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Abstract. In the context of risk-based portfolio construction and pro-active risk management,
finding robust predictors of future realised volatility is paramount to achieving optimal perfor-
mance. Volatility has been documented in economics literature to exhibit pronounced persistence
with clusters of high or low volatility regimes and to mean-revert to a normal level, underpinning
Nobel prize-winning work on Generalized Autoregressive Heteroskedastic (GARCH) models. From
a Reinforcement Learning (RL) point of view, this process can be interpreted as a model-based RL
approach where the goal of the models is twofold: first, to represent the volatility dynamics and
forecast its term structure and second, to compute a resulting allocation to match a given target
volatility: hence the name ”volatility targeting method for risk-based portfolios”. However, the re-
sulting volatility model-based RL approaches are hard to distinguish as each model results in similar
performance without a clear dominant one. We therefore present an innovative approach with an
additional supervised learning step to predict the best model(s), based on historical performance
ordering of RL models. Our contribution shows that adding a supervised learning overlay to decide
which model(s) to use provides improvement over a naive benchmark consisting in averaging all RL
models. A salient ingredient in this supervised learning task is to adaptively select features based on
their significance, thanks to minimum importance filtering. This work extends our previous work on
combining model-free and model-based RL. It mixes different types of learning procedures, namely
model-based RL and supervised learning opening new doors to combine different machine learning
approaches.

Keywords: Volatility targeting - Supervised learning - Best ordering - Model-based - Portfolio

allocation - Walk-forward - Features selection.

1 Introduction

Volatility targeting has become popular in the fi-
nancial industry and academic literature, with the
specific objective to design a portfolio, made up
of cash and risky assets with a constant predeter-
mined level of portfolio volatility over time. This
risk budgeting methodology overcomes the diffi-
culty of inferring future expected performance and
covariance structure of the risky assets as required
by the traditional mean—variance framework cre-
ated by Markowitz in 1952 [27]. The strategy,
which was first introduced by Qian in 2005 [32], al-
locates capital between risky and non-risky assets,
thanks to volatility forecasts of the risky assets. If
the volatility of the risky assets is expected to be
high, the weight of the risky asset is reduced and
vice versa as presented in [11], [14], [19] and [8]. In
addition, [15] has shown that left tail risk is sig-
nificantly reduced thanks to a targeted portfolio’s
exposure inversely proportional to the forecasted

portfolio volatility. However, this is contrasted by
the work of [29] that states exactly the opposite,
motivating for a machine learning overlay to deter-
mine which volatility targeting models to favor. In
general, the economic value of time volatility, mea-
sured by significant performance and utility gains
for investors who synchronize volatility in multi-
asset portfolios, has been extensively reviewed by
[16], [17], [22] and [38].

This has motivated the search for a stream
of models to forecast volatility based on multi-
ple methodologies that attempt to harness the in-
formational content of this inherently unobserv-
able latent process. These volatility models range
from a simple empirical approach leveraging mov-
ing averages to more sophisticated ones based on
ARCH and GARCH forecasts [9], [10], Heteroge-
neous Autoregressive model of Realized Volatility
(HAR-RV), proposed by [13], multivariate high-
frequency-based volatility (HEAVY) models [37]



2 Forthcoming in ECML PKDD 2021 - MIDAS - Free to redistribute

and prospective forward-looking measures such as
implied volatility [24].

From a modern and machine learning perspec-
tive, most of these volatility predictors can be in-
terpreted as model-based reinforcement learning
models. They aim to specify the complex struc-
ture of volatility and to make specific predictions
on which portfolio allocations are sized in in-
verse proportion to predicted volatility. In certain
cases, their parameters are determined to maxi-
mize specific performance measures such as the
Sharpe ratio of the corresponding strategy. Al-
though initially not formulated as a model-based
RL approach, volatility targeting follows its tradi-
tional ingredients. The process attempts to iden-
tify an evolution of a complex system. Optimal
allocation is determined thanks to a cumulative
reward. The supervised learning task considered
in this paper fulfills specific criteria: the portfo-
lio allocation across the different volatility mod-
els. However, because of the complexity and non-
stationary behavior of volatility, the appropriate
choice of the volatility targeting model remains
an open question. Furthermore, the intrinsic high
correlation between these volatility models, both
in terms of predictors and corresponding perfor-
mances, present an interesting challenge for clas-
sification and supervised learning tasks.

This is precisely the goal of this work. We aim
to determine the best allocation for volatility tar-
geting models in order to achieve the maximum ex
post Sharpe ratio.

1.1 Related Works

Our work can be related to an ever growing body
of machine learning literature applied to financial
markets. Indeed, with ever increasing competition
and data processing speed in the financial mar-
kets, robust forecasting methods have become a
vital subject for asset managers. The premise of
machine learning algorithms - to offer a way to
find and model non-linearity behaviour in finan-
cial time series - has attracted ample attention
and efforts that can be traced back to the late
2000’s when machine learning research started to
pick up in the financial industry. Rather than list-
ing a large related body of work, we will refer to
various publications that have reviewed the exist-
ing literature in chronological order.

In 2009, [3] surveyed more than 100 related
published articles using neural and neuro-fuzzy
techniques derived and applied to forecasting stock
markets, or discussing classifications of financial
market data and forecasting methods. In 2010, [23]

conducted a survey on the application of artifi-
cial neural networks in forecasting financial market
prices, including exchange rates, stock prices, and
financial crisis prediction as well as option pricing.
In addition, the stream of machine learning publi-
cations was not only based on neural network but
also on generic and evolutionary algorithms as re-
viewed in [1].

More recently, [39] reviewed the application
of cutting-edge NLP techniques for financial fore-
casting, using text from financial news or Twit-
ters. [33] covered the wider topic of using ma-
chine learning techniques, including deep learning,
to financial portfolio allocation and optimization
systems. [30] focused on support vector machine
and artificial neural networks to forecast prices
and regimes based on fundamental and technical
analysis. Later, [36] discussed the challenges and
research opportunities of machine learning tech-
niques as applied to finance, including issues for
algorithmic trading, backtesting and live testing
on single stocks and more general predictions of
financial markets. In addition, [35] reviewed not
only deep learning methods but also other machine
learning methods to forecast financial time series.
As the recent focus has been mostly on deep learn-
ing approaches, it is not surprising that most of the
reviewed articles are related to this field. Finally
in [25], the authors compare machine learning to
conventional quantitative research methodologies
in finance and discuss the idiosyncrasies of finance
and the challenges that financial markets pose to
machine learning methodologies. They also exam-
ine the opportunities (and applications) that ma-
chine learning offers for financial research.

While there are existing studies related to ma-
chine learning applied portfolio optimization in-
cluding volatility targeting strategies (e.g. [20], [28]
and [40]), the specific problem of volatility model
allocation using machine learning in the volatility
targeting context is fairly novel. This stems from
the two approaches being traditionally very dif-
ferent in spirit: volatility targeting assumes rules
while machine learning prides itself on having no
a priori or preconceived rules.

Reformulating volatility targeting methods as
a model-based RL approach as in [5] opens new
doors. In this work, [5] show that using a model
free Deep Reinforcement Learning (DRL) ap-
proach can help to decide which volatility model(s)
to choose. This is underpinned by the fact that
DRL appears to be a promising tool to tackle
regime changes [4], [6] or [7].

However, DRL faces at least two issues. First,
DRL can be problematic in financial markets as
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only one scenario, namely the historical one, can
be replayed as opposed to games where a simulator
can generate many multiples of experiences (such
as chess or the game of Go). Although some new
synthetic market data-generating processes exist
as nonparametric, Al-based Monte Carlo meth-
ods and neural network—based approaches includ-
ing variational autoencoders (VAEs) and genera-
tive adversarial networks (GANs), none of these
techniques are completely satisfactory in replicat-
ing realistic market scenarios even if they can be
useful to mitigate overfitting on financial datasets
[31]. Second, DRL does not work well when using
many features and is still hard to interpret as op-
posed to a supervised learning method based on
decision tree algorithms that can rank and clas-
sify specific real features thereby rendering them
more tangible and interpretable. In our past spe-
cific volatility targeting allocation exercise, choos-
ing the right model(s) in the context of a DRL
approach has proven to be a serious challenge [5].

In this study, we are interested in testing a new
supervised method that leverages macro data as
well as model performance data to select the best
volatility targeting model(s). In addition, this new
methodology enables a certain understanding of
the role of the selected features and the detection
of regime shifts thanks to the selected features’
changes.

1.2 Contributions

Our contribution is precisely motivated by the
shortcomings presented in the aforementioned re-
marks. We therefore add a supervised learning
overlay to decide which model to use. The goal
of this supervised learning task is to order all our
models and choose the best model or weight them
according to their predicted relative performance.
As many data sources are used, we add, in our su-
pervised learning task, a feature filtering step to
determine the critical features.

The motivation is twofold. Firstly, using too
many features tends to add noise to our signal
as some features are either non-predictive or re-
dundant with other features. Secondly, we would
like to change the selected features when there are
regime changes. We therefore add, in our super-
vised learning step, a filtering selection. We test
the salience of this features selection as well as
a hyperparameter selection process thanks to a
walk-forward approach as described later in the

paper.

2 Models Presentation

2.1 Volatility Targeting Models

In our study, we use nine different models to rep-
resent and forecast volatility. These models are
identical to the ones presented in [5]. They be-
gin with simple concepts such as moving averages,
exponential moving averages (RM2006) or a two-
step approach as presented in [26] to account for
a short memory process. Then, they incorporate
more sophisticated and statistically-justified mod-
els like the famed GARCH model, as in [12], the
Glosten-Jagannathan-Runkle GARCH model as in
[18], microstructure-based models like the HEAVY
model (which relies on high-frequency data as in
[37]), or the HAR model as in [13]. Last but not
least, we add two additional prospective implicit
models that are based on forward-looking vari-
ables such as the VIX. One of them uses Prin-
cipal Component Analysis to decompose a set of
implied volatility indices into the main eigenvec-
tors. The resulting implied volatility proxies are
then rescaled to match a realized volatility met-
ric thereby voiding the famous volatility risk pre-
mium and Jensen’s inequality-related bias. These
nine models are quite diverse overall and work al-
ternatively well in various market environments,
making the choice of the best model or any type
of ranking difficult to tackle.

As presented in [5], volatility targeting is
achieved using the volatility forecasts given by the
models. If we denote by oi4rger the target volatil-
ity of the strategy and if the model 7 predicts a fu-
ture’s volatility @7, based on information avail-
able at time ¢t — 1, the allocation in the future’s
model ¢ at time ¢ is given by the ratio between
the target volatility and the predicted volatility
b% = O-target/azf;ed-

Hence, we can compute the daily amounts in-
vested in each of the future volatility models and
create a corresponding time series of returns r{ =
bi x "¢ consisting of investing according to
the allocation computed by the volatility target-
ing model ¢. This provides n time series of returns
ri. The striking point, as illustrated by Figure 1
is the very high correlation between the different
volatility targeting models’ returns, thereby mo-
tivating the search for a robust method to deter-
mine which model(s) to include in the portfolio
construction process. As volatility regimes change,
the best model varies over time, making the exer-
cise of choosing the best model non-trivial.
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Fig. 1: Correlation between volatility targeting models for the U.S. 10-year Treasury Note futures contract

2.2 Supervised Learning Overlay

In order to identify the best volatility model(s)
with a supervised learning task, we use Gradi-
ent Boosting Decision Trees (GBDT) to find the
model(s) that provide(s) the best next timestep
return. More specifically, we selected LightGBM
(LGBM) as our framework [21]. The label(s) are
for each day the best model(s). The inputs are var-
ious financial and non-financial data that are de-
scribed at length later in this paper. The specific
choices of the GBDT model, in particular LGBM,
are motivated by multiple reasons:

— GBDT are the most suitable machine learning
methods for small data set classification prob-
lems. In particular, they are known to perform
better than their state-of-the-art cousins, Deep
Learning methods, for small data sets. As a
matter of fact, GBDT methods are preferred
by Kagglers and have won multiple challenges.

— GBDT methods are less sensitive to data
rescaling, compared to logistic regression or
penalized methods.

— They can cope with imbalanced data sets.

— They allow for very fast training when using
the leaf-wise tree growth (compared to level-
wise tree growth).

— Last but not least, among GBDT methods,
LGBM is one of the most numerically efficient
method, with computing time divided by 2 to
3 compared to XGBoost.

2.3 Features

Our supervised learning task aims to determine
the label (the best volatility targeting models) for
a given set of inputs. These inputs are derived from
several features :

— PnLs series : the 9 PnL times series of the
different models.

— Volatility forecasts: the forecast of the nine
volatility models.

— Market indicators: the values of the S&P
500, Nasdaq, Dow Jones, Euro Stoxx, FTSE,
Nikkei, MSCI World, Emerging Markets and
ACWTI indices, that represent the most impor-
tant equity index markets.

— Commodities indicators: the prices of sev-
eral commodity indicators spanning the follow-
ing sectors: energy markets, industrial and pre-
cious metals, agriculture, grains, livestock and
soft commodities sectors.

— FX carry indices: the 4 carry indices be-
tween the dollar and the Euro, the Swiss franc,
the Pound sterling and the Japanese Yen.

— Macro indices : 5 features corresponding to
different proprietary market risk appetites.

— Bond indicators : levels of the U.S., UK.,
Japan and German 10-year government bonds
and the slope computed as the difference be-
tween the 10 and 2 years yields.

— Economic surprises : economic surprise in-
dices based on the G20 countries, Europe, the
U.S., Asia, emerging markets.



Adaptive Supervised Learning for Volatility Targeting Models 5

— Implied volatility indicators : several im-
plied volatility indicators based on FX carry
indices, Gold, Crude oil, government bonds
and equities indices.

— Credit spreads : the TED spreads of the U.S.
and the E.U. as well as other international
spread indicators.

— Put/Call ratio : the put/call ratio for the
S&P 500 option market.

Including the volatility model PnL time series,
the market indicators, the commodity indicators
and the FX carry indices, there is a total of 32 fea-
tures in a first set. In addition, we compute other
statistics such as averages, standard deviations,
Sharpe ratios and other related technical indica-
tors, summing up to a total of 416 input features in
a second set. Volatility forecasts and macro indices
represent another 13 features. We also calculate
other statistical figures including short-term mov-
ing averages and distance from the average to get
an additional 78 inputs. The last 78 macro features
are not transformed. In total, we end up with 572

1.Features

input features in our supervised learning model.
We use Light GBM gain as feature importance to
select a certain percentage of the most important
features, and retrain Light GBM with them to filter
the number of features every time the algorithm is
trained.

2.4 'Walk-Forward Methodology

The whole procedure is summarized in Figure 2.
We use n models to represent the dynamics of
the market volatility. We then add other features
that provide orthogonal information to the mod-
els, such as economic health indices and technical
analysis. In fine, the most important features are
selected. As mentioned previously, Light GBM en-
ables us to rank our various volatility targeting
models according to the forecasted return proba-
bility of the next timestep. We then construct sev-
eral strategies using these predictions. In order to
test the robustness of our aggregated meta-model
out-of-sample, we use the well-known methodology
called walk-forward analysis.

mmm) ) Feature selection === 3 [ jghtGBM prediction msmsp 4 Strategy construction

50

oY

=50

__Feature importance__

Feature kept}

00 05 10 15 20 25 30 35 40

- w
(R XXX = Strategy 1
= Strategy 2

‘ Strategy 3

\ = Strategy 4

oam

= Strategy 5

Fig.2: Overall architecture of the supervised learning task applied to the selection and allocation of

volatility targeting strategies

In machine learning, a standard approach is to
do k-fold cross-validation. This approach happens
to break the chronology of the data and, in cer-
tain ill-conceived cases, may potentially use test
data in the train set which embodies a blatant
case of in-sample optimization. [34] has conducted
a comprehensive empirical study of eight common
validation schemes and demonstrated that com-
monly used cross-validation schemes often yield es-
timates with the largest bias and variance, while
forward-validation or walk-forward schemes yield
better estimates of the out-of-sample error, even
more so in the context of financial time series.

We therefore settled on a forward-sliding test set
which uses non-overlapping previous past data as
the corresponding training sets. In other words, we
favor adding incrementally new data in the train-
ing set, at each new step, to ensure stability and
robustness in the validation process. This method
is sometimes referred to as an ”anchored walk-
forward” validation methodology as we have an-
chored the training data. Finally, as the test set is
always ensuing the training set, the walk-forward
analysis creates fewer steps compared with a cross-
validation approach which could lead to another
source of overfitting.
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Fig. 3: Overall training, validation and test processes for a walk-forward methodology

In practice, and for our given data sets, we
train our models from 2003 to the end of 2010
(giving us at least 7 years of training period),
and then use a repetitive validation period of
one year from 2011 up to 2016 to determine the
best hyperparameters thanks to Optuna. This is
a recent open-source Python library developed
in 2019 which mixes sampling and pruning algo-
rithms with Bayesian optimization [2].

Once these hyperparameters are determined,
we train our model from 2003 to 2016 and use a
repetitive test period of one year from 2017 on-
wards. In other words, we test the model out-of-
sample on the 2017-2020 period. The entire process
is summarized in Figure 3.

This method enables the calibration of the hy-
perparameters on a validation set. These Light-
GBM hyperparameters are:

maz_depth, boost_round,
min_sum_hessian_in_leaf,
— min_gain_to_split,
feature_fraction,
bagging_fraction,
lambda_l2,
man_importance.

3 Financial Data Experiments

3.1 Market Data

We test our model on two mainstream futures con-
tracts: the continuously rolled CBOT’s future on
the U.S. 10-year Treasury Note denoted by TY7 in
the rest of the paper, and the continuously rolled
CME’s E-mini future on the S&P 500 index de-
noted by ESI. As mentioned before, daily data
range from 2003 to 2020.

3.2 Hyperparameters and Features
Selection

Table 1 shows the details of the selected hyper-
parameters for the two futures contracts TY1 and
ES1 during the validation period using the Sharpe
ratio as the reward function. For TY1, the model
has a maximum depth of one and selects approx-
imately one hundred features. For ES1, the best
model is very different. We find that it corresponds
to a more complex system with a maximum depth
of two, but fewer features are selected, which is
somehow intuitive as maximum depth and num-
ber of features play similar roles. These results are
summarized in Table 1.

Hyperparameters TY1| ES1
max_depth 1 2

boost_round 650 | 800
min_importance 0.7 10.275
min_sum_hessian_in_leaf 0.125] 1.04
min_gain_to_split 0.432(0.028
feature_fraction 0.686/0.834
bagging_fraction 0.49 |0.553
lambda_12 0.184/0.647

Table 1: Hyperparameters selected for TY1 and
ES1 during the validation period (2011-2016)

For TY1, the selected min_importance hyperpa-
rameter shows that around one hundred features
are responsible for 70% of all explanatory informa-
tion that is used to predict which models have bet-
ter returns at the next timestep. Then, each year,
the model selects the most important features that
account for 70% of the total gain. It uses 650 trees
with a maximal depth of 1. For ES1, it is the same
logic but with different hyperparameters. Tables
2 and 3 show the 10 most important features se-



Adaptive Supervised Learning for Volatility Targeting Models 7

lected on the test set from the 572 inputs. Notably,
features directly related to volatility models are
very often selected. The model focuses on volatil-
ity changes and abnormal behaviors using the dis-
tance from the average and the percentage change
over 10 days. These 10 features are responsible for
more than 39% of the total information. They all
relate to the volatility of TY1.

For both TY1 and ES1, models are retrained each
year. Table 2 provides the most important features
for TY1. Table 4 confirms the stability of the su-
pervised methodology as about 85% of selected
features remain identical between two consecutive
years. For ESI, the conclusion is similar, but we
can notice the large presence of volatility features
as the model selects the same 24 features each year
on average (Table 4).

Feature name

2017 2018 2019 2020 Average

GJRGARCH_GK _Vol_distance_to_250_MA 6.10% 6.37% 6.87% 7.67% 6.75%

HEAVY _Vol_distance_to_250_MA

5.91% 5.64% 6.16% 6.01% 5.93%

HAR_P_Vol_distance_to_250_MA

4.58% 5.06% 5.34% 5.50% 5.12%

GARCH_Vol_distance_to_250_MA

4.90% 4.82% 5.19% 4.89% 4.95%

adj_PC_all_std_60

4.65% 4.41% 3.94% 4.43% 4.36%

LevelShift_Vol_pct_change_10

2.99% 2.87% 2.79% 2.93% 2.89%

HEAVY _Vol_pct_change_10

3.03% 2.71% 2.59% 2.48% 2.70%

adj_PC_all_std_125

2.89% 2.63% 2.47% 1.71% 2.43%

GJRGARCH_GK_std-125

1.80% 2.28% 2.90% 2.24% 2.31%

GJRGARCH_GK_Vol

1.88% 2.28% 2.47% 1.96% 2.15%

Table 2: Normalized feature importance of the 10 most important features for TY1

Feature name 2017 2018 2019 2020 Average
RAEGARCH _vol_distance_to_250_MA 10.86% 11.76% 11.61% 12.05% 11.57%
GARCH _vol_distance_to_250_MA 7.49% 7.93% 7.81% 6.71% 7.48%
adj_VIX9D_vol_distance_to_250_MA 556% 8.03% 8.32% 7.57% 7.37%
LevelShift_std_60 5.56% 6.74% 7.91% 8.01% 7.05%
adj_VIX9D_vol 7.31% 6.79% 6.51% 6.97% 6.90%
MacroSignal _diff_1 6.90% 6.01% 5.06% 4.67% 5.66%
HEAVY _vol_distance_to_250_-MA 4.32% 4.69% 6.19% 5.61% 5.21%
RM2006_GK_vol_pct_change_1 4.12% 4.20% 4.36% 4.31% 4.25%
adj_VIX9D_vol_pct_change_5 4.26% 3.95% 4.22% 4.12% 4.14%
adj_PC_equity_DM_vol_distance_to_250_MA 3.82% 3.64% 4.12% 4.20% 3.95%

Table 3: Normalized feature importance of the 10 most important features for ES1

Year Features rate | Features number | Features rate | Features number
on TY1 on TY1 on ES1 on ES1

2017 / 98 / 26

2018 84% 95 92% 24

2019 87% 93 100% 23

2020 82% 94 88% 24

Table 4: Number and rates of features kept for TY7 and ES?
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3.3 Comparison with Benchmark These strategies are compared to the benchmark

hich i l-weighted strategy.
The model output is a probability for each volatil- WALEA 15 an equal-welghtec strategy

ity model to have the highest return at the next Figure 4 shows the allocation of the weighted
timestep. We therefore examine several strategies strategy on TY1. The model focuses on few volatil-
from these probabilities : ity models such as adjusted TYVIX, adjusted Prin-

cipal Component and moving average 120-days.
But the probabilities are not stable which indi-
cates that this strategy exhibits a potentially high

— Weighted: the probability of each model is
used directly as an allocation,
— 3 best: only the three best models are taken

t .
into account and allocation is computed as the tHover
three re-normalized probabilities, For ES1, the model is less stable. This is con-
— Follow the best: 100% investment in the firmed by the weighted strategy on Figure 5 as allo-
model with the highest probability. cations switch frequently between several models.
Follow the best allocation on TY1 Weighted allocation on TY1
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Fig.5: Allocation of the weighted and follow the best strategies for ES1
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For TY1, the follow the best strategy yields
better results than the others as it exhibits a bet-
ter performance with a lower volatility, resulting
in a higher Sharpe ratio. Different performances
are displayed in Figure 6. In addition, the fol-
low the best strategy has the smallest drawdown
which indicates that the model invests in the high-
volatility model when markets plummet. However,
the turnover is seven times higher than the bench-
mark which implies much larger transaction costs

(TC) and reduces the final performance. Note that
we have used a heuristic linear 2 bps per trade
model for transaction costs applied to both the
fixed income and equity proxies. From Figure 4, a
large majority of the volatility models do not have
a high probability of being the best at the next
timestep, hence the allocation between weighted
and 3 best strategies are extremely alike and give
similar performances. This information is provided
in Table 5.

TY1 Performance

L0.175
ol J
s 1.4 L 0.150
§ 1.3 r0.125 E
= L L0.100
=z 1.27 <
3 F0.075
= 1.1 g
§ F0.050 &
© b=
g £
s 1.0 Lo.025 °
g
094 L 0.000
N > o N > o N 5 o N >
1@’1 9 1@’1 o & o 10@,0 ’LQN/%‘Q 10\’%,0 10\9,0 10\9,0 1&,0 1010,0 1010,0
date
Benchmark weighted —— 3 Best —— follow the best
diff weighted —— diff 3 Best —— diff follow the best
Fig.6: TY1 strategy performance on the test set
Benchmark| Weighted|3 Best|FtB without TC|FtB with TC
Ann. ret 0.068 0.073 |0.072 0.098 0.083
Ann. vol 9.0% 8.3% 8.2% 8.3% 8.3%
Sharpe ratio 0.759 0.883 | 0.883 1.176 1.001
Sortino 1.177 1.368 | 1.368 1.875 1.601
Drawdown 16.2% 13.5% |13.4% 12.2% 13.1%
Ann. Turnover 8.90 31.47 | 33.96 66.16 66.16

Table 5: TY1 strategy performance for the test period (2017-2020)

Conversely, Figure 7 shows that the follow
the best strategy is riskier than the correspond-
ing benchmark for ES1. The weighted and & best
strategies have lower performance than the bench-
mark but are better than follow the best. The
volatility of the output strategies have a high
volatility compared to the benchmark, which is due
to the frequent changes between volatility mod-
els. It is therefore not surprising that these strate-

gies do not exhibit strong returns - the benchmark
strategy having the best Sharpe ratio. In addition,
the supervised model does not seem to work as in-
tended as the follow the best strategy has the worst
drawdown. We can therefore conclude that the
model does not predict well which volatility model
will have the best return at the next timestep for
ES1. Further information is provided in Table 6.



10

Forthcoming in ECML PKDD 2021 - MIDAS - Free to redistribute

ES1 Performance
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Benchmark weighted ~—— 3 Best —— follow the best
diff weighted =~ —— diff 3 Best ~—— diff follow the best
Fig.7: ES1 strategy performance on the test set
Benchmark| Weighted |3 Best|FtB without TC|FtB with TC

Ann. ret 0.088 0.091 |0.094 0.084 0.071

Ann. vol 9.9% 10.6% [10.8% 12.1% 12.1%

Sharpe ratio 0.891 0.861 | 0.872 0.695 0.583

Sortino 1.198 1.147 | 1.165 0.938 0.802

Drawdown 14.7% 15.2% [15.4% 18.4% 18.5%

Ann. Turnover 8.24 35.98 |39.18 62.06 62.06

Table 6: ESI strategy performance for the test period (2017-2020)

3.4 Future Works

This study has shown how to construct strategies
where the best models are selected by a supervised
learning overlay. This adaptive supervised learning
methodology leads to good results on the U.S. 10-
year Treasury Note futures contract at the cost
of a higher turnover. A direct extension of this
work is therefore related to explore several tech-
niques that can reduce turnover. In addition, we
have found that this approach leads to less effi-
cient results on the E-mini S&P 500 index futures
contract. It is therefore worthwhile to better un-
derstand the major differences when applying this
methodology to stock and bond futures. Finally,
these two financial instruments, albeit among the
most liquid in the world, represent a very small
sample that could be extended to dozens of other
financial futures contracts. More conclusive statis-
tics could be reached if applied to a more complete
set of generic futures contracts. All these steps are
for further exploration in future works.

4 Conclusion

Volatility targeting strategies rely on precise fore-
casts of future volatility. Hence, they require reli-
able models for predicting the volatility dynamic,
which is, obviously, a crucial and complex task
given the inherently noisy and complex nature
of financial markets. In practice, deciding which
model to use is challenging due to market regime
changes, the non-stationarity nature of these mar-
kets, and the high correlation between volatility
models. In this paper, we present a supervised
learning task to determine at each timestep which
model(s) to overweight. In terms of input features,
we not only use past performances of the differ-
ent models and their forecasted volatility, but ad-
ditional macro and financial data to determine
the optimal model(s). We apply this methodology,
with mixed success, to the case of volatility target-
ing strategies for the U.S. 10-year Treasury Note
and the E-mini S&P 500 index futures contracts.
We show that GBDT is an effective method to
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predict the best model(s) in the fixed income case
while further studies must be conducted for eq-
uity indices. We filter our features by importance
and observe that the selected features are mostly
model-related such as the distance of the volatility
forecast to its mean.
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