Congrès Français d'Acoustique de la SFA Mercredi 13 avril 2022 - 15h30

Centre Pompidou

Équation des pavillons 1D conservative avec parois mobiles : Discrétisation spatio-temporelle à bilan de puissance équilibré et simulation du conduit vocal

<u>Colette Voisembert, Victor Wetzel, Thomas Hélie, Fabrice Silva</u>

Appareil voca

Extrait de [Calais-Germain, 2005]

Appareil vocal

Extrait de [Calais-Germain, 2005]

Découpage en trois groupes

Appareil vocal

Extrait de [Calais-Germain, 2005]

Découpage en trois groupes

• étage respiratoire

Découpage en trois groupes

- étage phonatoire
- étage respiratoire

Découpage en trois groupes

- étage articulatoire
- étage phonatoire
- étage respiratoire

Découpage en trois groupes

étage articulatoire

- étage phonatoire
- étage respiratoire

Conduit vocal

langue, mandibule, lèvres, voile du palais

Découpage en trois groupes

étage articulatoire

- étage phonatoire
- étage respiratoire

<u>Conduit vocal</u> langue, mandibule, lèvres, voile du palais

Constats & difficultés

- système multiphysique
- géométrie mobile dans le temps

Différentes approches existantes Mécanique des milieux continus

[Tournemenne, Chabassier, 2019] [Arnela, Guasch, Dabbaghchian, Engwall, 2016]

[Perrier, 2013]

Biomécanique

Signal

Différentes approches existantes Mécanique des milieux continus

[Tournemenne, Chabassier, 2019] [Arnela, Guasch, Dabbaghchian, Engwall, 2016]

[Perrier, 2013]

Biomécanique

Signal

Notivations

1) Acoustique des guides d'onde déformables

- Étendre l'équation des pavillons au cas des parois mobiles
- 2) Formulation passive
- 3) Modélisation et simulation en temps

→ Approche Systèmes Hamiltoniens à Ports

• Garantir un bilan de puissance équilibré avec l'extérieur (entrée/sortie/paroi)

Plan

- 1. Systèmes Hamiltoniens à Ports (SHP)
- 2. Modélisation acoustique
- 3. Discrétisation spatiale et temporelle
- 4. Simulation
- 5. Conclusion

Plan

1. Systèmes Hamiltoniens à Ports (SHP)

- 2. Modélisation acoustique
- 3. Discrétisation spatiale et temporelle
- 4. Simulation
- 5. Conclusion

fflux

Bilan de puissance

Dimension finie

composants <u>stockants</u>

x vecteur d'états

fflux

Bilan de puissance

 $\frac{\mathrm{d}E}{\mathrm{d}t}(t)$ $\nabla_{x}H^{\mathsf{T}}\dot{x}$

Dimension finie

$(\dot{x}) (t) = (\nabla_{x} H) (t)$ e effort

Énergie E = H(x) > 0 Hamiltonien

composants stockants + composants sans mémoire passifs

x vecteur d'états

f flux

Bilan de puissance

 $\frac{\mathrm{d}E}{\mathrm{d}t}(t) + \frac{\geq 0}{P_{pass}(t)}$ $\nabla_x H^{\mathsf{T}} \dot{x} + z(w)^{\mathsf{T}} w$ **Dimension finie**

Énergie E = H(x) > 0 Hamiltonien

composants stockants + composants sans mémoire passifs + ports (extérieur)

x vecteur d'états

fflux

Bilan de puissance

 $\frac{\mathrm{d}E}{\mathrm{d}t}(t) + \widetilde{P_{pass}(t)} - P_{ext}(t)$ $\nabla_{\mathbf{x}} H^{\mathsf{T}} \dot{\mathbf{x}} + \mathbf{z}(w)^{\mathsf{T}} w - u^{\mathsf{T}} y$

Dimension finie

Énergie E = H(x) > 0 Hamiltonien

Interconnexion de composants stockants + composants sans mémoire passifs + ports (extérieur)

x vecteur d'états

Bilan de puissance

 $\frac{\mathrm{d}E}{\mathrm{d}t}(t) + \widetilde{P_{pass}(t)} - P_{ext}(t)$ $\nabla_{\mathbf{x}} H^{\mathsf{T}} \dot{\mathbf{x}} + \mathbf{z}(w)^{\mathsf{T}} w - u^{\mathsf{T}} y$

Dimension finie

Énergie E = H(x) > 0 Hamiltonien

Interconnexion de composants stockants + composants sans mémoire passifs + ports (extérieur)

x vecteur d'états

Bilan de puissance

 $\frac{\mathrm{d}E}{\mathrm{d}t}(t) + \widetilde{P_{pass}(t)} - P_{ext}(t)$ $\nabla_{\mathbf{x}} H^{\mathsf{T}} \dot{\mathbf{x}} + z(w)^{\mathsf{T}} w - u^{\mathsf{T}} y$ $e^{\mathsf{T}}f = e^{\mathsf{T}}Se$

Dimension finie

Énergie E = H(x) > 0 Hamiltonien

Interconnexion de composants stockants + composants sans mémoire passifs + ports (extérieur)

x vecteur d'états

Bilan de puissance équilibré $\langle effort, flux \rangle = \sum effort \times flux = 0$ $\frac{\mathrm{d}E}{\mathrm{d}t}(t) + \widetilde{P_{pass}(t)} - P_{ext}(t) = 0$ $\nabla_{\mathbf{x}} H^{\mathsf{T}} \dot{\mathbf{x}} + \mathbf{z}(w)^{\mathsf{T}} w - u^{\mathsf{T}} \mathbf{y} = 0$ $e^{\mathsf{T}}f = e^{\mathsf{T}}Se = 0$ avec $S = -S^{\top}$ (matrice antisymétrique)

Dimension finie

Interconnexion de composants <u>stockants</u> + composants sans mémoire <u>passifs</u> + <u>ports</u>

x vecteur d'états

$$\begin{pmatrix} \dot{x} \\ w \\ -y \end{pmatrix} (t, M) = \mathscr{J}$$

f flux

Bilan de puissance équilibré

$$\frac{\mathrm{d}E}{\mathrm{d}t}(t,M) + P_{pass}(t,M) - P_{ext}(t,M)$$

[Maschke 2002]

Dimension infinie

$$\delta_{x}H(x)$$

$$z(w)$$

$$u$$

$$(t, M) \in \mathbb{R}^{+} \times \Omega$$

e effort

 $\langle effort, flux \rangle = 0$

(t,M)=0

avec $\mathcal{J} = -\mathcal{J}^*$ (opérateur antiautoadjoint $\langle e, f \rangle = \langle e, \mathcal{J}e \rangle = \langle -\mathcal{J}^*e, e \rangle$)

Pan

- 1. Systèmes Hamiltoniens à Ports (SHP)
- 2. Modélisation acoustique
 - Modèle statique
 - Modèle dynamique
- 3. Discrétisation spatiale et temporelle
- 4. Simulation
- 5. Conclusion

Modèle statique Hypothèses → équation des pavillons

H1 Acoustique linéaire

H2 Fluide non visqueux, pas d'échange thermique

H3 Paroi étanche, section variableH4 Propagation du mode plan

Modèle statique Hypothèses → équation des pavillons

H1 Acoustique linéaire

H2 Fluide non visqueux, pas d'échange thermique

Choix du vecteur d'état $x = \begin{pmatrix} v \\ \mu \end{pmatrix}$

H3 Paroi étanche, section variable H4 Propagation du mode plan

Modèle statique SHP

Modèle statique

SHP $x = \begin{pmatrix} v \\ \mu \end{pmatrix}$ vecteur d'état

Modèle statique

SHP $x = \begin{pmatrix} v \\ \mu \end{pmatrix}$ vecteur d'état

$$E = H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2} A \rho_{0} v^{2} + \frac{1}{2} \frac{c_{0}^{2}}{A \rho_{0}} \mu^{2} \right) d\ell \quad \text{Hamilton}$$

cinétique potentielle

Nodèle statique SHP $x = \begin{pmatrix} v \\ \mu \end{pmatrix}$ vecteur d'état

$$E = H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2} A \rho_{0} v^{2} + \frac{1}{2} \frac{c_{0}^{2}}{A \rho_{0}} \mu^{2} \right) d\ell \quad \text{Hamilton}$$

cinétique potentielle
$$\begin{pmatrix} \text{débit mass.} \\ \text{press}/\rho_{0} \end{pmatrix}$$

 $\delta_{x} H \text{ efforts}$

Modèle Statique SHP $x = \begin{pmatrix} v \\ \mu \end{pmatrix}$ vecteur d'état

Cons. qt. mvt

Modèle Statique SHP $x = \begin{pmatrix} v \\ \mu \end{pmatrix}$ vecteur d'état

Cons. qt. mvt Cons. masse

$$E = H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2} A \rho_{0} v^{2} + \frac{1}{2} \frac{c_{0}^{2}}{A \rho_{0}} \mu^{2} \right) d\ell \quad \text{Hamilton}$$

$$(\begin{array}{c} 0 & -\partial_{\ell} \\ -\partial_{\ell} & 0 \end{array}) \left(\begin{array}{c} \text{débit mass.} \\ \text{press}/\rho_{0} \end{array} \right)$$

$$\overbrace{\delta_{v} H \text{ efforts}}^{\delta_{v} H \text{ efforts}}$$

Modèle Statique SHP $x = \begin{pmatrix} v \\ \mu \end{pmatrix}$ vecteur d'état

Cons. qt. mvt Cons. masse

$$E = H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2} A \rho_{0} v^{2} + \frac{1}{2} \frac{c_{0}^{2}}{A \rho_{0}} \mu^{2} \right) d\ell \quad \text{Hamilton}$$

$$\underbrace{\begin{pmatrix} 0 & -\partial_{\ell} \\ -\partial_{\ell} & 0 \end{pmatrix}}_{\text{cinétique potentielle}} \left(\begin{array}{c} \text{débit mass.} \\ \text{press}/\rho_{0} \end{array} \right)$$

$$\underbrace{\mathcal{J} = -\mathcal{J}^{\star}}_{\mathcal{J}_{x}} H \text{ efforts}$$

Modèle statique SHP $x = \begin{pmatrix} v \\ \mu \end{pmatrix}$ vecteur d'état

Cons. qt. mvt Cons. masse (accélération) var. masse lin.

 \dot{x} flux

On retrouve l'équation des pavillons (conservative)

$$E = H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2} A \rho_{0} v^{2} + \frac{1}{2} \frac{c_{0}^{2}}{A \rho_{0}} \mu^{2} \right) d\ell \quad \text{Hamilton}$$

$$\underbrace{\begin{pmatrix} 0 & -\partial_{\ell} \\ -\partial_{\ell} & 0 \end{pmatrix}}_{\text{cinétique potentielle}} \left(\begin{array}{c} \text{débit mass.} \\ \text{press}/\rho_{0} \end{array} \right)$$

$$\underbrace{\mathcal{J} = -\mathcal{J}^{\star}}_{\mathcal{J}_{x}} H \text{ efforts}$$

Modèle statique **SHP** $x = \begin{pmatrix} v \\ \mu \end{pmatrix}$ vecteur d'état

Cons. qt. mvt Cons. masse

accélération var. masse lin.

 \dot{x} flux

On retrouve l'équation des pavillons (conservative)

Bilan de puissance

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\Omega} \dots \right) = e_{v}(0)e_{\mu}(0) - e_{v}\left(L_{0}\right)e_{\mu}\left(L_{0}\right) = \boldsymbol{U}^{\mathsf{T}}\boldsymbol{Y}$$

débit mass.

pression / ho_0

$$E = H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2} A \rho_{0} v^{2} + \frac{1}{2} \frac{c_{0}^{2}}{A \rho_{0}} \mu^{2} \right) d\ell \quad \text{Hamilton}$$

$$(\begin{array}{c} 0 & -\partial_{\ell} \\ -\partial_{\ell} & 0 \end{array}) \left(\begin{array}{c} \text{débit mass.} \\ \text{press}/\rho_{0} \end{array} \right)$$

$$\mathcal{J} = -\mathcal{J}^{\star} \qquad \delta_{x} H \text{ efforts}$$

entrées / sorties

Conservation aux interfaces

- débit mass.

pression / ho_0

Modèle statique **SHP** $x = \begin{pmatrix} v \\ \mu \end{pmatrix}$ vecteur d'état

Cons. qt. mvt Cons. masse

accélération var. masse lin.

 \dot{x} flux

On retrouve l'équation des pavillons (conservative)

Bilan de puissance

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\Omega} \dots \right) = e_{\nu}(0)e_{\mu}(0) - e_{\nu}\left(L_{0}\right)e_{\mu}\left(L_{0}\right) = U^{\mathsf{T}}Y$$

pression / ho_0

uovil mass.

$$E = H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2} A \rho_{0} v^{2} + \frac{1}{2} \frac{c_{0}^{2}}{A \rho_{0}} \mu^{2} \right) d\ell \quad \text{Hamilton}$$

$$\underbrace{\begin{pmatrix} 0 & -\partial_{\ell} \\ -\partial_{\ell} & 0 \end{pmatrix}}_{\text{cinétique potentielle}} \left(\begin{array}{c} \text{débit mass.} \\ \text{press}/\rho_{0} \end{array} \right)$$

$$\underbrace{\mathcal{J} = -\mathcal{J}^{\star}}_{\mathcal{J} = -\mathcal{J}^{\star}} \quad \delta_{x} H \text{ efforts}$$

entrées / sorties

Conservation aux interfaces

débit mass.

pression / ho_0

Choix du vecteur d'état $x = \mu$

constantes physiques : ρ_0 , c_0

constantes physiques : ρ_0 , c_0

Choix du vecteur d'état $x = \mu$

Choix du vecteur d'état $x = \mu$

constantes physiques : ρ_0 , c_0

Choix du vecteur d'état $x = \begin{bmatrix} \mu \\ A \end{bmatrix}$

constantes physiques : ρ_0 , c_0

Bilan de puissance

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\Omega} \dots \right) = e_{v}(0)e_{\mu}(0) - e_{v}\left(L_{0}\right)e_{\mu}\left(L_{0}\right)$$

 $= U^{\mathsf{T}}Y$

$$H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2}A\rho_{0}v^{2} + \frac{1}{2}\frac{c_{0}^{2}}{A\rho_{0}}\mu^{2}\right) d\ell \text{ Hamis}$$

$$\underset{\text{cinétique potentielle}}{\delta_{x}H \text{ efforts}}$$

$$\underset{\text{of } -\partial_{\ell} = -\mathcal{J}^{\star}$$

Bilan de puissance

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\Omega} \dots \right) = e_{\nu}(0)e_{\mu}(0) - e_{\nu}\left(L_{0}\right)e_{\mu}\left(L_{0}\right)$$

 $= U^{\mathsf{T}}Y$

$$H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2}A\rho_{0}v^{2} + \frac{1}{2}\frac{c_{0}^{2}}{A\rho_{0}}\mu^{2}\right) d\ell \text{ Hamis}$$

$$cinétique potentielle$$

$$\delta_{x}H \text{ efforts}$$

$$débit \text{ mass.}$$

$$press/\rho_{0}$$

$$\ell_{A}$$

$$\mathcal{J} = -\mathcal{J}^{\star}$$

Bilan de puissance

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\Omega} \dots \right) = e_{v}(0)e_{\mu}(0) - e_{v}\left(L_{0}\right)e_{\mu}\left(L_{0}\right)$$

 $= U^{\mathsf{T}}Y$

$$H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2}A\rho_{0}v^{2} + \frac{1}{2}\frac{c_{0}^{2}}{A\rho_{0}}\mu^{2}\right) d\ell \text{ Ham}$$

cinétique potentielle

$$\delta_{x}H \text{ efforts}$$

$$\delta_{x}H \text{ efforts}$$

$$\int \left(\frac{d\text{ébit mass.}}{press/\rho_{0}}\right)$$

$$\mathcal{J} = -\mathcal{J}^{\star}$$

2. étanchéité de la paro

Bilan de puissance

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\Omega} \dots \right) = e_{v}(0)e_{\mu}(0) - e_{v}\left(L_{0}\right)e_{\mu}\left(L_{0}\right)$$

 $= U^{\mathsf{T}}Y$

$$H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2}A\rho_{0}v^{2} + \frac{1}{2}\frac{c_{0}^{2}}{A\rho_{0}}\mu^{2}\right) d\ell \text{ Ham}$$

cinétique potentielle
$$\delta_{x}H \text{ efforts}$$

$$\partial_{\ell} \quad 0 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0 \quad 1$$

$$\int_{\mathcal{J}} = -\mathcal{J}^{\star}$$

2. étanchéité de la paro

Bilan de puissance

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\Omega} \dots \right) = e_{v}(0)e_{\mu}(0) - e_{v}\left(L_{0}\right)e_{\mu}\left(L_{0}\right)$$

 $= U^{\mathsf{T}}Y$

$$H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2}A\rho_{0}v^{2} + \frac{1}{2}\frac{c_{0}^{2}}{A\rho_{0}}\mu^{2}\right) d\ell \text{ Ham}$$

cinétique potentielle

$$\delta_{x}H \text{ efforts}$$

$$\delta_{x}H \text{ efforts}$$

$$\delta_{x}H \text{ efforts}$$

$$\int_{\theta_{x}} \frac{\partial_{\theta_{x}}}{\partial e_{x}} \int_{\theta_{x}} \frac{\partial_{\theta_{x}}}{\partial e_{x}} \int_{\theta_{x}}$$

2. étanchéité de la paro

Bilan de puissance

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\Omega} \dots \right) = e_{v}(0)e_{\mu}(0) - e_{v}\left(L_{0}\right)e_{\mu}\left(L_{0}\right)$$

 $= U^{\mathsf{T}}Y$

$$H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2}A\rho_{0}v^{2} + \frac{1}{2}\frac{c_{0}^{2}}{A\rho_{0}}\mu^{2}\right) d\ell \text{ Ham}$$

cinétique potentielle

$$\delta_{x}H \text{ efforts}$$

$$O - \partial_{\ell} O - \frac{v}{A}$$

$$\partial_{\ell} O 0 O 0$$

$$O - \partial_{\ell} O - \frac{v}{A}$$

$$\int d\acute{e}hit mass.$$

$$press/\rho_{0}$$

$$\frac{e_{A}}{u = \partial_{t}A}$$

$$\mathcal{J} = -\mathcal{J}^{\star}$$
is 3. éq. mvt. sur qt. lin. 4. antiautoadjoint

2. étanchéité de la paro

Bilan de puissance

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\Omega} \dots \right) = e_{v}(0)e_{\mu}(0) - e_{v}\left(L_{0}\right)e_{\mu}\left(L_{0}\right) - \int_{0}^{L_{0}} uy \,\mathrm{d}\ell$$

 $= U^{\mathsf{T}}Y - \int_{0}^{L_{0}} uy \, \mathrm{d}\ell$

$$H(x) = \int_{0}^{L_{0}} \left(\frac{1}{2}A\rho_{0}v^{2} + \frac{1}{2}\frac{c_{0}^{2}}{A\rho_{0}}\mu^{2}\right) d\ell \text{ Ham}$$

cinétique potentielle

$$\delta_{x}H \text{ efforts}$$

$$\delta_{x}H \text{ efforts}$$

$$\delta_{x}H \text{ efforts}$$

$$\int_{0}^{L_{0}} \left(\frac{debit \text{ mass.}}{u = \partial_{t}A}\right)$$

$$\int_{\mathcal{J}} = -\mathcal{J}^{\star}$$
i 3. éq. mvt. sur qt. lin. 4. antiautoadjoint

Pan

- 1. Systèmes Hamiltoniens à Ports (SHP)
- 2. Modélisation acoustique
- 3. Discrétisation spatiale et temporelle
 - Modèle statique
 - Modèle dynamique
- 4. Simulation
- 5. Conclusion

[Golo, Talasila, van der Schaft, Maschke, 2003]

[Golo, Talasila, van der Schaft, Maschke, 2003]

[Golo, Talasila, van der Schaft, Maschke, 2003]

[Golo, Talasila, van der Schaft, Maschke, 2003]

[Golo, Talasila, van der Schaft, Maschke, 2003]

Structure d'interconnexion

[Golo, Talasila, van der Schaft, Maschke, 2003]

Structure d'interconnexion

[Golo, Talasila, van der Schaft, Maschke, 2003]

Structure d'interconnexion

[Golo, Talasila, van der Schaft, Maschke, 2003]

Structure d'interconnexion

[Golo, Talasila, van der Schaft, Maschke, 2003]

Structure d'interconnexion

[Golo, Talasila, van der Schaft, Maschke, 2003]

Structure d'interconnexion

Modèle statique

Rappel en SHP continu

$$\begin{pmatrix} f_{\nu} \\ f_{\mu} \end{pmatrix} = \begin{pmatrix} 0 & -\partial_{\ell} \\ -\partial_{\ell} & 0 \end{pmatrix} \begin{pmatrix} e_{\nu} \\ e_{\mu} \end{pmatrix}$$

et ports (U, Y)

Discrétisation temporelle

Méthode existante

[Lopes, Hélie, Falaize, 2015]

SHP discrétisé

avec \mathbb{U} matrice triangulaire supérieure $\mathbb{C}_{g/d}$ vecteurs couplage entrées β un coefficient

Modèle dynamique Rappel en SHP continu

 f_v

 f_{μ} f_{A} -y 0

 $-\partial$

avec D matrice diagonale I matrice identité

Pan

- 1. Systèmes Hamiltoniens à Ports (SHP)
- 2. Modélisation acoustique
- 3. Discrétisation spatiale et temporelle
- 4. Simulation
 - Modèle statique
 - Modèle dynamique
- 5. Conclusion

Modèle statique Voyelles /a/ et /i/ statique

Paramètres physiques : $c_0 = 340 \text{ m} \cdot \text{s}^{-1}$ $\rho_0 = 1.1379 \text{ kg} \cdot \text{m}^{-3}$

Paramètres géométriques : A profil en espace

Frontières en $\ell = 0$: Signal de débit glottique (modèle Klatt & Klatt)

Frontières en $\ell = L_0$: Rayonnement

On retrouve les données mesurées par IRM [Beautemps, Badin, Laboissière, 1995]

FIGURE 1 – Voyelle /a/ de 0 à 25 kHz.

Zoom, voyelle /a/ de 0 à Figure 2 $4.5 \ kHz.$

Modèle dynamique Coarticulation de voyelle /a/ à /i/

Paramètres physiques : $c_0 = 340 \text{ m} \cdot \text{s}^{-1}$ $\rho_0 = 1.1379 \text{ kg} \cdot \text{m}^{-3}$

Paramètres géométriques : A profil en espace changeant dans le temps

Frontière en $\ell = 0$: Signal de débit glottique (modèle Klatt & Klatt)

Frontière en $\ell = L_0$: Rayonnement

Frontière distribuée : Mouvement de la paroi

En cours.

Pan

- 1. Systèmes Hamiltoniens à Ports (SHP)
- 2. Modélisation acoustique
- 3. Discrétisation spatiale et temporelle
- 4. Simulation
- 5. Conclusion

Conclusion

Contributions

- Écriture SHP de l'équation des pavillons en dynamique
- Extension de la méthode de Golo
- Simulation avec bilan de puissance équilibré dans ce cadre

Perspectives

- Tirer partie de structure des matrices pour optimiser (vers du temps réel)
- Méthode de Golo étendue à des fonctions de formes enrichies (polynômes etc.)
- PFEM [Cardoso-Ribeiro, Matignon, Lefèvre, 2018]
- Éléments finis en temps (bilan de puissance, précision ordre p, régularité \mathscr{C}^k) [Rémy Müller]

Discrétisation espace-temps (en cours)

Merci pour votre attention

