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Introduction

In characteristic different from 2, every orthogonal involution on a split central simple algebra is the adjoint of a nondegenerate quadratic form. Therefore, the study of orthogonal involutions can be thought of as an extension of quadratic form theory. Reversing the viewpoint, one may try and reduce any question on involutions to a question on quadratic forms by extending scalars to a splitting field of the underlying algebra A. This is even more relevant as one may generically split A by tensoring with the function field F(A) of its Severi-Brauer variety. Thus, to any orthogonal involution σ on A, we may associate a quadratic form q σ on F(A), which is unique up to a scalar factor, and encodes properties of σ over splitting fields of the algebra A.

Many properties of orthogonal involutions are preserved under field extensions, hence transfer from σ to σ F (A) , and can be translated into properties of q σ . For instance, if the involution σ is isotropic or hyperbolic, so is the quadratic form q σ . Moreover, two conjugate involutions σ and σ yield similar quadratic forms q σ and q σ . Conversely, some properties of involutions can be tracked down by looking at the involution after scalar extension to F(A), or equivalently at the associated quadratic forms over this function field. For example, Karpenko proved that an involution which is hyperbolic over F(A) already is hyperbolic over the base field (see [START_REF] Karpenko | Hyperbolicity of orthogonal involutions[END_REF]Theorem 1.1]). It is expected that the same holds for isotropy. Only a weaker result is known in general for now, namely, an involution which is isotropic over F(A) also is isotropic after an odd degree extension of the base field (see [START_REF] Karpenko | Isotropy of orthogonal involutions[END_REF]Theorem 1]). In this work, we consider the following property: an involution σ (or the algebra with involution (A, σ)) is said to be totally decomposable if [START_REF] Bayer-Fluckiger | Pfister involutions[END_REF] (A, σ)

(Q 1 , σ 1 ) ⊗ • • • ⊗ (Q n , σ n )
for some quaternion algebras with involution (Q i , σ i ). Totally decomposable involutions can be considered as an analogue of Pfister forms in quadratic form theory. Indeed, by a theorem of Becher [START_REF] Johannes | A proof of the Pfister factor conjecture[END_REF], if the algebra A is split, an orthogonal involution on A is totally decomposable if and only if it is adjoint to a Pfister form, which means that it admits a decomposition [START_REF] Bayer-Fluckiger | Pfister involutions[END_REF] in which each quaternion factor is split. Therefore, every totally decomposable orthogonal involution is adjoint to a Pfister form after generic splitting of the underlying algebra. Whether the converse holds is a classical question, raised in [1, § 2.4]:

Question 1. Let σ be an orthogonal involution on a central simple algebra A of 2-power degree. Suppose q σ is similar to a Pfister form, i.e., σ F (A) is totally decomposable. Does it follow that σ is totally decomposable ?

If deg A = 4 or 8, cohomological invariants can be used to give a positive answer. In Section 2 we give examples showing that the answer is negative in degree [START_REF] Peyre | Products of Severi-Brauer varieties and Galois cohomology. In K-theory and algebraic geometry: connections with quadratic forms and division algebras[END_REF] and index 4 and 8. We even prove a slightly stronger result, namely the involutions in our examples remain non-totally decomposable over any odd degree extension of the base field. We thus disprove a conjecture of Garibaldi [START_REF] Garibaldi | Orthogonal involutions on algebras of degree 16 and the Killing form of E 8 . In Quadratic forms-algebra, arithmetic, and geometry[END_REF]Conjecture (16.1)]. See §1.3 for a summary of results on Question 1.

The more general problem underlying questions of the type above is to determine how much information on the involution is lost when the algebra is generically split. In [START_REF] Charles De Clercq | Critical varieties for algebras with involution[END_REF], it is proved that if orthogonal involutions σ and σ on a central simple algebra A are motivic equivalent over F(A), in an appropriate sense which amounts to motivic equivalence of q σ and q σ , then they already are motivic equivalent over the base field. We address the analogous property for isomorphism: Question 2. Let σ, σ be orthogonal involutions on a central simple algebra A. Suppose q σ and q σ are similar, i.e., σ F (A) σ F (A) . Does it follow that σ σ ?

As for Question 1, cohomological invariants yield a positive answer for algebras of low degree. Examples showing that the answer to Question 2 is negative in degree 8 and index 4 or 8 were provided in [19, §4]. The case of index 2 is very specific however, as demonstrated by Becher's theorem on total decomposability (see Proposition 1.2), and because function fields of conics are excellent (see [START_REF] Parimala | Hermitian analogue of a theorem of Springer[END_REF]). Many questions that are still open in general are solved in index 2, using this peculiarity. For instance, it is known that an orthogonal involution on a central simple algebra A of index 2 that becomes isotropic over F(A) is isotropic over the base field, see [START_REF] Parimala | Hermitian analogue of a theorem of Springer[END_REF]. Therefore, we restrict in Section 3 to the case where the index is 2. We identify a few cases where the answer is positive, but we construct examples in degree 8 and 12 showing that the answer is negative in general: we exhibit skewhermitian forms of rank 4 or 6 over a quaternion algebra Q that are similar after scalar extension to the function field F(Q) of the corresponding conic, even though they are not similar over Q. Since the group of isometries O(h) of a skew-hermitian form h (which is a classical group of orthogonal type) determines the form up to similarity, we thus have skew-hermitian forms h, h such that O(h)

F (Q) O(h ) F (Q) even though O(h) O(h ). By contrast, if h F (Q) h F (Q)
then h h because scalar extension to F(Q) induces an injective map on Witt groups of skew-hermitian forms, as shown by Dejaiffe [START_REF] Dejaiffe | Formes antihermitiennes devenant hyperboliques sur un corps de déploiement[END_REF] and Parimala-Sridharan-Suresh [START_REF] Parimala | Hermitian analogue of a theorem of Springer[END_REF]Prop. 3.3]. We refer to §1.3 for a summary of results on Question 2.

In addition, our examples have interesting consequences on cohomological invariants of orthogonal involutions. It is well known that the degree 1 and degree 2 invariants, respectively related to discriminants and Clifford algebras, are defined in a similar way for quadratic forms and for involutions and share analogous properties regarding classification and decomposability criteria in both settings (see [START_REF] Tignol | Cohomological invariants of central simple algebras with involution[END_REF] for precise statements). Using the so-called Rost invariant, which assigns a degree 3 cohomology class to any torsor under some absolutely almost simple simply connected algebraic group, one may also extend the so-called Arason invariant of quadratic form theory to orthogonal involutions, under some additional conditions on the involution and on the underlying algebra. Nevertheless, our examples show that the Arason invariant does not have the same properties in both settings. In particular, it is not classifying for orthogonal involutions on a degree 12 and index 2 algebra, proving that Proposition 4.3 in [START_REF] Quéguiner | The Arason invariant of orthogonal involutions of degree 12 and 8, and quaternionic subgroups of the Brauer group[END_REF] is optimum (cf. Remark 1.7 (ii)). Moreover, it vanishes for a 16-dimensional quadratic form if and only if it is similar to a Pfister form, but it may vanish for a non-totally decomposable involution on a degree 16 central simple algebra (see Remark 1.4).

All the examples in Sections 2 and 3 have in common the use of the so-called 'generic sum' construction, which was introduced in [START_REF] Quéguiner | Outer automorphisms of classical algebraic groups[END_REF], and used there to construct examples of algebraic groups without outer automorphisms. Questions 1 and 2 turn out to be related in a somewhat unexpected way: the examples disproving Garibaldi's conjecture are generic sums of involutions that provide a negative answer to Question 2. To explain this relation, we develop a notion of 'unramified algebra with involution' in Section 2.

The second-named author is grateful to Sofie Beke and Jan Van Geel for motivating discussions on the totally decomposable case in Theorem 1.5(c).

1.1. Notations. All fields in this paper have characteristic different from 2; in particular, the valued fields we consider are non-dyadic. We generally use the notation and terminology in [START_REF] Knus | The book of involutions[END_REF], to which we refer for background information on central simple algebras with involution. In particular, for n-fold Pfister forms we write a 1 , . . . , a n = 1, -a 1 • • • 1, -a n . By an algebra with involution, we always mean a central simple algebra with an involution of the first kind. If (D, γ) is a division algebra with involution, and h : M × M → D is a nonsingular hermitian or skew-hermitian form with respect to γ, we let Ad(h) denote the algebra with involution End D M, ad(h) , where ad(h) is the adjoint involution of the form h. In particular, for every nonsingular r-dimensional quadratic form q over a field k, Ad(q) stands for End k (k r ), ad(q) . Recall from [12, §4.A] that every algebra with involution can be represented as Ad(h) for some nonsingular hermitian or skew-hermitian form. The algebra with involution Ad(h) (or the involution ad(h)) is said to be isotropic (resp. hyperbolic) if the form h is isotropic (resp. hyperbolic).

The group of similarity factors of an algebra with involution (A, σ) over a field k is defined as

G(A, σ) = {µ ∈ k × | µ = σ(g)g for some g ∈ A}.
For a nonsingular hermitian or skew-hermitian form h, we write G(h) for G Ad(h) . This group has the following alternative description:

G(h) = {µ ∈ k × | µ • h h}.
1.2. Cohomological invariants. Every k-algebra with orthogonal involution (A, σ) of even degree has a discriminant (see [12, §7.A])

d σ = e 1 (σ) ∈ k × /k ×2 ,
which defines a first cohomological invariant of σ. The discriminant also defines a quadratic étale algebra Z = k[X]/(X 2 -d σ ), which we also call the discriminant of σ for short. If σ has trivial discriminant, its Clifford algebra C(σ) is a direct product of two central simple algebras 

C + (σ) × C -(σ) whose Brauer classes satisfy [C + (σ)] -[C -(σ)] = [A] (
(σ)] or [C -(σ)]: e 2 (σ) = [C + (σ)] + [A] = [C -(σ)] + [A] ∈ Br(k)/ [A] .
If σ has trivial e 1 and e 2 invariants and the coindex of A is even (i.e., ind A divides Since k is quadratically closed in F(A), and the kernel of the scalar extension map Br(k) → Br(F(A)) is [A] by a theorem of Amitsur, the e 1 and the e 2 invariant of an involution are trivial if and only if they are trivial after generic splitting of the algebra A, and for orthogonal involutions σ, σ on A we have e 1 (σ) = e 1 (σ ) (resp. e 2 (σ) = e 2 (σ )) if and only if e 1 (σ

F (A) ) = e 1 (σ F (A) ) (resp. e 2 (σ F (A) ) = e 2 (σ F (A) )).
The same applies to the Arason invariant if either A has index ≤ 4, or A is Brauerequivalent to a tensor product of three quaternion algebras, but fails in general (see [START_REF] Karpenko | On topological filtration for triquaternion algebra[END_REF], [START_REF] Karpenko | Torsion in CH 2 of Severi-Brauer varieties and indecomposability of generic algebras[END_REF] and [START_REF] Peyre | Products of Severi-Brauer varieties and Galois cohomology. In K-theory and algebraic geometry: connections with quadratic forms and division algebras[END_REF]).

When the discriminant of the orthogonal involution σ is not trivial (i.e., when Z is a field), the Clifford algebra C(σ) is a central simple Z-algebra. The k-isomorphism class of C(σ) has the same property as the e 1 and e 2 invariants: Lemma 1.1. Let σ, σ be orthogonal involutions on a central simple k-algebra A of even degree. If σ F (A) σ F (A) , then C(σ) and C(σ ) are isomorphic as k-algebras.

Proof. As observed above, the isomorphism σ F (A) σ F (A) implies that e 1 (σ) = e 1 (σ ), hence the centers Z and Z of C(σ) and C(σ

) are k-isomorphic. If e 1 (σ) = e 1 (σ ) = 0, then Z Z k × k, and 
C(σ) C + (σ) × C -(σ), C(σ ) C + (σ ) × C -(σ ). From e 2 (σ) = e 2 (σ ), it follows that C + (σ) is isomorphic to C + (σ ) or C -(σ ), hence C(σ) k C(σ ).
For the rest of the proof, assume Z is a field, and choose an arbitrary isomorphism Z Z to identify Z with Z. After scalar extension to Z we have e 1 (σ Z ) = e 1 (σ Z ) = 0, hence the first part of the proof yields C(σ Z ) C(σ Z ) as Z-algebras. But letting ι C(σ) denote the conjugate Z-algebra of C(σ) under the nontrivial kautomorphism ι of Z/k, we have As opposed to this, the answer is negative in general in degree 16 and index ≥ 4. More precisely, in Theorem 2.4 below, we prove the following: Theorem 1.3. There exist central simple algebras with orthogonal involution (A, σ) satisfying all the following conditions:

C(σ Z ) = C(σ) ⊗ k Z C(σ) × ι C(σ) and likewise C(σ Z ) C(σ ) × ι C(σ ). Therefore, from C(σ Z ) C(σ Z ) it follows that C(σ) C(σ ) or ι C(σ ) as Z-algebras, hence C(σ) C(σ ) as k-algebras.
(i) deg A = 16 and ind A = 4 or 8, and (ii) σ F (A) is totally decomposable, and (iii) σ is not totally decomposable, and remains so over any odd degree extension of the base field.

The algebra with involution (A, σ) of Theorem 2.4 satisfies the conditions above. In particular, σ F (D) is totally decomposable for D the division algebra Brauerequivalent to A, hence σ F (A) is totally decomposable, since F(A) is an extension of F(D).

Remark 1.4. Any algebra with orthogonal involution satisfying conditions (i) and (ii) above satisfies e 1 (σ

F (A) ) = e 2 (σ F (A) ) = e 3 (σ F (A) ) = 0 because σ F (A)
is the adjoint involution of a 4-fold Pfister form. Since the algebra A in Theorem 2.4 is Brauer-equivalent to a tensor product of three quaternion algebras, we have in addition for those examples

(2) e 1 (σ) = e 2 (σ) = e 3 (σ) = 0.
Therefore, as opposed to what happens for quadratic forms and in smaller degree, the vanishing of the first cohomological invariants does not characterize totally decomposable involutions in degree 16. That is, the examples in Theorem 2.4 disprove Conjecture (16.1) in [START_REF] Garibaldi | Orthogonal involutions on algebras of degree 16 and the Killing form of E 8 . In Quadratic forms-algebra, arithmetic, and geometry[END_REF]. Note however that if deg A = 16 and ind A = 2, then by Proposition 1.2 the involution σ is totally decomposable if and only if (2) holds, because (2) is equivalent to the condition that σ F (A) be totally decomposable.

Question 2 also has a positive answer if the algebra has small enough degree, or under some additional condition on the algebra and on the involution. More precisely, we have the following: Theorem 1.5. Let σ and σ be orthogonal involutions on a central simple algebra A over a field k, and assume σ F (A) σ F (A) . If in addition any of the following conditions holds: Remark 1.7. (i) By (e) and (g), Theorem 1.5(c) does not hold anymore if we drop one of the two assumptions. Moreover, the example of case (f) does not satisfy e 2 (σ) = e 2 (σ ) = 0; otherwise, σ and σ would be totally decomposable, and this is impossible again by Theorem 1.5 (c).

(ii) In case (g), the e 3 invariant of σ and σ is defined, and the condition σ F (A) σ F (A) implies e 3 (σ) = e 3 (σ ) since ind A = 2. Thus, Example 3.8 shows that the e 3 invariant does not classify orthogonal involutions with trivial e 1 and e 2 invariants on central simple algebras of degree 12 and index 2 (although it is classifying if the algebra A is split, and for isotropic involutions if the algebra has index 2 by [START_REF] Quéguiner | The Arason invariant of orthogonal involutions of degree 12 and 8, and quaternionic subgroups of the Brauer group[END_REF]Prop. 4.3]).

(iii) By Lewis [START_REF] Lewis | The Witt semigroup of central simple algebras with involution[END_REF]Prop. 10], in all three cases, the involutions σ and σ remain non-isomorphic over any odd degree extension of the base field.

Generically Pfister involutions

The aim of this section is to construct examples proving Theorem 1.3. We start with a few observations on central simple algebras with involution over a complete discretely valued field, introducing a notion of unramified algebra with involution.

Throughout this section we let K denote a field with a discrete valuation v : K → Γ K ∪ {∞}. We assume K is complete for this valuation, v(K × ) = Γ K Z, and the residue field K has characteristic different from 2. Let (D, γ) be a central division algebra over K with an involution of the first kind. It is known (see for instance [START_REF] Tignol | Value functions on simple algebras, and associated graded rings[END_REF]Th. 1.4,Cor. 1.7]) that v extends to a valuation

v D : D → Γ D ∪ {∞} where Γ D = v D (D × ) = 1 deg D v(Nrd D × ) ⊂ 1 deg D Γ K .
The involution γ induces an involution γ on the residue division algebra D. Let Z(D) denote the center of D, which is a field extension of K. Since char K = 2 and deg D is a 2-power, we have

(3) [D : K] = [D : K] • (Γ D : Γ K ) and (Γ D : Γ K ) = [Z(D) : K],
see Thus, every hermitian form h over (D, γ) has a first (and, if ( * ) does not hold, a second) residue form, which are either 0 or anisotropic forms with values in D. We call a hermitian form over (D, γ) unramified if the following two conditions hold: Γ D = Γ K (i.e., D is unramified over K), and the second residue form of h is 0.

Otherwise the form is said to be ramified. Thus, in case ( * ) every hermitian form is ramified. We extend this terminology to algebras with involution as follows: (A, σ) is said to be unramified if there exists an unramified hermitian form h such that (A, σ) Ad(h), and otherwise (A, σ) is called ramified.

Alternately, one may use the theory of gauges developed in [START_REF] Tignol | Value functions on simple algebras, and associated graded rings[END_REF] to give a characterization of unramified algebras with involution which does not use representations (A, σ) Ad(h). Recall from [24, Th. 2.2] that if (A, σ) is anisotropic there is a unique map g : A → (Γ K ⊗ Z Q) ∪ {∞} with the following properties: Using g, one defines a K-algebra A 0 as follows:

A 0 = {a ∈ A | g(a) ≥ 0} {a ∈ A | g(a) > 0} .
The algebra A 0 is semisimple because g is a v-gauge in the sense of [ shows that the map g is defined as follows: for a ∈ End D M ,

g(a) = min{α(a(m)) -α(m) | m ∈ M, m = 0},
where, for all m ∈ M , .41] the algebra A 0 is semisimple, and its center is a product of r copies of Z(D). Therefore, A 0 is central simple over K if and only if r = 1 and Z(D) = K. This last condition implies that D is unramified, in particular ( * ) does not hold.

α(m) = 1 2 v D h(m, m) ∈ 1 2 Γ D ∪ {∞}. Thus, g = End(α)
For the rest of the proof, assume D is unramified. This implies that Z(D) = K, and we need to prove that (A, σ) is unramified if and only if r = 1. Let π D be a uniformizing element for v D such that γ(π D ) = π D . Note that the map α is the norm on M used by Scharlau in his definition of the first residue ∂ 1 (h); see [START_REF] Scharlau | Klassifikation hermitescher Formen über lokalen Körpern[END_REF]Prop. 3

.1]. If (A, σ) is unramified we may assume h is unramified. Since ∂ 2 (h) = 0 it follows that v(h(m, m)) ∈ 2Γ D for all nonzero m ∈ M , hence r = 1 and A 0 is central simple over K. Conversely, if r = 1 then either Γ M = Γ D or Γ M = 1 2 v D (π D ) + Γ D .
In the first case h is unramified, hence (A, σ) is unramified. In the second case π D h is unramified. Since ad(h) = ad(π D h) we may substitute π D h for h and thus again conclude that (A, σ) is unramified.

We now establish a sufficient condition for a totally decomposable algebra to be unramified. This provides a tool for proving that some ramified algebras with involution are not totally decomposable.

Proposition 2.2. A totally decomposable algebra with involution

(A, σ) is unram- ified if v G(A, σ) ⊂ 2Γ K .
Proof. We first consider the case where A is a quaternion algebra. If A is a split quaternion algebra, then A Ad(q) for some binary quadratic form q over K. The determinant of q is a similarity factor of q, hence the condition v G(A, σ) ⊂ 2Γ K implies that Ad(q) is unramified. Now, assume A is a quaternion division algebra. The σ-special gauge g on A does not depend on σ and coincides with the valuation v A extending v, hence A 0 is the residue division algebra A. If σ is the canonical involution, then G(A, σ) = Nrd(A × ), hence the condition v G(A, σ) ⊂ 2Γ K implies Γ A = Γ K . It then follows by (3) that A 0 is a central simple K-algebra, hence (A, σ) is unramified. If σ is an orthogonal involution, then as observed above A contains a uniformizing element π A such that σ(π A ) = π A by [21, p. 208

]. Let π A = Trd(π A ) -π A ∈ A be the conjugate quaternion. Suppose Γ A = Γ K . Then v(π A + π A ) ∈ Γ K whereas v(π A ) = v(π A ) / ∈ Γ K , hence v(π A + π A ) > v(π A ), and therefore v(π A -π A ) = v(2π A -(π A + π A )) = v(π A ) / ∈ Γ K . Now, σ(π A -π A ) • (π A -π A ) = (π A -π A ) 2 ∈ K × , hence (π A -π A ) 2 ∈ G(A, σ). But v((π A -π A ) 2 ) = 2v(π A ) / ∈ 2Γ K ,
in contradiction with the hypothesis that v G(A, σ) ⊂ 2Γ K . Therefore Γ A = Γ K and it follows as in the previous case that (A, σ) is unramified. We have thus proved the proposition in the case where A is a single quaternion algebra. Now, let (A, σ) 

= (Q 1 , σ 1 ) ⊗ K • • • ⊗ K (Q n , σ n ), where each Q i is a quaternion K-algebra, and assume v G(A, σ) ⊂ 2Γ K . Then (A, σ) is not hyperbolic because otherwise G(A, σ) = K × . It follows by [3, Cor. 3.2] that (A, σ) is anisotropic, hence each (Q i , σ i ) is anisotropic. Each Q i then carries a σ i -special gauge g i , and since G(Q i , σ i ) ⊂ G(A, σ) the first part of the proof shows that each (Q i , σ i ) is unramified. The tensor product g = g 1 ⊗ • • • ⊗ g n is a v-
A 0 = (Q 1 ) 0 ⊗ K • • • ⊗ K (Q n ) 0 .
Since each (Q i , σ i ) is unramified, it follows that each (Q i ) 0 is a central quaternion K-algebra, hence A 0 is a central simple K-algebra. Therefore, Proposition 2.1 shows that (A, σ) is unramified.

Let us now use Proposition 2.2 to construct examples of algebras with involution that are not totally decomposable, and that remain non-totally decomposable after odd-degree scalar extensions. Let (D, γ) be a central division algebra with an involution of the first kind over an arbitrary field k (of characteristic different from 2), and let h 1 , h 2 be nonsingular hermitian forms over (D, γ). Consider the field F = k((t)) of Laurent series in one indeterminate over k. Extending scalars to F , we obtain the central division algebra with involution ( D, γ) = (D, γ) F over F and the hermitian forms h 1 = (h 1 ) F and h 2 = (h 2 ) F over ( D, γ). Consider the following hermitian form over ( D, γ) (cf. [17, §3.2]):

h = h 1 ⊥ t h 2 .
Proposition 2.3. Let K be an odd-degree field extension of F , and let v : K → Γ K ∪ {∞} denote the discrete valuation on K extending the t-adic valuation on F . If h 1 and h 2 are not hyperbolic, then the algebra with involution Ad(h) K is ramified. If h 1 and h 2 are not similar, then v G(h K ) ⊂ 2Γ K . If h 1 and h 2 are not hyperbolic and are not similar, then Ad(h) K is not totally decomposable.

Proof. Let e = (v(K × ) : v(F × )) be the ramification index of K/F , and let π ∈ K be a uniformizing element of K, hence also of D K = D ⊗ k K. We have π e = ut for some u ∈ K × with v(u) = 0, and t ≡ uπ mod K ×2 since e is odd. Therefore,

h K ( h 1 ) K ⊥ uπ ( h 2 ) K , hence ∂ 1 (h K ) = (h 1 ) K and ∂ 2 (h K ) = u (h 2 ) K in the Witt group W (D K , γ K ).
If h 1 and h 2 are not hyperbolic, then (h 1 ) K and (h 2 ) K are not hyperbolic because

[K : k] is odd, hence no scalar multiple of h K is unramified. Therefore, Ad(h) K is ramified. Now, let µ ∈ G(h K ). If v(µ) / ∈ 2Γ K , then there exists µ 0 ∈ K × such that v(µ 0 ) = 0 and µ ≡ µ 0 π mod K ×2 . Then from µ h K h K it follows that µ 0 u ( h 2 ) K ⊥ µ 0 π ( h 1 ) K ( h 1 ) K ⊥ uπ ( h 2 ) K .
Comparing the residues of each side, we obtain

µ 0 u (h 2 ) K = (h 1 ) K in W (D K , γ K ).
Since [K : k] is odd, a transfer argument shows that h 1 and h 2 are similar; see [START_REF] Lewis | The Witt semigroup of central simple algebras with involution[END_REF]Prop. 10].

Hence if the hermitian forms h 1 and h 2 are not hyperbolic and not similar, Ad(h) K is ramified and v G(Ad(h) K ) ⊂ 2Γ K . It follows by Proposition 2.2 that Ad(h) K is not totally decomposable.

To obtain particularly significant instances of this construction, recall from [START_REF] Quéguiner | Cohomological invariants for orthogonal involutions on degree 8 algebras[END_REF]Ex. 4.2 & 4.3] that there exist central simple k-algebras A of degree 8 with orthogonal involutions σ 1 , σ 2 such that (i) σ 1 and σ 2 are not hyperbolic and are not isomorphic, and (ii) over the function field F(A) of the Severi-Brauer variety of A, there is a 3-fold Pfister form ϕ such that

(σ 1 ) F (A) (σ 2 ) F (A) ad(ϕ).
In these examples, the field k has characteristic zero, the index of A is 4 or 8, and A is a tensor product of three quaternion algebras. Now, choose a division algebra D Brauer-equivalent to A and an orthogonal involution γ on D. We may then find hermitian forms h 1 , h 2 over (D, γ) such that σ 1 ad(h 1 ) and σ 2 ad(h 2 ). With this choice of h 1 and h 2 , the construction preceding Proposition 2.3 yields a hermitian form h = h 1 ⊥ t h 2 over the division algebra with involution ( D, γ) = (D, γ) F , where F = k((t)).

Theorem 2.4. With the notation above, Ad(h) is a central simple F -algebra of degree 16 with orthogonal involution that is not totally decomposable over F nor over any odd-degree extension of F . Yet, over the function field F( D) of the Severi-Brauer variety of D, the algebra with involution Ad(h) F ( D) is totally decomposable.

Proof. Since (A, σ 1 ) F Ad( h 1 ) and (A, σ 2 ) F Ad( h 2 ) are central simple algebras of degree 8 with orthogonal involutions, it is clear that Ad(h) is a central simple algebra of degree 16 with orthogonal involution. Condition (i) on σ 1 and σ 2 implies that h 1 and h 2 are not hyperbolic and are not similar. Therefore, it follows from Proposition 2.3 that Ad(h) is not totally decomposable over F nor over any odddegree extension of F . To prove the last statement, note that F(A) is a purely transcendental extension of F(D), hence for the Pfister form ϕ in condition (ii) we may choose a form defined over F(D). Choosing a minimal left ideal in the split algebra D F (D) , we set up a Morita equivalence between hermitian forms over (D F (D) , γ F (D) ) and quadratic forms over F(D), hence also between hermitian forms over ( D F ( D) , γ F ( D) ) and quadratic forms over F( D), which yield identifications

W (D F (D) , γ F (D) ) = W (F(D)) and W ( D F ( D) , γ F ( D) ) = W (F( D)). Condition (ii) shows that there are α 1 , α 2 ∈ F(D) × such that (h 1 ) F (D) = α 1 ϕ and (h 2 ) F (D) = α 2 ϕ in W (F(D)), hence h F ( D) = α 1 , α 2 t ϕ F ( D) in W (F( D)).
Since the right side is a multiple of a Pfister form, it follows that Ad(h) F ( D) is totally decomposable.

Remarks 2.5. (1) The algebra Ad(h) in Theorem 2.4 has index 4 or 8. By contrast, Becher's theorem [START_REF] Johannes | A proof of the Pfister factor conjecture[END_REF]Th. 2] shows that if a central simple algebra with orthogonal involution of index at most 2 is totally decomposable after generic splitting, then it is totally decomposable (see Proposition 1.2). Therefore, the construction used in Theorem 2.4 is impossible if the index of A is 2, which means that there are no orthogonal involutions σ 1 , σ 2 satisfying conditions (i) and (ii) if the index of A is 2.

In § 3, we provide a direct proof of this fact (see Proposition 3.5).

(2) Let L be an arbitrary field extension of the center F of the algebra Ad(h) of Theorem 2.4. If Ad(h) L is isotropic, then it is also isotropic after generic splitting of D L . But since Ad(h) is totally decomposable over F( D) it is also totally decomposable over F( D L ), hence Ad(h) F ( D L ) is hyperbolic, and it follows from [10, Theorem 1.1] that Ad(h) L is hyperbolic. Thus, Ad(h) satisfies the 'Isotropy ⇒ Hyperbolicity' condition introduced in [START_REF] Bayer-Fluckiger | Pfister involutions[END_REF], and Theorem 2.4 shows that this condition is necessary but not sufficient for an algebra with involution to be totally decomposable.

Generic splitting in index 2

Throughout this section, Q denotes a quaternion algebra over a field k (of characteristic different from 2). We address Question 2, considering only algebras with orthogonal involution that are split and hyperbolic over a quadratic extension of k (and are therefore of index at most 2). They can be described explicitly as follows: Lemma 3.1. Let σ be an orthogonal involution on A = M r (Q). If there exists a quadratic étale extension Z/k over which (A, σ) is split and hyperbolic, then Q admits an orthogonal involution ρ of discriminant Z, and (A, σ) decomposes as

(A, σ) (Q, ρ) ⊗ Ad(ϕ)
for some r-dimensional quadratic form ϕ over k.

Proof. If Z = k × k, then Q is split and σ is hyperbolic. Therefore the lemma holds with (Q, ρ) = Ad( 1, -1 ) and ϕ arbitrary. Assume now that Z = k( √ a) is a quadratic field extension of k. If (A, σ) is split and hyperbolic over Z, then A contains a skew-symmetric element g such that g 2 = a and the centralizer of g in A is split. Therefore, by [START_REF] Quéguiner | Discriminant and Clifford algebras[END_REF]Appendix], there exists a pure quaternion i ∈ Q such that i 2 = a, and some elements α i ∈ k × for i = 1, . . . , r, such that σ is adjoint to the skew-hermitian form over (Q, ) defined by h = iα 1 , . . . , iα r , where is the canonical involution of Q. The lemma follows, with ρ = Int(i) • and ϕ = α 1 , . . . , α r . Remark 3.2. For A = M r (Q), the field F(A) is a purely transcendental extension of F(Q), hence for involutions σ and σ on A we have σ [START_REF] Quéguiner | Cohomological invariants for orthogonal involutions on degree 8 algebras[END_REF]Lemma 4.1]. Therefore, to establish Theorem 1.6(f) and (g) we may (and will) substitute F(Q) for F(A).

F (A) σ F (A) if and only if σ F (Q) σ F (Q) by
Lemma 3.3. Let (A, σ) = (Q, ρ) ⊗ Ad(ϕ) be as in the previous lemma. Any orthogonal involution σ on A = M r (Q) such that σ F (Q) σ F (Q) also decomposes as σ ρ ⊗ ad(ϕ )
for some r-dimensional quadratic form ϕ over k.

Proof. Let Z be the quadratic extension of k defined by the discriminant of ρ, and denote by [START_REF] Quéguiner | Cohomological invariants for orthogonal involutions on degree 8 algebras[END_REF]Lemma 4.1]. So (A, σ ) also is split and hyperbolic over Z and the previous lemma finishes the proof.

Z Q = Z •F(Q) the corresponding quadratic extension of F(Q). Since Q Z is split, Z Q is a purely transcendental extension of Z. Therefore, σ F (Q) σ F (Q) implies σ Z Q σ Z Q , which in turn implies σ Z σ Z by
With this in hand, Question 2 for involutions that become hyperbolic over a quadratic splitting field of Q boils down to a quadratic form question over F(Q), as the next proposition shows: Proposition 3.4. Let ρ be an orthogonal involution of Q of discriminant k( √ a). Given two r-dimensional quadratic forms ϕ and ϕ over k, consider the orthogonal involutions σ = ρ ⊗ ad(ϕ) and σ = ρ ⊗ ad(ϕ ) of A = M r (Q).

(i) σ F (Q) σ F (Q) if and only if there exists λ ∈ F(Q) × such that

a ϕ F (Q) λ a ϕ F (Q) .
(ii) σ σ if and only if there exists ν ∈ k × such that

a ϕ F (Q) ν a ϕ F (Q) .
Proof. Since orthogonal involutions on a quaternion algebra are classified by their discriminant [12, (7.4)], and k is quadratically closed in F(Q), there exists an isomorphism (Q, ρ)

F (Q) Ad( a F (Q) ).
Hence, for every quadratic form ψ over k, we have

(Q, ρ) ⊗ ad(ψ) F (Q) Ad( a ψ F (Q) ).
In particular, σ F (Q) and σ F (Q) are respectively adjoint to the quadratic forms a ϕ F (Q) and a ϕ F (Q) . Assertion (i) follows immediately.

To prove assertion (ii) we may assume k( √ a) is a field, for otherwise ρ is hyperbolic and (ii) trivially holds. Let i ∈ Q be a quaternion such that ρ(i) = -i = 0. Then i is pure, i 2 ≡ a mod k ×2 , and σ (resp. σ ) is adjoint to the skew-hermitian form i ϕ (resp. i ϕ ) over (Q, ). Therefore, σ and σ are isomorphic if and only if there exists ν ∈ k × such that [START_REF] Charles De Clercq | Critical varieties for algebras with involution[END_REF] i ϕ νi ϕ.

Since the scalar extension map

W -(Q, ) → W -(Q F (Q) ,
) is injective (see [START_REF] Dejaiffe | Formes antihermitiennes devenant hyperboliques sur un corps de déploiement[END_REF] or [START_REF] Parimala | Hermitian analogue of a theorem of Springer[END_REF]Prop. 3.3]), and since W -(Q F (Q) , ) W (F(Q)) by a Morita-equivalence that carries i F (Q) to a F (Q) , the existence of the isomorphism ( 4) is equivalent to

a ϕ F (Q) ν a ϕ F (Q) .
We use Proposition 3.4 to prove (c) and (d) in Theorem 1.5.

Proposition 3.5. Let A = M r (Q) be endowed with two orthogonal involutions σ and σ . We assume that either (A, σ) is totally decomposable, or r is odd and there exists a quadratic extension Z/k over which (A, σ) is split and hyperbolic. Under any of those two conditions, if σ F (Q) and σ F (Q) are isomorphic, then σ σ .

Proof. By [2, Th. 2], if (A, σ) is totally decomposable, it admits a decomposition

(A, σ) (Q, ρ) ⊗ ad(π),
for some orthogonal involution ρ of Q and some Pfister quadratic form π over k. Therefore in both cases there exists a quadratic extension Z/k over which (A, σ) is split and hyperbolic : Z is the discriminant of ρ in the totally decomposable case. In view of Lemmas 3.1 and 3.3, we may thus assume that σ = ρ ⊗ ad(ϕ) and σ = ρ⊗ad(ϕ ) for some quadratic forms ϕ and ϕ over k, and apply Proposition 3.4. Assume first that σ is totally decomposable. Then we may assume ϕ = π is a Pfister form, and modifying it by a scalar if necessary, we may also assume ϕ represents 1. If σ F (Q) and σ F (Q) are isomorphic, assertion (i) in Proposition 3.4 says that a π

F (Q) λ a ϕ F (Q)
for some λ ∈ F(Q) × . But a quadratic form that is similar to a Pfister form and represents 1 actually is isomorphic to this Pfister form. Therefore, we may take λ = 1, so that the equivalent conditions of assertion (ii) hold, with ν = 1. This concludes the proof in this case. Assume now that r is odd. Since the quadratic forms ϕ and ϕ are r-dimensional, and only defined up to a scalar factor, we may assume they have trivial discriminant. If σ F (Q) and σ F (Q) are isomorphic, assertion (i) says that there exists λ

∈ F(Q) × such that a ϕ F (Q) λ a ϕ F (Q) .
Computing the Clifford invariant of both forms as in [13, V.3], and taking into account the fact that r is odd and ϕ and ϕ have trivial discriminant, we get (λ, a) = 0 ∈ Br 2 (k). Therefore, λ is represented by a , so that λ a a .

Hence, again we may take λ = 1, and the equivalent conditions of assertion (ii) hold.

In the rest of this paper, we use Proposition 3.4 to produce examples of pairs of orthogonal involutions for which the answer to Question 2 is negative. For this, we will exhibit quadratic forms ϕ and ϕ defined over k such that

a ϕ F (Q) λ a ϕ F (Q)
for some λ ∈ F(Q) × , but not for any λ ∈ k × . The heuristic idea behind this construction is the following. Suppose ϕ 1 , ϕ 1 , ϕ 2 , ϕ 2 are quadratic forms over k satisfying assertion (i) of Proposition 3.4 with the same factor λ ∈ F(Q) × :

( a ϕ 1 ) F (Q) λ ( a ϕ 1 ) F (Q) and ( a ϕ 2 ) F (Q) λ ( a ϕ 2 ) F (Q) .
Then for every t ∈ k × we also have

( a ϕ 1 ⊥ t a ϕ 2 ) F (Q) λ ( a ϕ 1 ⊥ t a ϕ 2 ) F (Q) .
If ϕ 1 , ϕ 1 and ϕ 2 , ϕ 2 do not yield a negative answer to Question 2, then we may find

ν 1 , ν 2 ∈ k × such that ( a ϕ 1 ) F (Q) ( ν 1 a ϕ 1 ) F (Q) and ( a ϕ 2 ) F (Q) ( ν 2 a ϕ 2 ) F (Q) .
But if the ν 1 and ν 2 satisfying these equations are sufficiently distinct, and if t is 'generic', there may not be any ν ∈ k × such that

( a ϕ 1 ⊥ t a ϕ 2 ) F (Q) ν ( a ϕ 1 ⊥ t a ϕ 2 ) F (Q) .
Example 3.6. Let k 0 be a field of characteristic different from 2 and k = k 0 ((a))((t)) the iterated Laurent series field in two variables over k 0 . Pick b ∈ k × 0 and let Q = (a, b) k . Assume b is not a square in k 0 ; then Q is a division algebra, which admits an orthogonal involution ρ of discriminant a. The function field F(Q) may be represented as k(X, Y ) where X and Y satisfy (5)

X 2 -aY 2 + ab = 0. Fix an element c ∈ k × 0 and let ϕ = b + 1 ⊥ t b + c 2 , and ϕ = b + 1 ⊥ ct b + c 2 .
In the following proposition, we use the notation D K (θ) for the set of represented values of a quadratic form θ over a field K. 

F (Q) σ F (Q) . If σ σ , then (6) c ∈ k × 0 ∩ D k0( √ b) ( b + 1 ) • k × 0 ∩ D k0( √ b) ( b + c 2 )
. Note that, in contrast to (6), we always have

( √ b + c) 2 -(b + c 2 ) = 2c √ b and √ b + 1 2 √ b 2 -(b + 1) 1 2 √ b 2 = 1 2 √ b , hence (2 √ b) -1 ∈ D k0( √ b) ( b + 1 ) and 2c √ b ∈ D k0( √ b) ( b + c 2 ), and therefore (7) c = (2 √ b) -1 (2c √ b) ∈ k × 0 ∩ D k0( √ b) ( b + 1 ) • D k0( √ b) ( b + c 2 ) . Proof of Proposition 3.7. To establish the first claim, observe that a, b + 1 F (Q) represents X 2 -a(Y + 1) 2 + a(b + 1) = -2aY, while a, b + c 2 F (Q) represents X 2 -a(Y + c) 2 + a(b + c 2 ) = -2aY c. Therefore -2aY (respectively -2aY c) is a similarity factor of a, b + 1 F (Q) (re- spectively a, b + c 2 F (Q) ), and we get a, b + 1 -2aY a, b + 1 and c a, b + c 2 -2aY a, b + c 2 , hence a ϕ F (Q) -2aY a ϕ F (Q) . By Proposition 3.4, this implies σ F (Q) σ F (Q) .
To prove the second claim, assume σ σ . Proposition 3.4(ii) yields ν ∈ k × such that the forms a ϕ F (Q) and ν a ϕ F (Q) are isomorphic. Since the kernel of the restriction map W

(k) → W (F(Q)) is a, b W (k) (see [13, Ch. X, Cor. 4.28]), it follows that (8) ν, a, b + 1 + ct, -νt a, b + c 2 ∈ a, b W (k).
Since k is the field of iterated Laurent series in a and t over k 0 , every square class in k is represented by an element of the form ν 0 , aν 0 , tν 0 or atν 0 for some

ν 0 ∈ k × 0 ; see [13, Ch. VI, Cor. 1.3]. If ν 1 = -aν, then ν 1 , a ν, a and -ν 1 t a
-νt a . Therefore, substituting -aν for ν if ν = aν 0 or atν 0 , we may assume ν = ν 0 or tν 0 with ν 0 ∈ k × 0 . We consider these two cases separately. To conclude, it remains to find fields k 0 and elements b, c ∈ k × 0 such that (6) does not hold. Quadratic extensions for which the 'Common Value Property' investigated in [START_REF] Daniel | Witt rings and Brauer groups under multiquadratic extensions[END_REF] (see also [7, §6]) fails yield such examples:

• we may take It remains to prove that τ and τ are not isomorphic. Using again Proposition 3.4(ii), we need to prove that there is no ν ∈ k × Recall k = k 0 ((a))((t)), so every square class in k is represented by an element of the form ν 0 , aν 0 , tν 0 or atν 0 for some ν 0 ∈ k × 0 . Substituting -aν 1 for ν 1 if ν 1 = aν 0 or atν 0 , we may assume ν 1 = ν 0 or tν 0 with ν 0 ∈ k × 0 . If ν 1 = tν 0 , then taking the first residue of (9) for the t-adic valuation and for the a-adic valuation in the resulting relation, we obtain b + 1 ∈ b W (k 0 ). This implies b + 1 ∈ k 0 ( √ b) ×2 , hence (6) holds, a contradiction. If ν 1 ∈ k × 0 , then we take the second residue of (9) for the t-adic valuation and the first residue for the a-adic valuation, and find c b + c 2 ∈ b W (k 0 ), hence b+c 2 ∈ k 0 ( √ b) ×2 , which also yields a contradiction. Therefore τ and τ are not isomorphic.
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 1 deg A), one may define an Arason invariant e 3 (σ) ∈ H 3 (k, µ ⊗2 4 )/k × • [A], by using the Rost invariant of Spin groups (see [23, §3.5]).
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 3 Synopsis of results on Questions 1 and 2. Question 1 has a positive answer if either the degree or the index of the algebra is small enough. More precisely, we have the following: Proposition 1.2. Let (A, σ) be a central simple algebra with orthogonal involution over a field k. Suppose σ F (A) is totally decomposable. If in addition we have either deg A = 4 or 8, or ind A = 2, then σ is totally decomposable.Proof. The first assertion follows easily from the cohomological criteria of decomposability that can be established in these degrees, see[1, Proposition 2.10]. The index 2 case is a theorem of Becher [2, Th. 2].

  (a) deg A = 2 or 4, or (b) deg A = 6 and e 1 (σ) = 0, or (c) ind A = 2 and σ is totally decomposable, or (d) deg A ≡ 2 mod 4 and there exists a quadratic field extension of k over which (A, σ) is split and hyperbolic, then σ σ . Proof. In low degree, one may use cohomological invariants to compare involutions. More precisely, if deg A = 2, orthogonal involutions on A are classified by their e 1 invariant, see [12, (7.4)] or [23, Th. 3.6]. If deg A = 4, they are classified by their Clifford algebra, see [12, (15.7)]. If deg A = 6, orthogonal involutions on A with trivial e 1 invariant are classified by their e 2 invariant (or their Clifford algebra), see [12, (15.32)] or [23, Th. 3.10]. With this in hand, cases (a) and (b) follow from Lemma 1.1. Cases (c) and (d) are proved in Proposition 3.5 below. Nevertheless, Question 2 has a negative answer in general. More precisely, we may add the following to the theorem above: Theorem 1.6. There exist central simple algebras A with orthogonal involutions σ, σ satisfying any of the following conditions: (e) deg A = 8, ind A = 4 or 8, and σ and σ are totally decomposable, or (f) deg A = 8, ind A = 2, and e 1 (σ) = e 1 (σ ) = 0, or (g) deg A = 12, ind A = 2, e 1 (σ) = e 1 (σ ) = 0 and e 2 (σ) = e 2 (σ ) = 0, and such that σ F (A) σ F (A) , and yet σ σ . Proof. Case (e) was shown in [19, Ex. 4.2 & 4.3]. The other two cases are new and are explained in Remark 3.2 and Examples 3.6 and 3.8.

  [START_REF] Tignol | Value functions on simple algebras, and associated graded rings[END_REF] Prop. 8.64]. In particular, Γ D = Γ K if and only if D is a central division algebra over K; when this condition holds, we have in addition deg D = deg D.As observed by Scharlau[21, p. 208], there always exists a uniformizing elementπ D for v D such that γ(π D ) = π D ,except in the following case: ( * ) D is a quaternion algebra, γ is the canonical (symplectic) involution on D, and Γ D = 1 2 Γ K . In all cases, Scharlau [21, p. 204] shows that every anisotropic hermitian form h over (D, γ) defines an anisotropic hermitian form ∂ 1 (h) over (D, γ), called the first residue form of h. If ( * ) does not hold, a second residue form ∂ 2 (h) is defined as the first residue form of π D h (which is a hermitian form with respect to the involution γ : d → π D γ(d)π -1 D on D). As an analogue of Springer's theorem, Scharlau proves [21, Satz 3.6] that mapping h to (∂ 1 (h), ∂ 2 (h)) (resp. to ∂ 1 (h)) yields an isomorphism of Witt groups W (D, γ) ∼ → W (D, γ) ⊕ W (D, γ ) away from case ( * ), W (D, γ) in case ( * ).

  (i) g(a) = ∞ if and only if a = 0; (ii) g(a + b) ≥ min(g(a), g(b)) for a, b ∈ A; (iii) g(aλ) = g(a) + v(λ) for a ∈ A and λ ∈ F ; (iv) g(1) = 0 and g(ab) ≥ g(a) + g(b) for a, b ∈ A; (v) g(σ(a)a) = 2g(a) for a ∈ A.

  in the notation of [25, p. 104], and the set Γ M = {α(m) | m ∈ M \ {0}} is a union of cosets of Γ D . Let r be the number of cosets of Γ D in Γ M . Since Γ D Z and Γ M ⊂ 1 2 Γ D , we have r = 1 or 2. By [25, Prop. 3.34 and Prop. 2

  gauge on A by[START_REF] Tignol | Value functions on simple algebras, and associated graded rings[END_REF] Prop. 3.41], and it satisfies g • σ = g by [24, Prop. 1.3] because g i • σ i = g i for all i by the uniqueness property of the σ i -special gauge. The map g is therefore the σ-special gauge on A by[START_REF] Tignol | Valuations on algebras with involution[END_REF] Th. 2.2]. By[START_REF] Tignol | Value functions on simple algebras, and associated graded rings[END_REF] Prop. 3.41] or[START_REF] Tignol | Valuations on algebras with involution[END_REF] Prop. 1.3] we have

Proposition 3 . 7 .

 37 The involutions σ = ρ ⊗ ad(ϕ) and σ = ρ ⊗ ad(ϕ ) satisfy σ

Case 1 :

 1 Suppose ν = tν 0 with ν 0 ∈ k × 0 . Taking the first residue of (8) for the t-adic valuation, and the first residue of the resulting relation for the a-adic valuation, we obtain b+ 1 + -ν 1 b + c 2 ∈ b W (k 0 ). Comparing discriminants yields (b + 1)(b + c 2 ) ∈ k ×2 0 ∪ (bk ×2 0 ), hence b + 1 ≡ b + c 2 mod k 0 ( √ b) ×2 . Then (7) yields (6). Case 2: Suppose ν ∈ k × 0 .Taking the residues of (8) for the t-adic valuation, we obtainν, a, b + 1 ∈ a, b W k 0 ((a)) and c, -ν a, b + c 2 ∈ a, b W k 0 ((a)) .We next take the first residue for the a-adic valuation, and get ν, b + 1 ∈ b W (k 0 ) and c, -ν b + c 2 ∈ b W (k 0 ). It follows that the forms ν, b + 1 and νc, b + c 2 become hyperbolic over k 0 ( √ b). This means that ν is represented by the form b + 1 over k 0 ( √ b), and νc by the form b + c 2 over k 0 ( √ b), so the equation c = ν -1 (νc) yields (6).

Example 3 . 8 .+ c 2 2 =c 2 .

 3822 k 0 = Q(b), where b is an indeterminate, and c = 2: see[START_REF] Daniel | Witt rings and Brauer groups under multiquadratic extensions[END_REF] Rem. 5.4];• we may take k 0 = (b, c), where b, c are independent indeterminates over an arbitrary field of characteristic 0: see[START_REF] Daniel | Witt rings and Brauer groups under multiquadratic extensions[END_REF] Rem. 5.10]. It is easy to modify Example 3.6 to obtain nonisomorphic orthogonal involutions on M 6 (Q) with trivial discriminant and trivial e 2 -invariant that are isomorphic after generic splitting. From (5), deriveX 2 -a(Y + 1) 2 = -2aY -a(b + 1-(b + 1) -2acY b + c 2 -a .Summing these two equations, we see that a, (b + 1)(b + c 2 ) represents -2aY -a(b + 1) + (b + 1) 2acY b + c 2 + a = -2aY c , with c = 1 -(b + 1)c b + If c = 0, then b + c 2 = (b + 1)c and a, (b + 1)(b + c 2 ) = a, c is hyperbolic.Since a is an indeterminate over k 0 , it follows that c ∈ k ×2 0 , hence (6) trivially holds. This is a contradiction; therefore c = 0 and-2aY c a, (b + 1)(b + c 2 ) a, (b + 1)(b + c 2 ) . Let k 1 = k((u)), where u is a new indeterminate, andQ 1 = Q ⊗ k k 1 .Consider the following quadratic forms over k 1 :ψ = b + 1 ⊥ t b + c 2 ⊥ u (b + 1)(b + c 2 ) , ψ = b + 1 ⊥ ct b + c 2 ⊥ c u (b + 1)(b + c 2 )and the involutions τ = ρ ⊗ ad(ψ) and τ = ρ ⊗ ad(ψ ) over M 6 (Q 1 ). Proposition 3.4(i) shows that they satisfyτ F (Q1) τ F (Q1) , because a ψ F (Q) -2aY a ψ F (Q) .

1

 1 such that ν, a, b + 1 + ct, -νt a, b + c 2 + c u, -νu a, (b + 1)(b + c 2 ) ∈ a, b W k((u)) .We may assume ν ∈ k × or ν = uν 1 with ν 1 ∈ k × . If ν ∈ k × , taking the first residue for the u-adic valuation yields[START_REF] Karpenko | Torsion in CH 2 of Severi-Brauer varieties and indecomposability of generic algebras[END_REF], which has no solution. If ν = uν 1 with ν 1 ∈ k × , taking the first residue yields (9) a, b + 1 + ct a, b + c 2 + -ν 1 a, (b + 1)(b + c 2 ) ∈ a, b W (k).

  see [12, §9.C] or [23, § 3.4]); the e 2 invariant of σ has values in the quotient of the Brauer group Br(k) by the subgroup generated by the Brauer class of A; it is defined as the image of [C +

  [START_REF] Tignol | Value functions on simple algebras, and associated graded rings[END_REF], §3.2.2], see[START_REF] Tignol | Valuations on algebras with involution[END_REF] Th. 2.2]. We call g the σ-special gauge on A. It satisfies g σ(a) = g(a) for all a ∈ A, and is actually characterized by this property among all the v-gauges on A.Proposition 2.1. The anisotropic algebra with involution (A, σ) is unramified if and only if A 0 is a central simple K-algebra. When this condition holds, we have deg A 0 = deg A.

Proof. Suppose (A, σ) = (End D M, ad(h)) for some hermitian space (M, h) over a division algebra with involution (D, γ). Inspection of the proof of

[START_REF] Tignol | Valuations on algebras with involution[END_REF] Th. 2.2] 
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