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I. INTRODUCTION

Flexoelectricity [1], a fascinating electromechanical phenomenon, is widely employed to describe electric polarization caused by strain gradient. Unlike piezoelectricity, which arises only in noncentrosymmetric materials, flexoelectricity can a priori exist in all materials. Therefore, flexoelectricity can provide new opportunities to use some centrosymmetric materials to build electromechanical systems, such as energy harvesters [2,3], actuators [4,5], flexible electronics [6], flexoelectric sensors [7,8].

Flexoelectricity was first predicted by Mashkevich and Tolpygo [9] during Tolpygo's studies on the optical and elastic properties of crystals. The polarization due to the flexoelectric effect was later phenomenologically described by Kogan [10], using the contraction of a fourth order flexoelectricity tensor with the third order strain gradient tensor. Ever since the terminology 'flexoelectricity' was firstly borrowed from the liquid crystals community by Indenbom [11,12] et al in 1981, a great deal of theoretical work has been done to advance the development of the theory of flexoelectricity in solids. Earlier theoretical descriptions principally concentrated on lattice dynamics using Kogan's phenomenological theory [10,13,14] and continuum mechanics [15] or microscopic theories based on lattice dynamics [13,[16][17][18] and quantum mechanics [19][20][21][22]. Calculations used methods such as core-shell model [17,23], rigid-ion model [13,14], molecular dynamics simulations [24][25][26], finite element method [27,28] and phase-field method [29]. Recently, the advancement and popularity of machine learning techniques [30][31][32] provide original means for the computation of flexoelectricity coefficients. A novel technique called topology optimization methods have been proposed allowing for more accurate and efficient design of complex flexoelectric structures [33]. Another strategy, the isogeometric analysis (IGA), which fulfills the C1-continuity requirement has been adopted to identify the full flexoelectric properties based on electrical impedance curves. [34] Flexoelectricity in solids was believed to be a very small effect. However, at the beginning of the 2000s, Ma and Cross reported unexpectedly high experimental flexoelectric responses in a variety of perovskite ceramics [35][36][37][38][39][40] greatly arousing the interest in research of flexoelectricity in perovskite ceramics. [41][42][43] Furthermore, the relative importance of the flexoelectric effect with respect to the piezoelectric effect should increase as the scale of strain inhomogeneities decreases. Therefore, the recent development of ultrathin (2D) nanomaterials, due to the desired need for miniaturized devices, provide opportunities for researchers to study flexoelectricity in 2D materials which could offer interesting electromechanical coupling in nanodevices. Such an interest has stimulated intense research to investigate flexoelectric coefficients in carbon nanomaterials [20,21,[44][45][46] (nanotubes, fullerenes, nanocores and patterned graphene), phosphorene [47], hexagonal boron nitride [48] and transition-metal dichalcogenides [49,50] by means of first-principle calculations. Remarkably, Kumar et al very recently calculated the flexoelectric coefficient for fifty-four representative atomic monolayers selected from distinct groups in the periodic table of elements using ab-initio Density Functional Theory (DFT) [51].

Recently, Zhuang and co-workers used molecular dynamics simulations coupled with a charge dipole (QP) model to compute flexoelectric coefficients for transitionmetal dichalcogenides [52] and related materials [53]. This kind of method uses calculations much faster than DFT calculations, and provides an easier way to predict the properties of bigger and less symmetric heterostructures. Since we have some experience in using the QP model [54][55][56] we studied those papers in details and noticed that a term involving effective charges was neglected/omitted in the definition of polarization that only used the effective dipoles, as in the case of covalent materials such as e.g. graphene. Furthermore, the enforcement of charge conservation was also not implemented, meaning that charges could flow in or out of the materials without any constraint, which can conflict with the fact that an insulating substrate (Polydimethylsiloxane (PDMS), Au, Al 2 O 3 ) [57,58] was used to obtain the out-of-plane effective flexoelectricity coefficient of monolayer MoS 2 , by using an equation for converse flexoelectricity to link the out-of-plane effective piezoelectric coefficient measured by piezoresponse force microscopy and the flexoelectric coefficient to be determined [57,58]. We also note that in-plane flexoelectric coefficients µ 1111 or µ 2222 for such 2D materials have not yet been experimentally obtained, since it has been difficult to isolate the relative contributions of piezoelectricity and flexoelectricity to the resulting polarization.

In this work, we computed the in-plane flexoelectric coefficients µ 1111 , µ 2222 , transverse flexoelectric coefficient µ 3311 and out-of-plane flexoelectric coefficient µ 3333 for monolayer MoS 2 using the charge-dipole model [59] with radial Gaussian regularization [54,56,[60][61][62][63] enforcing charge conservation with a Lagrange multiplier and adding an ionic charge term in the definition of polarization. The significance of the missing charge term is estimated in the computation of µ 3333 , by comparison with the simulation paper of Javvaji et al. [53] and the experimental papers of Brennan et al. [57,58]. Our calculations illustrate that the results for this flexoelectric coefficient computed with the improved definition of polarization agree in magnitude with experimental measurements, with the possible reason causing the discrepancy in sign discussed. Moreover, two critical factors capable of affecting the sign of flexoelectric coefficient are fully elucidated while µ 3311 is computed. Additionally, µ 1111 and µ 2222 are calculated by using an in-plane displacement field that effectively eliminates the piezoelectric contribution to the polarization. This paper is organized as follows. In Sec.II we describe the Gaussian regularized charge-dipole model, our bending simulation set-ups and the computational methodology for the computation of the strain gradient. The computation of in-plane flexoelectric coefficient µ 1111 , µ 2222 , transverse flexoelectric coefficient µ 3311 and out-of-plane flexoelectric coefficient µ 3333 are presented and discussed in Sec.III. Section IV concludes our findings.

II. METHODS

A. Principle of the method used to compute flexoelectricity coefficients

As written in the introduction, the direct flexoelectric effect describes the fact that a strain gradient in a material will cause an (additional) electric polarization of the material, because of the inhomogeneous distribution of positive and negative charge centers caused by the inhomogeneous deformation. Polarization being a vector described by a vector (first order tensor) and strain gradient a third order tensor, the supposedly linear relation between these two quantities is represented by a fourth order flexoelectricity tensor. Various conventions for the signification of the indices, leading to different matrix compressed representations, are used in the literature. We chose the one that puts the index corresponding to the polarization in first place, since we do not make use of the equivalence of the two strain indices:

∆P i = µ ijkl G jkl (1) 
where i, j, k, l are indices labeling the coordinates x, y, z or 1, 2, 3. The Einstein implied summation convention for repeated indices is used.

Our goal is to compute values for these µ ijkl coefficients. For that purpose we will use an inverse effect: when submitted to an external electric field, a dielectric material tends to deform so as to align its global dielectric polarization vector with the external field. Hence, we use various symmetric field configurations designed to deform inhomogeneously a MoS 2 monolayer, while not changing the global polarization contributions due to the dielectric susceptibility of the material or its piezoelectric properties. Then, we compute both the global polarization and the global strain gradient of the deformed structure and fit the (hopefully linear) relation between these two quantities to find the µ coefficients.

We shall therefore describe now, how we compute the global polarization and strain gradient in the monolayer.

B. Description of the charge dipole model used to compute the polarization of a monolayer MoS 2 subjected to an external electric field

We start with the regularized charge-dipole (QP) model [54,56,[60][61][62][63], in which each atom of a MoS 2 nanoribbon is described by the combination of an effective charge and a dipole with radial Gaussian distributions, plus an effective electronegativity. The total electrostatic energy E elec associated with those effective charges {q α } and dipoles {p α } located at the atomic positions {r α } (with α = 1, ..., N ), in the presence of an external electric field E ext is given by:

E elec = N α=1 q α (χ α + V ext,α ) - N α=1 p α • E ext + 1 2 N α=1 N β=1 q α T α,β q-q q β - N α=1 N β=1 p α • T α,β p-q q β - 1 2 N α=1 N β=1 p α • T α,β p-p • p β (2)
where N stands for the number of atoms in the structure considered and χ α is the electronegativity of the atom α, once inserted in the molecule. V ext,α is the electrostatic potential at r α corresponding to the external electric field, which can be expressed as -E ext • r α in the case of a uniform external field. T q-q , T p-q and T p-p are interaction tensors between effective point charges or dipoles in vacuum (see equation 3), which have been convoluted with one radial Gaussian distribution per atom, of the form

π 3/2 R 3 α exp(-|r -r α | 2 /R 2 α
). This allows to take into account approximately the extension of the electronic clouds, and prevents the occurrence of divergence problems, i.e. polarization catastrophes, that can occur in simulations when two atoms are so close to each other that the approximation of an interaction between point charges or dipoles is not a good approximation any more. [60-62, 64, 65

]                              T αβ q-q = 1 4π 0 r αβ erf r αβ √ R 2 α +R 2 β T αβ p-q = -∇ rα T αβ q-q = -1 4π 0 r αβ r 3 αβ erf r αβ √ R 2 α +R 2 β -2 √ π r α,β √ R 2 α +R 2 β exp - r 2 αβ R 2 α +R 2 β T αβ p-p = -∇ r β ⊗ ∇ rα T αβ q-q = 1 4π 0 3r αβ ⊗r αβ -r 2 αβ I r 5 αβ erf r αβ √ R 2 α +R 2 β -2 √ π r α,β √ R 2 α +R 2 β exp - r 2 α,β R 2 α +R 2 β -4 √ π r αβ ⊗r αβ r 2 αβ 1 ( √ R 2 α +R 2 β ) 3 exp - r 2 αβ R 2 α +R 2 β . ∀α = β (3) 
where r αβ = r β -r α is the vector pointing from α th atom to β th atom. R α and R β are the characteristic widths of Gaussian charge distributions for atom type α and β respectively. In the limit r α = r β , the expressions of the various T α,β interaction tensors in equation 3 converge to finite values (Eq. 4) related to the self-energy for each atom (atomic 'capacitance' or chemical hardness and polarizability).

         q α T α,α q-q q α = q 2 α 4π 0 √ 2/π Rα p α • T α,α p-q q α = 0 p α • T α,α p-p • p α = -p 2 α 4π 0 √ 2/π 3R 3 α . ( 4 
)
Our version of the QP model for MoS 2 possesses 8 parameters: 2 (χ and R) per kind of atoms by 4 kinds: Mo and S 'bulk' + Mo and S 'edge'. Details on this parameterization, by comparison with DFT data, are given in our previous work. [56] The charges and dipoles at electrostatic equilibrium are then determined by minimizing the electrostatic energy (Eq. 2) using a Lagrange multiplier λ to enforce charge conservation in the nanoribbon:

f = E elec + λ( N α=1 q α -Q tot ) (5) 
This Lagrange multiplier can be physically interpreted as the chemical potential of the molecule. [61] This enforcement of charge conservation within the framework of QP model is quite essential since it ensures that charges stay in the material in order to mimic the conditions of experimental measurements. [58] Requiring the derivative of function f (q, p, λ) with respect to q α , p x,α , p y,α , p z,α and λ to be zero will give a system of 4N + 1 linear equations for determining the 4N + 1 scalar unknowns (q α , p x,α , p y,α , p z,α and λ). These linear equations may be written in a matrix form:

     T q-q T t p-q 1 T p-q T p-p 0 1 0 0           q p λ      =      -(χ + V ext ) -E ext Q tot      (6) 
where T q-q is a block matrix with N rows and N columns. T p-p is a block matrix with 3N rows and 3N columns. T p-q is a block matrix with 3N rows and N columns. T t p-q is the transpose of T p-q . Similarly, blocks q and -(χ + V ext ) have N rows and 1 column, while blocks p and -E ext have 3N rows and 1 column. We note that the solution can be written in two parts as:

     q p λ      =      T q-q T t p-q 1 T p-q T p-p 0 1 0 0      -1      -χ 0 Q tot      +      T q-q T t p-q 1 T p-q T p-p 0 1 0 0      -1      -V ext -E ext 0      (7) 
where the first term on the right side corresponds to intrinsic charges q 0 α and dipoles p 0 α , i.e. charges and dipoles in the absence of any external electric field, that can however vary due to a mechanical deformation. The electronegativities χ α uniquely determine these intrinsic charges and dipoles (given the atomic positions), independently from any external electric field E ext or potential V ext . For our calculations, the total charge of the nanoribbon (Q tot ) is set to be zero because of the fact that flexoelectricity is supposed to be an intrinsic property, therefore requiring no extra charge to appear. The second term on the right side corresponds to effective additional charges (q ind α ) and dipoles (p ind α generated by the external electric field and potential). This can be summarized under the form:

                       p x = N α=1 (p 0 x,α + p ind x,α ) p y = N α=1 (p 0 y,α + p ind y,α ) p z = N α=1 (p 0 z,α + p ind z,α ) q = N α=1 (q 0 α + q ind α ) (8) 
In terms of the calculated dipoles p and charges q, the global polarization P for MoS 2 nanoribbon is defined as [59]:

P = N α=1 (q α r α + p α ) V (9)
in which V is the volume of MoS 2 nanoribbon. A thickness of 6.5 Å is used in computing V . [66] More information on the charge dipole model for MoS 2 can be found in our previous work [56]. Note that since MoS 2 is not ferroelectric, the total contribution to polarization of the q 0 α and p 0 α is zero (verified numerically), so that Eq. 9 could be rewritten by taking into account the induced charges and dipoles only.

In order to compare with some DFT results or remove edge effects, periodic boundary conditions can be applied in the QP model by adding the contributions of periodic images in the interaction tensors, i.e. adding contributions obtained by replacing r αβ in Eq.3 with r αβ + L * p (p ∈ [-k, k]) , with L denoting the periodic length in a given direction and k being a very large integer. We verified that setting k = 100 in our calculation is already sufficiently large to reach convergence in the computation of in-plane flexoelectric coefficients µ 1111 , µ 2222 and out-of-plane flexoelectric coefficient µ 3333 , thus eliminating edge effects.

C. Calculation of flexoelectricity coefficients

We illustrate the method we use to compute the flexoelectric coefficients on the special case of the determination of µ 3311 .

1. potential energy functional used for the 'structure' part

The key of the molecular simulations is actually the interatomic potential, which is applied to describe the interaction among atoms. For single-layer MoS 2 , the Stillinger-Weber many-body potential (E SW ) as parameterized by Wen et al [67] was very recently proven to be robust through a quantitative systematic comparison of structural and mechanical properties, as well as phonon dispersion for single-layer MoS 2 using density functional theory (DFT) and molecular statics calculations. [68] We therefore used this parameterizaton of the SW potential (E SW ) in our simulations, and found it very stable. Its analytical form and the values of the parameters are recalled in Supplementary material. The various MoS 2 nanoribbons we use in our simulations are thus initially relaxed by minimizing E SW . This gives the undeformed configuration mentioned in the previous subsection.

To compute the deformed configurations, we removed the interactions between intrinsic charges and dipoles in E elec , since they are already included in E SW .

We also neglected the total contribution of the interactions between intrinsic and induced charges and dipoles to keep only the total contributions of the interactions between charges and dipoles induced by the external field and potential (which we name E elec ). The mechanism of electrostatic bending of MoS 2 flake is depicted in Figure 1 of Supplementary material. We can see that negative and positive charges are shifted to opposite directions due to the non-zero transversal electric field (positive charges move to upper left and negative ones move to top right of the MoS 2 flake).

The interaction between the electric field generated by the induced charges and the external electric field produces two torques with opposite direction, termed τ 1 and τ 2 , which may be expressed as qr × E ext , making the two sides of the MoS 2 flake respectively bend towards the direction of the external electric field with the fixed atoms as the rotation axis, while giving a zero total polarization along the vertical axis.

Calculation of µ 3311

Contributions to the polarization of a given dielectric material submitted to an external electric field may come from piezoelectricity, flexoelectricity and electric susceptibility. In the simulations defined in the previous subsection, piezoelectricity may not be taken into account due to the symmetric bending deformation [52].

This makes the total induced polarization due to the first order deformation gradient become zero. Additionally, one can find the total external electric field along the out-of-plane is also zero. Hence, the out-of-plane polarization equal to the product of the susceptibility and the electric field should be removed as well. The remaining flexoelectric part of the out-of-plane polarization P 3 can be written as:

P 3 = 3 j=1 3 k=1 3 l=1 µ 3jkl G jkl (10) 
with µ 3jkl standing for flexoelectric tensor components. With the setup defined in the previous section, this can be approximated by:

P 3 = µ 3311 G 311 (11) 
Hence µ 3311 can be determined as the slope of the supposedly linear relation between P 3 and G 311 . Details on the computing method for determining strain gradient can be found in Supplementary material. In this section, we discuss the results we got for the computation of the inplane flexoelectric coefficients µ 1111 , µ 2222 , the transverse flexoelectric coefficient µ 3311 and the out-of-plane coefficient µ 3333 . The parameters for E SW and QP model used in this work were initially validated through calculation of the inplane piezoelectric constant e 222 for an MoS 2 monolayer. We found a value of the same order of magnitude as the corresponding experimental result (more details are given in Supplementary material).

A. Out-of-plane flexoelectric coefficient µ 3333

As can be seen on Fig. 2a, for this calculation, the layer of molybdenum atoms is shifted a small distance h to the positive direction of z axis to generate a strain gradient only along the out-of-plane (z) direction. In this case, the unique strain gradient that does exist is G 333 and the expression for computing µ 3333 can be written as µ 3333 = ∂P 3 ∂G 333 . The geometric thickness of monolayer MoS 2 is t. With both h and t, the strain gradient G 333 can be computed as -8h t 2 , which may be derived by:

G 333 = d 2 uz(0) dz 2 ≈ uz(-t 2 )+uz( t 2 )-2uz(0) (t/2) 2 = 0+0-2h (t/2) 2 = -8h t 2 , with u z ( t 2 ), u z (-t
2 ) and u z (0) representing the displacement of atoms for top sulfur layer, bottom sulfur layer and molybdenum layer, respectively. In this calculation, we enforce periodic boundary conditions to eliminate edge effects that can be quite important in such a setup. As can be seen on Fig. 2b, we use a MoS 2 flake with a width of 6.164 nm and a length of 6.388 nm as supercell, which gives periods along x and y direction of 6.322 nm and 6.570 nm, respectively. Bond length between Mo and S is set as 2.39763 Å in the presence of periodic boundary conditions. On Fig. 2c, we plot the polarization P 3 as a function of G 333 , in order to obtain the flexoelectric coefficient µ 3333 of 2D MoS 2 . Three different ways to compute the polarization are used (using q α r α only, using p α only or using both terms in Eq.9, with charges and dipoles computed using the QP scheme in the three cases).

The units of polarization P 3 and strain gradient G 333 are converted from e/Å 2 and Å -1 to 10 10 nC/m 2 and 10 10 m -1 respectively, so as to readily obtain µ 3333 in nC/m from the slope of the fitted straight line. We compare µ 3333 computed under the various definitions of polarization with that obtained from the experimental measurements conducted by Brennan et al in 2017 and 2020 [57,58], respectively, as shown in Table I. It can be seen that the result for µ 3333 computed when the charge term is included in the definition of polarization will be comparatively closer to the experimental result in absolute value whereas µ 3333 computed with the dipole term only considered is of the same order of magnitude but much smaller than the experimental value. This manifests that the charge term, omitted/neglected in Ref. [52], cannot be neglected for the calculation of polarization for MoS 2 . We do not take into account the discrepancy in sign between our computed results and the results of the Piezoresponse Force Microscopy (PFM) measurements of Brennan et al., since we believe that it is due to a problem of different definition for the algebraic (or not) radius of curvature. This is reflected in another experimental measurements of out-of-plane flexoelectric coefficient µ 3333 for few-layers MoS 2 with PFM, very recently conducted by Hirakata et al [69]. In their work, the sign of the out-of-plane flexoelectric coefficient is measured to be negative, though they quote a positive number. Indeed, using their Eq. 9, one can get µ 3333 = µ 39 = -c 33 3 / ∂E 3 ∂x 3 . S-ince c 33 , 3 and ∂E 3 ∂x 3 (see their Figure 11) are all positive, their µ 3333 is in fact negative. [69] Other problems could arise because the MoS 2 samples used in the PFM experiments might not be as perfect as that used in our calculation. Indeed, intrinsic atomic defects have been observed in the CVD-grown monolayer MoS 2 using nearfield photoluminescence imaging [70]. These defects could give rise to very localized strain gradients and therefore to noticeable additional polarization due to flexoelectricity, since monolayer MoS 2 is sensitive to any tiny deformation along vertical direction (z) due to its atomically thin thickness. Furthermore, the possibly existing interfacial contamination between substrate and MoS 2 sample and the other uncertainties relevant to the measurements could be another cause of discrepancy between our theoretical results and the experimental ones. It would be useful if these (difficult) experiments could be repeated many times, so as to reduce the large uncertainties on the experimental results, but we feel that our present results for µ 3333 of a MoS 2 monolayer, agree well enough with experiment, to encourage us to compute other flexoelectric coefficients for MoS 2 monolayer, for which we do not have experimental data to compare with.

B. Transverse flexoelectric coefficient µ 3311

The bending simulation described in the 'Methods' section is employed to compute the transverse flexoelectric coefficient µ 3311 of MoS 2 . Since the visible displacements are mostly along z direction, the strain gradient enabling polarization to be nonzero is principally G 311 . Hence, µ 3311 may be approximately expressed as µ 3311 = ∂P 3 ∂G 311 . Fig. 3a presents the variations of the out-of-plane polarization P 3 for a MoS 2 flake bent along (x) zigzag direction with respect to the strain gradient G 311 . One can notice that the intercept of the linear-fitting straight line is almost zero, meaning that the nonzero polarization is mainly caused by G 311 . Contrarily to what we did for the computation of µ 3333 , periodic boundary conditions cannot be exerted in the bending simulation because bending of material submitted to the external electric field will break the periodicity of the lattice itself. We therefore studied the effect of the size of the MoS 2 flake, on the computed flexoelectric coefficient. Fig. 3b is plotted to present the variation of transverse flexoelectric coefficient µ 3311 with the increasing number of atoms. It can be seen that the value of µ 3311 scales non-linearly down with the number of atoms. The larger the number of atoms, the more obvious the trend of curve convergence.

To obtain a converged value, data is fitted with an exponential function. With the number of atoms increasing, the transverse flexoelectric coefficient µ 3311 converges to -0.1075 nC/m, comparable to that for phosphorene [47] and boron nitride sheet [48]. A comparison is made between µ 3311 computed with QP model and that obtained by DFT-based first principle calculation by Shashikant et al [51], as listed in Table II. It can be seen that our computed result for µ 3311 agrees much better in absolute value with that obtained from DFT calculations than the one computed by Zhuang et al. [52], signifying that the computation of transverse flexoelectric coefficient of MoS 2 can be well captured by the QP model, if the proper definition for the polarization is used. Note that the radial polarization p r defined in reference [51] and [71] to compute µ 3311 can be considered equivalent to the p z used in our work, since it is always locally perpendicular to the 2D material. We will now turn again to the question of the sign of the flexoelectric coefficients.

Understanding the reason causing the discrepancy in the sign of flexoelectric coefficients is essential because the direction of the electric polarization induced by flexoelectricity is of significance for sensors and energy harvesters. We will study successively the sign of the polarization and the strain gradient.

Concerning polarization, we separate two distinct contributions: one due to the deformation of the lattice and the other one due to charge transfer between the inner and outer layers during bending. For that purpose we first compute the relaxed positions of a MoS 2 flake deformed under the action of an electric field, using the QP model (Fig. 4a). Then we compute the polarization for that bent MoS 2 flake, for an hypothetical case where the charges of the sulfur atoms would be the same in the upper and lower layers. In that hypothetical case, the computation gives a polarization in the negative direction of z axis, whereas in the undeformed MoS 2 flake, the total dipole moment along the out-of-plane direction is always zero due to the fact that the molybdenum atomic layer is equidistantly sandwiched between two layers of sulfur atoms. Fig. 4b illustrates this phenomenon with the case of the two rows of atoms nearest to the symmetry plane of the deformed flake: the molybdenum cations are repelled away from the inner part of the bend (which is its denser part). The consequence is that, while the charge center of the sulfur anions stays half way between the two layers, the charge center of the molybdenum is lower which results in a polarization pointing downwards (hence a negative contribution to µ 3311 since G 311 is positive in that case).

However, the above effect is not enough to fully account for the polarization since we artificially used identical charges for the sulfur atoms. in reality, since the overlapping of the electronic clouds of two nearby ions change during bending, partial charges can be transferred from one sulfur layer to the other. In order to understand that second contribution to the polarization, two representative areas of the same deformed MoS 2 flake, named A and B, are considered in Fig. 5a. The average charge for the sulfur atoms in the upper and lower layers, calculated by averaging net charges obtained by the QP model along y direction perpendicular to the figure, are -0.776 e and -0.803 e, respectively. Therefore the atoms of the lower sulfur layer appear to be more negative than those of the upper layer. This creates a net dipole moment pointing from the outside to the inside of the curvature (in the positive direction of z axis in our case). At the B site, the curvature is much smaller than at the A site and consequently the difference in charges between sulfur atoms in the upper and lower layer is smaller. In Fig. 5b, we plotted the average charge difference ∆q = q lower -q upper between sulfur atoms in the lower and upper layer, as a function of their index along the x coordinate (see numbers on the molecular picture inside the graph). It can be seen that the absolute value of ∆q decreases with the increasing index of sulfur, which agrees with what we expected before implementing the computation, since it corresponds to the flexoelectric effect: if the strain gradient is smaller, then the polarization is smaller (in absolute value). Hence, we have two contributions in opposite directions: a downward electric dipole moment due to bending of the lattice and an upward electric dipole moment due to charge transfer. In the case of MoS 2 , our computations show that polarization caused by bending deformation of lattice (which tends to give a negative flexoelectric coefficient) surpasses that resulting from charge transfer (which tends to give a positive flexoelectric coefficient). It is worth mentioning here that a negative µ 3311 for MoS 2 monolayer has very recently been obtained using first-principles linear-response theory [71]. Very interestingly, it can be found in their calculations that two contributions coming from the dipolar and the latticemediated response, respectively, to the total polarization response also play a competing role, the signs of the former and the latter tending to be opposite, as in our study. We now turn to the sign of the strain gradient. In a review paper, Wang et al [72] pointed the discrepancies between definitions and symbols of physical quantities to be one of the reasons for the inconsistency of the reported signs of flexoelectric coefficients. It is often the case for the strain gradient G 311 . Indeed, on Fig. 6 we illustrate that the strain gradient, defined as G 311 = u z (x) which can be either positive or negative, is often approximated as the inverse of the radius of curvature. Since, for some authors, the radius of curvature is always positive, G 311 is always positive for them, regardless of the bending direction of the material.

Slightly differently, Kundalwal et al [48] considered a boron nitride sheet shaped as an upward convex curved arch and defined G 311 as the absolute value of the inverse of radius of curvature. We note, however, that we used a downward pointing bend (top part of Fig. 6 and Fig. 4) which gives a positive strain gradient for all these definitions.

The previous considerations tentatively explain why flexoelectric coefficients can be either positive or negative, due to a competition between lattice and charge transfer effect, and not always positive as some authors define it by using absolute values inside their definition. of atoms for a MoS 2 flake with a bigger (so that it be visible thanks to the two vertical lines) strain gradient imposed along x axis. Fig. 7b shows the variation of displacement of atoms along x direction in the case ∆d = u x (x) = 0.01 -10 -5 x 2 , strain xx and strain gradient xx,x (G 111 ) as functions of the position along x axis for MoS 2 . We can see that the total strain is zero due to the symmetric distribution of displacement with respect to x = 0. Hence, the polarization due to piezoelectricity can be fully removed from the total polarization, leaving only flexoelectricity. Furthermore, µ 1111 can be expressed as µ 1111 = ∂P 1 ∂G 111 and for a similar simulations with parabolic displacement along y, µ 2222 = ∂P 2 ∂G 222 . The magnitude of strain gradient for our calculations of µ 1111 and µ 2222 ranges from 0 to 0.00004 Å -1 , which is small enough to neglect any non-linear effect. The dependence of in-plane flexoelectric coefficients µ 1111 and µ 2222 on the width of nanoribbon with infinite lengths is shown in Figure 4 in Supplementary material.

Clearly, the in-plane flexoelectric coefficients increase as the width of nanoribbons increases (polynomial fits are guides to the eye). The non-convergence behavior of those flexoelectric coefficients with the increase of the width of the nanoribbons has been elaborately discussed [74]. Hao et al. reveals through DFT calculations that the flexoelectric coefficients of the 2D Janus TMDs nanoribbons depend strongly upon their widths. The (slightly) different results for the two orientations are probably due to edge effects different for armchair and zigzag edges. To completely eliminate edge effect we use periodic boundary conditions in both directions for the displacements. In their article, [73] Hong et al. computed the in-plane flexoelectric coefficients of SrTiO 3 using a strain gradient with a cosine form, to be compatible with the periodic boundary conditions. In our work, strain gradient is a constant function (see Fig. 7b), which is an even simpler case. Finally, it is worth pointing out that the computed in-plane flexoelectric coefficient is about twenty times greater than out-of-plane flexoelectric coefficient for MoS 2 , which can be ascribed to the fact that the net charges induced by in-plane strain gradient between every primitive cells lead to the generation of larger electric dipole moments, whereas the movement of the charge in the out-of-plane direction is restricted due to the finite thickness. Hence, a relatively small polarization is then induced in the out-of-plane direction. For 2D materials, bending seems to be the easiest way to externally generate a big strain gradient at nanoscale, on a large area. Therefore, even if in-plane flexoelectric coefficients may play a role in some systems, the differences between in-plane, out-of-plane and transverse coefficients in MoS 2 flakes is not big enough to compensate for the bigger and more homogenous strain gradient that can be realized by bending. It is thus important to find 2D materials that optimize the transverse flexoelectric coefficients µ 3311 for applications in energy harvesting.
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FIG. 1 :

 1 FIG. 1: Schematic of bending simulation for MoS 2 nanoribbon subjected to an external electric field. The left and right parts of the MoS 2 sheet are submitted to an electric field in the bottom-right and top-right direction, respectively. The external electric field E is represented by the arrows. θ is the angle with the +x direction.

  FIG. 2: (a) Schematic diagram of creation of strain gradient G 333 inside monolayer MoS 2 . h and t stand for the small upward shift for a layer of molybdenum atom and the geometric thickness of monolayer MoS 2 , respectively. (b) Basic unit for periodic monolayer MoS 2 , with length and width of basic unit being 6.570 nm and 6.322 nm, respectively. (c) Variation of polarization P 3 with strain gradient G 333 for monolayer MoS 2 .

  TABLE I: Comparison between out-of-plane flexoelectric coefficients µ 3333 obtained by charge-dipole model and experimental measurements. The two different contributions to the polarization coming from charges alone or dipoles alone are considered separately then together for the computation of µ 3333 by the charge-dipole model.

FIG. 3 :

 3 FIG. 3: (a)Variation of P 3 with strain gradient G 311 . The magnitude of the electric fields imposed to the MoS 2 monolayer for bending simulation are 0.0424 V/Å, 0.0566 V/Å, 0.0707 V/Å, respectively. (b)Transverse flexoelectric coefficient µ 3311 vs number of atoms. An exponential function is used to describe the tendency to convergence. The lengths a and b of the sides the of MoS 2 flakes are marked next to each computed µ 3311 . The first and second number for the size of MoS 2 flake corresponds to a and b, respectively. The unit of a and b is Å. δ denotes characteristic length of exponential function. The angle between the electric field and the positive direction of the x-axis is set to 45 degrees.

FIG. 4 :

 4 FIG. 4: Origin of flexoelectric effect in bending deformation. (a) Under bending deformation, the direction of induced dipole moment points to -z direction. For an undeformed MoS 2 flake, the total dipole moment along the direction normal to the surface of MoS 2 is zero. (b) Separation of the centers (in black) of positive (in red) and negative charges (in blue) due to bending deformation.

FIG. 5 :

 5 FIG. 5: (a) Charge distribution of a bent MoS 2 subjected to E x = E z = 0.4 V/Å. A and B are two representative regions for explanation of charges transfer from the upper layer to the lower layer, respectively. (b) ∆q vs index. ∆q is calculated as the charge of sulfur atoms in the lower layer minus the corresponding quantity for the upper layer. The upper and lower sulfur atoms are numbered by increasing value of z. Only the right portion of the bent MoS 2 is shown here.

FIG. 6 :

 6 FIG. 6: Illustration of the different definitions for strain gradient G 311 .

C

  . In-plane flexoelectric coefficient µ 1111 and µ 2222 Inspired by the work of Hong et al[73], the in-plane flexoelectric coefficients µ 1111 and µ 2222 are computed in the present work. Strain gradient G 111 is created by displacing every atoms along x axis, according to a parabolic displacement function u x (x). Fig.7a is a schematic diagram showing the transverse displacement

FIG. 7 :

 7 FIG. 7: (a) Applied displacement field along x axis for each atom with ∆d denoting the difference between the x coordinate of atoms in deformed MoS 2 and that in undeformed MoS 2 . The two vertical lines are guides to the eye to see the displacements along x between the top and bottom sub-figures. (b) Displacement field ∆d = u x (x), strain ( xx ) and strain gradient ( xx,x = G 111 ) vs the position along x axis for MoS 2 .

Fig. 8

 8 shows the variations of polarization P 1 and P 2 with strain gradient G 111 and G 222 for those doublyperiodic setups. The computed flexoelectric coefficients µ 1111 and µ 2222 are 0.6872 nC/m and 0.7119 nC/m, respectively. Hence, the in-plane flexoelectric properties of doubly-infinite MoS 2 are nearly isotropic, i.e. independent of the zigzag or armchair direction.

FIG. 8 :

 8 FIG. 8: Variations of polarization P 1 and P 2 with strain gradient G 111 and G 222 , respectively. The rectangular frame surrounding the edge of molybdenum disulfide represents the enforcement of periodic boundary conditions in both directions.

TABLE II :

 II Comparison between transverse flexoelectric coefficient µ 3311 obtained by charge dipole model and theoretical computation.
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