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CRITICAL VARIETIES AND MOTIVIC EQUIVALENCE FOR

ALGEBRAS WITH INVOLUTION

CHARLES DE CLERCQ, ANNE QUÉGUINER-MATHIEU AND MAKSIM ZHYKHOVICH

Abstract. Motivic equivalence for algebraic groups was recently introduced
in [9], where a characterization of motivic equivalent groups in terms of higher
Tits indexes is given. As a consequence, if the quadrics associated to two
quadratic forms have the same Chow motives with coe�cients in F2, this
remains true for any two projective homogeneous varieties of the same type
under the orthogonal groups of those two quadratic forms. Our main result
extends this to all groups of classical type, and to some exceptional groups,
introducing a notion of critical variety. On the way, we prove that motivic
equivalence of the automorphism groups of two involutions can be checked
after extending scalars to some index reduction field, which depends on the
type of the involutions. In addition, we describe conditions on the base field
which guarantee that motivic equivalent involutions actually are isomorphic,
extending a result of Ho↵mann on quadratic forms.

1. Introduction and notations

André Weil proved in the 60’s that classical algebraic groups can be described in
terms of automorphism groups of central simple algebras with involution [35]. This
is a key tool for important results both on algebraic groups, and on related algebraic
objects, such as algebras with involution, or quadratic and hermitian forms. As a
major example, we mention Bayer and Parimala’s proof of Serre’s conjecture II [3]
and of the Hasse principle conjecture II [4], which provide a description of the first
cohomology group of a simply connected classical group when the base field has
cohomological dimension  2, or virtual cohomological dimension  2, respectively.
Besides Galois cohomology, another important tool must be added to this picture,
namely the study of projective homogeneous varieties under a semisimple algebraic
group. This led, for instance, to the so-called index reduction formulae, due to
Merkurjev, Panin and Wadsworth [26] [27].

In this paper, we use a scalar extension to an index reduction field of the un-
derlying algebra to study the Chow motives of projective homogeneous varieties
under an algebraic group of classical type, and the relation to cohomological in-
variants of associated algebraic objects. More precisely, recall the notion of motivic
equivalence modulo 2 for algebraic groups introduced by the first named author
in [9] : two algebraic groups which are inner twisted forms of the same quasi-split
group are called motivic equivalent modulo 2 if the projective homogeneous va-
rieties of the same type have the same Chow motives with coe�cients in F2. A
characterization of motivic equivalent groups is also provided in the same paper,
in terms of higher Tits indexes, which consist of the collection of Tits indexes of
the given group over all field extensions of the base field. As a consequence of this
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result, one may check that if the quadrics associated to two quadratic forms have
the same Chow motives with coe�cients in F2, this remains true for all projective
homogeneous varieties under the orthogonal groups of those two quadratic forms.
We extend this result to algebraic groups of classical type. More precisely, we in-
troduce a projective homogeneous variety, called a critical variety, and depending
only on the type of the group, which plays the same role as a quadric for an or-
thogonal group, that is which is enough to track down motivic equivalence mod 2
(see Definition 3.1 and Theorem 3.4). Hence, given two algebras with involution of
the same type, if the corresponding critical varieties (see Definition 3.6) have the
same Chow motive with coe�cients in F2, then this remains true for all projective
homogeneous varieties under the automorphism groups of both involutions. As a
consequence, we also introduce a notion of motivic equivalence for involutions, and
we prove a generalization of Vishik’s criterion for motivic equivalence of quadrics
(see Corollary 3.18).

It appears that motivic equivalence for two involutions defined on the same al-
gebra can be checked after applying an index reduction process to the underlying
central simple algebra. As a consequence, the low-degree cohomological invariants
of two motivic equivalent involutions coincide. This can be used to explore the
relation between motivic equivalence and isomorphism. Izhboldin proved in [13]
that motivic equivalent odd dimensional quadratic forms are similar, hence the
corresponding orthogonal groups are isomorphic. He also gave examples of even
dimensional motivic equivalent and non-similar quadratic forms, for which the cor-
responding adjoint involutions are motivic equivalent and non-isomorphic. In sec-
tion 4, we provide conditions on the base field under which motivic equivalent in-
volutions are isomorphic, extending a result previously proved by Ho↵mann in [12]
in the quadratic form case.

The notion of critical variety clearly extends to exceptional groups, where one
may also have to consider Chow motives mod p for some odd prime numbers,
depending on the type of the group. In the final section §5, we provide examples of
critical varieties for motivic equivalence mod p for some types of exceptional groups
and some prime numbers p.

As a major tool in this paper, we use the anisotropy results of Karpenko and
Karpenko-Zhykhovich ([17], [22]), which can be rephrased in terms of 2-Witt indices
of involutions, see Lemma 2.5, as well as the main result in [9], which is rephrased
in Lemma 3.16.

Acknowledgements. We are grateful to Skip Garibaldi for his careful reading of
a preliminary version of the paper, and his useful comments and suggestions. The
third named author also thanks Nikita Semenov for helpful discussions.

Notations. Throughout this paper, we work over a base field of characteristic
di↵erent from 2. Given an involution � on a central simple algebra A of degree n
over a field K, we denote by F the subfield of K fixed by �, hence K = F if � is
orthogonal or symplectic, and K = F (

p

�) is a quadratic field extension of F if �
is unitary. We also allow A to be a direct product of two central simple algebras
over F , so that its center is the quadratic étale algebra K = F ⇥ F , endowed with
an involution which acts on F ⇥ F as the unique non-trivial F -automorphism. If
so, (A,�) is isomorphic to the algebra E ⇥ Eop for some F central simple algebra
E, endowed with the exchange involution " defined by "(x, yop) = (y, xop), see [23,
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(2.14)]. We then call degree and index of A the degree and the Schur index of E,
which coincides with the degree and the Schur index of Eop, respectively. In all
cases, A admits no non trivial �-stable two-sided ideal, and we will say that (A,�) is
a central simple algebra with involution over F , or an algebra with involution over
F , for short. With this convention, for any field extension L/F , the pair (AL,�L)
defined by AL = A⌦F L and �L = � ⌦ Id is an algebra with involution over L.

We refer the reader to [23] for more details on algebras with involution and on the
corresponding algebraic groups. In particular, we let PSim+(A,�) be the connected
component of the identity in the automorphism group of (A,�). It is a semisimple
F -algebraic group, which is of type A, B, C or D depending on the degree of the
algebra A and on the type of the involution �. Conversely, by [35] (see also [23,
§26]), any algebraic group of classical type over F is isogeneous to PSim+(A,�)
for some algebra with involution (A,�) over F . Note that given two algebras with
involution (A,�) and (B, ⌧), the corresponding algebraic groups PSim+(A,�) and
PSim+(B, ⌧) are inner twisted forms of the same quasi-split group if and only if the
involutions have the same type, the algebras have the same degree, and in addition,
the algebras have isomorphic center in unitary type, and the involutions have the
same discrimininant in orthogonal type.

All the quadratic forms we consider are supposed to be non degenerate. The
invariants are as defined in [32], [24]. In particular, the discriminant d' 2 F⇥/F⇥2

of a quadratic form ' over F is a signed discriminant, and the Cli↵ord invariant
c(') 2 Br(F ), called the Witt invariant in Lam’s book, see [24, Chap.3, (3.12)], is
the Brauer class of the full Cli↵ord algebra C(') if ' has even dimension, and of its
even part C0(') if ' has odd dimension. The Witt index of q is denoted by iw(q).

Given an algebra with involution (A,�) over F , and assuming it has non split
center in the unitary case, we call Witt-index of �, and we denote by iw(�), the
reduced dimension of the maximal totally isotropic right ideals in (A,�). Therefore,
iw(�) is the largest element in the index of (A,�) as defined in [23, §6.A]. In
particular, if (A,�) is hyperbolic, A has even degree and the Witt index of � equals
1
2 deg(A). If � is unitary, and A has center F ⇥ F , we have (A,�) ' (E ⇥ Eop, "),
and the involution is hyperbolic [23, (6.8)], even though the algebra E might be of
odd degree. Therefore, we define iw(") to be the integral part of 1

2 deg(E). Note
that, as opposed to what happens in other cases, the Witt index of � coincides with
the maximal element in the index of (A,�) if and only if E has even degree and its
Schur index divides 1

2 deg(E) (see [23, p. 73]). In particular, if E is division, then
even though � is hyperbolic and has non-trivial Witt index, the index of (A,�) is
{0} and its automorphism group is anisotropic.

The Witt 2-index of (A,�), denoted by iw,2(�), is defined as the maximal value
of iw(�F 0), where F 0 runs over all odd degree field extensions of F . As explained
in [10], the Tits-index (respectively the 2-Tits index) of PSim+(A,�) is uniquely
determined by the Schur index of the algebra A and by iw(�) (respectively by the
2-primary part of the Schur index of A and iw,2(�)).

If A has even degree, and � has orthogonal type, we let d� 2 F⇥/F⇥2 be the
discriminant of � [23, (7.2)], and C(�) be the Cli↵ord algebra of (A,�) [23, (8.7)].
We denote by K�/F the quadratic étale extension associated to d�, which also is
the center of C(�) [23, (8.10)]. If d� = 1 2 F⇥/F⇥2, then C(�) is a direct product of
two central simple algebras over F , denoted by C+(�) and C�(�). By the so-called
fundamental relations [23], we have [C+(�)]� [C�(�)] = [A] 2 Br(F ). The Cli↵ord
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invariant of � is

c(�) = [C+(�)] = [C�(�)] 2 Br(F )/h[A]i.

If A has even degree, and � is unitary, we let D(�) be the discriminant algebra
of �, which is a central simple algebra over F [23, (10.28)].

Assume now that the field F is formally real, and denote by XF the space of
orderings of F . For all P 2 XF , we let signP (�) be the signature of � at the ordering
P (see [23, (11.10)(11.25)] and [2, §4]). By definition, signP (�) is a positive integer,
whose square is equal to the signature at P of the trace form of (A,�). If � is
K/F -unitary, with K = F (

p

↵), then

(1) signP (�) = 0 for all P 2 XF such that ↵ >P 0.

Indeed, over a real closure FP of F at such an ordering, we haveK⌦FFP = FP⇥FP ,
so that all hermitian forms with values in (K, ◆) become hyperbolic over FP (see [2,
3.1(d)]). This applies in particular to the trace form of (A,�). Therefore, as noticed
in [2], one may extend the definition given in [23, § 11] and [31] to the orderings of
F that do not extend to K, with the convention above.

The motives considered in this paper are Chow motives with coe�cients in a
ring ⇤, see for instance [11]. In particular, if X is a variety over F , we denote in
the sequel by CH(X;⇤) and M(X;⇤) the Chow group and motive associated to X
with coe�cient ring ⇤. We may sometimes omit the coe�cient ring when it is clear
from the context.

2. Involutions, low index algebras and index reduction fields

Assume A = EndF (V ) is a split algebra. Any orthogonal involution on A is
adjoint to some quadratic form q : V ! F . Conversely, two quadratic forms give
rise to the same involution if and only if they are isomorphic up to a scalar factor.
Hence, the study of orthogonal involutions in this case boils down to quadratic
form theory, or more precisely to the study of quadratic forms up to similarities.
In particular, all invariants of an orthogonal involution on a split algebra can be
computed in terms of invariants of quadratic forms. As we now proceed to explain,
this is also true for symplectic involutions on an index at most 2 algebra and
unitary involutions on a split algebra. Moreover, most invariants of involutions can
be computed after an index reduction process, so that they can be expressed in
terms of some quadratic form invariants.

2.1. Invariants of involutions. Let us first recall precisely the situation in the
split orthogonal case. For any quadratic form q : V ! F , we denote by Adq =
(EndF (V ), adq) the associated algebra with involution. It is well known that invari-
ants of orthogonal involutions extend invariants of quadratic forms. More precisely,
we have :

Lemma 2.1. Let q be an even-dimensional quadratic form over F , and let � = adq
be the corresponding adjoint involution.

(a) iw(�)= iw,2(�) = iw(q);
(b) d� = dq 2 F⇥/F⇥2;
(c) C(�) and C0(q) are canonically isomorphic;
(d) c(�K) = c(qK), where K is the discriminant quadratic extension;
(e) For all P 2 XF , signP (�) = | signP (q)|.
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Remark 2.2. The Cli↵ord algebra of an involution, denoted here by C(�), corre-
sponds in the split case to the even part C0(q) of the Cli↵ord algebra of q. The full
Cli↵ord algebra C(q) of the quadratic form q is not an invariant up to similarities;
therefore, it does not give rise to an invariant of �. Likewise, sign(q) is not an
invariant up to similarities, hence the absolute value is required in (e).

Proof. In the situation considered here, the underlying division algebra is D = F ,
therefore by [23, p.73], the maximal element of the index of (A,�) is the Witt-index
iw(q), hence iw(�) = iw(q). Moreover, for any odd degree field extension F 0/F , by
Springer’s theorem for quadratic forms (see e.g. [24, Chap. VII, Thm. 2.7]), we
have

iw(�F 0) = iw(qF 0) = iw(q) = iw(�).

Hence iw,2(�) = iw(�) and (a) is proved. Assertions (b) and (c) are given in [23,
(7.3)(3) and (8.8)]. Since K is the discriminant quadratic extension, in order to
prove (d), it is enough to check that c(�) = c(q) when the discriminants are trivial.
Under this assumption, we have C(q) ' M2(C) for some central simple algebra
C over F , and C0(q) ' C ⇥ C (see e.g. [24, Chap. V, Thm 2.5(3)]). Therefore
[C+(�)] = [C�(�)] = [C] = [C(q)] 2 BrF , which gives the required equality. Finally,
if P is any ordering of F , we have signP (�) = | signP (q)| by [23, (11.10) and
(11.7)]. ⇤

Let us assume now that either � is unitary and A = Mn(K), or � is symplectic
and A = Mm(H) for some quaternion algebra H over F . Let n be the degree of
A, that is n = 2m if A = Mm(H). In both cases, there exists a 2n-dimensional
quadratic form q� over F , which is unique up to a scalar factor, and whose invariants
are related to the invariants of �, as we now proceed to explain.

A unitary involution � on the split algebra Mn(K) is adjoint to a rank n her-
mitian form, denoted by h�, with values in (K, ), where denotes the non-trivial
F -automorphism of the quadratic extension K/F . Similarly, a symplectic involu-
tion � of the algebra Mm(H) is adjoint to a rank m hermitian form, still denoted
by h�, with values in (H, ), where stands for the canonical involution of H. Let
q� be the trace form of h�, that is the quadratic form defined on Kn (respectively
Hm), now viewed as an F vector space, by q�(x) = h�(x, x). It has dimension 2n
in the unitary case, and 4m = 2n in the symplectic case. Moreover, as explained
in [32, Chap.10], the hermitian form h� is uniquely determined by its trace form
q�. Invariants of � and invariants of q� are related as follows:

Proposition 2.3. Let � be either a unitary involution of a split algebra Mn(K) or
a symplectic involution of an algebra Mm(H) of index at most 2, and consider as
above a trace form q� of the underlying hermitian form. This form is well defined
up to a scalar factor, and its invariants relate to those of � as follows :

(a) iw(�)= iw,2(�) coincides with the integral part of 1
2 iw(q�);

(b) If A has even degree and � is unitary,

dq
�

= 1 2 F⇥/F⇥2 and [D(�)] = c(q�) 2 Br(F );

(c) For all P 2 XF , signP (�) =
1
2 | signP (q�)|.

Proof. By the same argument as in the orthogonal case, based on Springer’s the-
orem for quadratic forms, to prove (a), it is enough to prove the equality iw(�) =
1
2 iw(q�). Pick an arbitrary diagonalisation h� = h↵1, . . . ,↵ri of h�, where r = n
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in the unitary case, and r = m = n
2 in the symplectic case. The elements ↵i are

symmetric elements of (K, ) or (H, ) depending on the type of �; hence in both
cases, they belong to F . An easy computation now shows that

q� '

⇢
h1,��i ⌦ h↵1, . . . ,↵ni if � is unitary;
nH ⌦ h↵1, . . . ,↵mi if � is symplectic,

where nH denotes the norm form of the quaternion algebra H. Since h� is uniquely
defined up to a scalar factor, the same holds for q�.

If K = F ⇥F , that is � = 1, or H is split, then the involution � is hyperbolic and
iw(�) is the integral part of

1
2 deg(A). On the other hand, under those assumptions,

h1,��i and nH are hyperbolic, hence q� also is, and iw(q�) =
1
2 dim(q�) = deg(A).

Therefore (a) holds in this case. In addition, if � is symplectic, then A has even
degree so that iw(�) =

1
2 iw(q�). Moreover, for any ordering P of F , we have 1 >P 0,

hence signP (�) = 0 by (1) in the unitary case and [23, (11.7)] in the symplectic
case. Therefore, since q� is hyperbolic, (c) also holds in this case.

Assume now that K is a field or H is division, depending on the type of the invo-
lution. Combining the explicit description of q� above with [32, Chap.10, Thm1.1
and 1.7], one may observe that any Witt decomposition of the hermitian form h�

gives rise to a Witt decomposition of q�, so that

iw(q�) =

⇢
2iw(h�) if � is unitary;
4iw(h�) if � is symplectic.

On the other hand, from the description of the index of an algebra with involution
given in [23, p.73], iw(�) is equal to iw(h�) in the unitary case, and 2iw(h�) in the
symplectic case, since the index of the underlying algebra is 1 or 2, accordingly.
Therefore (a) holds.

In order to prove (c), let us consider an ordering P of the field F , and pick a
real closure FP of F at this ordering. Assume first that � is unitary. If � >P 0,
we have signP (�) = 0 by (1), hence (1) holds since q� is hyperbolic over FP . If
� <P 0, the diagonalisation above gives signP (�) = | signP (h�)| =

1
2 | signP (q�)| as

required. Assume now � is symplectic. The quaternion algebra H is split over FP

if and only if its norm form nH has signature 0. When these conditions hold, we
have by [23, (11.11)(2)(b)] signP (�) = 0 = signP (q�). Otherwise, nH is positive
definite, and signP (�) = 2| signP (h�)| =

1
2 | signP (q�)|. Hence, (c) is now proved.

It only remains to prove assertion (b). Assume A has even degree, n = 2m, so
that the discriminant algebra D(�) is well defined. The diagonalisation of q� given
above shows that d(q�) = (��)2m = 1 2 F⇥/F⇥2. Moreover, by [23, (10.35)],
D(�) is Brauer equivalent to (�, (�1)m↵1 . . .↵n), which is nothing but the Cli↵ord
invariant of q�. This concludes the proof of the proposition. ⇤
2.2. Index reduction function fields. Let A be a central simple algebra of ar-
bitrary index. The discriminant and the Cli↵ord invariant in the even degree or-
thogonal case, the discriminant algebra in the even degree unitary case, and the
signatures of two involutions of the algebra A can be compared after a scalar exten-
sion to a well chosen function field, which reduces the index of A. More precisely,
given an algebra with involution (A,�) over F of type t, where t = o (respectively
s,u) stands for orthogonal (respectively symplectic, unitary), we consider the field
FA,t and the quadratic form Q� over FA,t defined as follows. We let FA,o be the
function field of the Severi-Brauer variety of A in the orthogonal case, FA,s be
the function field of the generalized Severi-Brauer variety SB2(A) of right ideals
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of reduced dimension 2 in the symplectic case, FA,u be the function field of the
K/F -Weil transfer of the Severi-Brauer variety of A in the unitary case with non
split center, and FA,u be the function field of the Severi-Brauer variety of E if
A ' E⇥Eop with the exchange involution. Hence, FA,t is a field extension of F in
all cases, and the algebras A⌦F FA,o and A⌦F FA,u are split, while A⌦F FA,s has
index at most 2, and is split if and only if A already is. Therefore, by § 2.1, there
exists a quadratic form Q�, defined over FA,t, unique up to a scalar factor, and of
dimension n in the orthogonal case, and 2n in the symplectic and unitary cases,
which determines the involution �F

A,t

and its invariants. Using the properties of
the field FA,t, we get the following :

Proposition 2.4. Let (A,�, ⌧) be a central simple algebra with two involutions of
the same type t over F . Let FA,t be the index reduction field defined above, and
denote by Q� and Q⌧ the quadratic forms over FA,t respectively associated to �F

A,t

and ⌧F
A,t

, as in § 2.1.
(a) Assume A has even degree and Q� and Q⌧ have the same discriminant. We

denote by K/FA,t the corresponding quadratic étale algebra, and assume in addition
that c((Q�)K) = c((Q⌧ )K) 2 Br(K). Then, the following hold :

(i) If � and ⌧ are orthogonal, then

d� = d⌧ 2 F⇥/F⇥2

and c(�K) = c(⌧K) 2 Br(K)/h[AK ]i,

where K = F [X]/(X2
� d�) is the discriminant quadratic extension.

(ii) If � and ⌧ are unitary, then

[D(�)] = [D(⌧)] 2 Br(F ).

(b) Assume that for all Q 2 XF
A,t

we have | signQ(Q�)| = | signQ(Q⌧ )|. Then
for all P 2 XF

signP (�) = signP (⌧).

Proof. Let us first prove (a) in the orthogonal case. By lemma 2.1, the assumptions
on Q� and Q⌧ guarantee that �F

A,o

and ⌧F
A,o

have the same discriminant, corre-
sponding to the quadratic étale algebra K/FA,o, and that c(�K) = c(⌧K). Since
the discriminant is a functorial invariant, and F is quadratically closed in FA,o, it
follows that � and ⌧ have the same discriminant. Denote by K/F the correspond-
ing quadratic étale algebra. If d� = d⌧ = 1 2 F⇥/F⇥2, so that K = F ⇥ F and
K = FA,o ⇥ FA,o, then c(�K) = (c(�F

A,o

), c(�F
A,o

)) 2 Br(FA,o) ⇥ Br(FA,o), and
similarly for ⌧K. Therefore the assumptions gives

c(�F
A,o

) = c(⌧F
A,o

) 2 Br(FA,o).

By [28, Cor.2.7], the kernel of the restriction map Br(F ) ! Br(FA,o) is the subgroup
generated by [A], therefore Br(F )/h[A]i ! Br(FA,o) is injective. Hence, we get

c(�) = c(⌧) 2 Br(F )/h[A]i

which implies (i). Assume now that K is a field. The quadratic algebra K is
the compositum of K and FA,o, or equivalently, the function field over K of
the Severi-Brauer variety AK . Hence, by the same argument as above, the map
BrK/h[AK ]i ! BrK is injective. Therefore, again in this case,

c(�K) = c(⌧K) 2 Br(K)
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implies
c(�K) = c(⌧K) 2 BrK/h[AK ]i.

Assume now that the assumptions of (a) hold and that � and ⌧ are unitary.
By Proposition 2.3, Q� and Q⌧ have trivial discriminant. Hence K is the split
quadratic étale algebra FA,u ⇥ FA,u and c((Q�)K) = c((Q⌧ )K) 2 Br(K) implies

c(Q�) = c(Q⌧ ) 2 Br(FA,u).

By Proposition 2.3, we get that [D(�F
A,u

)] = [D(⌧F
A,u

)] 2 Br(FA,u). Since A
admits unitary K/F involutions, its corestriction is split; therefore, by [28, Cor.2.7,
Cor.2.12], the restriction map Br(F ) ! Br(FA,u) is injective (see also [23, Proof of
(10.36)]). Hence, we get

[D(�)] = [D(⌧)] 2 Br(F )

as required.
As for the signatures, assume | signQ(Q�)| = | signQ(Q⌧ )| for all Q 2 XF

A,t

and
consider an ordering P 2 XF . Pick a real closure FP of F at the ordering P . If �
and ⌧ are orthogonal, then for all ordering P such that AF

P

is not split, we have
signP (�) = 0 = signP (⌧) by [23, (11.11)]. Consider now P 2 XF such that AF

P

is
split. The compositum of FA,o and FP , which is the function field over FP of the
Severi-Brauer variety of AF

P

is a purely transcendental extension of FP . Therefore,
the ordering P extends to this field, and by restriction, there exists an ordering
Q 2 FA,o which coincides with P over F . Therefore, signP (�) = signQ(�F

A,o

) =
| signQ(Q�)|, where the last equality follows from Lemma 2.1, and similarly for ⌧ .
Hence � and ⌧ do have the same signature at P for all P 2 XF . The argument is
similar in the symplectic and unitary cases, and uses Proposition 2.3. If � and ⌧
are symplectic, they both have trivial signature at P for all P 2 XF such that AF

P

is split by [23, (11.11)]. Otherwise, AF
P

is Brauer equivalent to (�1,�1)F
P

, which
is the only non split division algebra over FP . Therefore, SB2(A) has a rational
point over FP , its function field is purely transcendental, and the same argument
as above applies. Finally, if � and ⌧ are unitary, they both have trivial signature at
any ordering P 2 XF such that � >P 0 by (1). Consider now an ordering P such
that � <P 0. The compositum of FP and K is the unique non trivial quadratic field
extension of FP , that is an algebraically closed field. Hence, A⌦F FP is split, so the
Weil transfer of SB(A) has a rational point over F and again the same argument
concludes the proof. ⇤

As opposed to what happens for the invariants considered in the previous propo-
sition, it is not known whether the Witt indices can be compared after scalar
extension to FA,t. Nevertheless, we have the following, which is precisely what we
need in the sequel, and which can be thought of as a reformulation of Thm 1 and
Thm A in [17] and Thm 6.1 in [22]:

Lemma 2.5. For any involution � of type t on the algebra A, we have

iw,2(�) = iw,2(�F
A,t

) = iw(�F
A,t

),

where FA,t is the function field defined above. Moreover, this index coincide with
iw(Q�) if � is orthogonal, and 1

2 iw(Q�) if it is symplectic or unitary.

Proof. By definition of FA,t, Lemma 2.1 or Proposition 2.3 apply to the involution
�F

A,t

, depending on its type. Therefore we have iw,2(�F
A,t

) = iw(�F
A,t

), and this
index coincides with iw(Q�),

1
2 iw(Q�), or the integral part of 1

2 iw(Q�), depending
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on the type of the involution. Since the 2-Witt index can only increase under
extension to FA,t, we get

iw,2(�)  iw,2(�F
A,t

) = iw(�F
A,t

).

The converse inequality is clear in the unitary case if the center is F ⇥ F . In all
other cases, by an easy induction argument, it follows from Thm1 and Thm A
in [17] and Thm 6.1 in [22] which precisely state that if � is isotropic over FA,t,
then it also is isotropic over some odd degree field extension of F (see also [5, Cor
5.6]). ⇤

3. Motivic equivalence and critical varieties

The main result of this section asserts that we may associate to any absolutely
almost simple algebraic group of classical type a projective homogeneous variety,
which we call a critical variety, and whose motive modulo 2 encodes the motivic
equivalence class of the group.

More precisely, let G be semi-simple algebraic group over F ; it is an inner twisted
form of a given quasi-split group G0. We choose a Borel subgroup of G0 containing
a maximal torus T0, and we denote by � the corresponding set of simple roots.
We recall from [9, §VI] the definition of the standard motive of G of type ⇥ with
coe�cients in ⇤, denoted by M⇥,G, where ⇥ is any subset of �. If ⇥ is invariant
under the ⇤-action, M⇥,G is the motive, with coe�cients in ⇤, of the variety X⇥,G

of parabolic subgroups of G of type ⇥, as defined in [6]. In general, M⇥,G is the
motive of the corestriction from F⇥ to F of the variety X⇥,G

F⇥
, where F⇥/F is a

minimal field extension over which ⇥ becomes invariant under the ⇤-action. Note
that there are two opposite conventions for the parabolic subgroup of type ⇥ in the
literature; in this paper, a Borel subgroup has type �.

Assume now that G and G0 are inner twisted forms of the same quasi-split group
G0. Recall from [9, Def 1] and [10, §I.3] that they are called motivic equivalent with
coe�cients in ⇤ if there exists an isomorphism f between the respective Dynkin
diagrams of G and G0, commuting with the Galois actions, and such that the
standard motives M⇥,G and Mf(⇥),G0 with coe�cients in ⇤ are isomorphic for all
⇥ ⇢ �. When this holds for ⇤ = Fp, G and G0 are called motivic equivalent modulo
p. The following definition formalizes the notion of critical variety.

Definition 3.1. Let G be an algebraic group, and denote by G0 the corresponding
quasi-split group. A twisted flag G-variety X⇥,G is called critical for G modulo p
if, for all group G0 which is an inner twisted form of the same G0, the following
assertions are equivalent :

(1) There exists an isomorphism f between the respective Dynkin diagrams of
G and G0, commmuting with the Galois action, and such that the standard
motives M⇥,G and Mf(⇥),G0 with coe�cients in Fp are isomorphic;

(2) The algebraic groups G and G0 are motivic equivalent modulo p.

Remark 3.2. By definition of motivic equivalence, condition (2) always implies
condition (1). Therefore, X⇥,G is critical for G if (1) implies (2). Also, note that it
may happen, for instance for groups of type Dn, that condition (2) holds only for
a specific choice of the isomorphism f , while condition (1) holds for two di↵erent
choices of f .

Since the twisted flag varieties under a group G only depend on the isogeny class
of G, we only consider adjoint groups in the sequel.
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Example 3.3. Let q be an odd-dimensional quadratic form; we claim that the
quadric Xq = X{1},G is critical for the group G = PGO+(q) modulo 2. Indeed,
any adjoint group G0 of the same type as G is isomorphic to PGO+(q0) for some
quadratic form q0 of the same dimension as q. Since the Dynkin diagram of G has
no automorphism, f must be the identity map, and condition (1) in the definition
above means that the quadrics Xq and Xq0 have isomorphic motives modulo 2. By
a result of Izhboldin [13], under this condition, the quadratic forms q and q0 are
similar. Hence the groups G and G0 are isomorphic and condition (2) holds.

For other types of groups, motivic equivalence generally di↵ers from isomor-
phism. This was already noticed by Izhboldin [13] for even-dimensional quadratic
forms; see also § 4 below. Nevertheless, we aim at proving that all absolutely almost
simple classical groups admit critical varieties, at least for p = 2, which is the main
prime of interest for such groups. In other words, motivic equivalence modulo 2
for classical groups can be checked from the isomorphism of standard motives for
a given ⇥ ⇢ �.

We therefore assume untill the end of this section that p = 2 and we sometimes
write ’motivic equivalence’ for motivic equivalence mod 2. The main result of this
section is the following :

Theorem 3.4. All absolutely almost simple groups G of classical type admit a
critical variety modulo 2. More precisely considering motivic equivalence modulo 2,
the following twisted flag G-varieties are critical :

i) If G is of type An (with n � 2), X{1,n},G is critical.
ii) If G is of type Bn, X{1},G is critical.
iii) If G is of type Cn (with n � 2), X{2},G is critical.
iv) If G is of type Dn (with n � 3), X{1},G is critical.

Remark 3.5. If n = 1, the group G has a unique twisted flag variety, which obviously
is critical; therefore, we may assume n � 2 in the sequel.

All groups of classical type can be described in terms of some algebra with
involution, which is unique except in some low degree cases, see [23, § 15 & 42].
Using the description of projective homogeneous varieties in [28, § 2.4], we give the
following uniform notation for the varieties appearing in the above theorem:

Definition 3.6. Let (A,�) be an algebra with involution over F , such that G =
PSim+(A,�) is as in Theorem 3.4. We let X� be the F -variety defined as follows,
depending on the type and degree of (A,�):

- An (with n � 2). If � is unitary, and degA � 3, X� = X{1,degA�1},G is
the variety of flags of right ideals I1 ⇢ I2 of respective reduced dimension
1 and deg(A)� 1 and such that �(I1)I2 = {0}.

- Bn (with n � 1) and Dn (with n � 3). If � is orthogonal with degA � 3
and degA 6= 4, X� = X{1},G is the variety of isotropic right ideals in A of
reduced dimension 1.

- Cn (with n � 2). If � is symplectic and degA � 4, X� = X{2},G is the
variety of isotropic right ideals in A of reduced dimension 2.

Remark 3.7. In the orthogonal case, the variety X� is the so-called involution
variety, previously considered by Tao [33]. If in addition the underlying algebra is
split, so that (A,�) = Adq for some quadratic form q, then X� is isomorphic to the
projective quadric associated to q.
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Remark 3.8. The case of a degree 4 algebra with orthogonal involution is excluded
from our discussion, since the corresponding algebraic group, of type A1 + A1, is
not absolutely almost simple. In addition there are examples of groups of such type
which admit no critical variety. Indeed, consider a quaternion division algebra Q
over F , and the algebras with involution described in [23, (15.2),(15.3)]

(A,�) = (Q, )⌦ (Q, ) and (B, ⌧) = (Q, )⌦ (M2(F ), ),

where stands for the canonical involution, with corresponding groups

PSim+(A,�) ' PGL1(Q)⇥ PGL2(F ) and PSim+(B, ⌧) ' PGL1(Q)⇥ PGL1(Q).

The twisted flag varieties under G = PSim+(A,�) and G0 = PSim+(B, ⌧) are the
following : X{1},G ' X{2},G ' SB(Q), X�,G ' SB(Q)⇥ SB(Q), X{1},G0

' SB(Q),
X{2},G0

' P1 and X�,G0
' SB(Q) ⇥ P1. Therefore, X{1},G ' X{1},G0

' X{2},G
and, by [8, Prop. 3.3], X�,G and X�,G0 have isomorphic motives modulo 2. On
the other hand, since Q is division, the motive of X{2},G is indecomposable, while
the motive of X{2},G0 is a sum of Tate motives, so that G and G0 are not motivic
equivalent. This proves that none of the three varieties X{1},G, X{2},G and X�,G

is critical for G.

The following definition extends motivic equivalence for quadratic forms to in-
volutions:

Definition 3.9. Let (A,�) and (B, ⌧) be two algebras with involution of the same
type over F , and such that the corresponding groups PSim+(A,�) and PSim+(B, ⌧)
are as in Theorem 3.4. The involutions � and ⌧ are called motivic equivalent (de-
noted �

m
⇠ ⌧) if the varieties X� and X⌧ have isomorphic motives with coe�cients

in F2.

We claim that the main theorem follows from the following :

Theorem 3.10. Let (A,�) and (B, ⌧) be as in the definition above. If � and ⌧ are
motivic equivalent, then the corresponding groups PSim+(A,�) and PSim+(B, ⌧)
are twisted forms of the same quasi-split group, and are motivic equivalent modulo
2.

Example 3.11. Let q and q0 be two quadratic forms defined on the same even
dimensional vector space V , and consider the split algebra A = EndF (V ) endowed
with the involutions � and ⌧ respectively adjoint to q and q0. The corresponding
varieties are the quadrics X� = Xq and X⌧ = Xq0 . Therefore, � and ⌧ are motivic
equivalent precisely when the two quadratic forms q and q0 are motivic equivalent.
By a result of Vishik [34, Theorem 4.18] (see also [14]), this holds if and only if
q and q0 have the same Witt index over any extension of the base field F . Under
this condition, as explained in [14, Lemma 2.6], the two quadratic forms have the
same discriminant, so that the groups G = PGO+(q) and G0 = PGO+(q0) are
inner twisted forms of the same quasi-split group G0. Moreover, from [9, Cor. 16],
they are motivic equivalent, that is, equality of the Witt indices of q and q0 over
any extension of the base field implies that non only the quadrics, but twisted
flag varieties of all type under G and G0 have isomorphic motives. In particular,
Theorem 3.10 holds for the involutions adjoint to q and q0.

Note that this is not enough to prove that the quadric Xq is critical for PGO+(q),
since there may exist non split algebras B with orthogonal involution ⌧ such that
the corresponding group PSim+(B, ⌧) also is an inner twisted form of the same
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quasi-split group G0. So we still have to check what happens in this case (see
Proposition 3.12 below).

Proof of theorem 3.4. Assume Theorem 3.10 holds. Let G be an adjoint group as
in Theorem 3.4, and (A,�) an algebra with involution such that G = PSim+(A,�).
We need to prove that the variety X� is critical for the group PSim+(A,�). So,
consider a group G0 which is an inner twisted form of the same quasi split group G0

as G. In particular, there exists an algebra with involution (B, ⌧) of the same type
as (A,�) such that G0 = PSim+(B, ⌧). If G is not of type 1D4, any isomorphism f
of the Dynkin diagram of G fixes the subset ⇥ defining the variety X�. Therefore,
condition (1) of Definition 3.1 holds if and only if � and ⌧ are motivic equivalent.
Under this condition, the groups G and G0 are motivic equivalent by theorem 3.10
and this proves the variety X� is critical.

Assume now that G and G0 have type 1D4, that is (A,�) and (B, ⌧) have de-
gree 8, orthogonal type and trivial discriminant. As explained in [23, §42.A], there
exists a triple of degree 8 algebras with orthogonal involutions with trivial discrimi-
nant

�
(B, ⌧), (C+,�+), (C�,��)

�
such that G0 = PSim+(B, ⌧) = PSim+(C+, ⌧+) =

PSim+(C�, ⌧�). The algebras with involution (C+, ⌧+) and (C�, ⌧�) are the two
components of the Cli↵ord algebra of (B, ⌧). Moreover, the automorphism group
of the Dynkin diagram of G0 acts on this triple by permutation (loc. cit. (42.3)).
Therefore, condition (1) in Definition 3.1 now means that � is motivic equivalent to
one of the three involutions ⌧ , ⌧+ and ⌧�. In all three cases, Theorem 3.10 implies
that G and G0 are motivic equivalent and this concludes the proof. ⇤

In the next sections, we provide a proof of Theorem 3.10, which can be thought
of as a translation of our main result in terms of algebras with involution. Note
that even though the critical varieties does depend on the group, the structure
of our proofs for each type follow the same lines. More precisely we will use the
generic index reduction fields introduced in §2.2, and we will prove we can control
motivic equivalence on those fields through the study of motivic isomorphisms of
some prescribed quadrics.

3.1. First reductions. From now on, we consider two algebras with involution
(A,�) and (B, ⌧) of the same type over F . We assume in addition that the groups
G = PSim+(A,�) and G0 = PSim+(B, ⌧) are as in Theorem 3.4. As explained in
example 3.3, Theorems 3.4 and 3.10 are already known in two cases. As we already
mentioned in 3.3, they do hold if G has type Bn, that is if A and B are split and
� and ⌧ are adjoint to some odd dimensional quadratic forms by [13]. If G has
type 1An, that is if A and B have center F ⇥ F and � and ⌧ are unitary, we have
(A,�) ' (E1 ⇥ Eop

1 , ") and (B, ⌧) ' (E2 ⇥ Eop
2 , ") for some degree n + 1 central

simple algebras E1 and E2 over F , and the corresponding automorphism groups
are isomorphic to SL1(E1) and SL1(E2) respectively. Therefore the theorems also
hold in this case, by [9, Thm. 19]. Therefore, we assume until the end of § 3.3 that
the algebras A and B have degree at least 3 if the involutions are unitary, and at
least 4 if they are symplectic. We assume in addition that they have even degree
greater than or equal to 6 if they are orthogonal. In the unitary case, we always
assume in addition that the center is non split.

In orthogonal and unitary types, the groups G and G0 might be of outer type,
in which case they become of inner type over some quadratic extensions K and K 0

of the base field F . The fields K and K 0 are the respective centers of A and B in
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unitary type and the quadratic extensions corresponding to the discriminants d�
and d⌧ in orthogonal type. In this section, we prove that if � and ⌧ are motivic
equivalent, then K = K 0 and the 2-primary parts of the algebras A and B gen-
erate the same subgroup in the Brauer group of their center. For orthogonal and
symplectic involutions, this amounts to the following:

Proposition 3.12. Assume (A,�) and (B, ⌧) are of the same orthogonal or sym-
plectic type over F . If � and ⌧ are motivic equivalent, then A and B are isomorphic.
In addition, in orthogonal type, � and ⌧ have the same discriminant.

Proof. Assume � and ⌧ are motivic equivalent, that is X� and X⌧ have isomorphic
motives with coe�cients in F2. Extending scalars to an algebraic closure of the
base field, we already get that the algebras A and B have the same degree. More-
over, since A and B are endowed with involutions of the first kind, their period is
2. Therefore, to ensure that A and B are isomorphic, it is enough to prove they
generate the same subgroup of the Brauer group of F .

Symplectic case. Let FA be the function field of the Severi-Brauer variety of A.
Since � is symplectic, the group G = PSim+(A,�) is split over FA, and the motive
M(X� ⇥F FA) is a direct sum of Tate motives. Therefore, M(X⌧ ⇥F FA) also is a
direct sum of Tate motives, hence it is isotropic. So, we may apply [15, Corollary
15.9], which provides a motivic decomposition of X⌧ ⇥F FA containing an inde-
composable direct summand isomorphic to a twist of M(SB(D)), where D is the
division FA-algebra Brauer equivalent to BF

A

. Since M(SB(D)) is a Tate motive
if and only if D is split, we get that B is split over FA.

By the same argument A is also split over the function field of the Severi-Brauer
variety of B. Hence A and B generate the same subgroup in Br(F ) by Amitsur’s
theorem [1, Theorem 9.3], and the result is proved in this case.

Orthogonal case. If � and ⌧ are motivic equivalent, then in particular X� and X⌧

have the same Chow groups with F2 coe�cients. Therefore, the cokernel of the
following maps coincide, where F̄ is an algebraic closure of F :

coker
�
CH1(X�) ! CH1(X� ⇥F F̄ )

�
= coker

�
CH1(X⌧ ) ! CH1(X⌧ ⇥F F̄ )

�
.

On the other hand, as explained in [33, Proof of Thm 4.8], those cokernels are
respectively isomorphic to the subgroups of the Brauer group of F generated by
[A] and [B]. Hence the algebras A and B generate isomorphic subgroups of the
Brauer group, over the base field F and also over any extension of F . In particular,
each of them is split by the function field of the Severi Brauer variety of the other,
and, since they have exponent 2, it follows A and B are isomorphic.

It remains to prove that the respective discriminants d� and d⌧ are equal, or
equivalently that the corresponding quadratic extensions K and K 0 are isomorphic.
Consider the variety X = X�,G⇥X�,G0 which is the direct product of the varieties
of Borel subgroups of both groups G and G0. Since F is quadratically closed in
the function field F of X, K and K 0 induce quadratic extensions of F , which we
still denote by K and K 0, and it is enough to prove they are isomorphic over
F . By definition of X, the groups G and G0 are quasisplit over F , that is AF is
split and the involutions �F and ⌧F are respectively adjoint to the quadratic forms
q = rH�h1,�d�i and q0 = rH�h1,�d⌧ i, where H is a hyperbolic plane. Therefore,
the motives of X� and X⌧ respectively decompose over F as a sum or Tate motives
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plus a summand isomorphic to the motive of SpecK for X� and SpecK 0 for X⌧ .
Since � and ⌧ are motivic equivalent, it follows that K and K 0 are isomorphic and
this finishes the proof. ⇤

The analogue of Proposition 3.12 for unitary involutions is the following:

Proposition 3.13. Assume (A,�) and (B, ⌧) are of unitary type. Let K and K 0

be the respective centers of A and B. If � and ⌧ are motivic equivalent, then K and
K 0 are isomorphic over F . Moreover, under the identification Br(K) ' Br(K 0),
the 2-components of A and B generate the same subgroup in Br(K).

Proof. Assume � and ⌧ are motivic equivalent. Again, this implies the algebras
A and B have the same degree. In order to prove that K and K 0 are isomorphic,
we can use the same strategy as in the orthogonal case. Consider the variety
X = X�,G ⇥X�,G0 which is the direct product of the varieties of Borel subgroups
of both groups G and G0. Since F is quadratically closed in the function field F

of X, K and K 0 induce quadratic extensions of F , which we still denote by K and
K 0, and it is enough to prove they are isomorphic over F . By definition of X, the
groups G and G0 are quasisplit over F . Therefore, we may apply [18, Cor 7.2],
which says that the motives of X� and X⌧ over F respectively decompose into a
sum of Tate motives plus summands isomorphic to shifts of the F -motive of SpecK
for X� and SpecK 0 for X⌧ . Therefore, again the fields K and K 0 are isomorphic
over F hence over F . From now on we identify K and K 0.

After scalar extension to K we have

(X�)K ' X(1, deg(A)� 1;A), (X⌧ )K ' X(1, deg(B)� 1;B) ,

where X(1, deg(A)�1;A) (resp. X(1, deg(B)�1;B)) is the variety of flags I1 ⇢ I2
of right ideals I1 and I2 in A (resp. in B) of reduced dimension 1 and reduced
codimension 1 (see [23, Proposition 2.15] and [15, Lemma 15.5]). Since � and ⌧ are
motivic equivalent, those varieties have isomorphic motives with F2 coe�cients; so
in particular, they also have isomorphic upper motives. Since X(1, deg(A) � 1;A)
has a rational point over a field extension L of K if and only if the Severi-Brauer
variety SB(A) also does, their upper motives are isomorphic by [19, Cor 2.15].
Similarly, the upper motive of X(1, deg(B)� 1;B) is isomorphic to that of SB(B)
and we get that the Severi-Brauer varieties SB(A) and SB(B) have isomorphic
upper motives. Since we work with F2 coe�cients, it follows by [7, Thm 1] that the
2-primary parts of the algebras A and B generate the same subgroup of the Brauer
group of K. ⇤

Remark 3.14. The condition on the algebras A and B in Proposition 3.13 above
is optimum. In particular, the algebras A and B generally are non-isomorphic.
This was already observed in [9] for groups of inner type. More precisely, let E
be a division algebra of exponent 8 or a larger 2-power, and consider the division
algebra E0 Brauer equivalent to E3. The algebras E and E0 are 2-primary, and
generate the same subgroup of the Brauer group of F . Therefore, as explained in [9,
§X.1] the groups SL1(E) and SL1(E0) are motivic equivalent. Hence the exchange
involutions respectively defined on A = E ⇥ Eop and B = E0

⇥ E0op are motivic
equivalent. Nevertheless, E0 is isomorphic neither to E nor to its opposite, so A
and B are non-isomorphic.
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3.2. Motivic equivalence and generic index reduction fields. The main re-
sult of this section is the following proposition, which reduces the proof of The-
orem 3.10 to some low Schur index cases, as we will explain in §3.3. This result
is a consequence of [9, Thm. 16], which characterizes motivic equivalent algebraic
groups in terms of their higher 2-Tits indexes.

Proposition 3.15. Assume (A,�) and (B, ⌧) are of the same type t and have the
same degree. If t = o, we assume � and ⌧ have the same discriminant; if t = u
we assume A and B have isomorphic centers. In all three types, we assume in
addition that the 2-primary parts of A and B generate the same subgroup of the
Brauer group of their center.

Consider the associated quadratic forms Q� and Q⌧ over the function fields FA,t

and FB,t, as defined in § 2.2. Denoting by F the free composite of FA,t and FB,t,
the following assertions are equivalent.

(1) PSim+(A,�) and PSim+(B, ⌧) are motivic equivalent;
(2) PSim+(A,�)F and PSim+(B, ⌧)F are motivic equivalent;

(3) (Q�)F
m
⇠ (Q⌧ )F .

The proof uses the following lemma:

Lemma 3.16. (cf [9, Thm. 16]) Let (A,�) and (B, ⌧) be as in Proposition 3.15.
In particular, we have A ' B in orthogonal and symplectic type. The groups
G = PSim+(A,�) and G0 = PSim+(B, ⌧) are motivic equivalent if and only if for
all field extensions M/F we have

iw,2(�M ) = iw,2(⌧M ).

Proof. The assumptions we made guarantee that the two groups are inner twisted
forms of the same quasi split group. Therefore, we may apply [9, Thm. 16], which
says that they are motivic equivalent if and only if they have the same higher
Tits 2-indexes, that is if and only if for all extension M of F , the groups GM and
G0

M have the same Tits 2-index. As explained in [10, §II], the Tits 2-index of G
is empty if the group is anisotropic, and determined by the Schur index of the 2
primary part of A and the Witt 2-index iw,2(�) otherwise, except possibly in inner
type Dn, where we need to specify which of the two extreme vertices belongs to
the Tits index when only one of them does. Since the 2-primary parts of A and
B generate the same subgroup of the Brauer group of their center, they have the
same Schur index over any field extension of their center. Therefore the lemma is
proved, except possibly in inner type Dn.

Let us now study this case in more details. From our hypothesis, we already
know that the Tits 2-indexes of both groups intersect {n � 1, n} in two subsets
of the same cardinality. Therefore, at least one of the two varieties X{n�1},G0

and X{n},G0 is dominated modulo 2 by X{i},G for i 2 {n � 1, n}, in the sense
of [9, déf. 4]. Conversely, at least one of X{n�1},G and X{n},G is dominated
(modulo 2) by X{j},G0 , for j 2 {n, n � 1}. We claim that that there is a choice
of i 2 {n � 1, n} and j 2 {n � 1, n} such that both varieties X{i},G and X{j},G0

are equivalent modulo 2. Indeed, assume for the sake of contradiction that this is
not the case. Then, up to renaming the vertices, X{n�1},G0 dominates X{n�1},G,
X{n},G dominates X{n�1},G0 , X{n},G0 dominates X{n},G and X{n�1},G dominates
X{n},G0 . By transitivity, we then get that X{n},G0 also dominates X{n�1},G, a
contradiction since X{n},G0 and X{n�1},G as well as X{n�1},G0 and X{n},G would
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then be equivalent modulo 2. Combining this with the assumptions of the Lemma,
we get that the groupsG andG0 are equivalent modulo 2 in the sense of [9, Définition
6], hence motivic equivalent modulo 2 by loc. cit. Théorème 13. ⇤

Proof of proposition 3.15. By scalar extension, (1) clearly implies (2). The con-
verse follows from Lemma 3.16. Indeed, let us assume (2) holds. Since motivic
equivalence modulo 2 can be checked after odd-degree field extensions, we may as-
sume in the unitary case that both A and B are of 2 primary index. Consider a
field extension M/F , and set M for the compositum of M and F , that is the free
composite of the function fields of the relevant varieties for �M and ⌧M . Since M is
an extension of F , by Lemma 3.16, (2) implies iw,2(�M) = iw,2(⌧M). In addition,
the condition we made on the algebra A and B guarantee that the field F is a
purely transcendental extension of FA,t and FB,t, and similarly over M . Therefore,
applying Lemma 2.5 to �M and ⌧M , we get

iw,2(�M ) = iw,2(�M) = iw,2(⌧M) = iw,2(⌧M ).

It follows that the Witt 2-indexes of �M and ⌧M coincide for any field extension
M/F , which proves (1).

We now show that (2) and (3) are equivalent. If the involutions are orthogonal,
this follows from Example 3.11 since AF and BF are split and �F and ⌧F are
respectively adjoint to Q� and Q⌧ . Assume now that � and ⌧ are either symplectic
or unitary. By Lemma 3.16, (2) holds if and only if � and ⌧ have the same 2-Witt
indices over any extension M of F . In view of Proposition 2.3 this is equivalent
to equality of the Witt indices of the quadratic forms Q�M and Q⌧M for all M.
As explained in Example 3.11, this in turn characterizes motivic equivalence of Q�

and Q⌧ . ⇤

3.3. Proof of Theorem 3.10. With this in hand, we can now prove Theorem 3.10
which asserts that if the involutions � and ⌧ are motivic equivalent, then the groups
PSim+(A,�) and PSim+(B, ⌧) are motivic equivalent.

So, assume � and ⌧ are motivic equivalent, that is X� and X⌧ have isomorphic
motives modulo 2. By Propositon 3.12, the algebras A and B are isomorphic if
the involutions are orthogonal or symplectic. Using in addition Proposition 3.13,
observe that in all three types, the algebras satisfy the conditions of Proposition
3.15. Hence, we may extend scalars to F , or equivalently, we may assume that
A = B, and it is a split algebra in orthogonal and unitary type, and has index at
most 2 in symplectic type.

If the involutions are orthogonal, the result now follows from Example 3.11.
In unitary and symplectic type, we use Lemma 3.16, so we need to prove that
iw,2(�M ) = iw,2(⌧M ) for all extension M of the base field F . Note that because of
the condition on the algebra, the Witt 2-indices and the Witt indices coincide for
� and ⌧ (see Proposition 2.3). In unitary type, as explained in [23, (6.3)], if the
quadratic field K splits over F , then � and ⌧ are hyperbolic, hence have maximal
Witt index. The same holds in symplectic type if AM is split. Since � and ⌧ are
motivic equivalent, the varieties X� and X⌧ have isomorphic motives over the base
field F , and also over any extension M of F . Therefore, the following proposition
gives the required equality in all other cases.

Proposition 3.17. Let (A,�) be an algebra with unitary or symplectic involution.
We assume A has index 1 in unitary type, and A has index 2 in symplectic type.
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If � is unitary, we assume in addition that K/F is a field extension. Then the
complete motivic decomposition of X� modulo 2 determines iw(�).

Proof. Assume first that � is unitary and A is split. By [16, Lemma 3.1], for
every i < d/2 the following holds : iw(�) > i if and only if the complete motivic
decomposition of X� contains the Tate motive F2(2i). So the result is proved in
this case.

Assume now � is a symplectic involution of the algebra Mm(H), for some quater-
nion division algebra H. The involution � is adjoint to a rank m hermitian form,
denoted by h�, defined on the H-module V ' Hm, and with values in (H, ), where

stands for the canonical involution of H. The variety X�, is isomorphic to the
variety X(2, (V, h�)) of totally isotropic H-submodules of V of reduced dimension
2. If the hermitian form h� is isotropic, it decomposes as

(V, h�) = H(H) ? (W,h0) ,

where H(H) is a hyperbolic plane over (H, ). Applying [15, Corollary 15.9] to the
above decomposition, we obtain a decomposition of the motive of X� as a sum of
shifts of the following: two Tate motives, two copies of the motive of the product
SB(H)⇥X(1, (W,h0)), and the motives of SB(H) and X(2, (W,h0)), where SB(H)
denotes the Severi-Brauer variety of H. Note that, since indH = 2, there is no
Tate motives in the complete motivic decompositions of SB(H)⇥X(1, (W,h0)) and
SB(H). Therefore, denoting by N(X) the number of Tate motives in the complete
motivic decomposition of X, we get that

N(X�) = N
�
X(2, (V, h�))

�
= 2 +N

�
X(2, (W,h0))

�
.

Since in addition iw(h�) = N(X�) = 0 if h� is anisotropic, an induction argument
shows that iw(�) = 2iw(h�) = 2N(X�). This concludes the proof. ⇤
3.4. Generalization of Vishik’s theorem. Using the material developped in
this section, we may extend Vishik’s celebrated criterion of motivic equivalence [34,
Theorem 4.18] (see also [14]) from quadratic forms to involutions:

Corollary 3.18. If (A,�) and (B, ⌧) are of the same orthogonal or symplectic type
over F , the involutions � and ⌧ are motivic equivalent if and only if we have

A ' B and iw,2(�M ) = iw,2(⌧M ) for all field extensions M/F.

If (A,�) and (B, ⌧) are of unitary type, then � and ⌧ are motivic equivalent if
and only if the centers of A and B are isomorphic over F , the 2-primary parts of
A and B generate the same subgroup of the Brauer group of their center, and

iw,2(�M ) = iw,2(⌧M ) for all field extensions M/F.

Proof. Assume first that the involutions � and ⌧ are motivic equivalent. By The-
orem 3.10, the groups PSim+(A,�) and PSim+(B, ⌧) are motivic equivalent. The
result follows combining Propositions 3.12 and 3.13, which prove the conditions on
A and B hold, and Lemma 3.16 which provides equality of the higher Witt 2-indices
of � and ⌧ .

Let us now prove the converse. Assume first the involutions � and ⌧ are sym-
plectic or unitary. All the assumptions of Lemma 3.16 are satisfied, and we get
that the groups PSim+(A,�) and PSim+(B, ⌧) are motivic equivalent. It follows
that � and ⌧ are motivic equivalent, since the subset defining the varieties X� and
X⌧ is fixed under any Galois invariant automorphism of the Dynkin diagram of
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the underlying groups, so the result is proved in these cases. In orthogonal type,
since iw,2(�M ) = iw,2(⌧M ) for all field extensions M/F , we claim the involutions
� and ⌧ have the same discriminant. Indeed, as explained in the proof of Propo-
sition 2.4, we may compute the discriminants d� and d⌧ after extending scalars
to the generic splitting field FA,o of the algebra A. Over this field, � and ⌧ are
adjoint to some quadratic forms Q� and Q⌧ that have the same Witt indices over
all extensions of FA,o. Therefore, they have the same discriminant by [14, Lemma
2.6], and this proves d� = d⌧ . Hence again all the assumptions of Lemma 3.16 are
satisfied, and from the proof of this Lemma, we get that the groups PSim+(A,�)
and PSim+(B, ⌧) are motivic equivalent for a choice of an identification between
the Dynkin diagrams satisfying f(1) = 1. So the involutions � and ⌧ are motivic
equivalent as required. Alternately, one may finish the proof using triality in type
1D4, which is the only type for which there exists f which do not satisfy f(1) = 1.
Indeed, if the groups are motivic equivalent, the involution � is motivic equivalent
either to ⌧ , or the the canonical involution of one of the two components of the
Cli↵ord algebra (C+, ⌧+) ⇥ (C�, ⌧�) of (A, ⌧). Assume for instance � is motivic
equivalent to ⌧+. Then by Proposition 3.12, A ' C+. Therefore, by [23, (42.7)(1)],
the algebra C� is split, so the involution ⌧� is adjoint to an 8 dimensional quadratic
form q with trivial discriminant. Hence, by triality [23, (42.3)], (A, ⌧) and (A, ⌧+)
are the two components of the even Cli↵ord algebra of q. So they are isomorphic
as algebras with involution, and we get that � also is motivic equivalent to ⌧ as
required.

⇤
3.5. Examples of non-critical varieties. Projective homogeneous varieties un-
der an absolutely almost simple algebraic group are not always critical. An easy
explicit example is obtained by considering the variety of rank 1 isotropic ideals
for an algebra with symplectic involution. Indeed, as explained in [10, §II.4 and
§III], there exists a field F , an algebra A over F , and two symplectic involutions �
and ⌧ such that the corresponding algebraic groups have di↵erent 2-Tits indexes.
In particular, � and ⌧ are not motivic equivalent. Over a splitting field of A,
both involutions are adjoint to a skew-symmetric bilinear form, hence all lines are
isotropic. It follows that the varieties X{1},� and X{1},⌧ are both isomorphic to
the Severi-Brauer variety of A, hence they have isomorphic Chow motives, and this
proves X{1},� is not critical.

Excellent quadratic forms provide a more interesting example. Pick a field F
and a, b, c, d 2 F⇥ such that the Pfister forms hha, b, cii and hha, b, dii are anisotropic
and non-isomorphic. Consider the Pfister neighbors

' = h1i+ h�cihha, bii and '0 = h1i+ h�dihha, bii.

Both are excellent quadratic forms by [11, Thm 28.3], since they are Pfister neigh-
bors of the 3-fold forms hha, b, cii and hha, b, dii respectively, with the same com-
plement form h�a,�b, abi, which in turn is a Pfister neighbor of hha, bii with one-
dimensional complement.

Moreover, they are odd-dimensional and non similar, so they are not motivic
equivalent by [13] (see Example 3.3). Nevertheless, we claim that the varieties of
complete flags of isotropic subspaces for ' and '0 have isomorphic motives. Indeed,
by [19, Cor 2.15], since for all extension K/F we have

'K is split , '0
K is split , hha, biiK is hyperbolic,
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their upper motives are isomorphic. In addition, those two varieties are generically
split, hence they have isomorphic motives by [29, Thm 5.17].

More generally, let ' and '0 be two anisotropic excellent quadratic forms of
the same odd dimension, with associated decreasing sequences of Pfister forms
⇢1 � ⇢2 � ... � ⇢r�1, and ⇢01 � ⇢02 � ... � ⇢0r�1 respectively, as in [11, Thm. 28.3].
Note that, since ' and '0 are odd-dimensional, the last term in the sequence of
Pfister complement forms have dimension 1 (that is, with the same notations as
in loc. cit., dim('r) = 1 = dim('0

r)). It follows from [21, Corollary 7.2] that '
and '0 are motivic equivalent if and only if ⇢i ' ⇢0i for all i 2 [1, r � 1], while one
may prove that the varieties of complete flags have isomorphic motives as soon as
⇢r�1 ' ⇢0r�1.

4. Motivic equivalence and isomorphism

In general, motivic equivalent involutions are not isomorphic. As noticed by
Izhboldin in [13], this may happen already in the split orthogonal case; indeed,
there exists even dimensional motivic equivalent quadratic forms that are non-
similar. Besides, in the unitary case, two motivic equivalent involutions might be
defined on some non-isomorphic algebras.

Nevertheless, under some condition on the base field, motivic equivalence for two
involutions defined on the same algebra does imply isomorphism as we proceed to
show. To be more precise, recall first that using Bayer and Parimala’s proof of the
Hasse principle conjecture II [4], Lewis and Tignol gave necessary and su�cient
conditions on the base field F under which cohomological invariants and signatures
are enough to classify involutions on a central simple algebra (see [25]). In this
section, we prove that over a field F satisfying those conditions, motivic equivalent
involutions are isomorphic. This extends a previous result on quadratic forms du
to Ho↵mann [12]. The key observation is that motivic equivalent involutions have
the same invariants. This is proved by Ho↵mann [12] in the split orthogonal case,
and extends to other cases by our Proposition 3.15. More precisely, we have :

Proposition 4.1. Let (A,�, ⌧) be an algebra with two involutions of the same type
over F . If � and ⌧ are motivic equivalent, then the following hold :

(1) If A has even degree and the involutions are orthogonal,

d� = d⌧ 2 F⇥/F⇥2 and c(�K) = c(⌧K) 2 Br(F )/h[A]i,

where K/F is the discriminant quadratic extension;
(2) If A has even degree and the involutions are unitary,

[D(�)] = [D(⌧)] 2 Br(F );

(3) In all three types, signP (�) = signP (⌧) for all P 2 XF .

Proof. If � and ⌧ are motivic equivalent, then by Proposition 3.15, the quadratic
forms Q� and Q⌧ also are motivic equivalent. Hence, by [12, Cor.2.2, Lem.3.1],
we have d(Q�) = d(Q⌧ ), c

�
(Q�)K

�
= c

�
(Q⌧ )K

�
, where K/FA,t is the discriminant

quadratic extension, and | signQ(Q�)| = | signQ(Q⌧ )| for all Q 2 XF
A,t

. The result
follows by Proposition 2.4. ⇤

With this in hand, we get that motivic equivalent involutions actually are iso-
morphic over any field F over which involutions are classified by their invariants.
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Let F be a formally real field. Recall that the space of orderings XF is a topological
space. Moreover, for all a 2 F⇥, the so-called Harrison set

H(a) = {P 2 XF , a >P 0}

is both closed and open in XF (see eg [30]). The field F is called SAP if, conversely,
each closed and open subset of XF is a Harrison set, that is any prescription of
signs at each ordering given by a partition of XF into two closed and open subsets
is attained by some a 2 F⇥. If in addition all formally real quadratic extensions of
F are SAP, the field F is called ED. Applying the classification theorems given by
Lewis and Tignol in [25], we get :

Theorem 4.2. Let F be either a non formally real field of cohomological dimension
 2, or a formally real field with virtual cohomological dimension  2 and satisfying
the ED property. Let (A,�, ⌧) be an algebra with two involutions of the same type
over F . If � and ⌧ are motivic equivalent, then they are isomorphic.

Proof. The theorem follows immediately from [25, Thm.A & Thm.B], up to the
following lemma. ⇤

Lemma 4.3. Let � and ⌧ be two orthogonal involutions on a central simple algebra
A over F . Their Cli↵ord algebras C(�) and C(⌧) are isomorphic as F -algebras if
and only of d� = d⌧ and c(�K) = c(⌧K), where K/F is the discriminant quadratic
extension.

Proof. Assume first that C(�) and C(⌧) are isomorphic as F -algebras. They have
isomorphic centers, therefore d� = d⌧ . Moreover, extending scalars from F to K,
we have C(�K) ' C(⌧K), whereK/F is the quadratic discriminant extension. Hence
C+(�K) ⇥ C�(�K) and C+(⌧K) ⇥ C�(⌧K) are isomorphic as K-algebras. It follows
that C+(�K) is isomorphic either to C+(⌧K) or to C�(⌧K), and in both cases, we
get c(�K) = c(⌧K) 2 Br(K)/h[AK ]i.

Assume conversely that d� = d⌧ and c(�K) = c(⌧K) 2 Br(K)/h[AK ]i. Since the
center of C(�) is K, the Cli↵ord algebra of �K is

C(�K) ' C(�)⌦F K ' C(�)⇥ C(�),

where C(�) denotes the conjugate algebra, and similarly for C(⌧K). Hence, the
assumption c(�K) = c(⌧K) 2 Br(K)/h[AK ]i, says that C(⌧) is isomorphic either
to C(�) or to its conjugate, which precisely means that they are isomorphic as
F -algebras. ⇤

Remark 4.4. As we already mentioned, in the odd degree orthogonal case, Izhboldin
has proved a much stronger result, namely that two odd dimensional motivic equiv-
alent quadratic forms are similar. Hence, no assumption on the base field is required
in this case. In some even degree cases, we can slightly weaken the assumption on
the base field as follows, by [25, Thm.A, Thm.B] :

(1) For non formally real fields, I3(F ) = 0 is enough in symplectic and orthog-
onal types;

(2) For formally real fields, I3F (
p

�1) = 0 and F SAP is enough for symplectic
involutions;

(3) For formally real fields, I3F (
p

�1) = 0 and F ED is enough for orthogonal
involutions on even-degree algebras.
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Remark 4.5. By Springer’s theorem, a quadratic form is isotropic over an odd
degree extension of the base field if and only if it is isotropic. Equivalently, we have
iw,2(q) = iw(q) for all quadratic form q. It is not known whether this also holds for
involutions, even over a field satisfying the conditions of the theorem above. Under
those conditions, though, we have the following weaker assertion : If (A,�, ⌧) is
an algebra with two involutions of the same type over a field F which is either a
non formally real field of cohomological dimension  2, or a formally real field with
virtual cohomological dimension  2 and satisfying the ED property, then

8M/F, iw,2(�M ) = iw,2(⌧M ) ) 8M/F, iw(�M ) = iw(⌧M ).

Indeed, the left condition guarantee that the involutions � and ⌧ are motivic equiv-
alent by [9] (see Lemma 3.16). By the above theorem, this implies that the involu-
tions are isomorphic, hence they do have the same Witt index over any extension
of the base field.

5. Examples of critical varieties for some exceptional groups

The aim of this last section is to study critical varieties for the class of so-called
tractable semisimple algebraic groups, which includes many groups of exceptional
types. As far as classical groups and algebras with involutions are concerned the
main homological torsion prime of interest is p = 2. Yet we now will consider
semisimple groups with odd torsion primes and thus recall some of the notations
of [9].

Until the end of this section we will only consider for the sake of simplicity
semisimple groups of inner type, for which the list of torsion primes is given in [10].
As a direct consequence of the Bruhat decomposition, all twisted flag G-varieties
are critical modulo p if p is not a torsion prime for G, or more generally if G is p-
split -which means G splits over a field extension E/F of prime-to-p degree-. Note
that as the tables of [10] show, the p-splitting of exceptional groups often follow a
rather basic pattern, motivating the following definition.

Definition 5.1. The type Tn of an absolutely simple algebraic group is called p-
tractable if the set of possible values of the Tits p-indexes of groups of type Tn has
cardinality 2.

Seemingly restrictive at first glance, the preceding definition covers the following
important examples :

(1) the types F4 and E7 are 3-tractable;
(2) the types G2 and E6 are 2-tractable;
(3) the type E8 is 5-tractable.

q q q q qqe e q q q q qqee e e e e
Table 1. The 2-indexes of the 2-tractable type 1E6

Recall that a twisted flag G-variety is called p-isotropic if it carries a zero-cycle
of prime-to-p degree, and p-anisotropic otherwise. Following our conventions X⇥,G

is p-isotropic if and only if ⇥ is circled in the Tits p-index of G. Reformulating
definition 5.1, one may say that G is p-tractable if G is not p-split and any p-
anisotropic twisted flag G-variety is generically split, in the sense of [29]. Using
this, we prove :
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Theorem 5.2. Assume that G is a p-tractable semisimple group of inner type.
Any p-anisotropic twisted flag G-variety X⇥,G is critical for G modulo p.

Proof. Let G and G0 be inner twisted forms of the same quasisplit group, and
assume their common type is p-tractable. Let ⇥ ⇢ � be such that X⇥,G is p-
anisotropic, that is there is at least one element in ⇥ which is not circled in the
Tits p-index of G. Assume that M(X⇥,G; p) and M(X⇥,G0 ; p) are isomorphic.
Then, in particular, G0 is non-split, so G0 and G have the same Tits p-index and
X⇥,G0 also is p-anisotropic. Consider an extension K of the base field F . If both
motives are non-split over K, then the groups are non split, hence have the same
Tits p-index as over the base field, since there is only one non split possible value.
Otherwise, both motives and both groups are split over K. Therefore, G and G0

have the same higher Tits p-indexes. By [9, Thm 15], this proves that G and G0

are motivic equivalent, hence X⇥,G is critical. ⇤
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