the difference between the loss obtained when feeding class representatives to this
model wi and the testing loss obtained when feeding the same data samples to the models
of the two previous rounds. If this difference is too high compared to a given threshold, the
current model is considered to be corrupted and a rollback to the previous version of the model
is necessary. Thus, the detection formula is the following :

f(wi, wi−1, wi−2) =

{
1, if L(D,wi)−L(D,wi−1)

max(L(D,wi),L(D,wi−1)
> γ1 and L(D,wi)−L(D,wi−2)

max(L(D,wi),L(D,wi−2)
> γ2

0, otherwise
(1)

In order to generate class-representatives, ARMOR relies on a set of Generative Adversarial
Networks (GANs) that are trained on the server-side based on users’ model updates. The total
number of these GAN models is equal to the number of target classes of the FL model, where
each GAN is trained to generate data samples of a given class at a round i. In ARMOR, each



ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

GAN network GANki used to build representatives of a class Ck at an FL round i consists
of a generator and a discriminator. The generator outputs data points that look like data of a
given label. The discriminator has an identical structure as the federated model except that it is
augmented with an additional class that represents fake data samples. The generator is trained
while maximizing the number of data points that bypass the discriminator while the latter has
the opposite objective. The adversarial training of the two models is carried through multiple
epochs, where each epoch consists of three phases. First, the discriminator is updated based
on real data samples. Since the server does not hold real data points, the latter is gradually
updated using the local user updates. After that, the discriminator is updated using fake data
samples obtained from the generator, and last, the generator is updated based on the output
of the discriminator when observing fake data. The process is repeated until the generator
outputs data samples that are classified to the target class with high accuracy. The resulting
class representatives are then fed to the current modelwi and the last two models from previous
roundswi−1, andwi−2. The testing loss is computed for each one these model versions and then
used to detect poisoning via formula 1. If a poisoning is detected a rollback to the previous
model version is done. The detailed detection process implemented in ARMOR is provided in
Algorithm 3.2.

Algorithm 1 ARMOR Poisoning Detection
Inputs : Model at current round wi, models at previous rounds wi−1, and wi−2
At each iteration i do :

1: for k ∈ 1..K do
2: Consider GANik = (Gik, Dik)
3: for e ∈ 1..Epochs do
4: Dik ← AverageModels(wi ∗ 1

epochs , Dik)

5: Generate a random noise vector X(t) ← Random()
6: Feed the random noise X(t) to the generator to get fake data F(t) ← Gik(X

(t))
7: Feed the fake data F(t) to the discriminator p(t) ← Dik(F

(t))
8: Update Dik by computing L(p(t), Cfake)
9: Update Gik by computing L(p(t), k)

10: if test_accuracy(F(t), wi) > α then : break
11: end for
12: Output the class-representatives Zk ← F(t)

13: Feed the class-representatives to wi, wi−1, and wi−2
14: yi ← wi(Zk), yi−1 ← wi−1(Zk), yi−2 ← wi−2(Zk)
15: Compute the testing loss for wi, wi−1, and wi−2
16: Li ← L(yi, k), Li−1 ← L(yi−1, k), Li−2 ← L(yi−2, k)
17: if f(wi, wi−1, wi−2) =1 then :
18: Rollback to the previous model version wi = wi−1
19: break
20: end for

4. Experimental Evaluation

4.1. Experimental Setup
Our experiments are conducted using the real-world Fashion-MNIST dataset, which contains
50,000 training images and 10,000 test images [12]. We trained a model with 10 clients selected
each round. We employ a 4-layer Convolutional Neural Network and simulate a non-IID data



ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

distribution using the Dirichlet distribution [5]. In each learning epoch, the clients train the
models with 10 local epochs, and with a learning rate λ = 0.1. To evaluate our detector, we
have implemented an attack that consists in modifying the classification for the images that
contain an artificial pattern, added on the images in the attacker’s dataset. Furthermore, we
trained the model with the projected gradient descent (PGD) [11] so that the attacker’s model
does not diverge much from the global model in each epoch.

4.2. Evaluation Results
To test the efficiency of our detector, we analyzed three state-of-the-art detectors MultiKrum

[2], Trimmed Mean [7] and Norm Difference Clipping (NDC) [10]. For each detector, we exa-
mine the accuracy of the main task, and the success rate of the attack with different poisoning
methods (i) blackbox (data poisoning) where the attacker only alters the data in order to insert
a backdoor, but respects the FL optimization algorithm, (ii) whitebox (model poisoning) : the
attacker disobeys the protocol and relies on model replacement to substitute the global model
with their local model.

(a) Multi-Krum (b) Trimmed Mean

(c) NDC (d) ARMOR

FIGURE 2 – Attack effectiveness under various state-of-the-art defenses

Figure 2 shows the accuracy of the main task and the success rate of the attack obtained with
Multi-Krum, Trimmed Mean, NDC and ARMOR detectors respectively. Our experiments are
performed over more than 100 rounds of training and we assume that for the first 30 rounds
no attack is introduced. Further, an attack is introduced with attackers that take over 10% of
participants. In order to evaluate the detector in an aggressive scenario, the attack occurs every
epoch. We can see on Figures 2(a), 2(b) and 2(c) that from the introduction of the attack, it
reaches a success rate of 100% that is kept throughout the learning rounds with the state-of-
the-art detectors. In fact, MultiKrum and Trimmed Mean use the hypothesis that malicious
updates are far from benign updates, but the PGD-based attack allows to reduce the deviation
between the attacker’s model and the global model, so the attacker is not detected. Regarding
NDC, the attack is successfull in both the black-box and white-box scenarios but its accuracy is
slightly noisy because the updates that exceed the norm threshold are clipped. In Figure 2(d),



ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

we can observe that ARMOR is able to detect the attack even if it occurs in every epoch. Due to
label flipping, the features of class representatives are modified and therefore, a loss difference
between the model at epoch t and epoch t− 1 helps to detect the attack.

5. Related Work

Detecting attacks is generally much more challenging than attacking the FL framework. Many
of the protection mechanisms are coming from the domain of distributed ML and rely on robust
statistic mechanisms such as trimmed mean or geometric median. One of the most prominent
and popular protection mechanisms of this kind is Krum [2] which relies on the robust property
of the median to measure the central tendency of the gradient. At the end of each epoch and
for every received model update, the FL server will sum the distance to its n − f − 2 closest
neighbours. Finally, the server will compute a gradient step with the update that minimize
the above computed sum. In the geometric representation of the model updates, this is the
vector closest to the barycenter. The authors also presented an improved variant (called Multi-
Krum) which interpolates between Krum and averaging, thereby allowing to mix the resilience
properties of Krum with the convergence speed of averaging. Pillutla et al. [8] introduces RFA,
an algorithm which aggregates the local models by computing a weighted geometric median
using the smoothed Weiszfeld’s algorithm. However, these mechanisms based on geometric
median rely on a central assumption which is often not true in FL setups. They assume that all
training participants have similar learning objectives therefore their model updates will point
to similar directions. Due to its relatively different objective, the vector sent by an attacker
will differentiate from the other honest participants and can be filtered out. However, in FL,
the data is non independent and identically distributed (non-IID) among the paritcipants so
their update vectors will be more scattered in space. Sun et al. [10] relies on the assumption
that attackers will send model updates with larger norms and therefore introduces a protection
mechanism based on norm-clipping. The model updates with large norms will be reduced so
that their magnitude will become comparable with all other model updates. In the same paper,
the authors introduced another model protection mechanisms based on differential privacy.
The FL server perturbs all model updates received from the FL workers with Gaussian noise.
Therefore, the attack objective of a malicious user will be slightly diverged, but with the cost
of also degrading the quality of honest updates. ARMOR relies on a more elaborate detection
mechanisms so the malicious model updates can be individually identified and filtered out.
Unlike the detection mechanisms presented above, ARMOR does not rely on auditing the shape
of model updates, but instead focuses on their informational essence and the impact that they
have on the trained model. As we have shown in Section 4, ARMOR overpasses all state-of-
the-art detection mechanisms.

6. Conclusion and Future Work

In this paper we propose ARMOR a GAN-based detection mechanism that mitigates targeted
data and model poisoning attacks in Federated Learning. ARMOR analyzes the information
captured by model updates about user data, instead of monitoring their geometric shapes like
other state-of-the-art mechanisms. Therefore, we have demonstrated the effectiveness of our
detection mechanism against various poisoning attack scenarios that state-of-the-art detection
mechanisms fail to detect. In future work, we intend to extend our evaluation by considering
other machine learning tasks such text analysis. We are also exploring other improved poiso-
ning detection strategies that determine the exact attack source as well as reduce the computa-
tional overhead induced by our solution.



ComPAS’2021 : Parallélisme/ Architecture/ Système / Temps Réel
MILC - Lyon, France, 5-9 juillet 2021

Bibliographie

1. Bagdasaryan (E.), Veit (A.), Hua (Y.), Estrin (D.) et Shmatikov (V.). – How to backdoor
federated learning, 2019.

2. Blanchard (P.), El Mhamdi (E. M.), Guerraoui (R.) et Stainer (J.). – Machine learning with
adversaries : Byzantine tolerant gradient descent. – In Guyon (I.), Luxburg (U. V.), Bengio
(S.), Wallach (H.), Fergus (R.), Vishwanathan (S.) et Garnett (R.) (édité par), Advances in
Neural Information Processing Systemsvolume 30. Curran Associates, Inc., 2017.

3. Fung (C.), Yoon (C. J.) et Beschastnikh (I.). – Mitigating sybils in federated learning poiso-
ning. arXiv preprint arXiv :1808.04866, 2018.

4. Guliani (D.), Beaufays (F.) et Motta (G.). – Training speech recognition models with federa-
ted learning : A quality/cost framework. arXiv preprint arXiv :2010.15965, 2020.

5. Hsu (T.-M. H.), Qi (H.) et Brown (M.). – Measuring the effects of non-identical data distri-
bution for federated visual classification. arXiv preprint arXiv :1909.06335, 2019.

6. Lyu (L.), Yu (H.) et Yang (Q.). – Threats to federated learning : A survey. arXiv preprint
arXiv :2003.02133, 2020.

7. Mhamdi (E. M. E.), Guerraoui (R.) et Rouault (S.). – The hidden vulnerability of distributed
learning in byzantium. arXiv preprint arXiv :1802.07927, 2018.

8. Pillutla (K.), Kakade (S. M.) et Harchaoui (Z.). – Robust aggregation for federated learning,
2019.

9. Pokhrel (S. R.) et Choi (J.). – A decentralized federated learning approach for connected
autonomous vehicles. – In 2020 IEEE Wireless Communications and Networking Conference
Workshops (WCNCW), pp. 1–6. IEEE, 2020.

10. Sun (Z.), Kairouz (P.), Suresh (A. T.) et McMahan (H. B.). – Can you really backdoor fede-
rated learning? CoRR, vol. abs/1911.07963, 2019.

11. Wang (H.), Sreenivasan (K.), Rajput (S.), Vishwakarma (H.), Agarwal (S.), yong Sohn (J.),
Lee (K.) et Papailiopoulos (D.). – Attack of the tails : Yes, you really can backdoor federated
learning, 2020.

12. Xiao (H.), Rasul (K.) et Vollgraf (R.). – Fashion-mnist : a novel image dataset for benchmar-
king machine learning algorithms. CoRR, vol. abs/1708.07747, 2017.

13. Yang (Q.), Liu (Y.), Chen (T.) et Tong (Y.). – Federated machine learning : Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10, n2, 2019,
p. 12.

14. Yang (T.), Andrew (G.), Eichner (H.), Sun (H.), Li (W.), Kong (N.), Ramage (D.) et Beaufays
(F.). – Applied federated learning : Improving google keyboard query suggestions. arXiv
preprint arXiv :1812.02903, 2018.


