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THE CANONICAL QUADRATIC PAIR ON A CLIFFORD

ALGEBRA AND TRIALITY

ANDREW DOLPHIN AND ANNE QUÉGUINER-MATHIEU

Abstract. We define a canonical quadratic pair on the Clifford algebra of
an algebra with quadratic pair over a field. This allows us to extend to the
characteristic 2 case the notion of trialitarian triples, from which we derive a
characterization of totally decomposable quadratic pairs in degree 8. We also
describe trialitarian triples involving algebras of small Schur index.

1. Introduction

Triality is a phenomenon that arises due to the high level of symmetry in the
Dynkin diagram D4. This symmetry is reflected in objects associated to groups
of type D4, such as 8-dimensional quadratic forms, and degree 8 central simple
algebras with orthogonal involution. More precisely, consider a degree 8 central
simple algebra A over a field F of characteristic different from 2. Assume A is
endowed with an orthogonal involution σA with trivial discriminant. The Clifford
algebra C(A, σA), with its canonical involution σA, is a direct product of two central
simple algebras with involution, which also have degree 8 and are of orthogonal type,
so that we actually get a triple

(

(A, σA), (B, σB), (C, σC)
)

,

called a trialitarian triple, and an isomorphism

(⋆) (C(A, σA), σA) ≃ (B, σB)× (C, σC) .

By [18, §42], triality then permutes the algebras with involution in this expression.
That is, (⋆) induces isomorphisms

(C(B, σB), σB) ≃ (C, σC)× (A, σA)

(C(C, σC), σC) ≃ (A, σA)× (B, σB) .

In particular, it follows that the Clifford algebra, viewed as an algebra with invo-
lution, is a complete invariant for orthogonal involutions with trivial discriminant
on a degree 8 algebra.

This trialitarian relation has proven to be extremely fruitful; roughly speaking,
triality plays the same role in degree 8 as the so-called exceptional isomorphisms in
smaller degree. For instance, it can be used to characterize totally decomposable
orthogonal involutions on algebras of degree 8 (see [18, §42.B] and connected prob-
lems in [4]). It is related to the classification of groups of type D4 (see [18, §44]
and [14]). It makes the degree 8 case a crucial test case for some general questions
on algebras with involution, see for instance [22, Thm. 5.2] and [23, §4]. Finally, this
better understanding of the degree 8 case can in turn be used to answer questions
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in larger degree; for instance, it leads to an example of a degree 16 non-totally
decomposable algebra with involution that is totally decomposable after generic
splitting of the underlying algebra, see [25, Thm. 1.3].

For fields of characteristic 2, triality is not as well studied due to complications
arising when studying quadratic forms and orthogonal groups over these fields. In
particular, the notions of symmetric bilinear forms and quadratic forms are no
longer equivalent. Over such a base, the automorphism group of a bilinear form is
not semisimple anymore, so the corresponding twisted objects, in particular orthog-
onal involutions, cannot be used to describe such algebraic groups. Twisted groups
of type D in characteristic 2 were initially studied by Tits, who used so-called gen-
eralised quadratic forms (see [28] or §5.2), which appear to be a good replacement
for hermitian forms in this setting. Involution-like corresponding objects, namely
quadratic pairs, were introduced later in [18, §5]. They are related to generalised
quadratic forms by an adjunction process, and behave better than generalised qua-
dratic forms, for instance under scalar extention. They provide an appropriate tool
to describe groups of type D over a field of characteristic different from 2. This
theory is developed in the Book of Involutions [18], where most of the material,
about involutions and quadratic pairs, their invariants, and relations to algebraic
groups, is developped over a field of arbitrary characteristic. However, Chapter X,
about Trialitarian Central Simple Algebras, is one of the rare exceptions in [18];
the base field is assumed to be of characteristic not 2 in that section.

That the group Spin8 has this exceptionally large group of outer automorphisms
is true independent of the characteristic of the underlying field, and hence some
trialitarian relation should hold for quadratic pairs in characteristic 2 also. One
has a notion of a Clifford algebra of a quadratic pair, and we again have that the
Clifford algebra of a quadratic pair with trivial discriminant is the direct product of
two degree 8 central simple algebras with involution (see [18, §7 and §8]). However,
in order to fully recapture the trialitarian relation, one also needs that the Clifford
algebra be equipped with a canonical quadratic pair, not just a canonical involution.
A definition of this canonical quadratic pair is briefly sketched out in [18, p.149],
in the particular case where A is split, of degree divisible by 8, and endowed with
a hyperbolic quadratic pair. From this, one can define a canonical quadratic pair
in the more general case via Galois descent. However this definition is not easy to
use, and the lack of a ‘rational’ definition, that is a definition that avoids the use
of Galois descent, is one reason why the results in [18, Chapt. X] are restricted to
fields of characteristic different from 2 (see [18, Chapt. X, Notes] for more details).

The main purpose of this paper is to provide a rational definition for the canonical
quadratic pair of the Clifford algebra of an algebra with quadratic pair, see Sec-
tion 3.1. We use as a crucial tool the Lie algebra structures described in [18, §8.C].
We also provide an explicit description of this canonical quadratic pair in the split
case in Section 3.2. With this in hand, we may extend to arbitrary fields the main
results of [18, (§42)]. In particular, we define a notion of trialitarian triple, and de-
scribe the trialitarian action in Section 4, and we characterize totally decomposable
algebras with quadratic pair in degree 8 in Theorem 5.1. The last section describes
all trialitarian triples of small enough Schur index, see Section 5.2. Partial results
in this direction were previsouly obtained by Knus and Villa [19, § 7].

We first recall some notation and basic results (§2.1 to 2.3), and make some
preliminary observations on quadratic pairs and tensor products (§ 2.4).
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2. Preliminaries

Throughout the paper, F is a field. We refer the reader to [20] as a general
reference on central simple algebras, [18] for involutions and quadratic pairs and [12]
for hermitian, bilinear and quadratic forms.

2.1. Algebras with involution. Let A be a central simple algebra of degree n
over F . To all a ∈ A, we associate its reduced characteristic polynomial

PrdA,a(X) = Xn − s1(a)X
n−1 + s2(a)X

n−2 − . . .+ (−1)nsn(a),

which is the characteristic polynomial of a⊗ 1 ∈ A⊗F Ω ≃ Mn(Ω), where Ω is an
algebraic closure of F , see [20, §16.1]. The coefficients of PrdA,a belong to F ; s1(a)
and sn(a) are the reduced trace and the reduced norm of a, respectively denoted
by TrdA(a) and NrdA(a), and s2(a) is denoted by SrdA(a).

All the involutions considered in this paper are F -linear. If the algebra A is split,
that is, A ≃ EndF (V ), an F -linear involution on A is the adjoint of a nondegenerate
symmetric or skew-symmetric bilinear form b : V × V → F , uniquely defined up to
a scalar factor. We denote this algebra with involution by Adb. The involution is
symplectic if b is alternating, and orthogonal if b is symmetric and non-alternating.

Let σ be an F -linear involution on A. We use the same notation as in [18, §2.A]
for the subvector spaces Sym(A, σ), Symd(A, σ), Skew(A, σ) and Alt(A, σ) of sym-
metric, symmetrized, skew-symmetric and alternate elements, respectively. Recall
Sym(A, σ) = Symd(A, σ) if the base field has characteristic different from 2, while
in characteristic 2, Symd(A, σ) = Alt(A, σ) is a strict subspace of Sym(A, σ) =

Skew(A, σ), and they have dimension n(n−1)
2 and n(n+1)

2 , respectively. Still as-
suming the base field has characteristic 2, one may prove that the involution σ is
symplectic if and only if 1 is a symmetrised element, or equivalently all symmetric
elements have reduced trace 0 [18, (2.6)]. In particular, in characteristic 2, a tensor
product of involutions with at least one symplectic factor always is symplectic. In
characteristic different from 2, a tensor product of involutions is symplectic if and
only if there are an odd number of symplectic involutions in the product (see [18,
(2.23)]).

An F -quaternion algebra has a basis (1, u, v, w) such that

u(1− u) = a, v2 = b and w = uv = v(1− u)

for some a ∈ F with 4a 6= −1 and b ∈ F× (see [1, Chap. IX, Thm. 26]); any such
basis is called a quaternion basis throughout this paper. Conversely, for a ∈ F and
b ∈ F× the above relations uniquely determine an F -quaternion algebra, which we
denote by H = [a, b). If the characteristic of F is different from 2, substituting
i = u− 1

2 and j = v give the more usual basis of Q, {1, i, j, ij}, with i2 = c, j2 = d
for c, d ∈ F× and ij = −ji. In this case we denote Q by (c, d).

Recall H = [a, b) has a unique symplectic involution, called the canonical involu-
tion, which is determined by the conditions that u = 1−u and v = −v. Considering
H as a 4-dimensional vector space over F , we may view NrdH as a 4-dimensional
quadratic form over F , which we call the norm form of H .



4 ANDREW DOLPHIN AND ANNE QUÉGUINER-MATHIEU

2.2. Quadratic forms and their Clifford algebras. For b ∈ F×, we denote
the 2-dimensional symmetric bilinear form (x1, x2) × (y1, y2) 7→ x1y1 + bx2y2 by

〈1, b〉bi. For a nonnegative integer m, by an m-fold bilinear Pfister form, we mean
a nondegenerate symmetric bilinear form isometric to a tensor product of m bi-
nary symmetric bilinear forms representing 1; we use the notation 〈〈b1, . . . , bm〉〉 ≃

〈1,−b1〉
bi ⊗ · · · ⊗ 〈1,−bm〉bi.

Let q : V → F be a quadratic form and denote its polar form by bq, defined by
bq(x, y) = q(x + y) − q(x) − q(y), so that bq(x, x) = 2q(x) for all x ∈ V . It is a
symmetric bilinear form over V , and further, it is alternating if F is of characteristic
2. The quadratic form q is called nonsingular if its polar form is nondegenerate.
In characterictic 2, this implies it is hyperbolic [12, Prop. 1.8]. For all b1, b2 ∈ F ,
we let [b1, b2] be the quadratic form (x, y) → b1x

2 + xy + b2y
2. This form is

nonsingular if and only if −1 6= 4b1b2. Note that the hyperbolic plane H = [0, 0]
satisfies H ≃ [a, 0] ≃ [0, a] for all a ∈ F , so for every nonsingular 2-dimensional
quadratic form we may chose a presentation [a, b] with a 6= 0. Any nonsingular
quadratic form φ over F has a Witt decomposition φ ∼= φan ⊥ iW (φ) × H, where
φan is the anisotropic part and the integer iW (φ) is the Witt index of φ.

To a quadratic form q : V → F and a symmetric bilinear form b : W ×W → F ,
one associates the quadratic form, denoted by b ⊗ q and defined on W ⊗ V by

(b⊗ q)(w ⊗ v) = b(w,w)q(v) for all w ∈ W, v ∈ V .

(see [12, p.51]). For any positive integer m, by an m-fold quadratic Pfister form
we mean a quadratic form that is isometric to the tensor product of an (m − 1)-
fold bilinear Pfister form and a nonsingular binary quadratic form representing 1.
We use the notation 〈〈b1, . . . , bm−1, c]] = 〈〈b1, . . . , bm−1〉〉 ⊗ [1, c]. Our definition is
equivalent to the definition in [12, §9.B], even though we use a different notation
in characteristic different from 2. Pfister forms are either anisotropic or hyperbolic
(see [12, (9.10)]).

Recall the Clifford algebra of a quadratic space (V, q) is a factor of the tensor
algebra T (V ) by the ideal I(q) generated by elements of the form v ⊗ v − q(v) · 1
for v ∈ V . It has a natural Z/2Z-gradation, and the subalgebra C0(q) of degree
0 elements is called the even Clifford algebra. The identity map on V extends
to an involution on C(q) and C0(q) called the canonical involution and denoted
σq. If q is nonsingular, the center of C0(q) is a quadratic étale extension of F .

It is determined by a class which belongs to the multiplicative group of square
classes F×/F×2 in characteristic different from 2 and the additive group F/℘(F )
in characteristic 2, where ℘(F ) = {a2 + a | a ∈ F}. In both cases, we will refer to
this class as the discriminant of q and denote it by ∆(q). If F has characteristic
2 and q ≃ [a1, b1]⊥ . . .⊥[an, bn] for some ai, bi in F , then ∆(q) is the class of
a1b1 + · · ·+ anbn in F/℘(F ).

Example 2.1. For ease of reference in the sequel, we give an explicit description of
the even Clifford algebra of a nonsingular quadratic form over a field of character-
istic 2. Given such a form q, with polar form b, pick a decomposition

q ≃ [a1, b1] ⊥ . . . ⊥ [am, bm],

and let (ei, e
′
i)16i6m be the corresponding symplectic basis of the underlying vector

space V . That is, for all i with 1 6 i 6 m, we have q(ei) = ai, q(e
′
i) = bi,
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b(ei, e
′
i) = 1 and b(ei, ej) = b(e′i, e

′
j) = b(ei, e

′
j) = 0 for all i 6= j. We may assume

ai 6= 0 for all i.
The elements ui = eie

′
i and vi = eiem, for i ∈ {1, . . . ,m− 1}, belong to the even

part C0(q) of the Clifford algebra, and satisfy

ui(1 + ui) = aibi, v
2
i = aiam, uivi = vi(1 + ui).

They generate pairwise commuting quaternion subalgebras. Further, we have that

σq(ui) = 1 + ui and σq(vi) = vi .

We have that

ξ =
m
∑

i=1

eie
′
i

also belongs to C0(q), commutes with ui and vi for all i, 1 6 i 6 m−1, and satisfies
ξ2 = ξ + ∆(ρ) . Hence, F [ξ] is a quadratic étale extension of F , central in C0(q).
We also have that

σq(ξ) =

{

1 + ξ if m is odd,
ξ if m is even.

So we finally get
(

C0(q), σq
)

≃ ⊗m−1
i=1 (Qi, )⊗ (F [ξ], γ) ,

where Qi = [aibi, aiam), stands for the canonical involution, F [ξ] is the centre
of C0(q), and γ is the identity if m is even and the non-trivial F -automorphism of
F [ξ] if m is odd.

We finish this subsection with a characteristic free version of [16, (Example 9.12)]
which we require in the sequel. The proof is similar, but we provide the full details
for convenience.

Proposition 2.2. Let q be an 8-dimensional nonsingular quadratic form over F
with trivial discriminant and ind(C0(q)) 6 2. Then there exists a 4-dimensional
symmetric bilinear form B and a 2-dimensional nonsingular form φ over F such
that q ≃ B ⊗ φ.

Proof. Over its function field, q is Witt equivalent to an Albert form, which is
isotropic by [18, (16.5)]. Therefore, the first Witt index of q is at least 2. Choose
a quadratic separable extension F (u)/F where u − u2 = a for some a ∈ F with
−1 6= 4a such that q becomes isotropic after extending scalars to F (u). By [12,
(25.1)], the Witt index of q over F (u) is at least 2. Hence by [3, Chapter V, (4.2)],
we have that q ≃ c〈〈b, a]] ⊥ q′ for some b, c ∈ F× and a 4-dimensional nonsingular
quadratic form q′ over F . Since q has trivial discriminant, it follows that q′ also
have trivial discriminant and hence q′ is similar to a Pfister form, which we denote
by π. The form 〈〈b, a]] ⊥ −π is Witt equivalent to an Albert form, and has the
same Clifford invariant as q, of index 6 2. Therefore, its Witt index is at least 2,
and by [12, (24.2)], there exist symmetric bilinear forms B′ and B′′ and d ∈ F such
that 〈〈b, a]] ≃ B′ ⊗ [1, d] and π ≃ B′′ ⊗ [1, d]. In particular, we have q ≃ B ⊗ [1, d]
for some symmetric bilinear form B over F .

�
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2.3. Quadratic pairs and their Clifford algebras. In arbitrary characteristic,
algebraic groups of type D can be described in terms of quadratic pairs. For the
reader’s convenience, we recall here some basic facts on quadratic pairs which can
be found in [18, §5,7.B, 8.B], and which are used throughout the paper.

A quadratic pair on a central simple algebra A is a couple (σ, f), where σ is an

F -linear involution on A, with Sym(A, σ) of dimension n(n+1)
2 and f is a so-called

semi-trace on (A, σ). That is, f is an F -linear map f : Sym(A, σ) → F such that

f(x+ σ(x)) = TrdA(x) for all x ∈ A.

In characteristic different from 2, the dimension condition guarantees that the in-
volution is of orthogonal type, and one may check that there is a unique semi-trace
on (A, σ) given by f(x) = 1

2 TrdA(x) for all x ∈ Sym(A, σ). Therefore quadratic
pairs and orthogonal involutions are equivalent notions when the characteristic is
not 2. Conversely, in characteristic 2, the existence of a semi-trace implies σ is
symplectic. Indeed, since TrdA(c) = f(c+ σ(c)) = f(2c) = 0 for all c ∈ Sym(A, σ),
the reduced trace vanishes on Sym(A, σ).

One may easily check that for all ℓ ∈ A such that ℓ + σ(ℓ) = 1, the F -linear
map defined by fℓ(s) = TrdA(ℓs) for all s ∈ Sym(A, σ) is a semi-trace on (A, σ).
Conversely, it is proved in [18, (5.7)] that any semi-trace f : Sym(A, σ) → F
coincides with fℓ for some ℓ ∈ A satisfying ℓ+ σ(ℓ) = 1. We say that the element ℓ
gives or determines the semi-trace fℓ. Two distinct such elements ℓ and ℓ′ determine
the same semi-trace if and only if they differ by an alternating element, that is
ℓ− ℓ′ = x− σ(x) for some x in A.

Let (V, q) be a nonsingular quadratic space over the field F . The polar form bq
of q induces an involution σq = adbq on A = EndF (V ), and one may prove that
(EndF (V ), σq) ≃ (V ⊗V, ε), where ε is the exchange involution, defined by ε(x⊗y) =
y ⊗ x. Moreover, there exists a unique semi-trace f defined on Sym(V ⊗ V, ε) and
satisfying f(x ⊗ x) = q(x) for all x ∈ V . Under the isomorphism above, f defines
a semi-trace fq on (EndF (V ), σq). The quadratic pair adq = (σq, fq) is called
the adjoint of q, and we use the notation Adq for the algebra with quadratic pair
(EndF (V ), σq, fq). As explained in [18, (5.11)], any quadratic pair on a split algebra
EndF (V ) is the adjoint of a nonsingular quadratic form q on V .

Let (A, σ, f) be an F -algebra with quadratic pair. For further use, we briefly
recall the definition of the discriminant and the Clifford algebra of (A, σ, f), as
featured in [18]. Assume A has even degree n = 2m, and ℓ ∈ A determines the
semi-trace f . If the characteristic of F is different from 2, the discriminant of (σ, f)
is given by

disc(σ, f) = (−1)mNrdA(a) ∈ F×/F×2

for any element a ∈ Alt(A, σ) ∩ A×. If F is of characteristic 2, the discriminant of
(σ, f) is given by

disc(σ, f) = Srd(ℓ) +
m(m− 1)

2
∈ F/℘(F ) .

It extends the discriminant invariant for quadratic forms. That is if q is a non-
singular quadratic form, then we have disc(adq) = ∆(q). See [18, §7.B] for more
details.

Let Sand : A⊗A→ EndF (A) denote the sandwich linear map, as defined in [18,
(3.4)]), where A denotes A viewed as an F -vector-space. The Clifford algebra
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C(A, σ, f) of the algebra with quadratic pair (A, σ, f) is the factor of the tensor
algebra T (A):

C(A, σ, f) =
T (A)

J1(σ, f ) + J2(σ, f)

where

(1) J1(σ, f) is the ideal generated by all the elements of the form s − f(s) · 1
for s ∈ A such that σ(s) = s;

(2) J2(σ, f) is the ideal generated by all elements of the form u − Sand(u)(ℓ)
for u ∈ A⊗A such that σ2(u) = u and where σ2 is defined by the condition

Sand(σ2(u))(x) = Sand(u)(σ(x)) for u ∈ A⊗A, x ∈ A .

The centre of the Clifford algebra of (A, σ, f) is a quadratic étale extension,
which is related to the discriminant as follows. In characteristic different from 2,
the centre of the Clifford algebra is given by F

(
√

disc(σ, f)
)

(see [18, (8.25)]).

In characteristic 2, the centre is given by F (u) where u2 + u = disc(σ, f) (see
[18, (8.27), (8.28)]). In either case, if the discriminant is trivial, this quadratic
étale extension is isomorphic to F × F and the Clifford algebra splits into two
components.

In addition, C(A, σ, f) is endowed with a canonical involution, denoted by σ, and
induced by the involution of T (A) acting as σ on A, that is

σ(a1 ⊗ . . .⊗ ar) = σ(ar)⊗ . . .⊗ σ(a1) for all a1, . . . , ar ∈ A .

The Clifford algebra of (A, σ, f) extends the even Clifford algebra for quadratic
spaces, that is if (A, σ, f) ≃ Adq for some nonsingular quadratic form q, there is a
canonical isomorphism between C(A, σ, f) and C0(q), and the canonical involution
σ corresponds to σq under this isomorphism. See [18, §8] for more details.

2.4. Semi-traces and tensor products. Consider an embedding

i : (A, σ) → (D, ρ),

where (A, σ) and (D, ρ) are two algebras with symplectic involution. Any element
ℓ ∈ A such that ℓ+σ(ℓ) = 1 maps to an element i(ℓ) ∈ D such that i(ℓ)+ρ(i(ℓ)) = 1.
In addition, symmetrised elements in (A, σ) map to symmetrised elements in (D, ρ).
Therefore, to any semi-trace f = fℓ on (A, σ), we may associate a well defined semi-
trace g = fi(ℓ) on (D, ρ). Clearly, the semi-trace g depends not only on f , but also
on the embedding i. When i is canonical, we forget the embedding and use the same
notation fℓ for both semi-traces. This correspondence is not extending or restricting
the semi-trace viewed as a map, even though i maps symmetric elements in (A, σ)
to symmetric elements in (D, ρ). For instance, if D is F -central and A has centre
ZA, then f is ZA-linear with values in ZA, while g is F -linear with values in F , and
ZA may be strictly larger than F . We will refer to g as the semi-trace induced by
f on (D, ρ).

Let (B, τ) be an algebra with involution, assumed to be orthogonal if F is of
characteristic different from 2 and (A, σ, f) an algebra with quadratic pair. The
involution τ ⊗σ is then orthogonal if the characteristic of F is different from 2 and
symplectic otherwise. Therefore, the construction above applies to the canonical
embedding (A, σ) ⊂ (B⊗A, τ⊗σ), so that f induces a semi-trace f⋆ on (B⊗A, τ⊗σ).
For all b ∈ Sym(B, τ) and a ∈ Sym(A, σ), b⊗ a ∈ Sym(B ⊗A, τ ⊗ σ) and we have

f⋆(b ⊗ a) = TrdB⊗A

(

(1 ⊗ ℓ)(b⊗ a)
)

= TrdB(b)TrdA(ℓa) = TrdB(b)f(a),
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where ℓ is an element defining the semi-trace f . In [18, (5.18)], it is proved that
this condition characterizes the semi-trace f⋆. This construction defines a tensor
product

(B, τ)⊗ (A, σ, f) = (B ⊗A, τ ⊗ σ, f⋆).

One may check that this tensor product corresponds to the usual one in the split
case, that is Adb ⊗Adρ = Adb⊗ρ for all nondegenerate symmetric bilinear forms b
and nonsingular quadratic forms ρ, see [18, (5.19)]. In addition, it is associative,
that is

(

(C, γ)⊗ (B, τ)
)

⊗ (A, σ, f) ≃ (C, γ)⊗
(

(B, τ) ⊗ (A, σ, f)
)

,

for all algebra with involution (C, γ), see [6, (5.3)]. In particular we may write
(C, γ) ⊗ (B, τ) ⊗ (A, σ, f) without any ambiguity. We say that (A, σ, f) is totally
decomposable if there exist F -quaternion algebras with involution (Qi, σi)16i6n−1

and an F -quaternion algebra with quadratic pair (Qn, σn, g) such that

(A, σ, f) ≃

(

n−1
⊗

i=1

(Qi, σi)

)

⊗ (Qn, σn, g).

Consider now two algebras with symplectic involutions (A, σ) and (B, τ). If the
characteristic of F is different from 2, the involution τ ⊗σ is orthogonal, and hence
there is a unique associated semi-trace. If the characteristic of F is 2, then we
have TrdB(b) = 0 for all b ∈ Sym(B, τ) and the formula above shows that, given an
arbitrary semi-trace f on Sym(A, σ), the induced semi-trace f⋆ on Sym(B⊗A, τ⊗σ)
vanishes on

Sym(B, τ)⊗ Sym(A, σ) ⊂ Sym(B ⊗A, τ ⊗ σ).

Again, this condition characterizes f⋆, see [18, (5.20)], and in particular, f⋆ does
not depend on the choice of f when τ also is symplectic. We now extend this result
to a product with r factors.

Proposition 2.3. Assume F has characteristic 2 and let (Ai, σi)16i6r be r algebras
with symplectic involutions for some r > 2. There exists a unique semi-trace

f⊗ : Sym

(

r
⊗

i=1

(Ai, σi)

)

→ F

such that

f⊗|⊗r
i=1

Sym(Ai,σi) = 0 .

We call f⊗ the canonical semi-trace on the tensor product of F -algebras with
symplectic involution

⊗r
i=1(Ai, σi). In the sequel, we will also denote by f⊗ the

unique semi-trace on the algebra with orthogonal involution
⊗r

i=1(Ai, σi) when F
has characteristic different from 2 and r is even.

Proof. Recall F has characteristic 2. For any algebra with involution (A, σ), given
a ∈ Symd(A, σ) and s ∈ Sym(A, σ) such that s and a commute, the product as
belongs to Symd(A, σ). From this and [18, (5.17)], an induction argument shows
that

Sym

(

r
⊗

i=1

(Ai, σi)

)

= Symd

(

r
⊗

i=1

(Ai, σi)

)

+

r
⊗

i=1

Sym(Ai, σi) .

The uniqueness of the semi-trace f⊗ follows as the value of any semi-trace on Symd
is fixed.
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It remains to prove the existence of such a semi trace. Let (B, τ) =
⊗r−1

i=1 (Ai, σi);
since τ is symplectic, we have TrdB(b) = 0 for all b ∈ Sym(B, τ). Pick an arbitrary
semi-trace f on (Ar, σr) and consider the tensor product

(B, τ)⊗ (Ar , σr, f) = (B ⊗Ar, τ ⊗ σr, f⋆).

The formula above shows that f⋆ vanishes on Sym(B, τ)⊗ Sym(Ar, σr) which con-
tains

⊗r
i=1 Sym(Ai, σi), hence it satisfies the required condition. �

Remark 2.4. The proof actually shows that f⊗ is the semi-trace induced by an
arbitrary semi-trace on one of the factors (Ai, σi), that is

(A1 ⊗ . . .⊗Ar, σ1 ⊗ . . .⊗ σr, f⊗) =
⊗

16k6r,k 6=i

(Ak, σk) ⊗ (Ai, σi, fi) ,

for any choice of i and of a semi-trace fi on (Ai, σi). More generally, given a
non-trivial partition I ∪ J = {1, . . . , r}, that is I 6= ∅ 6= J , I ∩ J = ∅, we have

(

A1 ⊗ . . .⊗Ar, σ1 ⊗ . . .⊗ σr, f⊗
)

≃ (AI , σI)⊗ (AJ , σJ , fJ),

where, for all subset S ⊂ {1, . . . , r}, (AS , σS) =
⊗

i∈S(Ai, σi), and fJ is an arbitrary
semi-trace on (AJ , σJ ).

Remark 2.5. Note that the semi trace f⊗ on the algebra with involution (A, σ) ≃
⊗r

i=1(Ai, σi) does depend on the choice of F -algebras with involution (Ai, σi) in the
decomposition. Assume the characteristic of F is 2. Since the canonical involution
on a quaternion algebra is symplectic, for any 2 quaternion F -algebras Q1 and Q2

we have

(Q1, )⊗ (Q1, ) ≃ (Q2, )⊗ (Q2, ) ≃ (M4(F ), τ)

where τ is the unique symplectic (and hyperbolic) involution on the F -algebra of
4× 4-matrices over F . However for i = 1, 2 we have that

(Qi ⊗Qi, ⊗ , f⊗) ≃ AdNrdQi

by [11, (2.9)], and AdNrdQ1
≃ AdNrdQ2

holds if and only if Q1 ≃ Q2. More gen-
erally, let π1 and π2 be n-fold Pfister forms. Then for i = 1, 2, Adπi

is a totally
decomposable quadratic pair on the 2n × 2n matrix algebra M2n(F ). By [6, (6.2)],
there exist quaternion algebras Q1,i, . . . , Qn,i such that M2n(F ) =

⊗n
j=1Qj,i and

the quadratic pair Adπi
is the product of the canonical involutions on Qi together

with the semi-trace f⊗. However, Adπ1
≃ Adπ2

if and only if π1 ≃ π2. There-
fore the semi-trace f⊗ depends on the choice of the quaternion algebras in the
decomposition of M2n(F ).

3. Canonical quadratic pair on a Clifford algebra

Throughout this section, (A, σ, f) is an algebra with quadratic pair. We assume
A has degree n = 2m, with m even, and m ≡ 0 mod 4 if F is of characteristic
different from 2. Under this assumption on the degree of A, the canonical involution
σ of the Clifford algebra C = C(A, σ, f) has symplectic type in characteristic 2, and
orthogonal type in characteristic different from 2, see [18, (8.12)]. The purpose
of this section is to define a semi-trace f on

(

C, σ
)

, which we call the canonical
semi-trace of the Clifford algebra, provided A satisfies the above conditions and
has degree 2m > 8. We also give an explicit description of f in the split case, with
particular attention to the adjoint of a 3-fold Pfister form.
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3.1. Definition of the canonical semi-trace. Consider the F -linear canonical
map c : A→ C induced by A→ A→ T (A). By [18, (8.16)] we have

c(x) + σ(c(x)) = TrdA(x).

Hence we have

(1) for all x ∈ A,

{

c(x) ∈ Skew(C, σ) if and only if TrdA(x) = 0,
c(x) + σ(c(x)) = 1 if and only if TrdA(x) = 1.

The main result in this section is the following:

Proposition 3.1. Assume A has degree 2m > 8, with m even and further that
m ≡ 0 mod 4 if the characteristic is different from 2. Then σ is symplectic in
characteristic 2 and orthogonal otherwise. For all λ ∈ A with TrdA(λ) = 1, the
element c(λ) defines a semi-trace on (C, σ), which does not depend on the choice of
λ among reduced trace 1 elements of A.

Proof. By (1), as TrdA(λ) = 1 we have that c(λ) + σ(c(λ)) = 1, and hence the
linear form which maps s ∈ Sym(C, σ) to TrdC(c(λ)s) is a semi-trace on (C, σ).
Moreover, two elements λ and λ′ of reduced trace 1 differ by a trace 0 element µ,
hence applying again (1), we have c(µ) = c(λ) − c(λ′) ∈ Skew(C, σ). The elements
c(λ) and c(λ′) define the same semi-trace on (C, σ) if and only if c(µ) ∈ Alt(C, σ);
this follows from the next lemma.

Lemma 3.2. Assume A has degree at least 6. In the Clifford algebra C, we have

c(A) ∩ Skew(C, σ) = c(A) ∩ Alt(C, σ) .

The result is trivial if the characteristic of F is different from 2, as in this case
Skew(C, σ) = Alt(C, σ). Assume now that the characteristic of F is 2. The inclusion
of the left hand side in the right is clear. We now show the converse. It suffices to
show the result in the case where A is split.

Assume that (A, σ, f) = Adq, for some quadratic form q : V → F , and C = C0(q).
Let q = [a1, b1] ⊥ . . . ⊥ [am, bm] be a decomposition of q and e1, e

′
1, . . . , em, e

′
m the

symplectic associated basis. As explained in [18, p.95-96], the set {1}∪ {eiej, e′ie
′
j |

1 6 i < j 6 m} ∪ {eie′j | 1 6 i, j 6 m} is a basis of c(A). All elements in this basis

are (skew-)symmetric except for the elements eie
′
i for all i ∈ {1, . . . ,m}. However,

we have eie
′
i+σ(eie

′
i) = 1, hence eie

′
i+ ei+1e

′
i+1 is symmetric for all 1 6 i 6 m− 1.

By [18, (8.17)], c(A)0 = c(A) ∩ Skew(C, σ) has codimension 1 in c(A). Therefore,

{1}∪{eiej , e
′
ie

′
j | 1 6 i < j 6 m}∪{eie

′
j | i 6= j}∪{eie

′
i+ ei+1e

′
i+1 | 1 6 i 6 m− 1}

is a basis of c(A) ∩ Skew(C, σ). To complete the proof, we show that these basis
elements lie in Alt(C, σ).

Pick i, j ∈ {1, . . . ,m} with i 6= j. As m > 3, there exists some k ∈ {1, . . . ,m} \
{i, j}. As eke′k + e′kek = 1, and both ek and e′k commute with ei and ej , and ei and
ej commute, we have that

eiej = eiej · 1 = eiej(eke
′
k + e′kek) = eiejeke

′
k + eieje

′
kek = eiejeke

′
k + e′kekejei

= eiejeke
′
k + σ(eiejeke

′
k) ∈ Alt(C, σ) .

A similar argument shows that e′ie
′
j and eie

′
j ∈ Alt(C, σ). Consider now

eie
′
i + eje

′
j = eie

′
i(eke

′
k + e′kek) + eje

′
j(eke

′
k + e′kek)

= eie
′
ieke

′
k + e′kekeie

′
i + eje

′
jeke

′
k + e′kekeje

′
j .
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Using eie
′
i + e′iei = 1 = eje

′
j + e′jej , we get that

eie
′
i + eje

′
j = eie

′
ieke

′
k + e′kek(1 + e′iei) + eje

′
jeke

′
k + e′kek(1 + e′jej)

= eie
′
ieke

′
k + e′keke

′
iei + eje

′
jeke

′
k + e′keke

′
jej

= (eie
′
ieke

′
k + eje

′
jeke

′
k) + σ(eie

′
ieke

′
k + eje

′
jeke

′
k) .

In particular, eie
′
i + ei+1e

′
i+1 ∈ Alt(C, σ) for all 1 6 i 6 m− 1, and this finishes the

proof. �

Using this proposition, we get :

Definition 3.3. Let (A, σ, f) be an algebra with quadratic pair, of degree 2m > 8,
with m even and further m ≡ 0 mod 4 if the characteristic of F is different from
2. Given λ ∈ A with TrdA(λ) = 1, the semi-trace

f : s ∈ Sym(C, σ) 7→ TrdC(c(λ)s)

does not depend on λ. It is called the canonical semi-trace on (C, σ). We refer to
the pair (σ, f) as the canonical quadratic pair on C = C(A, σ, f).

Remark 3.4. (1) Since the reduced trace is a nonzero linear form, there exists λ ∈ A
such that TrdA(λ) = 1.

(2) Assume the characteristic of F is prime to the degree of A, and let (A, σ) be
an algebra with orthogonal involution. Then 1

deg(A) ∈ A has reduced trace 1, and

its image in C(A, σ) is c
(

1
deg(A)

)

= f
(

1
deg(A)

)

= 1
2 by [18, (5.6) & (8.7)]. So f is

half the reduced trace of C, as prescribed in this case.
(3) This definition gives a semi-trace on the two components of the Clifford

algebra when the involution has trivial discriminant. In characteristic different
from 2, this is clear, since the involution is orthogonal on each component. Assume
the characteristic of F is 2. As explained in [18, (8.12)], since m is even, the
canonical involution restricts to a symplectic involution on each component. More
precisely, let ℓ ∈ A be an element that gives the semi-trace f . As explained in the
proof of [18, (8.28)], the centre of C(A, σ, f) is F [c(ℓ)]. If disc(σ, f) is trivial, then
c(ℓ)2+c(ℓ) = u2+u for some u ∈ F . It follows that C = C(A, σ, f) decomposes into
two components, C ≃ C+×C−, where C+ = C · (c(ℓ)+u) and C− = C · (c(ℓ)+u+1).
By [18, (5.6)&(8.16)], we have σ(c(ℓ)) = c(σ(ℓ)) = c(ℓ) + c(1) = c(ℓ) +m. Since m
is even, this shows the canonical involution on C restricts to involutions, denoted
σ+ and σ− respectively, on both components, which are symplectic. We get a pair
of canonical semi-traces, respectively denoted by f+ and f−, and determined by
c(λ)+ = c(λ).(c(ℓ) + u) and c(λ)− = c(λ).(c(ℓ) + u+ 1).

The next proposition provides some evidence that the quadratic pair we have just
defined is part of the structure of the Clifford algebra. Let θ : (A, σ, f) → (B, τ, g)
be an isomorphism of algebras with quadratic pairs. It follows from Definition [18,
(8.7)] that θ induces an isomorphism C(θ) : C(A, σ, f) → C(B, τ, g), satisfying
C(θ)(cA(a)) = cB(θ(a)) for all a ∈ A, where cA (respectively cB) denotes the
canonical map cA : A → C(A, σ, f) (respectively cB : B → C(B, τ, g)). Moreover,
one may easily check C(θ) preserves the canonical involutions. We claim it is an
isomorphism of algebras with quadratic pairs, that is

Proposition 3.5. Every isomorphism θ : (A, σ, f) → (B, τ, g) induces an isomor-
phism C(θ) :

(

C(A, σ, f), σ, f
)

→
(

C(B, τ, g), τ , g
)

.
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Proof. It only remains to check that C(θ) preserves the semi-trace. Let s be a
symmetric element, s ∈ Sym

(

C(A, σ, f), σ
)

, so that C(θ)(s) ∈ Sym
(

C(B, τ, g), τ
)

.
We have to prove g(C(θ)(s)) = f(s). Pick λ ∈ A with TrdA(λ) = 1. Since θ is an

isomorphism, we have TrdB(θ(λ)) = TrdA(λ) = 1. Therefore, by Definition 3.3,

g(C(θ)(s)) = TrdC(B,τ,g)(cB(θ(λ))C(θ)(s)) = TrdC(B,τ,g)(C(θ)(cA(λ)s).

Since C(θ) is an isomorphism, again it preserves the reduced trace, and we get

g(C(θ)(s)) = TrdC(A,σ,f)(cA(λ)s) = f(s),

as required. �

3.2. Explicit description in the split case. Let (V, q) be a nonsingular qua-
dratic space of dimension 2m, with polar form b. We assume that m is even, and
further that m ≡ 0 mod 4 if the characteristic of F is different from 2, so that the
canonical involution σq of C0(V, q) is of orthogonal type in characteristic different

from 2, and of symplectic type otherwise. Since q is nonsingular, we may find a
pair of vectors (e, e′) such that bq(e, e

′) = 1. Let u = ee′ be the corresponding
element in C0(V, q). We have u + σq(u) = ee′ + e′e = bq(e, e

′) = 1. Therefore,

this element u defines a semi-trace on (C0(V, q), σq), which we denote by fe,e′ . We

claim it coincides with the canonical semi-trace of
(

C(Adq), σq) under the canonical

identification provided in [18, (8.8)]. More precisely, we have :

Proposition 3.6. Let (V, q) be a nonsingular quadratic space of dimension 2m > 8,
with m even and assume further that m ≡ 0 mod 4 if the characteristic of F is
different from 2. The standard identification ϕq : V ⊗ V → EndF (V ) induces an
isomorphism of algebras with quadratic pairs

(

C0(V, q), σq, fe,e′
)

≃
(

C(Adq), σq, fq
)

.

Proof. In view of [18, (8.8)], it only remains to identify the semi-traces. Denote by
P the plane generated by e and e′ in V ; since q restricts to a nonsingular form on
P , by [12, (7.22)], we have V = P ⊥ P⊥. Recall from [18, (5.10)] that ϕq(e ⊗ e′)
maps x ∈ V to e bq(e

′, x). Hence it vanishes on e′ and P⊥, and maps e to itself.
Therefore, ϕq(e⊗e

′) ∈ EndF (V ) has trace 1. By Definition 3.3, the canonical semi-
trace of (C(Adq), σq) is determined by the element c(ϕq(e⊗ e′)); the corresponding

element in C0(q) is u = ee′, and this proves the proposition. �

Remark 3.7. It follows from this proposition that if V has dimension 2m > 8 with
m even and further m ≡ 0 mod 4 if the characteristic of F is different from 2,
then the semi-trace fe,e′ on (C0(V, q), σq) does not depend on the choice of the pair

(e, e′) such that bq(e, e
′) = 1. This is obvious if the characteristic of F is different

from 2, as in this case the semi-trace is unique.
If F has characteristic 2, this can be directly checked as follows. Consider two

such pairs (e, e′) and (g, g′), and let u = ee′ and v = gg′ be the corresponding
elements in C0(q). We need to prove that u and v differ by an alternating element
of (C0(V, q), σq). Let P and Q be the planes respectively generated by (e, e′) and

(g, g′). The polar form bq is nondegenerate on both planes. We claim there exists a
third plane R over which bq is nondegenerate, and which is orthogonal to P and Q.
Indeed, by [12, Prop 1.6], the form bq also is nondegenerate on the orthogonal P⊥

of the plane P , which has dimension 2m−2. Besides, P⊥∩Q⊥ is a subspace of P⊥

of dimension at least 2m− 4. Since m > 4, P⊥ ∩Q⊥ has dimension strictly larger
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than half the dimension of P⊥. Therefore, bq cannot be identically 0 on P⊥ ∩Q⊥,
which proves the existence of R. Let (h, h′) be a symplectic base of R, and let
w = hh′ ∈ C0(V, q). We have σq(u) = u + 1, σq(v) = v + 1 and σq(w) = w + 1.

Moreover, w commutes with u and v. It follows that u = v+(u+v)w+σq
(

(u+v)w
)

.

Hence u and v differ by an alternating element, so they define the same semi-trace.

Let us now pick an explicit presentation of the quadratic form q; we get the
following:

Proposition 3.8. Assume F is of characteristic 2 and m is even. If

q = [a1, b1] ⊥ · · · ⊥ [am, bm], then

(C(Adq), σq, fq) ≃
(

Q1 ⊗ · · · ⊗Qm−1, ⊗ · · · ⊗ , f⊗
)

⊗F K,

where Qi = [aibi, aiam), stands for the canonical involution, f⊗ is the canonical
semi-trace associated to this tensor product (see Proposition 2.3), and K is the
quadratic étale extension of F generated by ∆(q) ∈ F/℘(F ).

Remark 3.9. Let q be a non-degenerate quadratic form of even dimension over a field
of characteristic different from 2, and consider an orthogonal basis (e1, e2, . . . , e2m)
of the underlying vector space. A direct computation shows that the elements

{

i1 = e1e2
j1 = e1e3

,

{

i2 = e1e2e3e4
j2 = e1e2e3e5

, . . . ,

{

im−1 = e1 . . . e2m−3e2m−2

jm−1 = e1 . . . e2m−3e2m−1

generate pairwise commuting F -quaternion algebras in C0(q) that are stable under
the canonical involution. Hence, C0(q) is isomorphic to the tensor product of those
quaternion algebras, extended from F to the center K = F [e1 . . . e2m]. It follows
that (C0(q), adq) is totally decomposable as an algebra with involution. The propo-

sition above extends this result. In particular, in characteristic 2, for a nonsingular
quadratic form q, we have that (C(Adq), σq, fq) is a totally decomposable algebra

with quadratic pair; indeed,
(

Q1 ⊗ · · · ⊗Qm−1, ⊗ · · · ⊗ , f⊗
)

⊗F K ≃
(

Q1K ⊗ · · · ⊗Qm−1K , ⊗ · · · ⊗ , f⊗
)

.

In fact, we have more, namely that C0(q), endowed with its canonical quadratic
pair, has a totally decomposable descent to F .

Proof. By Proposition 3.6 and Example 2.1 we already know that the two algebras
with involution are isomorphic, and we need to check that the semi-trace f⊗ on
(

Q1K ⊗ · · · ⊗ Qm−1K , ⊗ · · · ⊗ ) corresponds to fe1,e′1 on (C0(V, q), σq). Let

(B, τ) = ⊗m−1
i=2 (QiK , ). As explained in Example 2.1, u1 = e1e

′
1 ∈ C0(V, q) is equal

to u1 ⊗ 1 ∈ Q1K ⊗ B. Therefore, fe1,e′1 on (C0(V, q), σq) is the semi-trace induced

by fu1
on (Q1K , ) as in Section 2.4, which coincides with f⊗ by Remark 2.4. �

Corollary 3.10. Let π be a 3-fold Pfister form over F . We have

(C(Adπ), σπ , fπ) ≃ Adπ ×Adπ .

Proof. For fields of characteristic different from 2, this follows directly from [18,
(35.1)] and the uniqueness of the semi-trace. Assume now that the characteristic
of F is 2. Let π = 〈〈a, b, c]]. Using the isometry x[1, y] ≃ [x, x−1y] for x ∈ F× and
y ∈ F , we obtain that

π ≃ [a, a−1c] ⊥ [b, b−1c] ⊥ [ab, (ab)−1c] ⊥ [1, c] .
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Hence, by Proposition 3.8, we have

(C(Adπ), σπ, fπ) =
(

[c, a)⊗ [c, b)⊗ [c, ab), ⊗ ⊗ , f⊗
)

⊗F (F × F ) .

On the other hand,

Adπ ≃ Ad〈〈a〉〉 ⊗Ad〈〈b, c]] .

Since 〈〈b, c]] is the norm form of the quaternion algebra [b, c), using [5, (5.5)] and [11,
(2.9)] we get

Adπ ≃ ([0, a), τ)⊗ ([c, b), )⊗ ([c, b), , f) ,

where for the quaternion basis (1, u, v, w) of [0, a) the orthogonal involution τ is
characterised by τ(u) = u and τ(v) = v and f is any semi-trace on ([c, b), ).
Finally, for a particular choice of the the semi-trace f , the isomorphism from [6,
(5.5)] gives us

([0, a), τ)⊗ ([c, b), , f) ≃ ([c, a)⊗ [c, ab), ⊗ , f⊗) .

This finishes the proof by Remark 2.4. �

We also prove the following extension of [18, (8.5)].

Corollary 3.11. Let q be a nonsingular quadratic form over F of even dimension
2m > 8 with m even. If q is isotropic then (C0(Adq), σq , fq) is hyperbolic.

Proof. For the case where F is of characteristic different from 2, see [18, (8.5)]. We
now assume that F is of characteristic 2. As q is isotropic we have q ≃ H ⊥ q′ ≃
[1, 0] ⊥ q′ for some nonsingular quadratic form q′ over F . Hence we may assume
a1 = 1 and b1 = 0 in Proposition 3.8, and we get

(C0(Adq), σq , fq) ≃ ([0, c), , f)⊗ (B, τ) ⊗F K

for some c ∈ F×, some arbitrary choice of a semi-trace f on ([c, 0), ), and some
F -algebra with symplectic involution (B, τ) (see Remark 2.5). Since [0, c) is a split
algebra, we may choose f so that ([0, c), , f) is the adjoint of a hyperbolic plane,
and it follows that the Clifford algebra (C0(Adq), σq , fq) is hyperbolic. �

4. Triality

4.1. An action of A3 on PGO+(n). Let O be a Cayley algebra, and denote by
⋆ its para-Cayley product, defined by x ⋆ y = x̄ȳ, see [18, §34.A]. The algebra
(O, ⋆, n) is a symmetric composition algebra, where n is the norm form of O. In
particular, the norm form is multiplicative, that is n(x ⋆ y) = n(x)n(y) for all
x, y ∈ O. Moreover, we have

(2) ∀x, y ∈ O, x ⋆ (y ⋆ x) = n(x)y = (x ⋆ y) ⋆ x

see [18, (34.1)]. In this section, we describe an action of A3 on PGO+(n), induced by
the algebra structure of O, and which will be used to study algebras with quadratic
pairs of degree 8 and trivial discriminant. Similar computations were recently made
by Alsaody and Gille [2, §4], where they work over more general base (a unital
commutative ring), and consider triples of isometries, while we consider triples of
similitudes. Our approach follows [18, §35], with the additional ingredient that
the Clifford algebra is induced with a canonical quadratic pair rather than just an
involution.

The main result in this section is the following :
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Proposition 4.1. Let t be a proper similitude of (O, n) with multiplier µ(t). There
exist proper similitudes (t+, t−) of (O, n) such that

(a) t+(x ⋆ y) = µ(t+) t(x) ⋆ t−(y);
(b) t(x ⋆ y) = µ(t) t−(x) ⋆ t+(y);
(c) t−(x ⋆ y) = µ(t−) t+(x) ⋆ t(y).

The pair (t+, t−) is uniquely defined up to a factor (λ−1, λ) for some λ ∈ F× and
the multipliers satisfy µ(t+)µ(t)µ(t−) = 1.

From this, we derive an action of the alternating group A3 ≃ Z/3 on PGO+(n) as
follows. Given a proper similitude t of (O, n) we denote by [t] its class in PGO+(n).
It is clear from the relations above that [t++] = [t−] and [t+++] = [t]. Hence, we
get :

Corollary 4.2. The assignments [t] 7→ θ+([t]) = [t+] and [t] 7→ θ−([t]) = [t−]
define an action of A3 on PGO+(n).

Remark 4.3. In [2], Alsaody and Gille give an explicit description of the spin group
Spin(n) with its trialitarian action (see [2, Lem. 3.3 and Thm. 3.9]). Their descrip-
tion is in terms of so-called related triples, which correspond to triples as in our
Proposition 4.1, except that t, t+ and t− are isometries rather than similitudes.
It is clear from their work that the action described in this section is the induced
trialitarian action on PGO+(n). The explicit description we provide could also be
deduced from their results by fppf descent.

The remainder of this section outlines the proof of Proposition 4.1. The argument
is mostly borrowed from [18, §34], except for Lemma 4.5 which adds the canonical
quadratic pair to the picture.

For all x ∈ O, we denote by rx and ℓx the endomorphisms of O defined by
rx(y) = y ⋆ x and ℓx(y) = x ⋆ y. We first prove :

Lemma 4.4. Let t be a proper similitude of (O, n). The map

ψt : O → EndF (O ⊕O)

defined by

ψt(x) =

(

0 ℓt(x)
µ(t)−1rt(x) 0

)

induces isomorphisms C(n) ≃ EndF (O ⊕ O) and C0(n) ≃ EndF (O) × EndF (O),
which we denote by Ψt.

Proof. A direct computation shows that for all x, y ∈ O, we have

(3) ψt(x)ψt(y) = µ(t)−1

(

ℓt(x) ◦ rt(y) 0
0 rt(x) ◦ ℓt(y)

)

.

In view of (2), it follows that ψt(x)
2 = µ(t)−1n(t(x)) = n(x). By the universal

property of the Clifford algebra, we get a non trivial map Ψt : C(n) → EndF (O⊕O),
which is an isomorphism since both algebras are simple and of the same dimension.
The computation of ψt(x)ψt(y) above shows that this isomorphism sends C0(n) to
EndF (O)× EndF (O), which embeds diagonally in EndF (O ⊕O). �

Assume now that t = Id and consider the corresponding isomorphisms, denoted
by Ψ1. The next lemma is a refined version of [18, (35.1)] (see also [2, Prop. 3.10]):
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Lemma 4.5. The isomorphism Ψ1 restricted to the even Clifford algebra is an
isomorphim of algebras with quadratic pairs

Ψ1 : (C0(n), σn, fn
)

→ Adn ×Adn,

where (σn, fn) stands for the canonical quadratic pair on C0(n).

Remark 4.6. Since all 3-fold Pfister forms are norm forms of some Cayley algebras,
this lemma gives a new proof of Corollary 3.10.

Proof. We already know that Ψ1 is an isomorphism of algebras, and one may check
it preserves the involution as in [2, Prop. 3.10]. It only remains to prove that it is
compatible with the semi-traces. Therefore, we may assume that the characteristic
of F is 2. Let (ei, e

′
i)16i64 be a symplectic basis of (O, n). By Proposition 3.6,

the canonical semi-trace fn on C0(n) is determined by the element e1e
′
1 ∈ C0(n).

Under the isomorphism Ψ1, it corresponds to the semi-trace determined by the

element Ψ1(e1e
′
1) = ψ1(e1)ψ1(e

′
1) =

(

ℓe1 ◦ re′1 0
0 re1 ◦ ℓe′1

)

. Hence, we have to

prove that the elements ℓe1 ◦ re′1 and re1 ◦ ℓe′1 ∈ EndF (O) determine the semi-trace
fn associated to the norm form n. By [18, (5.11)], this means we have to check
that ∀v ∈ O,

TrdEndF (O)

(

ℓe1 ◦ re′1 ◦ ϕn(v ⊗ v)
)

= n(v),

and similarly for the endomorphisms re1 ◦ ℓe′1 ◦ϕn(v⊗ v), where ϕn is the standard
identification O ⊗ O ≃ EndF (O) defined in [18, (5.2)]. Since the value of a semi-
trace is determined on symmetrised elements, it is enough to prove this equality
when v is one of the basis elements (ei, e

′
i)16i64, see the proof of [18, (5.11)]. For all

x ∈ O, we have ℓe1◦re′1◦ϕn(ei⊗ei)(x) =
(

e1⋆(ei⋆e
′
1)
)

bn(ei, x). This endomorphism
maps all elements of the basis to 0, except for e′i. Hence its trace is the coordinate
of e1 ⋆ (ei ⋆ e

′
1) on e

′
i, that is b(e1 ⋆ (ei ⋆ e

′
1), ei). By [18, §34], we get

b(e1 ⋆ (ei ⋆ e
′
1), ei) = b(ei, e1 ⋆ (ei ⋆ e

′
1)) = b(ei ⋆ e1, ei ⋆ e

′
1) = n(ei)b(e1, e

′
1) = n(ei),

as required. A similar computation shows the equality also holds for e′i ⊗ e′i, and
for the endomorphism re1 ◦ ℓe′

1
◦ ϕn(v ⊗ v) instead of ℓe1 ◦ re′

1
◦ ϕn(v ⊗ v), so the

lemma is proved. �

With this in hand, we may now prove Proposition 4.1 as follows. Given a proper
similitude t of (O, n), consider the isomorphisms Ψ1 and Ψt. By the Skolem-Noether
theorem, there exists an invertible element S ∈ EndF (O⊕O) ≃M2(EndF (O)) such
that the following diagram commutes :

C(n)

Ψ1

��

Ψt

((◗
◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

EndF (O ⊕O)
Int(S)

// EndF (O ⊕O).

Restriction to the even part of all three algebras shows that Int(S) preserves
EndF (O)× EndF (O) ⊂M2(EndF (O)), so that

S =

(

s0 0
0 s2

)

for some s0, s2 ∈ EndF (O).
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Recall that t also induces an isomorphism C0(t) : C0(n) → C0(n) which preserves the
canonical quadratic pair by Proposition 3.5. We claim that the following diagram
is commutative :

C0(n)

Ψ1

��

Ψt

**❯❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

C0(t)
// C0(n)

Ψ1

��

EndF (O)× EndF (O)
Int(S)

// EndF (O)× EndF (O).

Indeed, the lower triangle is obtained from the previous commutative diagram by
restriction to the even part. Since C0(t)(xy) = µ(t)−1t(x)t(y) for all x, y ∈ O
(see [18, (13.1)]), the upper triangle also commutes by a direct computation using
(3). In view of Lemma 4.5 and Proposition 3.5, the automorphism Int(S) preserves
the quadratic pair adn × adn, so that s0 and s1 are similitudes of (O, n).

Finally, since Ψt = Int(S) ◦ Ψ1, we have for all x ∈ O, ψt(x) = Sψ1(x)S
−1.

Hence, we get µ(t)−1rt(x) = s2rxs
−1
0 and ℓt(x) = s0ℓxs

−1
2 , so that for all y ∈ O,

µ(t)−1s0(y) ⋆ t(x) = s2(y ⋆ x) and t(x) ⋆ s2(y) = s0(x ⋆ y). Applying the norm
n to the second equality, we get µ(t)µ(s2) = µ(s0). Hence, the similitudes t+ =
µ(s0)

−1s0 and t− = s2 have µ(t)µ(t
+)µ(t−) = 1 and satisfy equations (a) and (c) in

Proposition 4.1. Equation (b) follows from (a) and (c), as explained in [18, p.484].
Since

(4) Ψ1 ◦ C0(t) ◦Ψ
−1
1 = Int

(

t+ 0
0 t−

)

,

the pair (t+, t−) is unique up to a pair of scalars. The condition on the multipliers
guarantees it actually is unique up to (λ−1, λ), for some λ ∈ F×. It only remains
to prove that t+ and t− are proper; as explained in [18, §35.B], if one of them was
improper, it would satisfy a relation similar to [18, (35.4)(5)(6)] instead of relations
(b) and (c) above. This concludes the proof.

Remark 4.7. It follows from the proof that, given a proper similitude t ∈ PGO+
8 ,

we have θ+([t]) = [t+] and θ−([t]) = [t−], where [t+] and [t−] are characterized by
equation (4) above, and Ψ1 is as in Lemma 4.5.

4.2. Trialitarian triples. A trialitarian triple over F is an ordered triple of degree
8 central simple algebras with quadratic pairs over F ,

(

(A, σA, fA); (B, σB , fB); (C, σC , fC)
)

,

such that there exists an isomorphism

αA :
(

C(A, σA, fA), σA, fA
)

→ (B, σB , fB)× (C, σC , fC).

Two such triples, denoted by (A,B,C) and (A′, B′, C′) for short, are called isomor-
phic if there exists isomorphism of algebras with quadratic pairs

φA : (A, σA, fA) → (A′, σA′ , fA′),

φB : (B, σB , fB) → (B′, σB′ , fB′),

and φC : (C, σC , fC) → (C′, σC′ , fC′),
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and αA and αA′ as above such that the following diagram commutes
(

C(A, σA, fA), σA, fA
) αA

//

C(φA)

��

(B, σB , fB)× (C, σC , fC)

φB×φC

��
(

C(A′, σA′ , fA′), σA′ , fA′

) αA′

// (B′, σB′ , fB′)× (C′, σC′ , fC′).

Remark 4.8. If (A,B,C) is a trialitarian triple, it follows from the definition that
C(A, σA, fA) has centre F × F , hence the quadratic pair (σA, fA) has trivial dis-
criminant (see [18, (7.7) & (8.28)]).

Example 4.9. Assume F is of characteristic 2. Let q be an 8-dimensional quadratic
form with trivial Arf invariant, and let (A, σA, fA) = Adq. Pick a presentation

q = [a1, b1] ⊥ [a2, b2] ⊥ [a3, b3] ⊥ [a4, b4].

By Proposition 3.8, (A,B,B) is a trialitarian triple, where B stands for

(B, σB , fB) = ([a1b1, a1a4)⊗ [a2b2, a2a4)⊗ [a3b3, a3a4), ⊗ ⊗ , f⊗
)

.

Hence if the algebra A is split in a trialitarian triple (A,B,C), then B and C
are isomorphic. The converse also holds, as we now explain:

Lemma 4.10. Let (A,B,C) be a trialitarian triple. The following assertions are
equivalent:

(1) The algebra A is split;
(2) The triples (A,B,C) and (A,C,B) are isomorphic;
(3) The algebras with quadratic pairs (B, σB , fB) and (C, σC , fC) are isomor-

phic;
(4) The algebras B and C are Brauer equivalent.

Proof. Assume A is split, and consider an improper isometry of the underlying
quadratic space. It induces an automorphism φA of (A, σA, fA) such that C(φA)
acts non trivially on F × F . Therefore, if ε : B × C → C × B denotes the switch
map, defined by ε(x, y) = (y, x), then ε ◦ αA ◦ C(φA) ◦ α

−1
A is an isomorphism

B × C → C × B which acts trivially on F × F . Hence, it is equal to (φB , φC) for
some isomorphisms of algebras with quadratic pairs φB : B → C and φC : C → B.
This shows that (φA, φB , φC , αA, ε ◦αA) defines an isomorphism of triples between
(A,B,C) and (A,C,B). Assertion (3) follows from (2) by definition, and it clearly
implies (4). Finally, since A has degree 8, the so-called fundamental relations given
in [18, (9.13) and (9.14)] prove that (4) implies (1). �

Lemma 4.11. There is a bijection between H1(F, PGO+
8 ) and isomorphism classes

of trialitarian triples.

Proof. Let n0 be the 8-dimensional hyperbolic quadratic form, so that PGO+
8 =

PGO+(n0). According to [18, §29.F], H1(F,PGO+
8 ) corresponds bijectively to iso-

morphism classes of quadruples (A, σA, fA, εA), where (A, σA, fA) is a degree 8
algebra with quadratic pair, and εA : ZA → F × F is a fixed isomorphism from
the centre of the Clifford algebra of (A, σA, fA) and F × F , which is the centre of
C0(n0). To such a quadruple, we may associate a trialitarian triple (A,B,C), where
B and C are defined by

{

B = C(A, σA, fA) e, C = C(A, σA, fA)(1 + e),
and e = ε−1

A

(

(1, 0)
)

∈ ZA ⊂ C(A, σA, fA).
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Since A has degree 8, the canonical involution σA acts trivially on ZA. Hence
the canonical pair (σA, fA) induces quadratic pairs (σB, fB) and (σC , fC) on each
component, see Remark 3.4. Moreover, one may check that isomorphic quadruples
lead to isomorphic trialitarian triples.

Conversely, given a trialitarian triple (A,B,C) pick an isomorphism αA between
C(A) and B × C, and define the εA to be the restriction of αA to the centre ZA of
the Clifford algebra of A. We claim that the isomorphism class of the quadruple
(A, σA, fA, εA) does not depend on the choice of αA. If all such isomorphisms have

the same restriction to the centre, this is clear. Assume now that there exists α
(1)
A

and α
(2)
A having different restrictions. Then the composition α

(2)
A ◦ (α

(1)
A )−1 is an

isomorphism of the algebra with quadratic pair B × C whose restriction to the
centre F ×F is the non trivial automorphism. Hence, B and C are isomorphic, and
A is split by Lemma 4.10. In this case, the algebra with quadratic pair (A, σA, fA)

admits improper similitudes, and it follows that the quadruples (A, σA, fA, ε
(1)
A ) and

(A, σA, fA, ε
(2)
A ) are isomorphic.

Therefore, the set of isomorphism classes of quadruples (A, σA, fA, εA) and the
set of isomorphism classes of trialitarian triples (A,B,C) are in bijection, as re-
quired. �

4.3. Action of A3 on trialitarian triples. The main result of this section is the
following, which extends [18, (42.3)] to characteristic 2:

Theorem 4.12. The action of A3 on PGO+
8 induces an action on trialitarian

triples, which is given by permutations. In particular, if
(

C(A, σA, fA), σA, fA
) ∼
−→ (B, σB , fB)× (C, σC , fC),

then we also have
(

C(B, σB, fB), σB , fB
) ∼
−→ (C, σC , fC)× (A, σA, fA),

and
(

C(C, σC , fC), σC , fC
) ∼
−→ (A, σA, fA)× (B, σB , fB).

Proof. Let (A,B,C) be a trialitarian triple, and fix an isomorphism

αA :
(

C(A, σA, fA), σA, fA
)

→ (B, σB , fB)× (C, σC , fC).

As above, we let n0 be the 8-dimensional hyperbolic form. Recall that Ψ1 defined
as in Lemma 4.5 is an isomorphism

Ψ1 : (C0(n0), σn0
, fn0

) → Adn0
×Adn0

,

so that (Adn0
,Adn0

,Adn0
) also is a trialitarian triple. After scalar extension to a

separable closure Fs of the base field F , both triples are isomorphic. More precisely,
consider an arbitrary isomorphism

φA : (Adn0
)Fs

→ (A, σA, fA)Fs
.

Composing φA with an improper similitude of n0 if necessary, we may assume that
the composition αA ◦ C0(φA) ◦ Ψ

−1
1 acts trivially on F × F , so that it is given by

(φB , φC) for some isomorphisms of algebras with quadratic pairs

φB : (Adn0
)Fs

→ (B, σB , fB)Fs
and φC : (Adn0

)Fs
→ (C, σC , fC)Fs

.
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Hence we get an isomorphism of trialitarian triples, that is a commutative diagram

(C0(n0), σn0
, fn0

)Fs

Ψ1
//

C(φA)

��

(Adn0
)Fs

× (Adn0
)Fs

φB×φC

��
(

C(A, σA, fA), σA, fA
) αA

// (B, σB , fB)× (C, σC , fC).

Identifying the automorphism group of (Adn0
)Fs

with PGO+
8 (Fs), we get by

Galois descent that the map

a : ΓF → PGO+
8 (Fs), γ 7→ φ−1

A ◦ γφA

is a 1-cocycle whose cohomology class determines the triple (A,B,C). Finally, from
the commutative diagram above, we have

Ψ1◦C0(φ
−1
A ◦γφA)◦Ψ

−1
1 =

(

Ψ1C(φ
−1
A )α−1

A

)

◦
(

αAC(
γφA)Ψ

−1
1

)

= (φ−1
B ◦γφB , φ

−1
C ◦γφC).

In view of the description of the trialitarian action in Section 4.1, see also Re-
mark 4.7, we get that θ+(a) and θ−(a) coincide with the cohomology classes of
the cocycles γ 7→ φ−1

B ◦ γφB and γ 7→ φ−1
C ◦ γφC , respectively. Hence, θ+(A,B,C)

and θ−(A,B,C) are trialitarian triples having respectively B and C as a first slot.
Finally, we have (θ+)2 = θ− and θ−θ+ = Id. Applying these formulas to the triple
(A,B,C) we get that the second and the third slots in θ+(A,B,C) respectively
are the first slots in θ−(A,B,C) and in (A,B,C), that is θ+(A,B,C) = (B,C,A).
The same kind of argument shows θ−(A,B,C) = (C,A,B), and this finishes the
proof. �

5. Applications of Triality

Theorem 4.12 above shows that the Clifford algebra, viewed as an algebra with
quadratic pair, actually is a complete invariant for degree 8 algebras with quadratic
pair with trivial discriminant. As a first application of our main result, we now
characterize totally decomposable algebras with quadratic pair in degree 8, see
Theorem 5.1. The proof uses Lemma 4.10, which describes all triples including a
split algebra. Using direct sums of algebras with quadratic pairs, we then provide
exemples of triples, in which all three slots decompose as a sum of two degree
4 totally decomposable algebras with quadratic pair. Finally, we prove that all
trialitarian triples that include two algebras of index at most 2 are of this shape.

5.1. Totally decomposable quadratic pairs. Using the trialitarian action de-
scribed in the previous section, we may characterize totally decomposable degree 8
algebras with quadratic pairs as follows:

Theorem 5.1. Let (A, σ, f) be an F -algebra with quadratic pair with deg(A) = 8.
Then (A, σ, f) is totally decomposable if and only if it has trivial discriminant and
its Clifford algebra has a split factor.

Proof. The case of F of characteristic different from 2 follows immediately from [18,
(42.11)] and the uniqueness of the semi-trace in this case. Assume now that F is of
characteristic 2. First consider the case where (A, σ, f) has trivial discriminant, and
its Clifford algebra has a split factor. This means (A, σ, f) is part of a trialitarian
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triple (A,B,C) with B or C split. By Theorem 4.12, it is also part of a triple whose
first slot is split, and in view of Lemma 4.10, we get a quadratic form q such that

(

C(Adq), σq, fq
)

≃ (A, σ, f) × (A, σ, f).

In view of Proposition 3.8, this shows (A, σ, f) is totally decomposable.
Assume conversely that (A, σ, f) is totally decomposable, and pick a decompo-

sition
(A, σ, f) = ([a1, b1)⊗ [a2, b2)⊗ [a3, b3), ⊗ ⊗ , f⊗) .

Let q = [b1, a1b
−1
1 ] ⊥ [b2, a2b

−1
2 ] ⊥ [b3, a3b

−1
3 ] ⊥ [1, a1 + a2 + a3]. Then q has trivial

Arf invariant, and applying again Proposition 3.8, we get

(C(Adq), σq, fq) ≃ (A, σ, f) × (A, σ, f) .

Hence by Theorem 4.12, we have
(

C(A, σ, f), σ, f
)

≃ (A, σ, f)×Adq .

This proves (A, σ, f) has trivial Arf invariant and its Clifford algebra has a split
component. �

5.2. Examples of trialitarian triples. In this section, we provide explicit exam-
ples of trialitarian triples, and we prove all triples that include at least two algebras
of Schur index at most 2 are of this shape, as well as all isotropic triples. We use
the following definition, which was first introduced for algebras with involution by
Dejaiffe [8], and later extended to quadratic pairs in [13, p.379] (see also [7, Def.
1.4], and [15, Prop. 7.4.2]).

Definition 5.2. The algebra with quadratic pair (A, σ, f) is called an orthogonal
sum of (A1, σ1, f1) and (A2, σ2, f2), and we write

(A, σ, f) ∈ (A1, σ1, f1)⊞ (A2, σ2, f2),

if there are symmetric orthogonal idempotents e1 and e2 in the algebra A such that
for i ∈ {1, 2},

(eiAei, σ|eiAei) ≃ (Ai, σi),

so that we may identify Ai with a subset of A, and

∀si ∈ Sym(Ai, σi), f(si) = fi(si).

Note that the identification of Ai with its image in A is compatible with the
reduced trace. More precisely, we have

TrdA(ai) = TrdAi
(ai) for all ai ∈ Ai ≃ eiAei ⊂ A,

see the matrix description of the orthogonal sum given in [8, §2]. Moreover, the
direct product (A1, σ1, f1) × (A2, σ2, f2) embeds in (A, σ, f), meaning there is an
embedding of the direct product of algebras with involution, and the restriction of
f to the image of Sym(Ai, σi) coincides with fi for i ∈ {1, 2}.

Example 5.3. Let (V1, q1) and (V2, q2) be two non singular quadratic spaces over
F . For all µ ∈ F×, we have

Adq1⊥〈µ〉q2 ∈ Adq1 ⊞Adq2 .

This follows directly from the description of Adq given in [18, §5.B], and the defini-
tion above, taking e1 and e2 in A = EndF (V1⊕V2) to be the orthogonal projections
on V1 and V2 respectively.
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As this example shows, an orthogonal sum (A, σ, f) is not uniquely determined
by its summands (A1, σ1, f1) and (A2, σ2, f2) and (A1, σ1, f1)⊞ (A2, σ2, f2) should
be considered as a set.

With this in hand, we may produce examples of trialitarian triples as follows. Let

Q1, Q2, Q3 and Q4 be quaternion algebras such that
⊗4

i=1Qi is split. For all i and
j with i 6= j, we denote by fij the semi-trace f⊗ on Sym(Qi⊗Qj, ⊗ ) associated
to the tensor product decomposition (Qi, ) ⊗ (Qj , ) as in Proposition 2.3. We
have the following

Proposition 5.4. Let (A, σ, f) be an F -algebra with quadratic pair such that

(A, σ, f) ∈ (Q1 ⊗Q2, ⊗ , f12)⊞ (Q3 ⊗Q4, ⊗ , f34) .

Then (σ, f) has trivial discriminant, and the Clifford algebra C(A, σ, f), with its
canonical quadratic pair, is a direct product of

C+(A, σ, f) ∈ (Q1 ⊗Q3, ⊗ , f13)⊞ (Q2 ⊗Q4, ⊗ , f24) ,

and C−(A, σ, f) ∈ (Q1 ⊗Q4, ⊗ , f14)⊞ (Q2 ⊗Q3, ⊗ , f23) .

Proof. In characteristic different from 2, the algebra with involution version of this
result is stated and proved in [26, Prop.6.6], and the proposition follows immediately
by uniqueness of the semi-trace in this case. So we may assume F has characteristic
2. The same argument as in characteristic different from 2 applies to describe
C(A, σ, f) with its canonical involution, and the definition above shows it only
remains to check the canonical semi-trace f acts as fij on each subset

Sym(Qi ⊗Qj , ⊗ ) ⊂ Sym
(

C(A, σ, f), σ
)

.

For i ∈ {1, 2}, let ui in Qi be a quaternion such that ūi + ui = 1. Identifying
Q1 ⊗Q2 to a subset of A as above, we have

TrdA(u1 ⊗ u2) = TrdQ1⊗Q2
(u1 ⊗ u2) = TrdQ1

(u1)TrdQ2
(u2) = 1.

Therefore, the canonical semi-trace f on C(A, σ, f) is determined by the element
c(u1 ⊗ u2) in C(A, σ, f) by Definition 3.3.

Recall from [18, (15.12)] that the Clifford algebra of (Qi⊗Qj, ⊗ , fij), with its
canonical involution, is the direct product (Qi, ) × (Qj , ). The same argument
as in the proof of [8, Prop.3.5] shows that the embedding of the direct product
(Q1 ⊗Q2, ⊗ , f12)× (Q3 ⊗Q4, ⊗ , f34) in (A, σ, f) induces an embedding of
the tensor product of the corresponding Clifford algebras

((Q1, )× (Q2, ))⊗ ((Q3, )× (Q4, )) →֒ (C(A, σ, f), σ) .

It follows that c(u1 ⊗ u2) is c12(u1 ⊗ u2) ⊗ (1, 1), where c12 is the canonical map
from (Q1 ⊗ Q2, ⊗ , f12) to its Clifford algebra (Q1, ) × (Q2, ). This map is
described in [18, (8.19)], and we get

c(u1 ⊗ u2) = (u1, u2)⊗ (1, 1) = (u1 ⊗ 1, u2 ⊗ 1, u1 ⊗ 1, u2 ⊗ 1),

in (Q1⊗Q3)×(Q2⊗Q4)×(Q1⊗Q4)×(Q2⊗Q3). Therefore, the canonical semi-trace
acts on Sym(Qi ⊗Qk, ⊗ ) for i ∈ {1, 2} and k ∈ {3, 4} by

f(x) = TrdQi⊗Qk
((ui ⊗ 1)x).

In particular, it vanishes on Sym(Qi, )⊗Sym(Qk, ) and coincides with fik by [18,
(5.20)], see also Section 2.4. This finishes the proof. �
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Remark 5.5. (1) If one of the quaternion algebras, say Q4, is split, then the algebras
with quadratic pair (Qi ⊗ Q4, ⊗ , fi4) are hyperbolic for i ∈ {1, 2, 3} and we
get an isotropic trialitarian triple in which the algebras with quadratic pairs are
respectively Witt equivalent to

(Q1 ⊗Q2, ⊗ , f12), (Q1 ⊗Q3, ⊗ , f13) and (Q2 ⊗Q3, ⊗ , f23),

where Q1 Q2 and Q3 are quaternion algebras with Q1 ⊗Q2 ⊗Q3 split.
(2) The argument in the proof of [26, Prop.6.12] extends to this setting and it

follows that all trialitarian triples which are isotropic are either as in (1) or with a
split component. In the second case, they coincide up to permutation with

(

Adq⊥H,M2(D),M2(D)
)

,

where q is an Albert form, D is the corresponding biquaternion algebra, which may
have index 1, 2 or 4 depending on q, and M2(D) is endowed with its hyperbolic
quadratic pair, see Corollary 3.11.

The purpose of the remaining part of this section is to prove the following the-
orem, which provides a description of all trialitarian triples including at least two
algebras of Schur index at most 2.

Theorem 5.6. Let (A,B,C) be a trialitarian triple over F such that at least two of
the algebras A, B and C have Schur index at most 2. Then there exist F -quaternion
algebras Q1, Q2, Q3 and Q4, with Q1 ⊗Q2 ⊗Q3 ⊗Q4 split, such that

(A, σA, fA) ∈ (Q1 ⊗Q2, ⊗ , f12)⊞ (Q3 ⊗Q4, ⊗ , f34) ,

(B, σB , fB) ∈ (Q1 ⊗Q3, ⊗ , f13)⊞ (Q2 ⊗Q4, ⊗ , f24) ,

and (C, σC , fC) ∈ (Q1 ⊗Q4, ⊗ , f14)⊞ (Q2 ⊗Q3, ⊗ , f23) .

In order to prove the theorem, we use the so-called generalised quadratic forms,
as defined by Tits in [28]. We first recall the definition and a few well-known
facts. Let A be a central simple F -algebra with involution θ of the first kind. A
generalised quadratic form over (A, θ) is a pair (V, q) where V is a finite-dimensional
right projective A-module and q is a map q : V → A/ Symd(A, θ) subject to the
following conditions:

(a) q(xd) = θ(d)q(x)d for all x ∈ V and d ∈ A.
(b) There exists an hermitian form h defined on V and with values in (A, θ) such

that for all x, y ∈ V we have q(x+ y)− q(x)− q(y) = h(x, y) + Symd(A, θ).

In this case the hermitian form (V, h) is uniquely determined (see [17, (5.2)]) and
we call it the polar form of (V, q). Note that it follows from (b) that

h(x, x) ∈ Symd(A, θ), for all x ∈ V,

hence the polar form of any quadratic form over (A, θ) is alternating. We call (V, q)
nonsingular if its polar form is nondegenerate. We say that (V, q) represents an
element a ∈ A if q(x) = a + Symd(A, θ) for some x ∈ V \ {0}. We call (V, q)
isotropic if it represents 0 and anisotropic otherwise. For a field extension K/F we
write (A, θ)K = (A ⊗F K, θ ⊗ Id), VK = V ⊗F K, and by qK we mean the unique
quadratic form q : VK → AK such that q(x⊗ k) = q(x)k2 for all x ∈ V and k ∈ K.

Let D be a central simple F -division algebra with involution of the first kind
θ. For a1, . . . , an ∈ D, we denote by 〈a1, . . . , an〉 the quadratic form (Dn, q) over
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(D, θ) where q : Dn → D is given by

(x1, . . . , xn) 7→
n
∑

i=1

θ(xi)aixi + Symd(D, θ) .

We call such a form a diagonal form. We call a quadratic form diagonalisable if it
is isometric to a diagonal form.

We will use the following:

Lemma 5.7. Assume F is of characteristic 2, and Q is an F -quaternion division
algebra endowed with its canonical involution. Let u ∈ Q be such that u2 + u =
a ∈ F , and consider the quadratic extension K = F [℘−1(a)] = F [α], with α2 +α =
u2 + u = a. If a generalised quadratic form (V, q) over (Q, ) is isotropic over K,
then q represents uλ for some λ ∈ F×.

Remark 5.8. This result also holds in characteristic not 2, by excellence of quadratic
field extensions and [21, Prop. p.382].

Proof. If q is isotropic, then it splits off a 2-dimensional isotropic form isomorphic
to 〈u,−u〉, as all 2-dimensional isotropic planes are isomorphic (see [17, (5.6.1)]).
We may therefore assume that q is anisotropic. Recall Symd(Q, ) = F and
Symd(QK , ) = K, so that q and qK respectively have values in Q/F and QK/K.

By assumption, the generalised quadratic space (VK , qK) is isotropic, that is
there exists (x, y) ∈ V 2 such that

qK(x⊗ 1 + y ⊗ α) = 0 ∈ QK/K.

On the other hand, we have

qK(x ⊗ 1 + y ⊗ α) = qK(x⊗ 1) + qK(y ⊗ α) + hK(x⊗ 1, y ⊗ α)

= q(x) ⊗ 1 + q(y)⊗ α2 + h(x, y)⊗ α

=
(

q(x) + q(y)a
)

⊗ 1 +
(

h(x, y) + q(y))
)

⊗ α .

Since QK/K ≃ Q/F ⊗ 1⊕Q/F ⊗ α, we get that

q(x) + q(y)a = 0 ∈ Q/F and h(x, y) + q(y) = 0 ∈ Q/F.

Consider now the element z = x+ yu ∈ V . We have

q(z) = q(x) + q(yu) + h(x, yu) = q(x) + (u+ 1)q(y)u+ h(x, y)u

=
(

q(x) + uq(y)u
)

+
(

q(y) + h(x, y)
)

u

=
(

q(y)a+ uq(y)u
)

+
(

q(y) + h(x, y)
)

u ∈ Q/F

Take any ξ ∈ Q such that q(y) ≡ ξ mod F . Note that ξ 6≡ 0 mod F by the
ansotropy of q. The quaternion ξa + uξu commutes with u, hence belongs to
F [u] ⊂ Q. In addition, we have proved that q(y) + h(x, y) = 0 ∈ Q/F . It follows
that q(z) ∈ F [u]/F ⊂ Q/F and this proves the lemma. �

With this in hand, we may now prove Theorem 5.6.

Proof. If the characteristic of F is different from 2, then the result follows from
[24, (6.2)] and the uniqueness of the semi-trace in this case. The result for fields of
characteristic 2 is similar, but we include the details below for completeness.

Let (A, σ, f) be an algebra with quadratic pair. We assume A has degree 8, (σ, f)
has trivial discriminant and two of A, C+(A, σ, f) and C−(A, σ, f) have index at
most 2. By triality, we may assume that A and at least one component of the
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Clifford algebra of (A, σ, f) has index at most 2. We claim there exists quaternion
algebras Q1, Q2, Q3 and Q4 such that

(5) (A, σ, f) ∈ (Q1 ⊗Q2, ⊗ , f12)⊞ (Q3 ⊗Q4, ⊗ , f34) .

The theorem follows from this claim by Proposition 5.4.
We first consider the case where A is split. Then (A, σ, f) ≃ Adq for some

nonsingular quadratic form q over F with ∆(q) = 0 and ind(C0(q)) 6 2. Therefore
by Proposition 2.2 there exist a1,2 , a3, a4 ∈ F× and a 2-dimensional nonsingular

quadratic form φ over F such that q ≃ 〈a1, a2, a3, a4〉
bi ⊗ φ. In particular we may

write q ≃ 〈a1, a2〉
bi⊗φ ⊥ 〈a3, a4〉

bi⊗φ. Since these summands are similar to 2-fold
Pfister forms, taking the adjoint quadratic pair now gives the result.

Now assume ind(A) = 2 and let Q be an F -quaternion division algebra such
that A is Brauer equivalent to Q. We may choose an F -basis (1, u, v, w) of Q such
that u2 + u = a ∈ F , v2 = b ∈ F× and w = uv = v(u + 1) for some a ∈ F and
b ∈ F×. To prove (5) in this case, we use generalised quadratic forms. Recall one
constructs the adjoint quadratic pair to a generalised quadratic form q over (D, θ)
in an analogous way to the construction of an adjoint quadratic pair to a quadratic
form over a field (see [13, p.372]). We denote this quadratic pair by Adq. Moreover,
by [13, (1.5)], there exists a nonsingular generalised quadratic form q over (Q, )
such that Adq ≃ (A, σ, f). Since this form is nonsingular, it is diagonalisable by [9,
(6.3)], so there exist u1, u2, u3, u4 ∈ Q such that q ≃ 〈u1, u2, u3, u4〉. Further, since
q is nonsingular, we have that TrdQ(ui) 6= 0 for i = 1, . . . , 4 by [9, (7.5)]. Note also,
that since q is a map to Q/F , we may assume each ui is in the F -subvector space
of Q generated by u, v and w. In particular, since the ui have non zero trace, via
changing the basis of Q if necessary, we may assume that u1 = u.

Let K = F (℘−1(a)), a separable quadratic extension. We have that

(A, σ, f) ∈ Ad〈u〉 ⊞Ad〈u2,u3,u4〉 .

After extending scalars toK, Ad〈u〉 becomes hyperbolic. It follows that Ad〈u2,u3,u4〉

becomes adjoint to a 6-dimensional quadratic form with trivial discriminant, that
is, an Albert form. The even part of the Clifford algebra of this form is of index
at most 2, and hence this Albert form is isotropic (see [18, (16.5)]). So Lemma 5.7
applies, and we may assume that u2 = uλ for some λ ∈ F . We get that the
generalised quadratic form q is

q = 〈u, uλ〉 ⊥ 〈u3, u4〉 .

By [10, (3.4)], we have that

Ad〈u,uλ〉 = Ad〈〈λ〉〉 ⊗Ad〈u〉 .

Further, since we have that

disc(A, σ, f) = disc(Ad〈〈λ〉〉 ⊗Ad〈u〉) = 0

and that disc is additive across orthogonal sums (see [18, (7.14)]), it follows that
disc(Ad〈u3,u4〉) is also trivial. Hence Ad〈u3,u4〉 is decomposable. Since any decom-
posable quadratic pair on a biquaternion algebra is of the form (H1⊗H2, ⊗ , f⊗)
for some quaternion algebras H1 and H2, by [18, (15.12)], we get (5), and this con-
cludes the proof. �
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6. Appendix: Canonical semi-trace on the full Clifford algebra of a
quadratic form

In this appendix, we will show how one can construct a canonical semi-trace on
the full Clifford algebra of a quadratic form. This semi-trace will be closely related
to the semi-trace constructed in Section 3. If the field is of characteristic different
from 2, then the full Clifford algebra has a unique semi-trace if and only if the
canonical involution is orthogonal. Therefore, throughout this section, we assume
that F is a field of characteristic 2.

We first give a construction of the full Clifford algebra of a nonsingular quadratic
form. For this, we use the following presentation of quaternion algebras. When
the characteristic of F is 2, a quaternion algebra may be defined as F -algebra
generated by two elements r, s subject to r2, s2 ∈ F and rs + sr = 1 . If s2 6= 0,
then (1, sr, s, sr2) is a quaternion basis of this algebra, in the sense of §2.1, and
otherwise the algebra is split (see [18, p.25]).

Example 6.1. Let q be a nonsingular quadratic form over F with polar form b. Pick
a decomposition

q ≃ [a1, b1] ⊥ . . . ⊥ [am, bm],

and let (ei, e
′
i)16i6m be the corresponding symplectic basis of the underlying vector

space V . That is, for all i with 1 6 i 6 m, we have q(ei) = ai, q(e
′
i) = bi,

b(ei, e
′
i) = 1 and b(ei, ej) = b(e′i, e

′
j) = b(ei, e

′
j) = 0 for all i 6= j. We may assume

ai 6= 0 for all i.
The full Clifford algebra of q is generated by the elements {ei, e′i}16i6m, subject

to the following relations for all i ∈ {1, . . . ,m}:

e2i = ai, e
′
i
2
= bi, eie

′
i + e′iei = 1.

In addition, any pair of elements in the basis other than (ei, e
′
i) commute. By

definition, the elements ei and e
′
i are fixed under the canonical involution σq on C(q).

Therefore, the pairs (ei, e
′
i)16i6m each generate pairwise commuting σq-stable F -

quaternion subalgebras of C(q), respectively isomorphic to [aibi, ai), and σq restricts

to the canonical involution on each of these quaternion subalgebras. In particular,
the canonical involution on C(q) is always symplectic.

Proposition 6.2. Let (V, q) be a nonsingular quadratic space of even dimension
2m > 6. Given a pair (e, e′) ∈ V 2 with bq(e, e

′) = 1, the map

f : Sym(C(q), σq) → F, x 7→ TrdC(q)(ee
′x),

is a semi-trace and does not depend on the choice of (e, e′).

We will refer to this semi-trace as the canonical semi-trace on the full Clifford
algebra, and use the same notation, fq, as for the canonical semi-trace on the even

Clifford algebra.

Remark 6.3. (1) If m is even, we may define fq as the semi-trace on the full

Clifford algebra C(q) induced by the canonical semi-trace on C0(q), in the
sense of § 2.4. Note though that restricting the canonical semi-trace of
C(q), viewed as a map, to the even part Sym(C0(q), σq) does not produce a

semi-trace, since the values are in F , while the centre of C0(q) is a quadratic
étale extension of F .
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(2) Since the involution σq on C(q) always is symplectic, m need not be even

here, so this remark is not enough to prove the proposition.

Proof. Let (e, e′) ∈ V 2 be two vectors such that bq(e, e
′) = 1. One computes that

the element u = ee′ ∈ C(q) satisfies u+σq(u) = 1, hence it determines a semi-trace

fe,e′ on C(q).
If m > 4, the same computations as in Remark 3.7 shows that fe,e′ does not

depend on the choice of (e, e′). If m = 3 we may argue as follows. There exists a
symplectic base ε = (e, e′, e2, e

′
2, e3, e

′
3). The computation at the end of Remark 3.7

shows that fe,e′ = fe2,e′2 = fe3,e′3 . Consider now another pair of vectors (g, g′) with
bq(g, g

′) = 1 which is part of a symplectic base δ = (g, g′, g2, g
′
2, g3, g

′
3). By Revoy’s

Proposition [27, Prop. 3], there is a chain of symplectic bases η1 = ε, η2, . . . , ηr = δ
of (V, q) such that for all i, 1 6 i 6 r − 1, the bases ηi and ηi+1 have a common
symplectic pair. Hence, again by the computations of Remark 3.7, the semi-traces
fηi

and fηi+1
coincide, and this concludes the proof. �

Remark 6.4. Using Example 6.1 and the same arguments as in the proof of Propo-
sition 3.8, we see that if q = [a1, b1] ⊥ · · · ⊥ [am, bm], with m > 3, then

(

C(q), σq, fq
)

≃
(

[a1b1, a1)⊗ · · · ⊗ [ambm, am), ⊗ · · · ⊗ , f⊗
)

.

In particular, two decompositions of the algebra with involution (C(q), σq) arising

from two different presentations of q give rise to the same canonical semi-trace.
Compare with Remark 2.5.

Corollary 6.5. Let q be a nonsingular quadratic form over F . If q is isotropic
then (C(q), σq , fq) is hyperbolic.

Proof. This follows from Remark 6.4 using a similar argument as to that in Corol-
lary 3.11. �
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[11] A. Dolphin and A. Quéguiner-Mathieu, Symplectic involutions, quadratic pairs and function
fields of conics. Journal of Pure and Applied Algebra, 221(8), 1966-1980, 2017.



28 ANDREW DOLPHIN AND ANNE QUÉGUINER-MATHIEU
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