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Introduction

Volatility targeting has become popular in the financial industry and academic literature, with the specific objective to design a portfolio, made up of cash and risky assets with a constant predetermined level of portfolio volatility over time. This risk budgeting methodology overcomes the difficulty of inferring future expected performance and covariance structure of the risky assets as required by the traditional mean-variance framework created by Markowitz in 1952 [START_REF] Markowitz | Portfolio selection[END_REF]. The strategy, which was first introduced by Qian in 2005 [START_REF] Qian | Risk parity portfolios[END_REF], allocates capital between risky and non-risky assets, thanks to volatility forecasts of the risky assets. If the volatility of the risky assets is expected to be high, the weight of the risky asset is reduced and vice versa as presented in [START_REF] Bollerslev | Risk everywhere: Modeling and managing volatility[END_REF], [START_REF] Chaves | Risk parity portfolio vs. other asset allocation heuristic portfolios[END_REF], [START_REF] Harvey | The impact of volatility targeting[END_REF] and [START_REF] Bruder | Managing risk exposures using the risk budgeting approach[END_REF]. In addition, [START_REF] Dreyer | Tail-risk mitigation with managed volatility strategies[END_REF] has shown that left tail risk is significantly reduced thanks to a targeted portfolio's exposure inversely proportional to the forecasted portfolio volatility. However, this is contrasted by the work of [START_REF] Mylnikov | Volatility targeting: It's complicated! The[END_REF] that states exactly the opposite, motivating for a machine learning overlay to determine which volatility targeting models to favor. In general, the economic value of time volatility, measured by significant performance and utility gains for investors who synchronize volatility in multiasset portfolios, has been extensively reviewed by [START_REF] Fleming | The economic value of volatility timing[END_REF], [START_REF] Fleming | The economic value of volatility timing using realized volatility[END_REF], [START_REF] Kirby | Its all in the timing: simple active portfolio strategies that outperform naive diversification[END_REF] and [START_REF] Taylor | The economic value of volatility forecasts: A conditional approach[END_REF]. This has motivated the search for a stream of models to forecast volatility based on multiple methodologies that attempt to harness the informational content of this inherently unobservable latent process. These volatility models range from a simple empirical approach leveraging moving averages to more sophisticated ones based on ARCH and GARCH forecasts [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF], [START_REF] Bollerslev | Arch modeling in finance: A review of the theory and empirical evidence[END_REF], Heterogeneous Autoregressive model of Realized Volatility (HAR-RV), proposed by [START_REF] Corsi | A simple approximate long-memory model of realized volatility[END_REF], multivariate highfrequency-based volatility (HEAVY) models [START_REF] Shephard | Realising the future: forecasting with high-frequency-based volatility (heavy) models[END_REF] and prospective forward-looking measures such as implied volatility [START_REF] Liang | Is implied volatility more informative for forecasting realized volatility: An international perspective[END_REF].

From a modern and machine learning perspective, most of these volatility predictors can be interpreted as model-based reinforcement learning models. They aim to specify the complex structure of volatility and to make specific predictions on which portfolio allocations are sized in inverse proportion to predicted volatility. In certain cases, their parameters are determined to maximize specific performance measures such as the Sharpe ratio of the corresponding strategy. Although initially not formulated as a model-based RL approach, volatility targeting follows its traditional ingredients. The process attempts to identify an evolution of a complex system. Optimal allocation is determined thanks to a cumulative reward. The supervised learning task considered in this paper fulfills specific criteria: the portfolio allocation across the different volatility models. However, because of the complexity and nonstationary behavior of volatility, the appropriate choice of the volatility targeting model remains an open question. Furthermore, the intrinsic high correlation between these volatility models, both in terms of predictors and corresponding performances, present an interesting challenge for classification and supervised learning tasks. This is precisely the goal of this work. We aim to determine the best allocation for volatility targeting models in order to achieve the maximum ex post Sharpe ratio.

Related Works

Our work can be related to an ever growing body of machine learning literature applied to financial markets. Indeed, with ever increasing competition and data processing speed in the financial markets, robust forecasting methods have become a vital subject for asset managers. The premise of machine learning algorithms -to offer a way to find and model non-linearity behaviour in financial time series -has attracted ample attention and efforts that can be traced back to the late 2000's when machine learning research started to pick up in the financial industry. Rather than listing a large related body of work, we will refer to various publications that have reviewed the existing literature in chronological order.

In 2009, [START_REF] Atsalakis | Surveying stock market forecasting techniques -part ii: Soft computing methods[END_REF] surveyed more than 100 related published articles using neural and neuro-fuzzy techniques derived and applied to forecasting stock markets, or discussing classifications of financial market data and forecasting methods. In 2010, [START_REF] Li | Applications of artificial neural networks in financial economics: A survey[END_REF] conducted a survey on the application of artificial neural networks in forecasting financial market prices, including exchange rates, stock prices, and financial crisis prediction as well as option pricing. In addition, the stream of machine learning publications was not only based on neural network but also on generic and evolutionary algorithms as reviewed in [START_REF] Aguilar-Rivera | Genetic algorithms and darwinian approaches in financial applications: A survey[END_REF].

More recently, [START_REF] Xing | Natural language based financial forecasting: a survey[END_REF] reviewed the application of cutting-edge NLP techniques for financial forecasting, using text from financial news or Twitters. [START_REF] Rundo | Machine learning for quantitative finance applications: A survey[END_REF] covered the wider topic of using machine learning techniques, including deep learning, to financial portfolio allocation and optimization systems. [START_REF] Nti | A systematic review of fundamental and technical analysis of stock market predictions[END_REF] focused on support vector machine and artificial neural networks to forecast prices and regimes based on fundamental and technical analysis. Later, [START_REF] Shah | Stock market analysis: A review and taxonomy of prediction techniques[END_REF] discussed the challenges and research opportunities of machine learning techniques as applied to finance, including issues for algorithmic trading, backtesting and live testing on single stocks and more general predictions of financial markets. In addition, [START_REF] Sezer | Financial time series forecasting with deep learning: A systematic literature review[END_REF] reviewed not only deep learning methods but also other machine learning methods to forecast financial time series. As the recent focus has been mostly on deep learning approaches, it is not surprising that most of the reviewed articles are related to this field. Finally in [START_REF] Lommers | Confronting machine learning with financial research[END_REF], the authors compare machine learning to conventional quantitative research methodologies in finance and discuss the idiosyncrasies of finance and the challenges that financial markets pose to machine learning methodologies. They also examine the opportunities (and applications) that machine learning offers for financial research.

While there are existing studies related to machine learning applied portfolio optimization including volatility targeting strategies (e.g. [START_REF] Jaeger | Interpretable machine learning for diversified portfolio construction[END_REF], [START_REF] Molyboga | A modified hierarchical risk parity framework for portfolio management[END_REF] and [START_REF] Zhang | Deep learning for portfolio optimization[END_REF]), the specific problem of volatility model allocation using machine learning in the volatility targeting context is fairly novel. This stems from the two approaches being traditionally very different in spirit: volatility targeting assumes rules while machine learning prides itself on having no a priori or preconceived rules.

Reformulating volatility targeting methods as a model-based RL approach as in [START_REF] Benhamou | Adaptive learning for financial markets mixing model-based and model-free rl for volatility targeting[END_REF] opens new doors. In this work, [START_REF] Benhamou | Adaptive learning for financial markets mixing model-based and model-free rl for volatility targeting[END_REF] show that using a model free Deep Reinforcement Learning (DRL) approach can help to decide which volatility model(s) to choose. This is underpinned by the fact that DRL appears to be a promising tool to tackle regime changes [START_REF] Benhamou | Deep reinforcement learning (drl) for portfolio allocation[END_REF], [START_REF] Benhamou | Bridging the gap between markowitz planning and deep reinforcement learning[END_REF] or [START_REF] Benhamou | Time your hedge with deep reinforcement learning[END_REF].

However, DRL faces at least two issues. First, DRL can be problematic in financial markets as Electronic copy available at: https://ssrn.com/abstract=3924255 only one scenario, namely the historical one, can be replayed as opposed to games where a simulator can generate many multiples of experiences (such as chess or the game of Go). Although some new synthetic market data-generating processes exist as nonparametric, AI-based Monte Carlo methods and neural network-based approaches including variational autoencoders (VAEs) and generative adversarial networks (GANs), none of these techniques are completely satisfactory in replicating realistic market scenarios even if they can be useful to mitigate overfitting on financial datasets [START_REF] Pardo | Mitigating overfitting on financial datasets with generative adversarial networks[END_REF]. Second, DRL does not work well when using many features and is still hard to interpret as opposed to a supervised learning method based on decision tree algorithms that can rank and classify specific real features thereby rendering them more tangible and interpretable. In our past specific volatility targeting allocation exercise, choosing the right model(s) in the context of a DRL approach has proven to be a serious challenge [START_REF] Benhamou | Adaptive learning for financial markets mixing model-based and model-free rl for volatility targeting[END_REF].

In this study, we are interested in testing a new supervised method that leverages macro data as well as model performance data to select the best volatility targeting model(s). In addition, this new methodology enables a certain understanding of the role of the selected features and the detection of regime shifts thanks to the selected features' changes.

Contributions

Our contribution is precisely motivated by the shortcomings presented in the aforementioned remarks. We therefore add a supervised learning overlay to decide which model to use. The goal of this supervised learning task is to order all our models and choose the best model or weight them according to their predicted relative performance. As many data sources are used, we add, in our supervised learning task, a feature filtering step to determine the critical features.

The motivation is twofold. Firstly, using too many features tends to add noise to our signal as some features are either non-predictive or redundant with other features. Secondly, we would like to change the selected features when there are regime changes. We therefore add, in our supervised learning step, a filtering selection. We test the salience of this features selection as well as a hyperparameter selection process thanks to a walk-forward approach as described later in the paper.

Models Presentation

Volatility Targeting Models

In our study, we use nine different models to represent and forecast volatility. These models are identical to the ones presented in [START_REF] Benhamou | Adaptive learning for financial markets mixing model-based and model-free rl for volatility targeting[END_REF]. They begin with simple concepts such as moving averages, exponential moving averages (RM2006) or a twostep approach as presented in [START_REF] Lu | Modeling and forecasting stock return volatility using a random level shift model[END_REF] to account for a short memory process. Then, they incorporate more sophisticated and statistically-justified models like the famed GARCH model, as in [START_REF] Bollerslev | Volatility puzzles: a simple framework for gauging return-volatility regressions[END_REF], the Glosten-Jagannathan-Runkle GARCH model as in [START_REF] Glosten | On the relation between the expected value and the volatility of the nominal excess return on stocks[END_REF], microstructure-based models like the HEAVY model (which relies on high-frequency data as in [START_REF] Shephard | Realising the future: forecasting with high-frequency-based volatility (heavy) models[END_REF]), or the HAR model as in [START_REF] Corsi | A simple approximate long-memory model of realized volatility[END_REF]. Last but not least, we add two additional prospective implicit models that are based on forward-looking variables such as the VIX. One of them uses Principal Component Analysis to decompose a set of implied volatility indices into the main eigenvectors. The resulting implied volatility proxies are then rescaled to match a realized volatility metric thereby voiding the famous volatility risk premium and Jensen's inequality-related bias. These nine models are quite diverse overall and work alternatively well in various market environments, making the choice of the best model or any type of ranking difficult to tackle.

As presented in [START_REF] Benhamou | Adaptive learning for financial markets mixing model-based and model-free rl for volatility targeting[END_REF], volatility targeting is achieved using the volatility forecasts given by the models. If we denote by σ target the target volatility of the strategy and if the model i predicts a future's volatility σ i,pred t-1 , based on information available at time t -1, the allocation in the future's model i at time t is given by the ratio between the target volatility and the predicted volatility b i t = σ target /σ i,pred t-1 . Hence, we can compute the daily amounts invested in each of the future volatility models and create a corresponding time series of returns

r i t = b i t × r f uture t
, consisting of investing according to the allocation computed by the volatility targeting model i. This provides n time series of returns r i t . The striking point, as illustrated by Figure 1 is the very high correlation between the different volatility targeting models' returns, thereby motivating the search for a robust method to determine which model(s) to include in the portfolio construction process. As volatility regimes change, the best model varies over time, making the exercise of choosing the best model non-trivial. 

Supervised Learning Overlay

In order to identify the best volatility model(s) with a supervised learning task, we use Gradient Boosting Decision Trees (GBDT) to find the model(s) that provide(s) the best next timestep return. More specifically, we selected LightGBM (LGBM) as our framework [START_REF] Ke | Lightgbm: A highly efficient gradient boosting decision tree[END_REF]. The label(s) are for each day the best model(s). The inputs are various financial and non-financial data that are described at length later in this paper. The specific choices of the GBDT model, in particular LGBM, are motivated by multiple reasons:

-GBDT are the most suitable machine learning methods for small data set classification problems. In particular, they are known to perform better than their state-of-the-art cousins, Deep Learning methods, for small data sets. As a matter of fact, GBDT methods are preferred by Kagglers and have won multiple challenges. -GBDT methods are less sensitive to data rescaling, compared to logistic regression or penalized methods. -They can cope with imbalanced data sets.

-They allow for very fast training when using the leaf-wise tree growth (compared to levelwise tree growth). -Last but not least, among GBDT methods,

LGBM is one of the most numerically efficient method, with computing time divided by 2 to 3 compared to XGBoost.

Features

Our supervised learning task aims to determine the label (the best volatility targeting models) for a given set of inputs. These inputs are derived from several features :

- Electronic copy available at: https://ssrn.com/abstract=3924255 Including the volatility model PnL time series, the market indicators, the commodity indicators and the FX carry indices, there is a total of 32 features in a first set. In addition, we compute other statistics such as averages, standard deviations, Sharpe ratios and other related technical indicators, summing up to a total of 416 input features in a second set. Volatility forecasts and macro indices represent another 13 features. We also calculate other statistical figures including short-term moving averages and distance from the average to get an additional 78 inputs. The last 78 macro features are not transformed. In total, we end up with 572 input features in our supervised learning model. We use LightGBM gain as feature importance to select a certain percentage of the most important features, and retrain LightGBM with them to filter the number of features every time the algorithm is trained.

Walk-Forward Methodology

The whole procedure is summarized in Figure 2. We use n models to represent the dynamics of the market volatility. We then add other features that provide orthogonal information to the models, such as economic health indices and technical analysis. In fine, the most important features are selected. As mentioned previously, LightGBM enables us to rank our various volatility targeting models according to the forecasted return probability of the next timestep. We then construct several strategies using these predictions. In order to test the robustness of our aggregated meta-model out-of-sample, we use the well-known methodology called walk-forward analysis. In machine learning, a standard approach is to do k-fold cross-validation. This approach happens to break the chronology of the data and, in certain ill-conceived cases, may potentially use test data in the train set which embodies a blatant case of in-sample optimization. [START_REF] Schnaubelt | A comparison of machine learning model validation schemes for non-stationary time series data[END_REF] has conducted a comprehensive empirical study of eight common validation schemes and demonstrated that commonly used cross-validation schemes often yield estimates with the largest bias and variance, while forward-validation or walk-forward schemes yield better estimates of the out-of-sample error, even more so in the context of financial time series.

We therefore settled on a forward-sliding test set which uses non-overlapping previous past data as the corresponding training sets. In other words, we favor adding incrementally new data in the training set, at each new step, to ensure stability and robustness in the validation process. This method is sometimes referred to as an "anchored walkforward" validation methodology as we have anchored the training data. Finally, as the test set is always ensuing the training set, the walk-forward analysis creates fewer steps compared with a crossvalidation approach which could lead to another source of overfitting. Once these hyperparameters are determined, we train our model from 2003 to 2016 and use a repetitive test period of one year from 2017 onwards. In other words, we test the model out-ofsample on the 2017-2020 period. The entire process is summarized in Figure 3.

This method enables the calibration of the hyperparameters on a validation set. These Light-GBM hyperparameters are:

max depth, boost round, min sum hessian in leaf, min gain to split, feature fraction, bagging fraction, lambda l2, min importance.

Financial Data Experiments

Market Data

We test our model on two mainstream futures contracts: the continuously rolled CBOT's future on the U.S. 10-year Treasury Note denoted by TY1 in the rest of the paper, and the continuously rolled CME's E-mini future on the S&P 500 index denoted by ES1. As mentioned before, daily data range from 2003 to 2020.

Hyperparameters and Features Selection

Table 1 shows the details of the selected hyperparameters for the two futures contracts TY1 and ES1 during the validation period using the Sharpe ratio as the reward function. For TY1, the model has a maximum depth of one and selects approximately one hundred features. For ES1, the best model is very different. We find that it corresponds to a more complex system with a maximum depth of two, but fewer features are selected, which is somehow intuitive as maximum depth and number of features play similar roles. These results are summarized in Table 1. For TY1, the selected min importance hyperparameter shows that around one hundred features are responsible for 70% of all explanatory information that is used to predict which models have better returns at the next timestep. Then, each year, the model selects the most important features that account for 70% of the total gain. It uses 650 trees with a maximal depth of 1. For ES1, it is the same logic but with different hyperparameters. Tables 2 and3 show the 10 most important features se-Electronic copy available at: https://ssrn.com/abstract=3924255 lected on the test set from the 572 inputs. Notably, features directly related to volatility models are very often selected. The model focuses on volatility changes and abnormal behaviors using the distance from the average and the percentage change over 10 days. These 10 features are responsible for more than 39% of the total information. They all relate to the volatility of TY1.

Hyperparameters

For both TY1 and ES1, models are retrained each year. Table 2 provides the most important features for TY1. Table 4 confirms the stability of the supervised methodology as about 85% of selected features remain identical between two consecutive years. For ES1, the conclusion is similar, but we can notice the large presence of volatility features as the model selects the same 24 features each year on average (Table 4).

Feature name 2017 2018 2019 2020 Average GJRGARCH GK Vol distance to 250 MA 6.10% 6.37% 6.87% 7.67% 6.75% HEAVY Vol distance to 250 MA 5.91% 5.64% 6.16% 6.01% Electronic copy available at: https://ssrn.com/abstract=3924255

Comparison with Benchmark

The model output is a probability for each volatility model to have the highest return at the next timestep. We therefore examine several strategies from these probabilities :

-Weighted: the probability of each model is used directly as an allocation, -3 best: only the three best models are taken into account and allocation is computed as the three re-normalized probabilities, -Follow the best: 100% investment in the model with the highest probability.

These strategies are compared to the benchmark which is an equal-weighted strategy.

Figure 4 shows the allocation of the weighted strategy on TY1. The model focuses on few volatility models such as adjusted TYVIX, adjusted Principal Component and moving average 120-days. But the probabilities are not stable which indicates that this strategy exhibits a potentially high turnover.

For ES1, the model is less stable. This is confirmed by the weighted strategy on Figure 5 as allocations switch frequently between several models. Electronic copy available at: https://ssrn.com/abstract=3924255

For TY1, the follow the best strategy yields better results than the others as it exhibits a better performance with a lower volatility, resulting in a higher Sharpe ratio. Different performances are displayed in Figure 6. In addition, the follow the best strategy has the smallest drawdown which indicates that the model invests in the highvolatility model when markets plummet. However, the turnover is seven times higher than the benchmark which implies much larger transaction costs (TC) and reduces the final performance. Note that we have used a heuristic linear 2 bps per trade model for transaction costs applied to both the fixed income and equity proxies. From Figure 4, a large majority of the volatility models do not have a high probability of being the best at the next timestep, hence the allocation between weighted and 3 best strategies are extremely alike and give similar performances. This information is provided in Table 5.

2 0 1 7 -0 1 2 0 1 7 -0 5 2 0 1 7 -0 9 2 0 1 8 -0 1 2 0 1 8 -0 5 2 0 1 8 -0 9 2 0 1 9 -0 1 2 0 1 9 -0 5 2 0 1 9 -0 9 2 0 2 0 -0 1 2 0 2 0 -0 5 date 0.9 Conversely, Figure 7 shows that the follow the best strategy is riskier than the corresponding benchmark for ES1. The weighted and 3 best strategies have lower performance than the benchmark but are better than follow the best. The volatility of the output strategies have a high volatility compared to the benchmark, which is due to the frequent changes between volatility models. It is therefore not surprising that these strate-gies do not exhibit strong returns -the benchmark strategy having the best Sharpe ratio. In addition, the supervised model does not seem to work as intended as the follow the best strategy has the worst drawdown. We can therefore conclude that the model does not predict well which volatility model will have the best return at the next timestep for ES1. Further information is provided in Table 6.

Electronic copy available at: https://ssrn.com/abstract=3924255 2 0 1 7 -0 1 2 0 1 7 -0 5 2 0 1 7 -0 9 2 0 1 8 -0 1 2 0 1 8 -0 5 2 0 1 8 -0 9 2 0 1 9 -0 1 2 0 1 9 -0 5 2 0 1 9 -0 9 2 0 2 0 -0 1 2 0 2 0 -0 5 date 1.0 

Future Works

This study has shown how to construct strategies where the best models are selected by a supervised learning overlay. This adaptive supervised learning methodology leads to good results on the U.S. 10year Treasury Note futures contract at the cost of a higher turnover. A direct extension of this work is therefore related to explore several techniques that can reduce turnover. In addition, we have found that this approach leads to less efficient results on the E-mini S&P 500 index futures contract. It is therefore worthwhile to better understand the major differences when applying this methodology to stock and bond futures. Finally, these two financial instruments, albeit among the most liquid in the world, represent a very small sample that could be extended to dozens of other financial futures contracts. More conclusive statistics could be reached if applied to a more complete set of generic futures contracts. All these steps are for further exploration in future works.

Conclusion

Volatility targeting strategies rely on precise forecasts of future volatility. Hence, they require reliable models for predicting the volatility dynamic, which is, obviously, a crucial and complex task given the inherently noisy and complex nature of financial markets. In practice, deciding which model to use is challenging due to market regime changes, the non-stationarity nature of these markets, and the high correlation between volatility models. In this paper, we present a supervised learning task to determine at each timestep which model(s) to overweight. In terms of input features, we not only use past performances of the different models and their forecasted volatility, but additional macro and financial data to determine the optimal model(s). We apply this methodology, with mixed success, to the case of volatility targeting strategies for the U.S. 10-year Treasury Note and the E-mini S&P 500 index futures contracts. We show that GBDT is an effective method to

Electronic copy available at: https://ssrn.com/abstract=3924255

predict the best model(s) in the fixed income case while further studies must be conducted for equity indices. We filter our features by importance and observe that the selected features are mostly model-related such as the distance of the volatility forecast to its mean.

Fig. 1 :

 1 Fig. 1: Correlation between volatility targeting models for the U.S. 10-year Treasury Note futures contract

  PnLs series : the 9 PnL times series of the different models. -Volatility forecasts: the forecast of the nine volatility models. -Market indicators: the values of the S&P 500, Nasdaq, Dow Jones, Euro Stoxx, FTSE, Nikkei, MSCI World, Emerging Markets and ACWI indices, that represent the most important equity index markets. -Commodities indicators: the prices of several commodity indicators spanning the following sectors: energy markets, industrial and precious metals, agriculture, grains, livestock and soft commodities sectors. -FX carry indices: the 4 carry indices between the dollar and the Euro, the Swiss franc, the Pound sterling and the Japanese Yen. -Macro indices : 5 features corresponding to different proprietary market risk appetites. -Bond indicators : levels of the U.S., U.K.,Japan and German 10-year government bonds and the slope computed as the difference between the 10 and 2 years yields. -Economic surprises : economic surprise indices based on the G20 countries, Europe, the U.S., Asia, emerging markets.

Fig. 2 :

 2 Fig. 2: Overall architecture of the supervised learning task applied to the selection and allocation of volatility targeting strategies

Fig. 3 :

 3 Fig. 3: Overall training, validation and test processes for a walk-forward methodology

Fig. 4 :Fig. 5 :

 45 Fig. 4: Allocation of the weighted and follow the best strategies for TY1

  -Implied volatility indicators : several implied volatility indicators based on FX carry indices, Gold, Crude oil, government bonds and equities indices. -Credit spreads : the TED spreads of the U.S. and the E.U. as well as other international spread indicators. -Put/Call ratio : the put/call ratio for the S&P 500 option market.

Table 1 :

 1 Hyperparameters selected for TY1 and ES1 during the validation period(2011)(2012)(2013)(2014)(2015)(2016) 

	TY1 ES1

Table 2 :

 2 Normalized feature importance of the 10 most important features for TY1

	Feature name	2017	2018	2019	2020	Average
	RAEGARCH vol distance to 250 MA	10.86% 11.76% 11.61% 12.05% 11.57%
	GARCH vol distance to 250 MA	7.49% 7.93% 7.81% 6.71% 7.48%
	adj VIX9D vol distance to 250 MA	5.56% 8.03% 8.32% 7.57% 7.37%
	LevelShift std 60	5.56% 6.74% 7.91% 8.01% 7.05%
	adj VIX9D vol	7.31% 6.79% 6.51% 6.97% 6.90%
	MacroSignal diff 1	6.90% 6.01% 5.05% 4.67% 5.66%
	HEAVY vol distance to 250 MA	4.32% 4.69% 6.19% 5.61% 5.21%
	RM2006 GK vol pct change 1	4.12% 4.20% 4.36% 4.31% 4.25%
	adj VIX9D vol pct change 5	4.26% 3.95% 4.22% 4.12% 4.14%
	adj PC equity DM vol distance to 250 MA 3.82% 3.64% 4.12% 4.20% 3.95%

Table 3 :

 3 Normalized feature importance of the 10 most important features for ES1

	Year	Features rate on TY1	Features number on TY1	Features rate on ES1	Features number on ES1
	2017	/	98	/	26
	2018	84%	95	92%	24
	2019	87%	93	100%	23
	2020	82%	94	88%	24

Table 4 :

 4 Number and rates of features kept for TY1 and ES1

Table 5 :

 5 TY1 strategy performance for the test period(2017)(2018)(2019)(2020) 

Table 6 :

 6 ES1 strategy performance for the test period(2017)(2018)(2019)(2020) 

				ES1 Performance
	Performance value with 10% volatility	1.1 1.2 1.3 1.4					0.075 0.050 0.025 0.000 0.025 0.050 difference with benchmark
							0.075
			Benchmark	weighted	3 Best	follow the best
			diff weighted	diff 3 Best	diff follow the best
		Fig. 7: ES1 strategy performance on the test set
			Benchmark Weighted 3 Best FtB without TC FtB with TC
		Ann. ret	0.088	0.091 0.094	0.084	0.071
		Ann. vol	9.9%	10.6% 10.8%	12.1%	12.1%
		Sharpe ratio	0.891	0.861	0.872	0.695	0.583
		Sortino	1.198	1.147	1.165	0.938	0.802
		Drawdown	14.7%	15.2% 15.4%	18.4%	18.5%
		Ann. Turnover	8.24	35.98	39.18	62.06	62.06
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