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Quantitativeness of phase-field simulations for directional solidification of faceted
silicon monograins in thin samples.
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We report the results of a two-dimensional reference model for the formation of facets on the left
and the right side of a silicon monograin that is solidified by pulling a thin sample in a constant
temperature gradient. Anisotropy functions of both the surface energy and the kinetic attachment
coefficient are adapted from a recent model for free growth of silicon micrometer size grains [Boukel-
lal et al., J. Cryst. Growth 522, 37 (2019)]. More precise estimates of the physical parameters
entering these functions are obtained by reanalyzing available experimental results. We show that
the reference model leads to a differential equation for the shape of the solid-liquid interface. The
numerical solutions of this equation give a reference law Λ(Vf ) relating the facet length Λ to the
facet normal velocity Vf . In parallel, phase-field simulations of the reference model are performed
for two growth orientations, [001] and [011]. Facet lengths Λ obtained from simulations at different
facet velocities are first extrapolated to the limit of vanishing interface width. This extrapolation
is made possible by constructing a master curve common to the whole range of Vf values consid-
ered. The extrapolated Λ values are then compared with the ones predicted by the Λ(Vf ) reference
law. Both sets give comparable values, with an accuracy of a few percent, which confirms that the
phase-field model can give quantitative results for faceted solidification of silicon.

PACS numbers: 81.10.Aj, 68.70.+w, 81.30.Fb
Keywords:

I. INTRODUCTION

Over the last decades, several generations of solar cells
have been developed to speed up the fossil energy re-
placement [1]. Nowadays, silicon-based solar cells are
still widely used [2, 3], notably because of the remark-
able electronic properties of silicon [4]. However, con-
trolling sufficiently the solidification of silicon to improve
the photovoltaics properties at reasonable cost remains
an important economical issue [3]. It is indeed well reck-
oned that the structural and chemical defects of solidified
silicon have a direct impact on solar cell performances
[3, 5–7].

Crystalline silicon exhibits facets at the solid-liquid in-
terface, as is predicted by Jackson Criterion [8], and is
consistently shown by experiments [9, 10] and reproduced
by atomic-scale simulations [9, 11–13]. In particular, it is
well-known that silicon solidification shapes develop large
{111} facets because, as compared to the other orienta-
tions, kinetic attachment effects considerably slow down
the growth of these compact atomic planes [14–17]. In or-
der to include faceting in growth models, two main points
of view have been advanced in the literature. A first one
is to consider fully (or almost fully) faceted shapes. In
this case fundamental questions arise at the corner points
where several facets meet. This point of view has given
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rise to a number of fundamental studies [18–20] and to
elegant solutions concerning the singularities at corner
points [21, 22].

The second point of view is more adapted to partially
faceted interfaces like the ones usually observed for a
solid silicon germ in contact with its melt [10, 17]. In
this case, facets only appear for a discrete set of orien-
tations, namely the eight 〈111〉 directions in the present
case, and these facets are separated by large rough por-
tions of the interface. As shown in [23], it is necessary
that both anisotropy functions associated with the sur-
face energy γ and the kinetic attachment coefficient β
present singularities in the 〈111〉 directions, in order to
account for the large facets observed in [10, 17]. This is
the point of view that we will adopt here, based on the
aforementioned experimental, numerical, and analytical
results, as well as on our previous phase-field studies of
equiaxed faceted solidification in two [24] and in three
dimensions [23].

About two decades ago, the use of phase-field solidifi-
cation simulations was considerably boosted by the intro-
duction of the thin interface formalism that was proved to
give quantitative results for both pure elements [25] and
binary alloys [26, 27]. Most of the phase-field studies were
carried out for materials exhibiting a rough solid-liquid
interface. In such situations, the kinetic attachment ef-
fects are negligible and the anisotropy functions of sur-
face energy consist essentially in linear combinations of
the spherical harmonics taking into account the symme-
try of the material. However, when it comes to perform
quantitative simulations of solidification of materials ex-
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hibiting a faceted solid-liquid interface like silicon, kinetic
attachment effects should be taken into account and ob-
taining reasonable expressions for the anisotropy func-
tions associated with γ and β becomes a serious limiting
step. Different anisotropy functions have been proposed
in the literature but they generally depend on adjustable
numerical parameters that have no direct physical coun-
terparts [28–30] so quantitative comparison with experi-
ment is difficult. A review of such functions with a short
description of their qualities and drawbacks was recently
published [31].

In a recent study [23], we proposed anisotropy func-
tions that were based on experimental results and sym-
metry considerations. These anisotropies were used to
simulate Si solidification in conditions close to reference
experiments [10]. The good agreement found between
numerics and experiments validated to a large extent the
proposed anisotropy functions. Here, we recalibrate these
functions by reanalyzing available experimental data and
we use them to perform simulations of directional solidifi-
cation of pure Si. The goal of the present paper is to show
that one can obtain a quantitative phase-field model for
this problem.

The paper is organized as follows. In section II, a two-
dimensional (2D) reference model is defined to describe
the steady-state solidification of a Si monograin. The
solid-liquid interface is composed of a central rough seg-
ment matching tangentially two facets that contact the
domain side boundaries. The appropriate interface equa-
tion is discussed for the rough and the faceted segments.
In addition, the analytical form of the anisotropy func-
tions are given for γ and β. Section III presents the
bases of our phase-field model and the phase field evolu-
tion equation is given. Based on available experimental
data, anisotropy parameters are adjusted. Implementa-
tion of the phase-field code is then presented, in partic-
ular the criterion used to measure facet lengths and its
implications on the choice of the kinetic attachment am-
plitude in the code. An extended list of the physical and
numerical simulation parameters is also provided. The
phase-field results obtained for the steady-state growth
shapes are presented and analyzed in section IV. There,
the emphasis is put on convergence of the simulation re-
sults with decreasing interface width. It is shown that
converged values Λ0 of the facet length can be obtained
with the help of a master curve that takes into account
the influence of the normal facet velocity Vf on phase
field diffusion across the interface region along a facet.
The reference model is then treated analytically in sec-
tion V, where a differential equation is obtained for the
rough segment of the interface. Solving this equation
by a finite-difference algorithm gives an exact correspon-
dance between the facet length Λ and Vf . Direct compar-
ison with the phase-field converged values Λ0(Vf ) shows
excellent agreement, within a few percent. Finally, our
main conclusions are summarized in section VI, and a
few prospective points are evoked.

II. REFERENCE 2D MODEL

We focus on the case of a Si monograin that is solidified
by pulling a thin sample at a velocity V toward the cold

region of a furnace. A constant temperature gradient ~G

is imposed by the furnace, and both ~G and the station-

ary growth velocity ~V are directed along the vertical z
axis as shown in Fig. 1a. The temperature gradient is as-
sumed positive, so a planar interface must remain stable
independently of the pulling velocity. In the experiments,
facets are nevertheless observed on both sides of the sam-
ple as a result of the Herring equation [32] that governs
the solid-liquid-vacuum triple junctions (Fig. 1b).
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FIG. 1: (a) Schematic representation of the 2D model dis-
cussed in the text. The solid-liquid interface is represented by
a straight line of length Λ (faceted segment BF) that matches
tangentially a curve (rough segment FA) at point F. The
frame of reference is linked to the T = Tm isotherm located
at z = zm (η = 0). A vertical mirror symmetry is assumed
at the solid apex (point A). (b) Experimental in situ X-ray
image showing the slanted interfacial region (central lighter
strip) in a thin silicon ingot (courtesy of N. Mangelinck-Noël
and G. Reinhart). The crucible width is about 6 mm. Silicon
fills completely the crucible in the direction perpendicular to
the figure (300 µm thick) but it does not fill the complete cru-
cible width, so vacuum regions remain on the sides. Dotted
lines parallel to the side facets are added to guide the eye.
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As shown in Fig. 2, we independently consider two
simple crystal orientations for which a first crystal axis,
[001] (respectively [011]), lies along the z axis and a sec-
ond crystal axis, [110] (respectively [011̄]), lies along the
y axis perpendicular to the sample. Our reference model
is restricted to the plane xz, that is we consider 2D sys-
tems for both orientations. As illustrated in Fig. 2, this
model is only an approximation of a real 3D system. The
approximation is definitely better for the [011] crystal ori-
entation for which a straight edge common to two {111}
facets parallels the y axis than for the [001] direction for
which the apex is common to four adjacent {111} facets,
so invariance along y is broken. Although the present
2D model would not perfectly describe a bulk sample,
we will still use it for two reasons. First, we will see that
it is possible to obtain an analytical equation for the in-
terface in 2D systems, the corresponding equation being
not yet completely known for 3D systems. Second, the
phase-field simulations we present here are still too de-
manding (both in time and storage) to be performed in
fully 3D domains. In the following, we will nevertheless
keep 3D notations for the crystal planes and directions
because both the experiments and the phase-field model
we refer ourselves to are 3D.

FIG. 2: (a) Octahedron representing the diamond crystal
structure. (b) Cross-section in a 〈200〉 plane with a {001}
crystal axis in the growth direction. (c) Cross-section in a
〈200〉 plane with a {011} crystal axis in the growth direction.
The actual crystalline directions taken for the numerical do-
main axes x, y, z are indicated above (b) and (c). The corre-
sponding values of the facet angle θf are given in Table I.

A. Interface equations

In the literature on Si solidifying from its pure melt,
it has consistently been observed that only {111} facets
appear [14–17]. In the present case, the shape adopted
by the solid-liquid interface is schematically represented
in Fig. 1a. The side facet has a length Λ and it lies
precisely at a crystallographic angle θf about the z axis.

This ideal facet ends at point F, where it matches tangen-
tially the rough part of the interface. In the following, we
will consider the case of perfectly symmetric interfaces,
so only half of the domain width is represented with a
mirror boundary condition on the right side. In this 2D
model, crystal anisotropy functions only depend on the
conical angle α between the normal to interface and the
〈111〉 direction. Due to the presence of {111} facets, a
singulariy at α = 0 is thus expected for the surface free
energy

γ(α) = γ0as(α), (1)

γ0 being the average surface energy at Tm and as(α)
the anisotropy function. In the following, we assume
that as has a cusp at α = 0. As described in [23, 24],
this cusp causes a discontinuity of the surface stiffness

γ0

[
as(α)+d2as(α)/dα2

]
for α = 0. In the present model,

a similar discontinuity is assumed for the kinetic attach-
ment coefficient.

β(α) = β111bk(α), (2)

β111 being the physical value of the kinetic attach-
ment coefficient for the {111} facets. The corresponding
anisotropy function bk(α) = 0 when α 6= 0 and bk(0) = 1.

Solidification is governed by physical equations that
involve the nondimensional temperature field

u =
cp
lH

(T − Tm), (3)

cp being the specific heat at constant pressure, lH the
specific latent heat and Tm the silicon melting tempera-
ture. We will consider the case of a frozen temperature
field T (z) = Tm + G(z − zm), where zm is the altitude
of the isotherm T = Tm. We place ourselves in the ref-
erence frame of the temperature isotherm, where zm is
constant in time. At any point along the rough part of
the interface, thermodynamic equilibrium is ensured by
the Gibbs-Thomson equation,

ui = −dT (α)

Ri
, (4)

with Ri the local interface radius of curvature, and

dT (α) = d0

[
as(α) + d2as(α)/dα2

]
, (5)

where d0 = cpγ0Tm/l
2
H is the thermal capillary length.

For the faceted part of the interface, Gibbs-Thomson
equation can no longer be used because ui varies with z
along the facet. Ben Amar and Pomeau (BAP) proposed
to use an integral equation instead [33]. This equation
reads

Λu =

∫ s+

s−
uT ds = −d0[das/dα|0+−das/dα|0− ]−Λβ111Vf ,

(6)
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where, s+ and s− are the curvilinear coordinates of the
facets ends (α→ 0+ and 0− respectively). According to
Fig. 1a, the facet normal velocity Vf is related to the
pulling velocity V through

Vf = V sin θf . (7)

Equation (6) thus gives the average facet undercooling
−ū as the sum of a capillary term and a kinetic term.

B. Anisotropy function for the surface energy

Optical observations of a pure silicon crystal in con-
tact with its melt showed that both the equilibrium and
slow solidification shapes display an alternance of rough
and faceted segments [10]. A comparison with phase-field
simulations recently allowed to propose an expression of
the surface energy anisotropy as that was inspired by pre-
vious analytical [34, 35] and numerical [23, 24] studies.
This anisotropy function has cusps in the 〈111〉 directions
and it progressively crosses over to a constant when the
interface orientation deviates from these directions. It
keeps a constant value for α ≥ α0, where α0 is a param-
eter that is fixed to 35 degrees here [23]. For α ≤ α0, it
reads

as(α) =
γ(α)

γ0
= 1 + δ| cosα|+ δ0| sinα|, (8)

where δ0 = δ tanα0. As a result, the surface energy γ(α)
has a cusp at α = 0 and it is maximum at α = α0. For
α ≥ α0, we impose γ(α) = γ(α0), which ensures the
continuity of both as and das/dα and prevents the intro-
duction of a spurious cusp at α = α0. For this anisotropy
function, BAP equation adopts the more specific form

u = −2d0δ0/Λ− β111Vf . (9)

III. BASES OF THE PHASE-FIELD MODEL

In order to perform numerical simulations of the phys-
ical 2D model described in the previous section, we use
a phase-field model [23] that we recently adapted from
the original thin-interface model [25, 36]. This model in-
troduced a characteristic length W0 that represents the
width of the interfacial region and a characteristic time
τ0 for the relaxation of the system to a minimum of the
free energy. More details about the present phase-field
model can be found in the above references. Our imple-
mentation makes use of the preconditioned phase field,

ψ =
√

2 tanh−1(ϕ), (10)

where ϕ is the original phase field that varies between
+1 in the solid phase and −1 in the liquid phase. The
preconditioned phase field varies linearly across the solid-
liquid interface. It was introduced by Glasner [37] to
reduce the simulation times. For the present simulations,
we further increase the code efficiency by using Graphics
Processing Unit (GPU) parallel programming [38].

A. Phase-field equation

Imposing a frozen temperature field reduces the model
to a single evolution equation for the phase field. Taking
the interface width W0, and the relaxation time τ0 as the
length and time units, this equation reads

aτ (~n)
∂ψ

∂t
=
√

2
[
ϕ− a1ξ(1− ϕ2)u

]
+a2s

[
∇2ψ −

√
2ϕ(~∇ψ)2

]
+2as~∇as · ~∇ψ

+

√
2

(1− ϕ2)
~∇ · ~A, (11)

where a1 ' 0.8839. In function of the scale parameter ξ,
the characteristic length and time read W0 = ξd0, and
τ0 = a0(d20/D)ξ3, D being the Si thermal diffusivity, and
a0 ' 0.5539 [25]. Following [23] and [29], the anisotropy
function aτ is taken as

aτ (~n) = as(~n)[as(~n) + ak(~n)], (12)

where

ak(~n) = bk(~n)(β111/β0), (13)

and β0 ' 0.5539W0/D

The three components of the unit vector ~n normal to
the solid-liquid interface are calculated along the numer-
ical domain axes x, y, and z. However, the anisotropy
function as(n1, n2, n3) is expressed in the frame of the
three cubic crystal axes [100] [010] [001] that are respec-
tively labelled 1, 2, and 3. Three Euler angles are used to
obtain n1, n2, n3 from nx, ny, nz by inverse rotations. De-
tails of the present formulation in terms of the anisotropy

vector ~A were recently given in the context of dendritic
growth of metallic alloys [39, 40]. The first component of
~A is given by

A1 =
(1− ϕ2)√

2
|~∇ψ|as

[
(n21 − 1)

∂as
∂n1

+n1n2
∂as
∂n2

+ n1n3
∂as
∂n3

]
, (14)

components A2 and A3 being obtained by circular per-
mutations of the indices (1, 2, 3). The same Euler angles
are used to obtain Ax, Ay, Az from A1, A2, A3 by direct
rotations.

Let us remark that our code is written in three dimen-
sions but in this paper we will restrict the calculations
to the xz plane as in the reference problem of the previ-
ous section. To do this, we use a numerical domain that
is two mesh units thick and we impose mirror boundary
conditions along y. Then ny = 0 and as, ak and aτ are
functions of the conical angle α solely.
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B. Experimental input for the anisotropy functions
parameters

1. Free energy

As mentionned above, the anisotropy function as(α)
of the interfacial free energy given in Eq. (8) has a cusp
at α = 0. As suggested in [41] the numerical divergences
produced by the discontinuity of as at the cusp can be
avoided by replacing | cosα| with

√
cos2 α+ ε2 and | sinα|

with
√

sin2 α+ ε2. This substitution slightly modifies
the values of the anisotropy function, as shown in details
in [23] but, except for α ' 0, the differences are small.
In practice, taking a value of ε2 = 10−4 proved satisfac-
tory. The cusp amplitude δ can be obtained by compar-
ing the experimental equilibrium shapes of reference [10]
with the ones simulated by our phase-field code. It was
noted in [23] that certain shapes shown in [10] are slightly
deformed, probably because of a small misalignment of
the crystal with the furnace vertical axis. This would
explain why the (110) crystal equilibrium shape shown
in their original figure (numbered 4f in [10]) does not
exactly reproduce the angles expected for the diamond
crystal structure. To correct for this misalignment, we
first slightly rotate this figure until the angles between
two adjacent facets become very close to 110 degrees as
expected. We then repeat phase-field simulations of the
equilibrium shape for different values of the cusp ampli-
tude δ and compare them with the rotated experimental
shape. The best agreement is found for δ = 2.5.

2. Kinetic attachment coefficient

For 〈111〉 facets, the kinetic attachment coefficient β111
is known to be rather large [17]. The thin-interface phase-
field model does allow quantitative simulations of solidifi-
cation for materials with strong kinetic coefficients. How-
ever this model is primarily restricted to linear kinetic
undercoolings of the form βVf . Introducing nonlinear ki-
netics in a phase-field code is in principle possible but
such attempts have resulted in a much higher level of ap-
proximation so far [43]. In order to obtain an estimate
of β111, the experimental data given in [17] need to be
replotted in function of the local undercooling and fit-
ted to a linear curve. Doing so, one obtains the estimate
β111 ' 24.7× 10−6 s/µm.

In the phase-field code one also needs to avoid the
strong singularity of β(α) resulting from Eq. (2) because
the sharp discontinuity of bk(α) at α = 0 causes numer-
ical divergences in practice. The discontinuity is thus
replaced in our code by a smooth variation that has the
form of a narrow Gaussian,

ak(α) = b0 exp
[
−
( α

∆α

)2]
. (15)

In this expression, α represents the conical angle defined
previously, and ∆α its dispersion. As detailed in the next

section, the Gaussian amplitude b0 is taken proportional
to the ratio β111/β0 in the code.

C. Implementation

1. Initial and boundary conditions

The initial condition is a flat interface located at the
isotherm T = Tm. Accordingly, the phase field is initially
set to ψ(z) = (zm − z)/W0.

In order to reproduce 2D systems, we reduce the do-
main size to two mesh points and impose mirror bound-
ary conditions in the y direction. On the left domain
side (x = 0), the Herring equation must be satisfied
by an appropriate boundary condition. Phase-field mod-
els that coherently implements triple junction equations
have been described in [42]. In the present code, we adopt
the less accurate but simpler wetting condition already
used in [44], (∂ψ

∂x

)
x=0

= σ0(1− ϕ2), (16)

where σ0 is a positive constant. This boundary con-
dition only modifies the phase field in the vicinity of
the triple point, where the solid-liquid interface contacts
the domain boundary. Far from this point, one has
ϕ2 ' 1, so Eq (16) reduces to a mirror boundary condi-
tion. In our simulations the wetting boundary condition
(16) causes the liquid phase to partially wet the lateral
domain boundary on a thickness of the order of the cap-
illary length d0. Just beyond this thin liquid film, the
solid-liquid interface is almost a straight line with a slope
that is exactly the expected crystallographic angle θf , as
observed in the experiments [45]. We checked that σ0
can be varied in a rather large domain without affecting
the simulated interface shape. For the present purpose,
it is thus unnecessary to determine a precise value of this
parameter. In order to reduce the computing time, one
generally simulates only a half of the domain width, so
a mirror boundary condition is imposed on the right do-
main side located at x = L. In addition, we pull back
the phase field along the z direction as needed to keep
the solidification front at a roughly constant altitude in
the numerical domain.

2. Facet length

Rounding the singularities of the interfacial free energy
and of the kinetic coefficient as discussed in the previ-
ous section somehow changes the nature of the problem.
In the 2D reference model, singularities are present and
straight ideal facets exist. In the phase-field model, the
interface is never quite straight, although the anisotropy
functions strongly vary in the vicinity of α = 0. Ideal
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facets are now replaced with slightly rounded pseudo-
facets for which locating the point where the facet con-
tacts the rough segment of the interface depends on a
prescribed criterion. To locate the facet end point, we
follow the interface points, starting from the facet bot-
tom. Using Eq. (15), we compute the value of the coni-
cal angle α (see Fig. 1a) for each of the interface points
and we use linear interpolation to find precisely where
this angle starts to exceed the prescribed limit αmax. In
practice, we take αmax = cα∆α, so our criterion depends
on the specific values chosen for cα and ∆α.

3. Kinetic coefficient amplitude

In the thin-interface phase-field model, the Gibbs-
Thompson equation is necessarily valid at every interface
point [25]. However, since we want to compare our simu-
lations results with the reference 2D model for which an
ideal facet exists, it is preferable to adjust the amplitude
b0 of the kinetic coefficient used in the phase-field simu-
lations to conform more accurately to the BAP interface
equation (9). The first step is to compare the capillary
term to the kinetic one on the r. h. s. of this equation.
As we will see in the next section, for a facet velocity
of the order of Vf = 10 µm/s, the facet length is of the
order of Λ = 1000 µm. As a result, the capillary term
' −7 × 10−7, while the kinetic term ' −2.5 × 10−4. In
first approximation, one can thus neglect the capillary
term for the pulling velocities used in the simulations, so

u ' −β111Vf . (17)

In the phase-field simulations, both u and β vary lin-
early along the pseudo-facet, their ratio being everywhere
equal to the facet velocity Vf . We must thus replace the
previous equation with the following integral equation,

Λu = −Vf
∫ s+

s−
βds = −β̄VfΛ. (18)

Integrating from the lowest to the highest facet end, that
is from α = 0 to α = cα∆α, and using Eq. (15) one
finally obtains

β̄ = b0β0 =
2β111

1 + e−c
2
α
. (19)

In the present simulations, we use cα =
√

2 but other
values are equally valid. For this choice, we must impose
β̄ ' 43.5× 10−6 s/µm for the kinetic coefficient taken in
the simulations.

4. Summary of the physical and numerical parameters

We already encountered a number of physical and nu-
merical parameters. These need to be completed by a few
ones that are also used in the phase-field code. The value

or the range of values taken by each parameter is gath-
ered in Table I. We should emphasize that, as compared
to our previous publication on Si solidification, several
parameters have been updated here.

Physical parameter Symbol Value

capillary length d0 1.94× 10−4 µm

thermal diffusivity D 2.3× 107 µm2/s

specific heat at constant pressure cp 1.032 J/g/K

specific latent heat lH 1650 J/g

temperature gradient G 1.08× 10−3 K/µm

pulling velocity V (2.0− 22.0) µm/s

kinetic coefficient β111 24.7× 10−6 s/µm

facet angle for [001] cos θf
√

2/3

facet angle for [011] cos θf
√

1/3

Numerical parameter Expression Value

scale parameter W0/d0 (0.4− 2.0)× 104

grid spacing h 1.0

cusp amplitude δ 2.5

cusp rounding parameter ε 0.01

anisotropy domain α0 35◦

angular dispersion ∆α 2.3◦

facet end criterion cα
√

2

mean kinetic coefficient β̄/β111 1.762

Euler angles for [001] ψE , θE , ϕE π/4, 0, 0

Euler angles for [011] ψE , θE , ϕE 0, π/4, 0

TABLE I: Values of the physical and numerical parameters
used in the phase-field simulations.

IV. RESULTS OF THE PHASE-FIELD
SIMULATIONS

A. Interface shape

Fig. 3 shows the interface shapes obtained for simu-
lations performed at different pulling velocities V . All
these results are obtained for the same value of the scale
parameter, ξ = W0/d0 = 5000, that is for a reasonably
small interface width W0 = 0.97 µm. As expected, the
increase of the kinetic term βVf results in the increase
of the facet length Λ. Regarding the numerical effort re-
quired, we observed that a rather long physical time, up
to 450 s, is necessary for the facet length to reach a steady
state value at large pulling velocities. This corresponds
here to roughly 2 × 107 time steps. In addition, to ac-
commodate larger facets, the domain size, Nx×Nz mesh
points, must be increased with Vf . For the [001] crystal



7

orientation, the domain is enlarged from 800 × 1200 to
2000×2400 mesh points (776×1164 to 1940×2328 µm2)
for V ≥ 20.0 µm/s, and for the [011] direction, from
1000×1200 to 2400×2400 (970×1164 to 2328×2328 µm2)
for V ≥ 12.0 µm/s. Altogether, the larger systems neces-
sitate about 10 days of running time with a single GPU
Nvidia GeForce GTX 1080. Let us recall that the system
is 2D here (two mesh points in the thickness). At the
moment, 3D simulations of a comparable accuracy are
thus out of reach this way.
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FIG. 3: Interface shapes obtained by phase-field simulations
at different pulling velocities for the two crystal orientations
[001] and [011]. Values of the facet normal velocity Vf =
V sin θf are indicated.

B. Dependence of the facet length Λ on the
angular dispersion ∆α

As discussed in sections III C 2 and III C 3, a criterion
is applied to accurately determine the length Λ of the
pseudo-facet. Fig. 4a shows the interface shapes ob-
tained for different values of the angular dispersion ∆α
used to smooth out the kinetic coefficient by using a
Gaussian anisotropy function ak (Eq. (15)) instead of a
discontinuous one (Eq. (2)). The obtained results show
that only a limited range, ∆α ∈ [0.02, 0.06], is accept-
able in practice. Using larger values of ∆α causes the
code to diverge because then the whole interface adopts
a slow growth kinetics. Alternatively, using smaller val-
ues causes the facet to disappear because ∆α then falls
beyond the numerical error due to the discretization of
α (of order h2 with h = 1 here). To determine the right
pseudo-facet end, one compares the local interface con-
ical angle α with αmax =

√
2∆α. Fig. 4b illustrates

this criterion for the different values of ∆α. The wetting
condition imposed on the left domain side (see section
III C 1) is necessary to obtain the corresponding facet. It
should somehow influence the location of the facet left
end. As discussed previously, a very narrow (about 2
µm) liquid groove is created near the domain boundary
(see Fig. 4a) and just beyond it the facet conical angle
α = 0 with a very good accuracy (Fig. 4b). In practice,
we thus ignored the groove part and extended the facet
down to the left domain boundary. This introduced only
minute errors on the measure of Λ. In the following, we
use the average value ∆α = 0.04 of the acceptable range
found in this study.

C. Convergence with interface thickness

The next necessary step is to test the convergence of
these shapes, especially that of Λ, with ξ. The strong
variations of the anisotropy function aτ along the inter-
face suggest that the convergence should strongly depend
on the facet normal velocity Vf = V cos θf . To see that,
one considers both the facet motion and the phase field
diffusion in the direction normal to the facet. In both
cases, one can define a characteristic time for the whole
interface, that is for a distance dI = NW0 (we will take
N = 10 in the following). The physical time necessary
for the facet to translate by dI is simply tf = dI/Vf , that
is

tf = N
d0
Vf
ξ. (20)

To obtain the diffusion time, one first reduces the phase
field evolution equation to its part relative to the phase
field diffusion. The result of this operation appears more
clearly if one rewrites the evolution equation in terms of
the usual phase-field variable ϕ. One gets then

∂ϕ

∂t
' (a2s/aτ )∇2ϕ. (21)
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FIG. 4: Influence of the angular dispersion ∆α on the es-
timated facet length Λ: crystal orientation [001] and facet
growth velocity Vf = 5.7 µm/s. (a) Interface shapes showing
a pseudo-facet (except for ∆α = 0.01) and horizontal blowup
near x = 0 of the liquid groove due to the applied wetting con-
dition. (b) Conical angle α calculated along the solid-liquid
interface as a function of the spacial coordinate x. The hor-
izontal dashed lines correspond to the criterion α =

√
2∆α.

The vertical dashed lines indicate the x coordinates of the
facet right ends.

The physical time necessary for the diffusion of ϕ over

a distance dI is thus given by td = N2 aτ (0)
a2s(0)

τ0. Using the

previous expressions of as(0), ak(0), and τ0, one finally
obtains

td = N2
[a0ξ3d20

D
+
β̄d0ξ

2

as(0)

]
. (22)

For a given value of the scale parameter ξ, increasing the
pulling velocity (thus the facet velocity Vf ), will decrease
tf until it becomes smaller than td. In this high veloc-
ity regime, the diffusion of ϕ is too slow as compared
to the facet translation. The phase field profile can no

0 5 10
Vf (µm/s)

0

2500

5000

7500

10000

ξ c

[001]
[011]

FIG. 5: Convercence scale parameter ξc as a function of the
facet normal velocity Vf for the two crystal orientations [001]
and [011]. For a given Vf , converged results are expected for
ξ values below the curve.

longer keep a stationary shape in the whole interface so
the phase-field simulations start to depart from the phys-
ical problem. This can be cured by reducing td, thus ξ
but the simulations become much longer then (propor-
tionally to ξ−5). In our previous simulations of silicon
free growth, we did not encounter this problem because
the undercooling was kept very low, so taking ξ = 104

was sufficient to obtain well-converged results [23]. Con-
versely, a phase-field study of Ni dendritic growth at large
undercoolings and with large kinetic effects showed sim-
ilar effects as the ones mentioned here, as special efforts
proved necessary to simulate heat diffusion accurately at
large growth velocities [46].

A convergence scale parameter ξ = ξc can be defined by
the equality of the two times, td = tf . This equality gives
a second order equation in ξc that is solved analytically.
Fig. 5 shows the evolution of ξc with the facet velocity Vf .
This figure predicts that for simulations performed at ξ =
5000, fully converged simulation results are only obtained
for the lowest pulling velocity considered here, V = 2.0
µm/s, for which ξc > 5000. This analysis suggests that
convergence of the facet length Λ with ξ should strongly
depend on the facet velocity; as shown in Fig. 6a,b,c, this
is indeed the case. When Vf increases, the convergence
curves shift to lower ξ values because ξc decreases and to
higher Λ values because the kinetic effects increase. It is
thus possible to rescale these curves simply by plotting
Λ/Λ0 versus ξ/ξc, where both Λ0 and ξc depend on Vf .

In the present analysis, the values for Λ0(Vf ) cannot be
predicted. In practice, we choose them to ensure a good
vertical overlap between the rescaled curves obtained at
different velocities Vf . As shown in Fig. 6d, one does
obtain a master curve by fitting the rescaled data points
obtained at different velocities. This master curve can be
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FIG. 6: Convergence of the facet length Λ when the scale pa-
rameter ξ tends to zero. Convergence curves for (a) Vf = 1.15
µm/s, (b) Vf = 3.46 µm/s, and (c) Vf = 5.77 µm/s. (d) Mas-
ter curve merging the three previous series of data (marked
by different symbols): the continuous line is a polynomial fit
to the whole set of data.

used to extract Λ0, the value expected for the facet length
in the physical limit of vanishing interface width (ξ → 0).
Knowing Λ for a simulation performed at a given velocity
Vf , one obtains the abscissa ξ/ξc(Vf ). At this abscissa,
the master curve gives an ordinate Λ/Λ0(Vf ), from which
one gets Λ0(Vf ). This procedure is used to obtain con-
verged estimates of the facet length in the whole range
of velocities explored. The same procedure was followed
for the [011] crystal direction for which we obtained a
very similar behavior. As shown by the previous anal-
ysis, when the facet velocity increases, the phase-field
results obtained for a given scale parameter (ξ = 5000
here) are expected to depart more and more from those
of the asymptotic physical model. Our simulation results
confirm this expectation, as one can see in Fig. 7 that
the facet length Λ obtained for ξ = 5000 increases faster
than the converged value Λ0. For the [001] orientation

FIG. 7: Facet lengths obtained by phase-field simulations as
functions of the facet normal velocity Vf for the two crystal
orientations [001] and [011]. Open symbols represent raw data
from simulations at ξ = 5000. Filled symbols are the values
extrapolated from the raw data by using the master curve
obtained for the corresponding crystal orientation (see Fig.
6d).

this deviation is systematically larger than for the [011]
one.

V. COMPARISON WITH ANALYTICAL
INTERFACE SHAPES

In the present section, we aim at an analytical descrip-
tion of the growth shapes in the reference model. To start
with, we introduce the length z0 = lH

cpG
that connects

the nondimensional temperature field u with altitude z.
Then, we form a characteristic length `0 =

√
d0z0. Fi-
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nally, for the interface points (xi, zi), we introduce their
nondimensional coordinates

χ =
xi
`0

; η =
zi − zm
`0

. (23)

The ideal facet being a straight line, we only consider the
function η(χ) that gives the shape of the rough interface
segment. For this segment, one can write the field ui(χ)
in two ways. Using the frozen temperature gradient,

ui(χ) =
zi − zm
z0

=
`0
z0
η(χ), (24)

and using the Gibbs-Thomson equation,

ui(χ) = −dT (α)

`0
κ(χ) =

dT (α)

`0

η′′

(1 + η′2)
3
2

, (25)

where η′ = dη/dχ and η′′ = d2η/dχ2. Combining both
expressions, one obtains the differential equation that
gives the rough interface shape,

[as(α) + d2as(α)/dα2]η′′ = η(1 + η′2)
3
2 . (26)

This equation can be solved by a finite-difference inte-
gration algorithm. The starting point is the apex of the
interface, located on the rightmost point of the domain
for which χL = L/`0. The interface altitude at this point,
ηL = η(χL) is the input of the calculation. Due to the
small positive curvature at this point, ηL must be slightly
negative. In addition, the derivative is zero at this point,
η′(χL) = 0.

Integration propagates from this initial point by de-
creasing χ by a very small amount hχ (typically hχ =
10−4) and using series expansions of η and η′ as func-
tions of hχ. The procedure is repeated until η′ reaches
the value expected for the facet, i. e., η′ = cot θf . This
condition allows to locate the coordinates (χF , ηF ) of the
contact point F with the facet. The facet is a straight line
of slope cot θf starting at χ = 0 and ending at χ = χF .
Its length is thus

Λ = (χF / sin θf )`0. (27)

The vertical distance from point F to the isotherm T =
Tm is

H = −ηF `0. (28)

Since the temperature field u varies linearly with z, its
average value along the facet is obtained at the facet mid
point,

ū = − 1

z0

(Λ cos θf
2

+H
)
. (29)

Connexion with the growth velocity is now made through
the BAP equation (9) from which one gets

β111Vf =
1

z0

(Λ cos θf
2

+H
)
− 2δ0d0

Λ
. (30)

This second order equation in Λ can be solved ana-
lytically, provided the distance H from point F to the
isotherm T = Tm is known. To estimate H, we solve
numerically the differential equation Eq. (26) that gives
the interface shape. Typical values of the two charac-
teristic lengths are `0 = 16.94 µm and z0 = 1.48 × 106

µm. Numerical integrations of Eq. (26) are done in a
system of width L ' 1940 µm, for different values of
ηL = −1.0× 10−m. For the [001] crystal orientation, we
impose m = 16, 17, 18, . . . , 25 and m = 10, 12, 14, . . . , 24
for [011]. For each m value, the facet highest point F is

FIG. 8: Analytical interface shapes given by numerical solu-
tions of Eq. (26) for different values of ηL. Crystal orienta-
tions [001] and [011].

located. Its distance H to the T = Tm isotherm is found
to be almost independent of ηL and we obtain H ' 18.63
µm for the [001] crystal orientation (H ' 10.27 µm for
[011]).

The corresponding numerical solutions of Eq. (26) are
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represented in Fig. 8 for the two crystal orientations
considered. Knowing H and Λ, the facet growth velocity
Vf can be obtained from Eq. (30). The ηL values have
been chosen to roughly obtain Vf values comparable to
the ones used in the phase-field simulations (see Fig. 3).

Alternatively, equation (30) is solved to obtain Λ, from
the knowledge of H and for arbitrary values of Vf . The
resulting curves for the [001] and [011] crystal orienta-
tions are displayed in Fig. 9, together with the Λ0 val-
ues obtained by extrapolating the Λ phase-field data to
ξ = 0. The agreement is very satisfactory, deviations of
less than 10 percent being systematically found. This
gives good confidence that quantitative simulations can
be performed with our phase-field model, provided that
care is taken to adjust the numerical parameters to the
experimental ones and also to extrapolate the simulation
data to the limit of vanishing interface thickness.

VI. SUMMARY AND DISCUSSION

In summary, we carried out a study that assessed the
potential of the phase-field model to tackle quantitatively
directional solidification of materials exhibiting faceted
solid-liquid interfaces. This was made possible by defin-
ing a simple but realistic analytical model that describes
the directional solidification of a monograin and by solv-
ing this analytical model. Simultaneously, we performed
phase-field simulations for the same physical problem.
Finally, comparing the simulation results to the analyt-
ical ones confirmed the phase-field model quantitative-
ness.

Regarding the link with a real material (silicon here),
we updated the anisotropy functions both for the surface
energy and the kinetic attachment coefficient by reana-
lyzing recent experimental data of the literature. The
analytical expressions of the anisotropy functions were
directly taken from our previous study [23], where they
were validated by comparisons with experimental images
for the equilibrium and the slow growth of a single Si
grain [10].

We introduced a simple 2D reference model that fol-
lows the crystal orientations of real thin samples present-
ing a high degree of invariance in the direction perpen-
dicular to the sample plane [17]. The temperature field
was assumed frozen, a choice that was well justified for
the moderate solidification velocities concerned. For this
model, the shape of the rough segment of the solid-liquid
interface was shown to be given by a exact differential
equation for which we found numerical solutions.

In parallel, we introduced a phase-field equation to
simulate the evolution of the solid-liquid interface in the
2D reference model. We found it particularly important
to control two independent steps in order to reach a good
level of accuracy in the simulations. The first step was
to tune the amplitude of the kinetic term to the criterion
chosen to measure the facet lengths. The second step
was to obtain a master curve that allows to extrapolate
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phase-field 
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FIG. 9: Facet length as functions of facet velocity for the two
crystal orientations [001] and [011]. Symbols are the extrap-
olated facet lengths predicted by the phase-field simulations.
Lines are deduced from the analytical model.

facet lengths to the limit of zero interface width.

Both steps being performed, we were able to compare
the results obtained by solving the analytical model to
the ones obtained by phase-field simulations. Direct com-
parisons were made for two crystal orientations, [001] and
[011]. In both cases, the analytical and the simulation
results agreed over the whole range of pulling velocities,
with accuracy of a few (less than ten) percent.

Albeit for its simplicity, the present reference model is
rather close to real experimental situations. We can thus
expect that comparable phase-field simulations can be
performed in various situations where additional features
are required to account for experimental specificities.
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One can think for instance of thickness effects, nontrivial
crystallographic orientations, grain boundaries, and so
on. In addition, it would also be desirable to determine
the evolution of the temperature field if one wants to pre-
dict the system behavior at higher pulling velocities for
instance.
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Noël, Acta Mater. 177, 141 (2019).

[46] J. Bragard A. Karma, Y. H. Lee, and M. Plapp, Interface
Science 10, 121 (2002).


