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Abstract
Flexoelectricity is an electromechanical coupling phenomenon, that can generate no-

ticeable electric polarization in dielectric materials for nanoscale strain gradients. It is

gaining an increasing attention because of its potential applications, and the fact that

experimental results were initially an order of magnitude higher than initial theoretical

predictions. This stimulated intense experimental and theoretical researches to investi-

gate flexoelectric coefficients in dielectric materials such as two-dimensional materials.

In this work, we concentrate on the calculation of the flexoelectric coefficients of 2D-

MoS2 thanks to a model using self-consistently determined charges and dipoles on the

atoms. More specifically, we study the importance of two contributions which were ne-

glected/omitted in previous papers using this model, namely the charge term in the total

polarization and the conservation of electric charge through a Lagrange multiplier. Our

calculations demonstrate that the results for flexoelectric coefficient computed with this

improved definition of polarization agree better with experimental measurements, pro-

vided consistent definitions for signs are used. Additionally, we show how two physical

contributions with opposite signs compete to give net values of flexoelectric coefficients

that can be either positive or negative depending on their relative importance, and give

net values for the case of MoS2.

∗Electronic address: michel.devel@femto-st.fr
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I. INTRODUCTION

Flexoelectricity[1], a fascinating electromechanical phenomenon, is widely em-

ployed to describe electric polarization caused by strain gradient. Unlike piezo-

electricity, which arises only in noncentrosymmetric materials, flexoelectricity can

a priori exist in all materials. Therefore, flexoelectricity can provide new opportu-

nities to use some centrosymmetric materials to build electromechanical systems,

such as energy harvesters[2, 3], actuators[4, 5], flexible electronics[6], flexoelectric

sensors[7, 8].

Flexoelectricity was first predicted by Mashkevich and Tolpygo[9] during Tolpy-

go’s studies on the optical and elastic properties of crystals. The polarization due

to the flexoelectric effect was later phenomenologically described by Kogan[10],

using the contraction of a fourth order flexoelectricity tensor with the third order

strain gradient tensor. Ever since the terminology ’flexoelectricity’ was firstly bor-

rowed from the liquid crystals community by Indenbom[11, 12] et al in 1981, a great

deal of theoretical work has been done to advance the development of the theory

of flexoelectricity in solids. Earlier theoretical descriptions principally concen-

trated on lattice dynamics using Kogan’s phenomenological theory[10, 13, 14] and

continuum mechanics[15] or microscopic theories based on lattice dynamics[13, 16–

18] and quantum mechanics[19–22]. Calculations used methods such as core-shell

model[17, 23], rigid-ion model[13, 14], molecular dynamics simulations[24–26], fi-

nite element method[27, 28] and phase-field method[29]. Recently, the advance-

ment and popularity of machine learning techniques[30–32] provide original means

for the computation of flexoelectricity coefficients. A novel technique called topol-

ogy optimization methods have been proposed allowing for more accurate and

efficient design of complex flexoelectric structures[33]. Another strategy, the iso-

geometric analysis (IGA), which fulfills the C1-continuity requirement has been

adopted to identify the full flexoelectric properties based on electrical impedance

curves.[34]
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Flexoelectricity in solids was believed to be a very small effect. However, at

the beginning of the 2000s, Ma and Cross reported unexpectedly high experi-

mental flexoelectric responses in a variety of perovskite ceramics [35–40] greatly

arousing the interest in research of flexoelectricity in perovskite ceramics.[41–43]

Furthermore, the relative importance of the flexoelectric effect with respect to the

piezoelectric effect should increase as the scale of strain inhomogeneities decreas-

es. Therefore, the recent development of ultrathin (2D) nanomaterials, due to the

desired need for miniaturized devices, provide opportunities for researchers to s-

tudy flexoelectricity in 2D materials which could offer interesting electromechanical

coupling in nanodevices. Such an interest has stimulated intense research to inves-

tigate flexoelectric coefficients in carbon nanomaterials[20, 21, 44–46] (nanotubes,

fullerenes, nanocores and patterned graphene), phosphorene[47], hexagonal boron

nitride[48] and transition-metal dichalcogenides[49, 50] by means of first-principle

calculations. Remarkably, Kumar et al very recently calculated the flexoelectric

coefficient for fifty-four representative atomic monolayers selected from distinct

groups in the periodic table of elements using ab-initio Density Functional Theory

(DFT)[51].

Recently, Zhuang and co-workers used molecular dynamics simulations coupled

with a charge dipole (QP) model to compute flexoelectric coefficients for transition-

metal dichalcogenides[52] and related materials[53]. This kind of method uses

calculations much faster than DFT calculations, and provides an easier way to

predict the properties of bigger and less symmetric heterostructures. Since we

have some experience in using the QP model[54–56] we studied those papers in de-

tails and noticed that a term involving effective charges was neglected/omitted in

the definition of polarization that only used the effective dipoles, as in the case of

covalent materials such as e.g. graphene. Furthermore, the enforcement of charge

conservation was also not implemented, meaning that charges could flow in or out

of the materials without any constraint, which can conflict with the fact that an
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insulating substrate (Polydimethylsiloxane (PDMS), Au, Al2O3)[57, 58] was used

to obtain the out-of-plane effective flexoelectricity coefficient of monolayer MoS2,

by using an equation for converse flexoelectricity to link the out-of-plane effective

piezoelectric coefficient measured by piezoresponse force microscopy and the flexo-

electric coefficient to be determined[57, 58]. We also note that in-plane flexoelectric

coefficients µ1111 or µ2222 for such 2D materials have not yet been experimentally

obtained, since it has been difficult to isolate the relative contributions of piezo-

electricity and flexoelectricity to the resulting polarization.

In this work, we computed the in-plane flexoelectric coefficients µ1111, µ2222,

transverse flexoelectric coefficient µ3311 and out-of-plane flexoelectric coefficient

µ3333 for monolayer MoS2 using the charge-dipole model[59] with radial Gaussian

regularization[54, 56, 60–63] enforcing charge conservation with a Lagrange mul-

tiplier and adding an ionic charge term in the definition of polarization. The

significance of the missing charge term is estimated in the computation of µ3333,

by comparison with the simulation paper of Javvaji et al.[53] and the experimen-

tal papers of Brennan et al.[57, 58]. Our calculations illustrate that the results

for this flexoelectric coefficient computed with the improved definition of polar-

ization agree in magnitude with experimental measurements, with the possible

reason causing the discrepancy in sign discussed. Moreover, two critical factors

capable of affecting the sign of flexoelectric coefficient are fully elucidated while

µ3311 is computed. Additionally, µ1111 and µ2222 are calculated by using an in-plane

displacement field that effectively eliminates the piezoelectric contribution to the

polarization.

This paper is organized as follows. In Sec.II we describe the Gaussian reg-

ularized charge-dipole model, our bending simulation set-ups and the computa-

tional methodology for the computation of the strain gradient. The computation

of in-plane flexoelectric coefficient µ1111, µ2222, transverse flexoelectric coefficient

µ3311 and out-of-plane flexoelectric coefficient µ3333 are presented and discussed in
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Sec.III. Section IV concludes our findings.

II. METHODS

A. Principle of the method used to compute flexoelectricity coefficients

As written in the introduction, the direct flexoelectric effect describes the fact

that a strain gradient in a material will cause an (additional) electric polarization of

the material, because of the inhomogeneous distribution of positive and negative

charge centers caused by the inhomogeneous deformation. Polarization being a

vector described by a vector (first order tensor) and strain gradient a third order

tensor, the supposedly linear relation between these two quantities is represented

by a fourth order flexoelectricity tensor. Various conventions for the signification of

the indices, leading to different matrix compressed representations, are used in the

literature. We chose the one that puts the index corresponding to the polarization

in first place, since we do not make use of the equivalence of the two strain indices:

∆Pi = µijklGjkl (1)

where i, j, k, l are indices labeling the coordinates x, y, z or 1, 2, 3. The Einstein

implied summation convention for repeated indices is used.

Our goal is to compute values for these µijkl coefficients. For that purpose we

will use an inverse effect: when submitted to an external electric field, a dielectric

material tends to deform so as to align its global dielectric polarization vector with

the external field. Hence, we use various symmetric field configurations designed

to deform inhomogeneously a MoS2 monolayer, while not changing the global po-

larization contributions due to the dielectric susceptibility of the material or its

piezoelectric properties. Then, we compute both the global polarization and the

global strain gradient of the deformed structure and fit the (hopefully linear) re-

lation between these two quantities to find the µ coefficients.
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We shall therefore describe now, how we compute the global polarization and

strain gradient in the monolayer.

B. Description of the charge dipole model used to compute the polariza-

tion of a monolayer MoS2 subjected to an external electric field

We start with the regularized charge-dipole (QP) model[54, 56, 60–63], in which

each atom of a MoS2 nanoribbon is described by the combination of an effective

charge and a dipole with radial Gaussian distributions, plus an effective electroneg-

ativity. The total electrostatic energy Eelec associated with those effective charges

{qα} and dipoles {pα} located at the atomic positions {rα} (with α = 1, ..., N), in

the presence of an external electric field Eext is given by:

Eelec =
N∑
α=1

qα(χα + Vext,α)−
N∑
α=1

pα ·Eext +
1

2

N∑
α=1

N∑
β=1

qαT
α,β
q−qqβ

−
N∑
α=1

N∑
β=1

pα · T α,β
p−qqβ −

1

2

N∑
α=1

N∑
β=1

pα · T α,β
p−p · pβ (2)

where N stands for the number of atoms in the structure considered and χα is

the electronegativity of the atom α, once inserted in the molecule. Vext,α is the

electrostatic potential at rα corresponding to the external electric field, which can

be expressed as −Eext · rα in the case of a uniform external field. Tq−q, Tp−q

and Tp−p are interaction tensors between effective point charges or dipoles in

vacuum (see equation 3), which have been convoluted with one radial Gaussian

distribution per atom, of the form π3/2R3
αexp(−|r− rα|2/R2

α). This allows to take

into account approximately the extension of the electronic clouds, and prevents the

occurrence of divergence problems, i.e. polarization catastrophes, that can occur

in simulations when two atoms are so close to each other that the approximation

of an interaction between point charges or dipoles is not a good approximation
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any more.[60–62, 64, 65]

Tαβq−q = 1
4πε0rαβ

erf

(
rαβ√
R2
α+R

2
β

)
T αβ
p−q = −∇rαT

αβ
q−q = − 1

4πε0

rαβ
r3αβ

[
erf

(
rαβ√
R2
α+R

2
β

)
− 2√

π

rα,β√
R2
α+R

2
β

exp
(
− r2αβ
R2
α+R

2
β

)]
T αβ
p−p = −∇rβ ⊗∇rαT

αβ
q−q

= 1
4πε0

{
3rαβ⊗rαβ−r2αβI

r5αβ

[
erf

(
rαβ√
R2
α+R

2
β

)
− 2√

π

rα,β√
R2
α+R

2
β

exp
(
− r2α,β
R2
α+R

2
β

)]
− 4√

π

rαβ⊗rαβ
r2αβ

1

(
√
R2
α+R

2
β)

3
exp

(
− r2αβ
R2
α+R

2
β

)}
.

∀α 6= β

(3)

where rαβ = rβ−rα is the vector pointing from αth atom to βth atom. Rα and Rβ

are the characteristic widths of Gaussian charge distributions for atom type α and

β respectively. In the limit rα = rβ, the expressions of the various Tα,β interaction

tensors in equation 3 converge to finite values (Eq. 4) related to the self-energy

for each atom (atomic ’capacitance’ or chemical hardness and polarizability).
qαT

α,α
q−qqα = q2α

4πε0

√
2/π

Rα

pα · T α,α
p−qqα = 0

pα · T α,α
p−p · pα = − p2α

4πε0

√
2/π

3R3
α
.

(4)

Our version of the QP model for MoS2 possesses 8 parameters: 2 (χ and R)

per kind of atoms by 4 kinds: Mo and S ’bulk’ + Mo and S ’edge’. Details on

this parameterization, by comparison with DFT data, are given in our previous

work.[56]

The charges and dipoles at electrostatic equilibrium are then determined by

minimizing the electrostatic energy (Eq. 2) using a Lagrange multiplier λ to enforce

charge conservation in the nanoribbon:

f = Eelec + λ(
N∑
α=1

qα −Qtot) (5)

This Lagrange multiplier can be physically interpreted as the chemical potential

of the molecule.[61] This enforcement of charge conservation within the framework
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of QP model is quite essential since it ensures that charges stay in the material

in order to mimic the conditions of experimental measurements.[58] Requiring the

derivative of function f(q,p, λ) with respect to qα, px,α, py,α, pz,α and λ to be zero

will give a system of 4N + 1 linear equations for determining the 4N + 1 scalar

unknowns (qα, px,α, py,α, pz,α and λ). These linear equations may be written in a

matrix form:


Tq−q T t

p−q 1

Tp−q Tp−p 0

1 0 0



q

p

λ

 =


−(χ+ Vext)

−Eext

Qtot

 (6)

where Tq−q is a block matrix with N rows and N columns. Tp−p is a block matrix

with 3N rows and 3N columns. Tp−q is a block matrix with 3N rows and N

columns. T t
p−q is the transpose of Tp−q. Similarly, blocks q and −(χ + Vext) have

N rows and 1 column, while blocks p and −Eext have 3N rows and 1 column. We

note that the solution can be written in two parts as:
q

p

λ

 =


Tq−q T t

p−q 1

Tp−q Tp−p 0

1 0 0


−1 

−χ

0

Qtot

+


Tq−q T t

p−q 1

Tp−q Tp−p 0

1 0 0


−1 

−Vext
−Eext

0

 (7)

where the first term on the right side corresponds to intrinsic charges q0α and

dipoles p0
α, i.e. charges and dipoles in the absence of any external electric field,

that can however vary due to a mechanical deformation. The electronegativities χα

uniquely determine these intrinsic charges and dipoles (given the atomic positions),

independently from any external electric field Eext or potential Vext. For our

calculations, the total charge of the nanoribbon (Qtot) is set to be zero because

of the fact that flexoelectricity is supposed to be an intrinsic property, therefore

requiring no extra charge to appear. The second term on the right side corresponds

to effective additional charges (qindα ) and dipoles (pindα generated by the external
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electric field and potential). This can be summarized under the form:

px =
N∑
α=1

(p0x,α + pindx,α)

py =
N∑
α=1

(p0y,α + pindy,α)

pz =
N∑
α=1

(p0z,α + pindz,α)

q =
N∑
α=1

(q0α + qindα )

(8)

In terms of the calculated dipoles p and charges q, the global polarization P for

MoS2 nanoribbon is defined as[59]:

P =

N∑
α=1

(qαrα + pα)

V
(9)

in which V is the volume of MoS2 nanoribbon. A thickness of 6.5 Å is used in

computing V .[66] More information on the charge dipole model for MoS2 can be

found in our previous work[56]. Note that since MoS2 is not ferroelectric, the total

contribution to polarization of the q0α and p0
α is zero (verified numerically), so that

Eq. 9 could be rewritten by taking into account the induced charges and dipoles

only.

In order to compare with some DFT results or remove edge effects, periodic

boundary conditions can be applied in the QP model by adding the contributions

of periodic images in the interaction tensors, i.e. adding contributions obtained by

replacing rαβ in Eq.3 with rαβ +L ∗ p (p ∈ [−k, k]) , with L denoting the periodic

length in a given direction and k being a very large integer. We verified that

setting k = 100 in our calculation is already sufficiently large to reach convergence

in the computation of in-plane flexoelectric coefficients µ1111, µ2222 and out-of-plane

flexoelectric coefficient µ3333, thus eliminating edge effects.
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C. Calculation of flexoelectricity coefficients

We illustrate the method we use to compute the flexoelectric coefficients on the

special case of the determination of µ3311.

1. potential energy functional used for the ’structure’ part

The key of the molecular simulations is actually the interatomic potential, which

is applied to describe the interaction among atoms. For single-layer MoS2, the

Stillinger-Weber many-body potential (ESW ) as parameterized by Wen et al[67]

was very recently proven to be robust through a quantitative systematic com-

parison of structural and mechanical properties, as well as phonon dispersion for

single-layer MoS2 using density functional theory (DFT) and molecular static-

s calculations.[68] We therefore used this parameterizaton of the SW potential

(ESW ) in our simulations, and found it very stable. Its analytical form and the

values of the parameters are recalled in Supplementary material. The various

MoS2 nanoribbons we use in our simulations are thus initially relaxed by mini-

mizing ESW . This gives the undeformed configuration mentioned in the previous

subsection.

To compute the deformed configurations, we removed the interactions between

intrinsic charges and dipoles in Eelec, since they are already included in ESW .

We also neglected the total contribution of the interactions between intrinsic and

induced charges and dipoles to keep only the total contributions of the interactions

between charges and dipoles induced by the external field and potential (which we

name E ′elec).
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FIG. 1: Schematic of bending simulation for MoS2 nanoribbon subjected to an external

electric field. The left and right parts of the MoS2 sheet are submitted to an electric field

in the bottom-right and top-right direction, respectively. The external electric field E is

represented by the arrows. θ is the angle with the +x direction.

2. Initial conditions for the calculation of µ3311

In order to compute µ3311, a ↘↗-like external electric field Eext, with both

directions of Eext in the x-z plane, is applied to the MoS2 nanoribbon, keeping the

middle row of atoms fixed (as if it were attached to a virtual fixed object). This

field generates a bending deformation of the nanoribbon because of the inverse

flexoelectric effect, as seen in Fig 1. The conjugate gradient algorithm is then

used to minimize the energy function Etot = ESW + E ′elec which now includes

the interactions with the external field and potential and the contributions of the

effective induced charges and dipoles. The energy optimization simulation then

makes the MoS2 flake bend towards the direction of the applied electric field by

adjusting the positions of the atoms until the computed average force is less than

0.00004 eV/Å. Note that all these simulations are done with a FORTRAN code

that has been continuously developed in the group for years.

The mechanism of electrostatic bending of MoS2 flake is depicted in Figure

1 of Supplementary material. We can see that negative and positive charges are

shifted to opposite directions due to the non-zero transversal electric field (positive
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charges move to upper left and negative ones move to top right of the MoS2 flake).

The interaction between the electric field generated by the induced charges and

the external electric field produces two torques with opposite direction, termed τ1

and τ2, which may be expressed as qr × Eext, making the two sides of the MoS2

flake respectively bend towards the direction of the external electric field with the

fixed atoms as the rotation axis, while giving a zero total polarization along the

vertical axis.

3. Calculation of µ3311

Contributions to the polarization of a given dielectric material submitted to an

external electric field may come from piezoelectricity, flexoelectricity and electric

susceptibility. In the simulations defined in the previous subsection, piezoelectric-

ity may not be taken into account due to the symmetric bending deformation[52].

This makes the total induced polarization due to the first order deformation gra-

dient become zero. Additionally, one can find the total external electric field along

the out-of-plane is also zero. Hence, the out-of-plane polarization equal to the

product of the susceptibility and the electric field should be removed as well. The

remaining flexoelectric part of the out-of-plane polarization P3 can be written as:

P3 =
3∑
j=1

3∑
k=1

3∑
l=1

µ3jklGjkl (10)

with µ3jkl standing for flexoelectric tensor components. With the setup defined in

the previous section, this can be approximated by:

P3 = µ3311G311 (11)

Hence µ3311 can be determined as the slope of the supposedly linear relation be-

tween P3 and G311. Details on the computing method for determining strain

gradient can be found in Supplementary material.
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III. RESULTS AND DISCUSSION

FIG. 2: (a) Schematic diagram of creation of strain gradient G333 inside monolayer

MoS2. h and t stand for the small upward shift for a layer of molybdenum atom and

the geometric thickness of monolayer MoS2, respectively. (b) Basic unit for periodic

monolayer MoS2, with length and width of basic unit being 6.570 nm and 6.322 nm,

respectively. (c) Variation of polarization P3 with strain gradient G333 for monolayer

MoS2.

In this section, we discuss the results we got for the computation of the in-

plane flexoelectric coefficients µ1111, µ2222, the transverse flexoelectric coefficient

µ3311 and the out-of-plane coefficient µ3333. The parameters for ESW and QP

model used in this work were initially validated through calculation of the in-

plane piezoelectric constant e222 for an MoS2 monolayer. We found a value of the

same order of magnitude as the corresponding experimental result (more details
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are given in Supplementary material).

A. Out-of-plane flexoelectric coefficient µ3333

As can be seen on Fig.2a, for this calculation, the layer of molybdenum atoms

is shifted a small distance h to the positive direction of z axis to generate a strain

gradient only along the out-of-plane (z) direction. In this case, the unique strain

gradient that does exist is G333 and the expression for computing µ3333 can be

written as µ3333 = ∂P3

∂G333
. The geometric thickness of monolayer MoS2 is t. With

both h and t, the strain gradient G333 can be computed as −8h
t2
, which may be

derived by: G333 = d2uz(0)
dz2

≈ uz(− t2 )+uz(
t
2
)−2uz(0)

(t/2)2
= 0+0−2h

(t/2)2
= −8h

t2
, with uz(

t
2
),

uz(− t
2
) and uz(0) representing the displacement of atoms for top sulfur layer,

bottom sulfur layer and molybdenum layer, respectively. In this calculation, we

enforce periodic boundary conditions to eliminate edge effects that can be quite

important in such a setup. As can be seen on Fig.2b, we use a MoS2 flake with a

width of 6.164 nm and a length of 6.388 nm as supercell, which gives periods along

x and y direction of 6.322 nm and 6.570 nm, respectively. Bond length between

Mo and S is set as 2.39763 Å in the presence of periodic boundary conditions.

On Fig.2c, we plot the polarization P3 as a function of G333, in order to obtain

the flexoelectric coefficient µ3333 of 2D MoS2. Three different ways to compute

the polarization are used (using qαrα only, using pα only or using both terms in

Eq.9, with charges and dipoles computed using the QP scheme in the three cases).

The units of polarization P3 and strain gradient G333 are converted from e/Å2

and Å−1 to 1010 nC/m2 and 1010 m−1 respectively, so as to readily obtain µ3333 in

nC/m from the slope of the fitted straight line. We compare µ3333 computed under

the various definitions of polarization with that obtained from the experimental

measurements conducted by Brennan et al in 2017 and 2020[57, 58], respectively,

as shown in Table I.
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TABLE I: Comparison between out-of-plane flexoelectric coefficients µ3333 obtained by

charge-dipole model and experimental measurements. The two different contributions

to the polarization coming from charges alone or dipoles alone are considered separately

then together for the computation of µ3333 by the charge-dipole model.

Ref. µ3333 (nC/m) Definition of polarization

present work -0.0416 P3 =

N∑
α=1

(qαr3,α+p3,α)

V

present work -0.0350 P3 =

N∑
α=1

qαr3,α

V

present work -0.0066 P3 =

N∑
α=1

p3,α

V

Brennan et al (2017)[57] 0.08 or 0.12 ———

Brennan et al (2020)[58] 0.065 ———

It can be seen that the result for µ3333 computed when the charge term is includ-

ed in the definition of polarization will be comparatively closer to the experimental

result in absolute value whereas µ3333 computed with the dipole term only consid-

ered is of the same order of magnitude but much smaller than the experimental

value. This manifests that the charge term, omitted/neglected in Ref.[52], cannot

be neglected for the calculation of polarization for MoS2. We do not take into

account the discrepancy in sign between our computed results and the results of

the Piezoresponse Force Microscopy (PFM) measurements of Brennan et al., since

we believe that it is due to a problem of different definition for the algebraic (or

not) radius of curvature. This is reflected in another experimental measurements

of out-of-plane flexoelectric coefficient µ3333 for few-layers MoS2 with PFM, very

recently conducted by Hirakata et al[69]. In their work, the sign of the out-of-plane

flexoelectric coefficient is measured to be negative, though they quote a positive

number. Indeed, using their Eq. 9, one can get µ3333 = µ39 = −c33ε3/∂E3

∂x3
. S-
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ince c33, ε3 and ∂E3

∂x3
(see their Figure 11) are all positive, their µ3333 is in fact

negative.[69]

Other problems could arise because the MoS2 samples used in the PFM exper-

iments might not be as perfect as that used in our calculation. Indeed, intrinsic

atomic defects have been observed in the CVD-grown monolayer MoS2 using near-

field photoluminescence imaging[70]. These defects could give rise to very localized

strain gradients and therefore to noticeable additional polarization due to flexo-

electricity, since monolayer MoS2 is sensitive to any tiny deformation along vertical

direction (z) due to its atomically thin thickness. Furthermore, the possibly exist-

ing interfacial contamination between substrate and MoS2 sample and the other

uncertainties relevant to the measurements could be another cause of discrepancy

between our theoretical results and the experimental ones. It would be useful if

these (difficult) experiments could be repeated many times, so as to reduce the

large uncertainties on the experimental results, but we feel that our present results

for µ3333 of a MoS2 monolayer, agree well enough with experiment, to encourage

us to compute other flexoelectric coefficients for MoS2 monolayer, for which we do

not have experimental data to compare with.

B. Transverse flexoelectric coefficient µ3311

The bending simulation described in the ’Methods’ section is employed to com-

pute the transverse flexoelectric coefficient µ3311 of MoS2. Since the visible dis-

placements are mostly along z direction, the strain gradient enabling polarization

to be nonzero is principally G311. Hence, µ3311 may be approximately expressed

as µ3311 = ∂P3

∂G311
. Fig.3a presents the variations of the out-of-plane polarization P3

for a MoS2 flake bent along (x) zigzag direction with respect to the strain gradient

G311. One can notice that the intercept of the linear-fitting straight line is almost

zero, meaning that the nonzero polarization is mainly caused by G311.
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FIG. 3: (a)Variation of P3 with strain gradient G311. The magnitude of the electric field-

s imposed to the MoS2 monolayer for bending simulation are 0.0424 V/Å, 0.0566 V/Å,

0.0707 V/Å, respectively. (b)Transverse flexoelectric coefficient µ3311 vs number of atom-

s. An exponential function is used to describe the tendency to convergence. The lengths

a and b of the sides the of MoS2 flakes are marked next to each computed µ3311. The first

and second number for the size of MoS2 flake corresponds to a and b, respectively. The

unit of a and b is Å. δ denotes characteristic length of exponential function. The angle

between the electric field and the positive direction of the x-axis is set to 45 degrees.
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Contrarily to what we did for the computation of µ3333, periodic boundary con-

ditions cannot be exerted in the bending simulation because bending of material

submitted to the external electric field will break the periodicity of the lattice it-

self. We therefore studied the effect of the size of the MoS2 flake, on the computed

flexoelectric coefficient. Fig.3b is plotted to present the variation of transverse

flexoelectric coefficient µ3311 with the increasing number of atoms. It can be seen

that the value of µ3311 scales non-linearly down with the number of atoms. The

larger the number of atoms, the more obvious the trend of curve convergence.

To obtain a converged value, data is fitted with an exponential function. With

the number of atoms increasing, the transverse flexoelectric coefficient µ3311 con-

verges to−0.1075 nC/m, comparable to that for phosphorene[47] and boron nitride

sheet[48]. A comparison is made between µ3311 computed with QP model and that

obtained by DFT-based first principle calculation by Shashikant et al[51], as listed

in Table II. It can be seen that our computed result for µ3311 agrees much better in

absolute value with that obtained from DFT calculations than the one computed

by Zhuang et al.[52], signifying that the computation of transverse flexoelectric

coefficient of MoS2 can be well captured by the QP model, if the proper definition

for the polarization is used. Note that the radial polarization pr defined in refer-

ence [51] and [71] to compute µ3311 can be considered equivalent to the pz used in

our work, since it is always locally perpendicular to the 2D material. We will now

turn again to the question of the sign of the flexoelectric coefficients.

Understanding the reason causing the discrepancy in the sign of flexoelectric

coefficients is essential because the direction of the electric polarization induced by

flexoelectricity is of significance for sensors and energy harvesters. We will study

successively the sign of the polarization and the strain gradient.

Concerning polarization, we separate two distinct contributions: one due to

the deformation of the lattice and the other one due to charge transfer between

the inner and outer layers during bending. For that purpose we first compute
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TABLE II: Comparison between transverse flexoelectric coefficient µ3311 obtained by

charge dipole model and theoretical computation.

Ref. µ3311 (nC/m)

present work -0.1075

Shashikant et al [51] 0.14

Zhuang et al [52] 0.032

FIG. 4: Origin of flexoelectric effect in bending deformation. (a) Under bending defor-

mation, the direction of induced dipole moment points to -z direction. For an undeformed

MoS2 flake, the total dipole moment along the direction normal to the surface of MoS2

is zero. (b) Separation of the centers (in black) of positive (in red) and negative charges

(in blue) due to bending deformation.

the relaxed positions of a MoS2 flake deformed under the action of an electric

field, using the QP model (Fig.4a). Then we compute the polarization for that

bent MoS2 flake, for an hypothetical case where the charges of the sulfur atoms

would be the same in the upper and lower layers. In that hypothetical case, the

computation gives a polarization in the negative direction of z axis, whereas in the

undeformed MoS2 flake, the total dipole moment along the out-of-plane direction
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is always zero due to the fact that the molybdenum atomic layer is equidistantly

sandwiched between two layers of sulfur atoms. Fig.4b illustrates this phenomenon

with the case of the two rows of atoms nearest to the symmetry plane of the

deformed flake: the molybdenum cations are repelled away from the inner part

of the bend (which is its denser part). The consequence is that, while the charge

center of the sulfur anions stays half way between the two layers, the charge center

of the molybdenum is lower which results in a polarization pointing downwards

(hence a negative contribution to µ3311 since G311 is positive in that case).

However, the above effect is not enough to fully account for the polarization

since we artificially used identical charges for the sulfur atoms. in reality, since

the overlapping of the electronic clouds of two nearby ions change during bending,

partial charges can be transferred from one sulfur layer to the other. In order to

understand that second contribution to the polarization, two representative areas

of the same deformed MoS2 flake, named A and B, are considered in Fig.5a. The

average charge for the sulfur atoms in the upper and lower layers, calculated by

averaging net charges obtained by the QP model along y direction perpendicular

to the figure, are −0.776 e and −0.803 e, respectively. Therefore the atoms of the

lower sulfur layer appear to be more negative than those of the upper layer. This

creates a net dipole moment pointing from the outside to the inside of the curvature

(in the positive direction of z axis in our case). At the B site, the curvature is

much smaller than at the A site and consequently the difference in charges between

sulfur atoms in the upper and lower layer is smaller. In Fig.5b, we plotted the

average charge difference ∆q = qlower−qupper between sulfur atoms in the lower and

upper layer, as a function of their index along the x coordinate (see numbers on the

molecular picture inside the graph). It can be seen that the absolute value of ∆q

decreases with the increasing index of sulfur, which agrees with what we expected

before implementing the computation, since it corresponds to the flexoelectric

effect: if the strain gradient is smaller, then the polarization is smaller (in absolute
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FIG. 5: (a) Charge distribution of a bent MoS2 subjected to Ex = Ez = 0.4 V/Å. A

and B are two representative regions for explanation of charges transfer from the upper

layer to the lower layer, respectively. (b) ∆q vs index. ∆q is calculated as the charge

of sulfur atoms in the lower layer minus the corresponding quantity for the upper layer.

The upper and lower sulfur atoms are numbered by increasing value of z. Only the right

portion of the bent MoS2 is shown here.
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value). Hence, we have two contributions in opposite directions: a downward

electric dipole moment due to bending of the lattice and an upward electric dipole

moment due to charge transfer. In the case of MoS2, our computations show

that polarization caused by bending deformation of lattice (which tends to give

a negative flexoelectric coefficient) surpasses that resulting from charge transfer

(which tends to give a positive flexoelectric coefficient). It is worth mentioning here

that a negative µ3311 for MoS2 monolayer has very recently been obtained using

first-principles linear-response theory[71]. Very interestingly, it can be found in

their calculations that two contributions coming from the dipolar and the lattice-

mediated response, respectively, to the total polarization response also play a

competing role, the signs of the former and the latter tending to be opposite, as

in our study.

FIG. 6: Illustration of the different definitions for strain gradient G311.

We now turn to the sign of the strain gradient. In a review paper, Wang

et al[72] pointed the discrepancies between definitions and symbols of physical
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quantities to be one of the reasons for the inconsistency of the reported signs of

flexoelectric coefficients. It is often the case for the strain gradient G311. Indeed,

on Fig.6 we illustrate that the strain gradient, defined as G311 = u′′z(x) which can

be either positive or negative, is often approximated as the inverse of the radius of

curvature. Since, for some authors, the radius of curvature is always positive, G311

is always positive for them, regardless of the bending direction of the material.

Slightly differently, Kundalwal et al[48] considered a boron nitride sheet shaped as

an upward convex curved arch and defined G311 as the absolute value of the inverse

of radius of curvature. We note, however, that we used a downward pointing bend

(top part of Fig.6 and Fig.4) which gives a positive strain gradient for all these

definitions.

The previous considerations tentatively explain why flexoelectric coefficients

can be either positive or negative, due to a competition between lattice and charge

transfer effect, and not always positive as some authors define it by using absolute

values inside their definition.

C. In-plane flexoelectric coefficient µ1111 and µ2222

Inspired by the work of Hong et al[73], the in-plane flexoelectric coefficients

µ1111 and µ2222 are computed in the present work. Strain gradient G111 is created

by displacing every atoms along x axis, according to a parabolic displacement

function ux(x). Fig.7a is a schematic diagram showing the transverse displacement

of atoms for a MoS2 flake with a bigger (so that it be visible thanks to the two

vertical lines) strain gradient imposed along x axis. Fig.7b shows the variation of

displacement of atoms along x direction in the case ∆d = ux(x) = 0.01− 10−5x2,

strain εxx and strain gradient εxx,x (G111) as functions of the position along x

axis for MoS2. We can see that the total strain is zero due to the symmetric

distribution of displacement with respect to x = 0. Hence, the polarization due
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to piezoelectricity can be fully removed from the total polarization, leaving only

flexoelectricity. Furthermore, µ1111 can be expressed as µ1111 = ∂P1

∂G111
and for

a similar simulations with parabolic displacement along y, µ2222 = ∂P2

∂G222
. The

magnitude of strain gradient for our calculations of µ1111 and µ2222 ranges from 0

to 0.00004 Å−1, which is small enough to neglect any non-linear effect.

FIG. 7: (a) Applied displacement field along x axis for each atom with ∆d denoting the

difference between the x coordinate of atoms in deformed MoS2 and that in undeformed

MoS2. The two vertical lines are guides to the eye to see the displacements along x

between the top and bottom sub-figures. (b) Displacement field ∆d = ux(x), strain (εxx)

and strain gradient (εxx,x = G111) vs the position along x axis for MoS2.

The dependence of in-plane flexoelectric coefficients µ1111 and µ2222 on the width

of nanoribbon with infinite lengths is shown in Figure 4 in Supplementary material.

Clearly, the in-plane flexoelectric coefficients increase as the width of nanoribbons

increases (polynomial fits are guides to the eye). The non-convergence behavior of

those flexoelectric coefficients with the increase of the width of the nanoribbons has
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been elaborately discussed[74]. Hao et al. reveals through DFT calculations that

the flexoelectric coefficients of the 2D Janus TMDs nanoribbons depend strongly

upon their widths. The (slightly) different results for the two orientations are

probably due to edge effects different for armchair and zigzag edges. To completely

eliminate edge effect we use periodic boundary conditions in both directions for the

displacements. In their article,[73] Hong et al. computed the in-plane flexoelectric

coefficients of SrTiO3 using a strain gradient with a cosine form, to be compatible

with the periodic boundary conditions. In our work, strain gradient is a constant

function (see Fig.7b), which is an even simpler case. Fig.8 shows the variations

of polarization P1 and P2 with strain gradient G111 and G222 for those doubly-

periodic setups. The computed flexoelectric coefficients µ1111 and µ2222 are 0.6872

nC/m and 0.7119 nC/m, respectively. Hence, the in-plane flexoelectric properties

of doubly-infinite MoS2 are nearly isotropic, i.e. independent of the zigzag or

armchair direction.

FIG. 8: Variations of polarization P1 and P2 with strain gradient G111 and G222, respec-

tively. The rectangular frame surrounding the edge of molybdenum disulfide represents

the enforcement of periodic boundary conditions in both directions.
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IV. CONCLUSIONS

Employing three different simulation setups, we calculated in-plane flexoelectric

coefficients µ1111, µ2222, transverse flexoelectric coefficient µ3311 and out of plane

flexoelectric coefficient µ3333 for monolayer MoS2 using the charge dipole model and

charge conservation. The out-of-plane flexoelectric coefficient µ3333 and transverse

flexoelectric coefficient µ3311 computed by the charge-dipole model are compared

with those obtained by experimental measurements and DFT-based first principle

calculations, by which good agreement in absolute value can be seen when the

charge term is included in the computation of the polarization. We discuss in

details possible origins of discrepancy in sign between our calculated flexoelectric

coefficient µ3311 and other reported results, by showing two opposite effects for the

sign of the polarization. Furthermore, we emphasize that comparison of flexoelec-

tric coefficients between different computational works requires a careful check for

the sign of strain gradient and the way of defining the polarization. Concerning

the computed in-plane flexoelectric coefficient µ1111 and µ2222 are found to be quasi

identical, which is consistent with the analysis of symmetry for the flexoelectric

coefficient tensor of a 2D continuum.

Finally, it is worth pointing out that the computed in-plane flexoelectric coef-

ficient is about twenty times greater than out-of-plane flexoelectric coefficient for

MoS2, which can be ascribed to the fact that the net charges induced by in-plane s-

train gradient between every primitive cells lead to the generation of larger electric

dipole moments, whereas the movement of the charge in the out-of-plane direction

is restricted due to the finite thickness. Hence, a relatively small polarization is

then induced in the out-of-plane direction. For 2D materials, bending seems to

be the easiest way to externally generate a big strain gradient at nanoscale, on a

large area. Therefore, even if in-plane flexoelectric coefficients may play a role in

some systems, the differences between in-plane, out-of-plane and transverse coef-

ficients in MoS2 flakes is not big enough to compensate for the bigger and more
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homogenous strain gradient that can be realized by bending. It is thus important

to find 2D materials that optimize the transverse flexoelectric coefficients µ3311 for

applications in energy harvesting.
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