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Linear Quadratic Control Problems for Mean Field
Stochastic Differential Equation with Jumps:

Application in Exhaustible Resources Production

Anis MATOUSSI *† Mohamed MNIF ‡ Chefia ZIRI §¶

October 14, 2022

Abstract

In this paper, we are interested by a stochastic model of production of an exhaustible re-
source, such as oil. It is known that such reserves are depleted resources, but there is a possibil-
ity of exploration and discovery of new reserves which ensure the accumulating or the upkeep
of this reserves’ level. We modelled the new discoveries by a jump process with intensity given
by the exploration effort. We employed a weak formulation of the standard martingale opti-
mality principle to solve a linear quadratic stochastic control problem for mean field stochastic
differential equation with jumps in both cases: finite and infinite horizon.

Keywords : Linear quadratic optimal control, Mean field SDEs with jumps, Mean field
BSDEs with jumps, Riccati equation, Exhaustible resources.

Introduction
Stochastic optimal control has been widely studied in recent decades due to its applications to
mathematical finance, insurance, economics, engineering, etc. There are two main techniques
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to solve a stochastic optimal control: The dynamic programming, developed by Richard Bell-
man in the 1950s and the stochastic maximum principle formulated by Pontryagin and his
group in the 1950s also. The Bellman optimality principle needs that the cost function is the
expected value of a functional of the state process, which leads to a so-called time consistent
control problem. It is valid only for Markovian systems, where the coefficients are determin-
istic functions of time and the current value of the state process. In contrast, the Pontryagin
principle is well suited for sate process and cost functional of mean-field type. It could tackle
control problem time inconsistent in the sense that the Bellman optimality principle does not
hold. It is a powerful tool to study Non-Markovian systems. i.e. where the coefficients are
random. The key ida of the Pontryagin principle is to perturbate the control process to derive
a set of neccessary condition that must be satisfied by any optimal control.

In recent years, stochastic optimal control problems for mean field stochastic differential
equations ( in short SDEs) have attracted more attention. The history of mean field type SDEs,
also known as McKean-Vlasov systems, can be traced back to the works by Kac in 1956 and
McKean in 1966 on stochastic systems with a large number of interacting particles. Thence,
many authors have made contributions on optimal control problems for mean field SDEs, see
for example the works of Anderson and Djehiche [2] and Carmona and Delarue [5] for stochas-
tic maximum principle approach of optimal control under some convexity assumptions. We
can also refer to Alasseur et al. [1] where they develop a model for the optimal management
of energy storage and distribution in a smart grid system through an extended MFG. For the
stochastic dynamic programming approach, we can refer to Lauriere and Pironneau [15] un-
der some density assumption on the probability law of the state process. In this work, we
are interested in a subclass of the mean field control problem in which the cost function is
quadratic in all state variables, control variables and mean field terms, while the controlled
dynamics is linear and also consists of mean field terms. In 2013, Yong [22] studied a linear
quadratic mean field control problem for mean field SDE with deterministic coefficients. The
optimality of this system is driven by a variational method. He used a decoupled techniques
to obtain two Riccati equation which are uniquely solvable under some conditions. Then he
obtained a feedback representation for the optimal control. Since them, Huang et al. in [13]
extended the work of Yong [22] for a linear quadratic optimal control problem in an infinite
horizon. Other recent works for mean field control have been recently published by Pham and
Wei [18, 19], where they developed a dynamic programming technique, with corresponding
Hamilton-Jacobi equations on an infinite dimensional space of probability measures, for solv-
ing mean field type optimal control problems, for the two cases without and with common
noise and by Pham [17] where he consider a linear quadratic McKean Vlasov problem with
random coefficients and he extended the approach developed in [18] for the common noise.

In this paper, we consider a linear quadratic optimal control for mean field stochastic dif-
ferential equation with jumps. We intoduce a weak formulation of the standard martingale
optimality principle to solve the linear quadratic mean field stochastic control problem. This
approach is used in the verification theorem for stochastic control problem which is a crucial
step in the classical approach to dynamic programming ( see e.g [9, 14]). We prove the exis-
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tence of an unique optimal control on finite horizon. The optimality of the control is derived
by the stability of a decoupled system of Riccati equations and backward stochastic differen-
tial equation with jumps. We also consider the problem with common noise adding up some
assumptions on the coefficients. On the other hand, we introduce also the linear quadratic
problem on the infinite case. This paper can be regarded as an extention of the work of Basei
and Pham [4] to the case with jumps.

To concretize our results, we are motivated by a model of the production of an exhaustible
resource with accumulating or maintaining a level of reserves, such as oil. This model is driven
by the use of existing reserves and exploration or discovery of new reserves to produce energy.
In other words, the level of the resource stock increases through new discoveries of further
deposits of the resource, but the resource is still exhaustible. The typical model of the produc-
tion of an exhaustible resource by a continuum of producers was developed by Guéant et al.
in [10] who were inspired from Hotelling’s work [12], and it was adapted later by Chan and
Sircar in [6, 7]. In 1987, Pindyck [20] extended Hotelling’s model for a model of production
of exhaustible resources with new discovery, where these new discoveries occur according to
a jumps process with intensity given by the exploration effort. We refer also to Deshmukh et
al. [8], Arrow and Chang [3], and Keller et al. [11]. This model was adapted by Ludkovski
and Sircar in [16] to a stochastic game between an exhaustible producer and a Green producer
that has access to an inexhaustible but relatively expensive source, such as solar power.

The paper is organized as follows. In Section 1, we present finite-horizon LQMF problem
and we introduce the precise assumptions on the coefficients of our problem. In Section 2, we
give a detailed description of the techniques used to show the existence of the unique optimal
control, we then use the weak formulation of verification theorem introduced in previous sec-
tion. In Section 3, we extend our results to the case where a common noise is present. We adapt
also our results to the infinite-horizon case, in Section 4. Here, we kept the similar steps as the
finite horizon case to apply the verification theorem, except that we should look for the stability
of decoupled system of Riccati equation on infinite horizon. Finally, in Section 5, we introduce
an application of production of exhaustible resource with accumulating or maintaining a level
of reserves where the discovering new resources are modeled by a Poisson process.

1 Preliminary and problem formulation
Let T > 0 be a given time horizon and (Ω,F ,F := (Ft)t≤T ,P) be a stochastic basis such that
F0 contains all the P -null sets of F , Ft+ = ∩ε>0Ft+ε = Ft, and we suppose that the filtration
is generated by the two following mutually independent processes :

(i) a standard real Brownian motion B := (Bt)0≤t≤T and

(ii) a Poisson random measure π on R+ × χ, where χ ⊂ R \ {0} is equipped with its
Borel field B(χ). Throughout this paper the measure λ(.) is assumed to be finite on
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(χ,B(χ)) i.e.
∫
χ λ(de) <∞. Let η(dt, de) = λ(de)dt be its compensated process, i.e.,

{π̃([0, t]×A) = (π − η)([0, t]×A)}t≤T is a martingale for every A ∈ B(χ).

Let ρ ≥ 0 be the discount factor and define A the set of admissible controls as follows:

A := {α : Ω× [0, T ]→ Rm s.t α is F-predictable and
∫ T

0
e−ρtE[|αt|2]dt <∞}.

Let Sd be the set of symmetric matrices and (H, |.|) a normed space. We define the following
sets:

• L∞([0, T ],H) :=

{
φ : [0, T ]→ H s.t. φ is measurable and sup

0≤s≤T
|φs| <∞

}
,

• K∞([0, T ]×χ,H) :=

{
φ : [0, T ]→ H s.t. φ is measurable and sup

0≤s≤T,e∈χ
|φs(e)| <∞

}
,

• L2([0, T ],H) := {φ : [0, T ] → H s.t. φ is measurable and E
[∫ T

0
e−ρs|φs|2ds

]
<

∞},
• L2

FT
(H) :=

{
φ : Ω→ H s.t. φ is FT -measurable and E[|φs|2] <∞

}
,

• S2
F(Ω× [0, T ],H) := {φ : Ω× [0, T ]→ H s.t. φ is F-progressively measurable

and E[ess sup
s∈[0,T ]

|φs|2] <∞},

• L2
F(Ω× [0, T ],H) := {φ : Ω× [0, T ]→ H s.t. φ is F-progressively measurable

and
∫ T

0
e−ρsE[|φs|2]ds <∞},

• K2
F(Ω×[0, T ]×χ,H) := {K : Ω×[0, T ]×χ→ H s.t.K is P⊗B(χ)-measurable process

and E[

∫ T

0

∫
χ
|Ks(e)|2 λ(de)ds] <∞},

where P denote the σ−field of F-predictable sets on Ω× [0, T ].

We define the controlled linear mean field stochastic differential equation in Rd, for a given
F−measurable random variable X0 independent of W and π, and for a control α ∈ A, by:

dXα
t = bt(X

α
t ,E[Xα

t ], αt,E[αt])dt+ σt(X
α
t ,E[Xα

t ], αt,E[αt])dWt

+

∫
X
Rt(X

α
t− ,E[Xα

t− ], αt,E[αt], e)π̃(de, dt),

Xα
0 = X0,

(1.1)

where for each t ∈ [0, T ], x, x̄ ∈ Rd, a, ā ∈ Rm and e ∈ χ, we set:

bt(x, x̄, a, ā) := βt +Atx+ Ãtx̄+Bta+ B̃tā, (1.2)

σt(x, x̄, a, ā) := γt + Ctx+ C̃tx̄+Dta+ D̃tā,

Rt(x, x̄, a, ā, e) := Rt(x, x̄, a, ā)(e)

:= δt(e) + Ft(e)x+ F̃t(e)x̄+Gt(e)a+ G̃t(e)ā.
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Here β, γ are vector-valued F−progressively processes, δ is vector-valued F−predictable
process, and A, Ã, B, B̃, C, C̃, D, D̃, F , F̃ , G, G̃ are deterministic matrix-valued func-
tions such that A, Ã, C, C̃ : [0, T ] → Rd×d, B, B̃,D, D̃ : [0, T ] → Rd×m. In the
other hand F, F̃ : [0, T ] × Ω × χ → Rd×d and G, G̃ : [0, T ] × χ → Rm×d are
P ⊗ B(χ)-measurable process .
We consider a quadratic cost functional to be minimized over α ∈ A of the following type:

J(α) := E
[∫ T

0
e−ρtft(X

α
t ,E[Xα

t ], αt,E[αt])dt+ e−ρT g(XT ,E[XT ])

]
, (1.3)

where for each t ∈ [0, T ], x, x̄ ∈ Rd and a, ā ∈ Rm

ft(x, x̄, a, ā) := (x− x̄)>Qt(x− x̄) + x̄>(Qt + Q̃t)x̄+ 2a>It(x− x̄) (1.4)

+ 2ā>(It + Ĩt)x̄+ (a− ā)>Nt(a− ā) + ā>(Nt + Ñ)ā+ 2M>t x+ 2H>t a,

and
g(x, x̄) := (x− x̄)>P (x− x̄) + x̄>(P + P̃ )x̄+ 2L>x. (1.5)

The coefficientsM,H,L defined in (1.4) and (1.5) are vector-valued F−progressively measur-
able processes such that M : [0, T ]×Ω→ Rd, H : [0, T ]×Ω→ Rm and L : Ω→ Rd and
the other coefficients Q, Q̃, P, P̃ ,N, Ñ , I, Ĩ, are deterministic matrix-valued functions such
that Q, Q̃ : [0, T ] → Rd×d, P, P̃ ∈ Rd×d, N, Ñ : [0, T ] → Rm×m and I, Ĩ : [0, T ] →
Rm×d. The symbol > denotes the transpose operator of any vector or matrix.
Now, we assume the following conditions on the coefficients of the problem :

(H1) The coefficients in equations (1.2) satisfy:

(i) β, γ ∈ L2
F(Ω× [0, T ],Rd) and δ ∈ K2

F(Ω× [0, T ]× χ,Rd),
(ii) A, Ã, C, C̃ ∈ L∞([0, T ],Rd×d), B, B̃,D, D̃ ∈ L∞([0, T ],Rd×m),

G(.), G̃(.) ∈ K∞([0, T ]× χ,Rd×m) , F (.), F̃ (.) ∈ K∞([0, T ]× χ,Rd×d) .

(H2) The coefficients in equations (1.4)-(1.5) satisfy:

(i) Q, Q̃ ∈ L∞([0, T ], Sd), P, P̃ ∈ Sd,N, Ñ ∈ L∞([0, T ], Sm), I, Ĩ ∈ L∞([0, T ],Rm×d),
(ii) M ∈ L2

F(Ω× [0, T ],Rd), H ∈ L2
F(Ω× [0, T ],Rm), L ∈ L2

F (Rd),
(iii) there exists ξ > 0 such that, for each t ∈ [0, T ],

Nt ≥ ξIm, P ≥ 0, Qt − I>t N−1
t It ≥ 0,

(iv) there exists ξ > 0 such that, for each t ∈ [0, T ],

Nt+Ñt ≥ ξIm, P+P̃ ≥ 0, (Qt+Q̃t)−(It+Ĩt)
>(Nt+Ñt)

−1(It+Ĩt) ≥ 0.

In order to simplify, we denoteXt forXα
t , X̄t for E[Xα

t ], ᾱ for E[αt] and bt(x, x̄), σt(x, x̄),
Rt(x, x̄)(e) for bt(x, x̄, α, ᾱ), σt(x, x̄, α, ᾱ) andRt(x, x̄, α, ᾱ)(e). The following lemma gives
an estimate for the solution of mean field SDE (1.2).
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Lemma 1.1. Let Assumption (H1) be satisfied. Then for any admissible control α, the equation
(1.1) has a unique solution (Xt)t ∈ S2

F . Moreover, we have the following estimate:

E

[
sup

0≤t≤T
|Xt|2

]
≤ C(1 + E

[
|X0|2

]
), (1.6)

where C is a positive constant which depends on α.

Proof. We will use the fixed point argument of an appropriate map l defined from L2
F(Ω ×

[0, T ],Rd) into itself such that (Xt)t := l((xt)t) where (Xt)t is solution of the SDE:

dXt = bt(xt,E[xt])dt+ σt(xt,E[xt])dWt +

∫
χ
Rt(xt,E[xt])(e)π̃(de, dt), (1.7)

Given x1, x2 ∈ L2
F(Ω×[0, T ],Rd), we defineX1 andX2 by using equation (1.7). We asssume

that X1
0 = X2

0 . We define L = ||A||∞ ∨ ||Ã||∞ ∨ ||C||∞ ∨ ||C̃||∞ ∨ ||F ||∞ ∨ ||F̃ ||∞. Then

E[|X1
t −X2

t |2] ≤ 2E[|
∫ t

0
bs(x

1
s,E[x1

s])− bs(x2
s,E[x2

s])ds|2]

+ 2E[|
∫ t

0
σs(x

1
s,E[x1

s])− σs(x2
s,E[x2

s])dBs|2]

+ 2E[|
∫ t

0
Rs(x

1
s− ,E[x1

s− ])(e)−Rs(x2
s− ,E[x2

s− ])(e)π̃(de, ds)|2].

From the definition of bs and using Cauchy Scharwz’s inequality, we have:

|bs(x1
s,E[x1

s])− bs(x2
s,E[x2

s])|2 = |As(x1
s − x2

s) + Ãs(E[x1
s]− E[x2

s])|2

≤ 2L2(|x1
s − x2

s|2 + E[|x1
s − x2

s|2]).

Using again Cauchy Scharwz’s inequality, we have:

E[|
∫ t

0
bs(x

1
s,E[x1

s])− bs(x2
s,E[x2

s])ds|2] ≤ 4L2T

∫ t

0
E[|x1

s − x2
s|2]ds. (1.8)

For the stochastic integral terms, we have:

E[|
∫ t

0
σs(x

1
s,E[x1

s])− σs(x2
s,E[x2

s])dBs|2] ≤ 4L2

∫ t

0
E[|x1

s − x2
s|]ds (1.9)

E[|
∫ t

0
Rs(x

1
s− ,E[x1

s− ])(e)−Rs(x2
s− ,E[x2

s− ])(e)π̃(de, ds)|2]

≤ 4L2λ(χ)

∫ t

0
E[|x1

s − x2
s|2]ds. (1.10)

Plugging inequalities (1.8)-(1.10) into (1.7), we obtain:

E[|X1
t −X2

t |2] ≤ 4L2(1 + T + λ(χ))

∫ t

0
E[|x1

s − x2
s|2]ds.
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For a positive constant c, we define the norm ||x||2c := E[
∫ T

0 e−cs|xs|2ds]. Then, we have:

||X1 −X2||2c :=

∫ T

0
E[|X1

t −X2
t |2]e−ctdt

≤ 4L2(1 + T + λ(χ))

∫ T

0

∫ t

0
E[|x1

s − x2
s|2]dse−ctdt

≤ 4L2(1 + T + λ(χ))

∫ T

0
E[|x1

s − x2
s|2]

∫ T

s
e−ctdtds

≤ 4L2(1 + T + λ(χ))

c

∫ T

0
E[|x1

s − x2
s|2]e−csds

=
4L2(1 + T + λ(χ))

c
||x1 − x2||2c .

For c large enough, we have 4L2(1+T+λ(χ))
c < 1. Therefore l is a contraction mapping on

L2
F(Ω× [0, T ],Rd) into itself, and so l has a unique fixed point X ∈ L2

F(Ω× [0, T ],Rd) which
is the unique solution to the mean field SDE (1.1).
We turn to prove estimate (1.6). For n ∈ N, we define τn := inf{t ≥ 0, |Xt −X0| ≥ n} and
fn(t) := E[sup

s≤t
|Xs∧τn −X0|2]. For all t ≤ T , we have:

sup
t≤T
|Xt∧τn −X0|2 ≤ 2(sup

t≤T
|
∫ t∧τn

0
bs(Xs,E[Xs], αs,E[αs])ds|2

+ sup
t≤T
|
∫ t∧τn

0
σs(Xs,E[Xs], αs,E[αs])ds|2

+ sup
t≤T
|
∫ t∧τn

0

∫
χ
Rs(Xs− ,E[Xs− ], αs,E[αs], e)π̃(de, ds)|2).

Using Cauchy Scharwz’s inequality and Burkholder-Davis-Gundy Inequality, we have:

E[sup
t≤T
|Xt∧τn −X0|2] ≤ C(TE[

∫ T

0
|bs∧τn(Xs∧τn ,E[Xs∧τn ], αs∧τn ,E[αs∧τn ])|2ds

+ E[

∫ T

0
|σs∧τn(Xs∧τn ,E[Xs∧τn ], αs∧τn ,E[αs∧τn ])|2ds]

+ E[

∫ T

0

∫
χ
|Rs∧τn(Xs∧τn ,E[Xs∧τn ], αs∧τn ,E[αs∧τn ], e)|2λ(de)ds], (1.11)

where C is a positive contant which could change from line to line. For α ∈ A and using the
definition of the drift of the state process X (See Equation(1.1)), under (H1), we have:

E[

∫ T

0
|bs∧τn(Xs∧τn ,E[Xs∧τn ], αs∧τn ,E[αs∧τn ])|2ds] ≤

∫ T

0
CE[1 + |Xs∧τn |2 + E[|Xs∧τn |]2]

≤
∫ T

0
C(1 + E[|X0|2] + fn(s))ds (1.12)
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Similarly, we have:

E[

∫ T

0
|σs∧τn(Xs∧τn ,E[Xs∧τn ], αs∧τn ,E[αs∧τn ])|2ds]

+ E[

∫ T

0

∫
χ
|Rs∧τn(Xs∧τn ,E[Xs∧τn ], αs∧τn ,E[αs∧τn ], e)|2λ(de)ds]

≤
∫ t

0
C(1 + E[|X0|2] + fn(s))ds (1.13)

Plugging inequalities (1.12) and (1.13) into (1.11) and using Gronwall’s lemma, we obtain

E[sup
s≤T
|Xs∧τn −X0|2] ≤ C(1 + E[|X0|2]).

Sending n to infinity, by monotone convergence theorem, we obtain E[sup
s≤T
|Xs − X0|2] ≤

C(1 + E[|X0|2]) and so the estimate (1.6) is obtained.

2 Linear Quadratic Mean Field Control Problem on
finite horizon
To solve a Linear Quadratic Mean Field control problem ( LQMF control problem in short ),
we have to find a strategy α∗ ∈ A, such that

V := J(α∗) = inf
α∈A

J(α), (2.14)

where the criterion J is defined by (1.3). By Assumption (H2) and the estimate (1.6), the
LQMF control problem (2.14) is well defined. The aim of this section to solve this control
problem on finite horizon by proving a suitable verification theorem.
We are going to use a weak formulation of the standard martingale optimality principle, see
e.g [9, 14].

Lemma 2.1. (Finite horizon Verification Theorem, Lemma 3.1 in [4])
Let {Wα

t , t ∈ [0, T ], αt ∈ A} be a family of F-adapted process in this form Wα
t =

wt(X
α
t ,E[Xα

t ]) for some F−adapted random field {wt(x, x̄), t ∈ [0, T ], x, x̄ ∈ Rd} satis-
fying

wt(x, x̄) ≤ C(Xt + |x|2 + |x̄|2), t ∈ [0, T ], x, x̄ ∈ Rd, (2.15)

where C is a positive constant, X is a non-negative process satisfying supt∈[0,T ] E[|Xt|] <∞,
and

(i) wT (x, x̄) = g(x, x̄), x, x̄ ∈ Rd,
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(ii) the map t ∈ [0, T ] 7−→ E[Sαt ],with Sαt = e−ρtWα
t +
∫ t

0 e
−ρsfs(X

α
s ,E[Xα

s ], αt,E[αt])ds,
is non-decreasing for all α ∈ A,

(iii) the map t 7−→ E[Sα
∗
t ] is constant for some α∗ ∈ A.

Then, α∗ is an optimal control and E[w0(X0,E[X0])] is the value of the LQMF control problem
(2.14) i.e.

V0 = E[w0(X0,E[X0])] = J(α∗).

Moreover, any other optimal control satisfies the condition (iii).

Proof. From the growth condition (2.15) and the estimate (1.6), for all t ∈ [0, T ] and α ∈ A,
E[Sαt ] is well defined. From condition (i), we have E[e−ρTWα

T ] = E[e−ρT g(XT , X̄T )], which
implies E[SαT ] = J(α).
From condition (ii), we have

E[Wα
0 (X0, X̄0)] = E[Sα0 ] ≤ E[SαT ] = J(α).

In the other side, for α = α∗ and using condition (iii), we have

E[Wα∗
0 (X0, X̄0)] = E[Sα

∗
0 ] = E[Sα

∗
T ] = J(α∗),

which ensures the optimality of control α∗.
Moreover, we consider an another optimal control α̃ ∈ A, then we have

E[W α̃
0 (X0, X̄0)] = E[Sα̃0 ] = E[Sα

∗
0 ] = E[Sα

∗
T ] = J(α∗) = J(α̃).

Since the map t→ E[Sα̃t ] is non-decreasing, so it is constant, and we conclude the proof.

We start by introducing the following notations:

Â := A+ Ã, B̂ := B + B̃, Ĉ := C + C̃, D̂ := D + D̃, F̂ := F + F̃ ,

Ĝ := G+ G̃, Î := I + Ĩ , N̂ := N + Ñ , Q̂ := Q+ Q̃, P̂ := P + P̃ .

Our aim is to find the expression of the random field wt(x, x̄) which satisfies the assumptions
of Lemma (2.1).
From the quadratic form of the cost functional ft in (1.4) and the terminal cost gt in (1.5), we
guess the quadratic form of random field {wt(x, x̄), t ∈ [0, T ], x, x̄ ∈ Rd} i.e.

wt(x, x̄) = (x− x̄)>Kt(x− x̄) + x̄>Λtx̄+ 2Y >t x+ ϕt, (2.16)

where (K,Λ, Y, ϕ) are valued in Sd × Sd × Rd × R and solution of the following system:

dKt =
.
Ktdt, 0 ≤ t ≤ T, KT = P,

dΛt =
.
Λtdt, 0 ≤ t ≤ T, Λ = P̂ ,

dYt =
.
Y tdt+ ZYt dWt +

∫
χ
RYt (e)π̃(de, dt), 0 ≤ t ≤ T, YT = L,

dϕt =
.
ϕtdt, 0 ≤ t ≤ T, ϕT = 0.

(2.17)
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The deterministic functions (
.
K,

.
Λ,

.
ϕ) are valued in Sd × Sd × R, the processes (

.
Y , ZY ) are

F-adapted valued in Rd × Rd and RY is F-predictable process valued in Rd. For α ∈ A, we
consider Sα defined as:

Sαt = e−ρtwt(Xt, X̄t) +

∫ t

0
e−ρsfs(Xs, X̄s, αt, ᾱt)ds, t ∈ [0, T ]. (2.18)

Then E[Sαt ] satifies the following ODE:

dE[Sαt ] = e−ρtE[Dαt ]dt,

where the drift E[Dαt ] is defined as follows:

E[Dαt ] = E
[
−ρwt(Xt, X̄t) +

d

dt
E[wt(Xt, X̄t)] + ft(Xt, X̄t, αt, ᾱt)

]
.

From the dynamics of Xt (See equation (1.1)), we have:

dX̄t = [β̄t + ÂtX̄t + B̂tᾱt]dt, (2.19)

and

d(Xt − X̄t) = [(βt − β̄t) +At(Xt − X̄t) +Bt(α− ᾱt)]dt (2.20)

+ [γt + Ct(Xt − X̄t) + ĈtX̄t +Dt(αt − ᾱt) + D̂tᾱt]dWt

+

∫
χ
[δt + Ft(e)(Xt− − X̄t−) + F̂t(e)X̄t− +Gt(e)(αt − ᾱt) + Ĝt(e)ᾱt]π̃(de, dt).

We apply the Itô’s formula to wt(Xt, X̄t), we use the quadratic form of the running cost ft and
the dynamics of equations (2.19), (2.20) and (1.1), we obtain :

E[Dαt ] =E
[
(Xt − X̄t)

>(
.
Kt + φt)(Xt − X̄t) + X̄>t (

.
Λt + ψt)X̄t (2.21)

+2(
.
Y t + ∆t)

>Xt +
.
ϕt − ρϕt + Γ̄t + κt(α)

]
,
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where, for t ∈ [0, T ],

φt := −ρKt +KtAt +A>t Kt + C>t KtCt +Qt +

∫
χ
F>t (e)KtFt(e)λ(de) = φt(Kt),

ψt := −ρΛt + ΛtÂt + Â>t Λt + Ĉ>t KtĈt + Q̂t +

∫
χ
F̂>t (e)KtF̂t(e)λ(de) = ψt(Kt,Λt),

∆t := −ρYt +A>t (Yt − Ȳt) + Â>T Ȳt + C>t (ZYt − ZY t) + Ĉ>t Z
Y
t

+Kt(βt − β̄t) + Λtβ̄t + C>t Kt(γt − γ̄t) + Ĉ>t Ktγ̄t +Mt

+

∫
χ
F>t (e)(RYt (e)− R̄Yt (e))λ(de) +

∫
χ
F̂t(e)

>R̄Yt (e)λ(de)

+

∫
χ
F>t (e)Kt(δt(e)− δ̄t(e))λ(de) +

∫
χ
F̄t(e)

>Ktδ̄t(e)λ(de),

= ∆t(Kt,Λt, Yt, Ȳt, Z
Y
t , Z

Y
t, R

Y
t , R

Y
t),

Γt := γ>t Ktγt + 2β>t Yt + 2γ>t Z
Y
t +

∫
χ
δt(e)

>Ktδt(e)λ(de) + 2

∫
χ
δt(e)

>RYt (e)λ(de)

= Γt(Kt, Yt, Z
Y
t , R

Y
t ),

and

κt(α) := (αt− ᾱt)>St(α− ᾱt)+ ᾱ>t Ŝtᾱt+2(Ut(Xt−X̄t)+VtX̄t+Θt+εt− ε̄t)αt. (2.22)

Here St, Ŝt, Ut, Vt,Θt which appear in (2.22), are defined as follows

St := Nt +D>t KtDt +

∫
χ
G>t (e)KtGt(e)λ(de),

Ŝt := N̂t + D̂>t KtD̂t +

∫
χ
Ĝ>t (e)KtĜt(e)λ(de),

Ut := It +D>t KtCt +B>t Kt +

∫
χ
G>t (e)KtFt(e)λ(de),

Vt := Ît + D̂>t KtĈt + B̂tΛt +

∫
χ
Ĝ>t (e)KtF̂t(e)λ(de),

Θt := H̄t + D̂>t Ktγ̄t + B̂>t Ȳt + D̂tZY t +

∫
χ
Ĝ>t (e)Ktδ̄t(e)λ(de) +

∫
χ
Ĝ>t (e)RY t(e)λ(de),

(2.23)
and


εt := Ht +D>t Ktγt +B>t Yt +D>t Z

Y
t +

∫
χ
G>t (e)Ktδt(e)λ(de) +

∫
χ
G>t (e)RYt (e)λ(de),

ε̄t := H̄t +D>t Ktγ̄t +B>t Ȳt +D>t Z
Y
t +

∫
χ
G>t (e)Ktδ̄t(e)λ(de) +

∫
χ
G>t (e)RY t(e)λ(de).

(2.24)
We notice that the matrices St and Ŝt are definite positive in Sm. This follows from the non-
negativity of the matrix K, conditions (iii)-(iv) in (H2) and the non-negativity of the integral
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∫
χ
G>t (e) Kt Gt(e)π(dt, de). In this case, one could find a deterministic Rm×m-valued Υ

such that for all t ∈ [0, T ]
ΥtStΥ

>
t = Ŝt,

for all t ∈ [0, T ]. This implies, that we can rewrite the expectation of κt(α) as

E[κt(α)] = E
[
(αt − ᾱt + Υ>t ᾱt − ηt)>St(αt − ᾱt + Υ>t ᾱt − ηt)− ζt

]
,

where

ηt = a0
t (Xt, X̄t) + Υ>t a

1
t (X̄t) dt⊗ dP a.e., (2.25)

with a0
t (Xt, X̄t) a centred random variable and a1

t a deterministic function

a0
t (x, x̄) := −S−1

t Ut(x− x̄)− S−1
t (εt − ε̄t), a1

t (x̄) := −Ŝ−1
t (Vtx̄+ Θt),

and

ζt := (Xt − X̄t)
>(U>t S

−1
t Ut)(Xt − X̄t) + X̄>t (VtŜ

−1
t Vt)X̄t + 2(U>t S

−1
t (εt − ε̄t)

+ V >t Ŝ
−1
t Θt)

>Xt + (εt − ε̄t)>S−1
t (εt − ε̄t) + Θ>t Ŝ

−1
t Θt.

It yields that one could write (2.21) in the following form :

E[Dαt ] = E [ (Xt − X̄t)
>(

.
Kt + φ0

t )(Xt − X̄t) + X̄>t (
.
Λt + ψ0

t )X̄t

+ 2(
.
Y t + ∆0

t )
>Xt +

.
ϕt − ρϕt + Γ̄0

t

+
(
αt − a0

t (Xt, X̄t)− ᾱt + Υ>t (ᾱt − a1
t (X̄t)) )>St

(αt − a0
t (Xt, X̄t)− ᾱt + Υ>t (ᾱt − a1

t (X̄t))
)]
,

where
φ0
t := φt − U>t S−1

t Ut = φ0
t (Kt),

ψ0
t := ψt − V >t Ŝ−1

t Vt = ψ0
t (Kt,Λt),

∆0
t := ∆t − U>t S−1

t (εt − ε̄t)− V >t Ŝ−1
t Θt = ∆0

t (Kt,Λt, Yt, Ȳt, Z
Y
t , Z̄t

Y
, RYt , R̄

Y
t ),

Γ0
t := Γt − (εt − ε̄t)>S−1

t (εt − ε̄t)−Θ>t Ŝ
−1
t Θt = Γ0

t (Kt, Yt, Z
Y
t , R

Y
t ).

(2.26)
By choosing (K,Λ, Y, ϕ) s.t. for all t ∈ [0, T ], we have

.
Kt + φ0

t = 0,
.
Λt + ψ0

t = 0,
.
Y t + ∆0

t = 0,
.
ϕt − ρϕt + Γ̄0

t = 0, (2.27)

we obtain

E[Dαt ] = E [ (αt − a0
t (Xt, X̄t)− ᾱt+Υ>t (ᾱt − a1

t (X̄t)))
> St (αt − a0

t (Xt, X̄t)

−ᾱt + Υ>t (ᾱt − a1
t (X̄t)))

]
, (2.28)
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which is non-negative for all t ∈ [0, T ], α ∈ A. This shows that Sα satisfies the condition (ii)
of the verification theorem (See Lemma 2.1).
In the following lemma, we study the existence of a unique solution to the system of ODEs-
BSDE (2.17) satisfying (2.27).

Lemma 2.2. The decoupled system

dKt = −φ0
t (Kt)dt, 0 ≤ t ≤ T, KT = P,

dΛt = −ψ0
t (Kt,Λt)dt, 0 ≤ t ≤ T, ΛT = P̂ ,

dYt = −∆0
t (Kt,Λt, Yt, Ȳt, Z

Y
t , Z̄t

Y
, RYt , R

Y
t )dt+ ZYt dWt,

+
∫
χR

Y
t (e)π̃(de, dt), 0 ≤ t ≤ T, YT = L,

dϕt = (ρϕt − E[Γ0
t (Kt, Yt, Z

Y
t , R

Y
t )])dt, 0 ≤ t ≤ T, ϕT = 0,

(2.29)

where the processes φ0, ψ0, ∆0 and Γ0 are defined in (2.26), admits a unique solution (K,Λ, Y, ZY , RY , ϕ)
inL∞([0, T ],Sd)×L∞([0, T ], Sd)×S2

F(Ω×[0, T ],Rd)×L2
F(Ω×[0, T ],Rd)×K2

F(Ω×[0, T ]×
χ,Rd)× L∞([0, T ], Sd).

Proof. • We start by introducing the following multi-dimensional Riccati-type equations

.
Kt +Qt − ρKt +KtAt +A>t Kt + C>t KtCt +

∫
χ
F>t (e)KtFt(e)λ(de)

−
(
It +D>t KtCt +B>t Kt +

∫
χ
G>t (e)KtFt(e)λ(de)

)>
(
Nt +D>t KtDt +

∫
χ
G>t (e)KtGt(e)λ(de)

)−1

(
It +D>t KtCt +B>t Kt +

∫
χ
G>t (e)KtFt(e)λ(de)

)
= 0,

KT = P,

(2.30)

Where the unkown is the matrix K. It is known that the equations (2.30) are related to
the linear quadratic stochastic control problem:

vt(x) := inf
α∈A

E
[∫ T

t
e−ρs

(
(X̃α,x

s )>QsX̃
α,x
s + 2α>s IX̃

α,x
s + α>s Nαs

)
ds

+ e−ρT (X̃α,x
T )>PX̃α,x

T

]
,

where for α ∈ A, the process X̃ is solution of the following SDE:{
dX̃s = (AX̃s +Bαs)ds+ (CX̃s +Dαs)dWs +

∫
X (Fs(e)X̃

α,x
s +Gs(e)αs)π̃(de, ds),

X̃0 = x.
(2.31)

A straightforward extention of Yong and Zhou ([23], Theorem 7.2 p.320 ) to the jump
diffusion case, and under the assumptions (H1) and (H2) (i)-(iii), there exists a unique
solution K ∈ L∞([0, T ], Sd) to the equation (2.30) and the solution satisfies Kt ≥ 0.
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• Given K, we consider the following equation for Λ:

.
Λt + Q̂t − ρΛt + ΛtÂt + Â>t Λt + Ĉ>t KtĈt +

∫
χ
F̂>t (e)KtF̂t(e)λ(de)

−
(
Ît + D̂>t KtĈt + B̂tΛt +

∫
χ
Ĝ>t (e)KtF̂t(e)λ(de)

)>
(
N̂t + D̂>t KtD̂t +

∫
χ
Ĝ>t (e)KtĜt(e)λ(de)

)−1

(
Ît + D̂>t KtĈt + B̂tΛt +

∫
χ
Ĝ>t (e)KtF̂t(e)λ(de)

)
= 0,

ΛT = P̂ .

(2.32)

We rewrite this multi-dimensional Riccati equations as follows:{ .
Λt + Q̂Kt − ρΛt + ΛtÂt + Â>t Λt − (ÎKt + B̂>t Λt)

> (N̂K
t )−1(ÎKt + B̂>t Λt) = 0

ΛT = P̂ ,

(2.33)

where Q̂Kt , Î
K
t , N̂

K
t are defined by

Q̂Kt := Q̂t + Ĉ>t KtĈt +

∫
χ
F̂>t (e)KtF̂t(e)λ(de),

ÎKt := Ît + D̂>t KtĈt +

∫
χ
Ĝ>t (e)KtF̂t(e)λ(de),

N̂K
t := N̂t + D̂>t KtD̂t +

∫
χ
Ĝ>t (e)KtĜt(e)λ(de).

From Assumption (H2)(iv), we have P̂ ≥ 0, and N̂t ≥ ξIm. AsK ∈ L∞([0, T ], Sd) and
Kt ≥ 0 for all t ∈ [0, T ], then N̂K

t ≥ ξIm. It remains to check that for all t ∈ [0, T ], we
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have Q̂Kt − ÎKt (N̂K
t )−1ÎKt ≥ 0. In fact, we have

Q̂Kt − (ÎKt )>(N̂K
t )−1ÎKt (2.34)

= Q̂t + Ĉ>t KtĈt +

∫
χ
F̂>t (e)KtF̂t(e)λ(de)− (Ît + D̂>t KtĈt +

∫
χ
Ĝ>t (e)KtF̂t(e)λ(de))>

(N̂t + D̂>t KtD̂t +

∫
χ
Ĝ>t (e)KtĜt(e)λ(de))−1

(Ît + D̂>t KtĈt +

∫
χ
Ĝ>t (e)KtF̂t(e)λ(de))

= Q̂t − (Ît)
>(N̂t)

−1Ît + (Ĉt − D̂tN̂
−1
t Ît)

>K(Ĉt − D̂tN̂
−1
t Ît)

− (D̂>t K(Ĉt − D̂>t (N̂t)
−1Ît))

>(N̂t + D̂>t KD̂t)
−1(D̂>t Kt(Ĉt − D̂>t (N̂t)

−1Ît))

+

∫
X

(F̂t(e)− Ĝt(e)N̂−1
t Ît)

>K(F̂t(e)− Ĝt(e)N̂−1
t Ît)λ(de)

−
∫
X

(Ĝt(e)
>Kt(F̂t(e)− Ĝ>t (e)(N̂t)

−1Ît))
>λ(de)(N̂K

t )−1∫
X

(Ĝt(e)
>K(F̂t(e)− Ĝ>t (e)(N̂t)

−1Ît))λ(de)

As Kt ≥ 0, we have N̂K
t ≥ N̂t ≥ ξIm > 0, then

(D̂>t K(Ĉt − D̂>t (N̂t)
−1Ît))

>(N̂K
t )−1(D̂>t Kt(Ĉt − D̂>t (N̂t)

−1Ît)) (2.35)

≤ (D̂>t K(Ĉt − D̂>t (N̂t)
−1Ît))

>(D̂>t KD̂t)
−1(D̂>t Kt(Ĉt − D̂>t (N̂t)

−1Ît))

As K ∈ L∞([0, T ],Sd) and Kt ≥ 0, then by Cauchy Schwarz inequality, we have∫
X

(F̂t(e)− Ĝt(e)N̂−1
t Ît)

>Kt(F̂t(e)− Ĝt(e)N̂−1
t Ît)λ(de) (2.36)

≥
∫
X

(F̂t(e)− Ĝt(e)N̂−1
t Ît)

>λ(de)Kt

∫
X

(F̂t(e)− Ĝt(e)N̂−1
t Ît)λ(de)

From inequalities (2.34)-(2.36), by algebraic manipulations, we deduce

Q̂Kt − (ÎKt )>(N̂K
t )−1ÎKt ≥ Q̂t + Î>t (N̂t)

−1Ît ≥ 0

As in the first step and according to [21] and to Yong and Zhou [23], we deduce that
equation (2.33) admits a unique solution Λ ∈ L∞([0, T ],Sd) with Λt ≥ 0.

• Given (K,Λ), we consider the following mean field BSDEdYt = −∆0
t (Kt,Λt, Yt, Ȳt, Z

Y
t , Z̄t

Y
, RYt , R̄

Y
t )dt+ ZYt dWt +

∫
χ
RYt (e)π̃(de, dt)

YT = L.

(2.37)
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It could be written in the following form

dYt = (ct+ θ>t (Yt − E[Yt]) + θ̂>t E[Yt] + ϑ>t (ZYt − E[ZYt ]) + ϑ̂>t E[ZYt ]

+

∫
χ
%>t (e)(RYt (e)− E[RYt (e)])λ(de) +

∫
χ
%̂>t (e)E[RYt (e)]λ(de)

)
dt

+ZYt dWt +

∫
χ
RYt (e)π̃(de, dt),

YT = L,

(2.38)

where the stochastic process (ct)t ∈ L2
F(Ω× [0, T ],Rd) is defined by, ∀t ∈ [0, T ] P p.s

ct :=−Mt −Kt(βt − β̄t)− Λtβ̄t − C>t Kt(γt − γ̄t)− Ĉ>t Ktγ̄t

−
∫
χ
F>t (e)Kt(δt(e)− δ̄t(e))λ(de)−

∫
χ
F̂>t (e)Ktδ̄t(e)λ(de)

+ U>t S
−1
t

(
Ht − H̄t +D>t Kt(γt − γ̄t) +

∫
χ
Gt(e)

>Kt(δt(e)− δ̄t(e))λ(de)

)
+ V >t S

−1
t (H̄t + D̂>t Ktγ̄t +

∫
χ
Ĝ>t (e)Ktδ̄t(e)λ(de)),

and the deterministic coefficients θ, θ̂, ϑ, ϑ̂ ∈ L∞([0, T ],Rd×d), and %, %̂ ∈ K∞([0, T ]×
χ,Rd×d) are defined by

θt := ρId −At +Bt S
−1
t Ut, θ̂t := ρId − Ât + B̂t Ŝ

−1
t Vt,

ϑt := −Ct +Dt S
−1
t Ut, ϑ̂t := −Ĉt + D̂t Ŝ

−1
t Vt,

%t(e) := −Ft(e) +Gt(e)S
−1
t Ut, %̂t(e) := −F̂t(e) + Ĝt(e)Ŝ

−1
t Vt.

By Tang and Meng [21] (see Lemma 2.2.), under (H1) the BSDE (2.37) admits a unique
solution (Y, ZY , RY ) ∈ S2

F(Ω×[0, T ],Rd)×L2
F(Ω×[0, T ],Rd)×K2

F(Ω×[0, T ]×χ,Rd).

• Given (K,Λ, Y, ZY , RY ), the linear ordinary differential equation for ϕ:

dϕt = (ρϕt − E[Γ0
t ])dt, ϕT = 0, (2.39)

where Γ0
t is defined by (2.26), admits a unique explicit solution given by:

ϕt =

∫ >
t
e−ρ(s−t)lsds.

The deterministic function l is defined, for all t ∈ [0, T ] by:

lt := −E
[
γ>t Ktγt + 2β>t Yt + 2δ>t Z

Y
t + 2

∫
χ
δ>t R

Y
t (e)λ(de)

+

∫
χ
δ>t Ktδtλ(de)− ε>t S−1

t εt

]
− ε̄>t S−1

t ε̄t + Θ>t Ŝ
−1
t Θt.
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The next theorem gives a connexion between the solution to the decoupled system (2.29)
and the solution to the LQMF problem (2.14).

Theorem 2.3. Under Assumptions (H1)-(H2), there exists an optimal control α∗ for LQMF
problem (2.14) giving by the following explicit form

α∗t = −S−1
t Ut(X

∗
t− − X̄

∗
t−)− S−1

t (εt− − ε̄t−)− S−1
t (VtX̄

∗
t− + Θt), dt⊗ P− a.e.

where X∗ = Xα∗ is the state process, and α∗ is the optimal control. The corresponding value
of the problem is

V0 = J(α∗) = E
[
(X0 − X̄0)TK0(X0 − X̂0) + X̄T

0 Λ0X̄0 + 2Y T
0 X0 + ϕ0

]
.

Proof. We proved in Lemma 2.2 the existence of (K,Λ, Y, ZY , RY , ϕ) solution to the sys-
tem (2.29). We consider the candidate {wt(x, x̄)} given by (2.16).As K,Λ, R are bounded
and Y satisfies a square-integrability condition, then the growth condition of the random field
{wt(x, x̄)} i.e condtion (2.15)) in the verification theorem (see Lemma 2.2) is satisfied. Thanks
to the choice of (K,Λ, Y, ZY , RY , ϕ), the terminal conditions satisfied {wT (x, x̄)} = g(x, x̄),
and so Assumption (i) of Lemma 2.2 is satisfied. From equation (2.28), we deduce that E[Dαt ]
is non-negative for all α ∈ A. It yields that Assumption (ii) of the verification in Lemma 2.2
is satisfied. Moreover, one could prove that E[Dα∗t ] = 0 for some α = α∗ if and only if

α∗t − a0
t (X

∗
t , X̄

∗
t)− ᾱ∗t + Υ>t (ᾱ∗t − a1

t (X̄
∗
t)) = 0 dt⊗ dP a.e. (2.40)

Taking the expectation and using the fact that E[a0
t (X

∗
t , X̄

∗
t)] = 0 and Υt is an invertible

matrix, we get ᾱ∗t − a1
t (X̄

∗
t) = 0. Then we obtain α∗t = a0

t (X
∗
t , X̄

∗
t) + a1

t (X̄
∗
t). As the

strategy α∗ must be F−predictable and the number of jumps of the state process X is finite
a.s. over the time interval [0, T ], then the optimal strategy α∗ satisfies

α∗t = −S−1
t Ut(X

∗
t− − X̄

∗
t−)− S−1

t (εt− − ε̄t−)− S−1
t (VtX̄

∗
t− + Θt).

Under Assumptions (H1)-(H2), S−1, Ŝ−1, U , V are bounded and Θ, ε are square-integrable
respectively in L2([0, T ],Rm) and L2

F(Ω×[0, T ],Rm). AsX∗ satisfies the square integrability
condition (See inequality (1.6)), then α∗ ∈ A. We proved that there exists a random field
wt(x, x̄) that satisfies the assumptions of Lemma 2.2. Then, by the verification theorem, we
conclude that α∗ is the optimal control for the LQMF problem (2.14).

3 Extensions of LQMF Problem on the case of common
noise
In this section, we extend the results of Theorem 2.3, to the case with a common noise. Let
W and W 0 be two independent real Brownian motions and π̃ be an Poisson random measure
defined on the same filtered probability space (Ω,Ft, (P,P0)) where F = (Ft)t∈[0,T ] be the
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filtration generated by the (W,W 0, π̃) and we denote by F0 = {F0
t }t∈[0,T ] the filtration gener-

ated byW 0. As in section (2), for any r.v. X0 and α ∈ A, the controlled processXα
t is defined

by:
dXα

t = bt(X
α
t ,E[Xα

t |F0
t ], αt,E[αt|W 0

t ])dt+ σt(X
α
t ,E[Xα

t |F0
t ], αt,E[αt|F0

t ])dWt+

σ0
t (X

α
t ,E[Xα

t |F0
t ], αt,E[αt|F0

t ])dW 0
t +

∫
X
Rt(X

α
t− ,E[Xα

t− |F
0
t ], αt,E[αt|F0

t ])(e)π̃(de, dt),

Xα
0 = X0,

(3.41)

where for each t ∈ [0, T ], x, x̄ ∈ Rd and a, ā ∈ Rm we set:

bt(x, x̄, a, ā) := βt +Atx+ Ãtx̄+Bta+ B̃tā, (3.42)

σt(x, x̄, a, ā) := γt + Ctx+ C̃tx̄+Dta+ D̃tā,

σ0
t (x, x̄, a, ā) := γ0

t + C0
t x+ C̃0

t x̄+D0
t a+ D̃0

t ā,

Rt(x, x̄, a, ā)(e) := δt(e) + Ft(e)x+ F̃t(e)x̄+Gt(e)a+ G̃t(e)ā.

For this case, we assume that

(H3) (i) A, Ã, B, B̃, C, C̃, D, D̃, C0, C̃0, D0, D̃0, F , F̃ , G, G̃ are essentially bounded
F0-adapted processes,

(ii) β, γ, γ0 are square-integrable F-adapted processes and δ is square-integrable F-
predictable process.

The LQMF control problem is to find α∗ ∈ A s.t.

V0 := J(α∗) = inf
α∈A

J(α), (3.43)

where

J(α) := E
[∫ >

0
e−ρtft(X

α
t ,E[Xα

t |F0
t ], αt,E[αt|F0

t ])dt+ e−ρT g(Xα
T ,E[Xα

t |F0
T ])

]
,

(3.44)
and the coefficients f , g defined in (1.4)-(1.5), satisfy the following assumptions:

(H4) (i) Q, Q̃, I , Ĩ , N, Ñ are essentially bounded F0-adapted processes,
(ii) P, P̃ are essentially bounded F0

T -measurable random variables,
(iii) M,H are square-integrable F-adapted processes,

and L is a square-integrable FT -measurable random variables.

As in the previous section, we guess a quadratic form for wt(x, x̄) i.e.

wt(x, x̂) = (x− x̂)TKt(x− x̂) + x̄TΛtx̄+ 2Y T
t x+ ϕt,
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where the processes K, Λ, Y and ϕ are to be determined later. As the quadratic terms in ft
and g are F0−adapted, we guess that K and Λ are F0−adapted. Since the affine coefficients
in bt, σt and σ0

t and le linear coefficients in ft and g are F− adapted, then Y is F− adapted i.e.
depends on W , W 0 and π̃. We look for processes (K,Λ, Y, ϕ) valued in Sd × Sd × Rd × R
and satisfy the following system:

dKt =
.
Ktdt+ ZKt dW

0
t , 0 ≤ t ≤ T, KT = P,

dΛt =
.
Λtdt+ ZΛdW 0

t , 0 ≤ t ≤ T, ΛT = P̂ ,

dYt =
.
Y tdt+ ZYt dWt + ZY,0t dW 0

t +

∫
χ
RYt (e)π̃(de, dt), 0 ≤ t ≤ T, YT = L,

dϕt =
.
ϕt, 0 ≤ t ≤ T, ϕT = 0,

(3.45)
for some F0−adapted processes

.
K,

.
Λ,ZK ,ZΛ valued in Sd and some F−adapted processes

.
Y ,

ZY , ZY,0 valued in Rd, an F−predictble process RY valued in Rd and a continuous function
.
ϕ valued in R.
We keep the notations of section 2 and we add the following notations:

Ĉ0
t = C0

t + C̃0
t , D̂

0
t = D0

t + D̃0
t .

For α ∈ A and t ∈ [0, T ], we set Sα in the following form:

Sαt = e−ρtWα
t +

∫ t

0
e−ρsfs(X

α
s ,E[Xα

s |F0
s ], αs,E[αs|F0

s ])ds. (3.46)

As in Section 2, we compute
d E[Sαt ] = e−ρtE[Dαt ]dt,

where

E[Dαt ] = E
[
−ρwt(Xα

t ,E[Xα
t |F0

t ]) +
d

dt
E[wt(X

α
t ,E[Xα

t |F0
t ])] + ft(X

α
t ,E[Xα

t |F0
t ], αt,E[αt|F0

t ])

]
.

As in the previous section, we denote by X̄t for E[Xα
t |F0

t ] and ᾱt for E[αt|F0
t ]. By applying

Itô’s formula to Sαt and using the quadratic form of the cost ft and the dynamics of X̄t and
Xt − X̄t, we obtain:

dX̄t = [βt + ÂtX̄t + B̂tᾱt]dt, (3.47)

and

d(Xt − X̄t) = [(βt − β̄t) +At(Xt − X̄t) +Bt(αt − ᾱt)]dt (3.48)

+ [γt + Ct(Xt − X̄t) + ĈtX̄t +Dt(αt − ᾱt) + D̂tᾱt]dWt

+ [γ0
t + C0

t (Xt − X̄t) + Ĉ0
t X̄t +D0

t (αt − ᾱt) + D̂0
t ᾱt]dW

0
t

+

∫
χ
[δt + Ft(e)(Xt− − X̄t−) + F̂t(e)X̄t− +Gt(e)(αt − ᾱt) + Ĝt(e)ᾱt]π̃(de, dt).
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Using the same arguments as in the previous section, we obtain:

E[Dαt ] =E
[
(Xt − X̄t)

T (
.
Kt + φt)(Xt − X̄t) + X̄>t (

.
Λt + ψt)X̄t (3.49)

+2(
.
Y t + ∆t)Xt +

.
ϕt − ρϕt + Γ̄t + κt(α)

]
,

where

φt := −ρKt +KtAt +A>t Kt + ZKt C
0
t + (C0

t )>ZKt + C>t KtCt + (C0
t )>KtC

0
t +Qt

+

∫
χ
F>t (e)KtFt(e)λ(de) = φt(Kt, Z

K
t ),

ψt := −ρΛt + ΛtÂt + Â>t Λt + ZΛ
t C

0
t + (C0

t )>ZΛ
t + Ĉ>t KtĈt + (C0

t )>ΓtC
0
t + Q̂t

+

∫
χ
F̂>t (e)KtF̂t(e)λ(de) = ψt(Kt,Λt),

∆t := −ρYt +A>t Yt + Ã>T Ȳt + C>t Z
Y
t + (C0

t )>ZY,0t + (C̃0
t )>ZY,0t + C̃>t Z

Y
t

+Kt(βt − β̄t) + Λtβ̄t + C>t Kt(γt − γ̄t) + Ĉ>t Ktγ̄t +Mt + ZKt (γ0
t − γ̄0

t ) + ZΛ
t γ̄

0
t

+(C0
t )>Kt(γ

0
t − γ̄0

t ) + (Ĉ0
t )>Λtγ̄

0
t +

∫
χ
F>t (e)(RYt (e)− R̄Yt (e))λ(de)

+

∫
χ
F̂t(e)

>R̄Yt (e)λ(de) +

∫
χ
F>t (e)(δt(e)− δ̄t(e))λ(de)

+

∫
χ
F̂t(e)

>δ̄t(e)λ(de) = ∆t(Kt, Z
K
t ,Λt, Z

Λ
t , Yt, Ȳt, Z

Y
t , Z

Y
t, R

Y
t , R

Y
t),

Γt := γ>t Ktγt + (γ0
t − γ̄0

t )>Kt(γ
0
t − γ̄0

t ) + 2(δt)
>ZY,0t + (γ0

t)
>Λt(γ0

t) + 2β>t Yt

+2γ>t Z
Y
t +

∫
χ
δ>t (e)Ktδt(e)λ(de) + 2

∫
χ
δt(e)

>RYt (e)λ(de)

= Γt(Kt, Yt, Z
Y
t , R

Y
t ),

and

κt(α) := (αt−ᾱt)>St(αt−ᾱt)+ᾱ>t Ŝtᾱt+2(Ut(Xt−X̄t)+VtX̄t+Θt+εt− ε̄t)αt. (3.50)

Here St, Ŝt, Ut, Vt,Θt are defined as follows:

St := Nt +D>t KtDt + (D0
t )
>KtD

0
t +

∫
χ
G>t (e)KtGt(e)λ(de),

Ŝt := N̂t + D̂>t KtD̂t + (D̂0
t )
>KtD̂

0
t +

∫
χ
Ĝ>t (e)KtĜt(e)λ(de),

Ut := It +D>t KtCt +B>t Kt + (D0
t )
>KtC

0
t + (D0

t )
>ZKt +

∫
χ
G>t (e)KtFt(e)λ(de),

Vt := Ît + D̂>t KtĈt + B̂tΛt + (D0
t )
>ZΛ

t + (D0
t )
>Kt(C

0
t ) +

∫
χ
Ĝt(e)KtF̂t(e)λ(de),

Θt := H̄t + D̂>t Ktγ̄t + (D̂0
t )
>Ktγ̄t + B̂>t Ȳt + (D̂0

t )
>Z̄Y,0t + D̂>t Z̄

Y
t

+

∫
χ
Ĝ>t (e)Ktδ̄tλ(de) +

∫
χ
Ĝ>t (e)R̄Yt (e)λ(de),

(3.51)
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εt := Ht +D>t Ktγt +B>t Yt +D>t Z
Y
t + (D0

t )
>ZY,0t + (D0

t )
>Kt(γt)

+

∫
χ
G>t (e)Ktδtλ(de) +

∫
χ
G>t (e)RYt (e)λ(de),

ε̄t := H̄t +D>t Ktγ̄t +B>t Ȳt +D>t Z
Y
t + (D0

t )
>ZY,0t + (D0

t )
>Kt(γ̄t)

+

∫
χ
G>t (e)Ktδ̄tλ(de) +

∫
χ
G>t (e)RY t(e)λ(de).

(3.52)

Completing the square in the expression of E[Dαt ] (See equation (3.49)) and getting rid of the
terms which not depend in α, the computations lead to the following decoupled system,

dKt = −φ0
t (Kt, Z

k)dt+ ZKdW 0
t , 0 ≤ t ≤ T, KT = P,

dΛt = −ψ0
t (Kt,Λt, Z

Λ)dt+ ZΛdW 0
t , 0 ≤ t ≤ T, ΛT = P̂ ,

dYt = −∆0
t (Kt, Z

K
t ,Λt, Z

Λ
t , Yt, Ȳt, Z

Y
t , Z̄t

Y
, RYt , R̄

Y
t )dt+ ZYt dWt

+ZY,0dW 0
t +

∫
χ
RYt (e)π̃(de, dt), 0 ≤ t ≤ T, YT = L,

dϕt = (ρϕt − E[Γ0
t ])dt, 0 ≤ t ≤ T, ϕT = 0,

(3.53)

with 
φ0
t := φt − U>t S−1

t Ut,

ψ0
t := ψt − V >t Ŝ−1

t Vt,

∆0
t := ∆t − V >t Ŝ−1

t Θt − U>t S−1
t (εt − ε̄t),

Γ0
t := Γt − (εt − ε̄t)>S−1

t (εt − ε̄t)−Θ>t Ŝ
−1
t Θt.

(3.54)

One could prove that (K,Λ) is the unique solution to the Stochastic Backward Riccati Equation
in (3.53). Given (K,Λ), we have also the existence of a unique solution (Y,ZY , ZY,0, RY ) of
the mean field backward stochastic differential equation in (3.53). Then from Lemma 2.1, we
have the following proposition which gives the structure of the optimal control α∗.

Proposition 3.1. Under Assumptions (H3)-(H4), the optimal control α∗ for optimal problem
(3.43)-(3.44) is defined as follows

α∗t =− S−1
t Ut(X

∗
t− − E[X∗t− |F

0
t ])− S−1

t (εt− − E[εt− |F0
t ])− Ŝ−1

t (Vt − E[X∗t− |F
0
t ] + Θt).

Proof. The proof is similar to that of Theorem 2.3.

4 Linear Quadratic Mean Field Control Problem on
infinite horizon
Let us consider the infinite horizon case. For ρ > 0, we define the set of admissible controls
as follows:

A := {α : Ω× R+ → Rm s.t α is F-predictable and
∫ ∞

0
e−ρtE[|αt|2]dt <∞}.
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The controlled process is defined on [0,∞) by:
dXα

t = bt(X
α
t ,E[Xα

t ], αt,E[αt])dt+ σt(X
α
t ,E[Xα

t ], αt,E[αt])dWt

+

∫
X
Rt(X

α
t− ,E[Xα

t− ], αt,E[αt])(e)π̃(de, dt),

Xα
0 = X0,

(4.55)

where for each t ≥ 0 ,x, x̄ ∈ Rd, we use the same formulation as in Section 2:

bt(x, x̄, a, ā) := βt +Ax+ Ãx̄+Ba+ B̃ā, (4.56)

σt(x, x̄, a, ā) := γt + Cx+ C̃x̄+Da+ D̃ā,

Rt(x, x̄, a, ā)(e) := δt(e) + F (e)x+ F̃ (e)x̄+G(e)a+ G̃(e)ā.

For the infinite horizon case, the coefficients of the linear terms are constant vectors, and the
coefficients β, γ and δ are stochastic processes. The control problem on infinite horizon is
formulated as:

V0 := inf
α∈A

J(α), (4.57)

where

J(α) := E
[∫ ∞

0
e−ρtft(X

α
t ,E[Xα

t ], αt,E[αt])dt

]
, (4.58)

and, for each t ≥ 0, x, x̄ ∈ Rd and a, ā ∈ Rm, we define f as in Section 1 i.e.

ft(x, x̄, a, ā) :=(x− x̄)>Q(x− x̄) + x̄>(Q+ Q̃)x̄+ 2a>I(x− x̄) (4.59)

+ 2ā>(I + Ĩ)x̄+ (a− ā)>N(a− ā) + ā(N + Ñ)ā+ 2M>t x+ 2H>t a.

Here, we note that the coefficients of the quadratic terms are constant matrices, and the coeffi-
cients H and M may be stochastic processes.
Let (H, |.|) be a normed space, and ρ̂ a positive constant. We define the new spaces:

• L∞(R+,H) :=
{
φ : R+ → H s.t. φ is measurable and supt≥0 |φt| <∞ a.e.

}
,

• K∞(χ,H) := {K : χ→ H, K is B(χ)-measurable and sup
e∈χ
|K(e)| <∞},

• L2,ρ̂
F (Ω× R+,H) := { φ : Ω× R+ → H s.t. φ is F-progressively measurable

and
∫ ∞

0
eρ̂tE[|φt|2]dt <∞}

• K2,ρ̂
F (Ω×R+×χ,H) := {K : Ω×R+×χ→ H, K is P⊗B(χ)-measurable processes and

E
[∫ ∞

0

∫
χ
eρ̂t|Kt(e)|2 λ(de)dt

]
<∞},

where P denote the σ−field of F-predictable sets on Ω× R+.

We consider the following assumptions on the coefficients of the problem in the infinite horizon
case.
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(H1
′
) The coefficients in equation (4.55) satisfy:

(i) β, γ ∈ L2,ρ̂
F (Ω× R+,Rd) and δ ∈ K2,ρ̂

F (Ω× R+ × χ,Rd),
(ii) A, Ã, C, C̃ ∈ Rd×d and B, B̃,D, D̃, J, J̃ ∈ Rd×m,

(iii) F, F̃ ∈ K∞(χ,Rd×d) and G, G̃ ∈ K∞(χ,Rd×m).

(H2
′
) The coefficients in equation (4.59) satisfy:

(i) Q, Q̃ ∈ Sd, N, Ñ ∈ Sm, I, Ĩ ∈ Rm×d,
(ii) M ∈ L2,ρ̂

F (Ω× R+,Rd), H ∈ L2,ρ̂
F (Ω× R+,Rm),

(iii) N > 0, Q+ ITN−1I ≥ 0,

(iv) N + Ñ > 0, (Q+ Q̃)− (I + Ĩ)T (N + Ñ)−1(I + Ĩ) ≥ 0.

(H3
′
) ρ > 2 max{|A|+ |C|2 +

∫
χ |F (e)|2λ(de), |Â|}.

Proposition 4.1. Under (H1
′
) and (H3

′
), the following estimate holds for each square-integrable

variable X0 and α ∈ A, ∫ ∞
0

e−ρtE[|Xα
t |2]dt ≤ Cα(1 + E[|X0|2]), (4.60)

where Cα is a positive constant.

Proof. By Itô’s formula and Young’s inequality, we have the following estimate

d

dt
E[e−ρt|X̄t|2]

= e−ρt(−ρ|X̄t|2 + 2b̄>t X̄t)

≤ e−ρt(−ρ|X̄t|2 + 2(|β̄t||X̄t|+ |B̂||ᾱt||X̄t|+ X̄>t ÂX̄t))

≤ e−ρt[(−ρ+ 2|Â|+ ε)|X̄t|2 + cε(|β̄t|2 + |ᾱt|2)],

where cε is a positive constant. We define:

ζε := |X̄0|2 + cε

∫ ∞
0

e−ρtE[|β2
t |+ |α2

t |], ηε := ρ− 2|Â| − ε.

Under (H1
′
) and as α ∈ A, we have ζε < ∞ and for ε small enough, we have ηε > 0. By

Gronwall’s lemma, we get:∫ ∞
0

e−ρt|X̄t|2dt ≤ cα,ε(1 + |X̄0|2), (4.61)

where cα,ε is positive constant. Using again Itô’s formula and Young’s inequality, we have the
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following estimate:

d

dt
E[e−ρt|Xt − X̄t|2]

= e−ρtE[−ρ|Xt − X̄t|2 + 2(bt − b̄t)>(Xt − X̄t) + |σt|2 +

∫
χ
|Rt(e)|2λ(de)]

≤ e−ρtE[−ρ|Xt − X̄t|2 + 2(|βt − β̄t||Xt − X̄t|+ |B||αt − ᾱt||Xt − X̄t|+ (Xt − X̄t)
>A(Xt − X̄t))

+ 2(|γt|2 + |C|2|Xt − X̄t|2 + |Ĉ|2|X̄t|2 + |D|2|αt|2 + |D̃|2|ᾱt|2)

+ 2(

∫
χ
|δt(e)|2λ(de) +

∫
χ
|F (e)|2λ(de)|Xt − X̄t|2 +

∫
χ
|F̂ (e)|2λ(de)|X̄t|2 +

∫
χ
|G(e)|2λ(de)|αt|2

+

∫
χ
|G̃(e)|2λ(de)|ᾱt|2)]

≤ e−ρtE[(−ρ+ 2|A|+ 2|C|2 + 2

∫
χ
|F (e)|2λ(de) + ε)|Xt − X̄t|2

+ c
′
ε(|βt|2 + |γt|2 +

∫
χ
|δt(e)|2λ(de)|+ |αt|2 + |X̄t|2)],

where cε is a positive constant. We define:

ζ
′
ε := c

′
ε

∫ ∞
0

e−ρtE[|βt|2 + |γt|2 +

∫
χ
|δt(e)|2λ(de)|+ |αt|2 + |X̄t|2]dt,

η
′
ε := ρ− 2|A| − 2|C|2 − 2

∫
χ
|F (e)|2λ(de)− ε.

Under (H1
′
), inequality (4.61) and as α ∈ A, we have ζ

′
ε < ∞ and for ε small enough, we

have η
′
ε > 0. By Gronwall’s lemma, we get

E[

∫ ∞
0

e−ρt|Xt − X̄t|2dt] ≤ c
′
α,ε(1 + |X̄0|2), (4.62)

for a suitable c
′
α,ε > 0. From inequalities (4.61) and (4.62), we obtain (4.60).

From assumption (H2
′
) and the estimate (4.60), the problem (4.57) is well defined. The fol-

lowing lemma is a verification theorem based on the weak martingale approach in the inifinite
horizon case.

Lemma 4.2. Let {Wα
t , t ≥ 0, α ∈ A} be a family of F−adapted process in the formWα

t =
wt(X

α
t ,E[Xα

t ]) for some F−adapted random field {wt(x, x̄), t ∈ [0, T ], x, x̄ ∈ Rd} satisfying

wt(x, x̄) ≤ C(χt + |x|2 + |x̄|2), t ∈ [0,∞), x, x̄ ∈ Rd,

for some positive constant C, and non-negative process χ s.t. e−ρtE[χt] converge to zero as
t→∞, and such that:
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(i) the map t ∈ R+ 7−→ E[Sαt ], with Sαt = e−ctWα
t +

∫ t

0
e−csfs(X

α
s ,E[Xα

s ], αt,E[αt])ds,

is non-decreasing for all α ∈ A,

(ii) the map t ∈ R+ 7−→ E[Sα
∗
t ] is constant for some α∗ ∈ A.

Then, α∗ is an optimal control and E[w0(X0,E[X0])] is the value of the LQMKV control
problem (4.57) i.e.

V0 = E[w0(X0,E[X0])] = J(α∗).

Moreover, any other optimal control satisfies the condition (ii).

We extend the results in Theorem 2.3 to the infinite horizon case, where we kept the steps
similar to the finite horizon case. We prove our result by applying the lemma 4.2. We should
look for the stability of decoupled system on infinite horizon.

We adopt the same approach as in the finite time horizon. We consider a candidate for the
random field ωt(x, x̄) in the form:

wt(x, x̂) = (x− x̄)TKt(x− x̄) + x̄TΛtx̄+ 2Y T
t x+ ϕt,

where (K,Λ, Y, ϕ) valued in Sd × Sd × Rd × R satisfying the following system:

dKt = −φ0
tdt, t ≥ 0,

dΛt = −ψ0
t dt, t ≥ 0,

dYt = −∆0
tdt+ ZYt dWt +

∫
χ
RYt (e)π̃(de, dt), t ≥ 0,

dϕt = (ρϕt − E[Γ0
t ])dt, t ≥ 0.

(4.63)

The maps φ0, ψ0,∆0,Γ0 are defined by (2.26), where in this case the coefficients A, Ã, B, B̃,
C, C̃, D, D̃, Q, Q̃, N , Ñ , I , Ĩ , F (.), F̃ (.), G(.), G̃(.) are constant i.e. independent of time.
We note that there are no terminal conditions in the system, as we are in the infinite horizon
case. We need to show the existence of a solution to the system (4.63).

Lemma 4.3. We assume (H1
′
)-(H2

′
). Then, the system (4.63) admits a solution

(K,Λ, Y, ZY , RY , ϕ) ∈ L∞([0,∞],Sd)×L∞([0,∞],Sd)×L2,ρ̂
F (Ω× [0,∞],Rd)×L2,ρ̂

F (Ω×
[0,∞],Rd)×K2,ρ̂(Ω× [0,∞]× χ,Rd)× L∞([0,∞],Sd).

Proof. We prove the existence of a solution to the decoupled system (4.63).
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• We introduce the following Riccati-type equation:

Q− ρK +KA+A>K + C>KC +

∫
χ
F>(e)KF (e)λ(de)

−
(
I +D>KC +B>K +

∫
χ
G>(e)KF (e)λ(de)

)>
(
N +D>KD +

∫
χ
G>(e)KG(e)λ(de)

)−1

(
I +D>KC +B>K +

∫
χ
G>(e)KF (e)λ(de)

)
= 0. (4.64)

We prove the existence of a solution to (4.64) by relating it to a suitable infinite-horizon
linear-quadratic control problem. For T ∈ R+ ∪ {∞} and x ∈ Rd, we consider the
following control problem:

V T (x) := inf
α∈AT

E
[∫ T

0
e−ρt

(
(X̃α,x

t )>QX̃α,x
t + 2α>t IX̃

α,x
t + α>t Nαt

)
dt

]
,

where AT is defined by:

AT := {α : Ω× R+ → Rm s.t α is F predictable and
∫ T

0
e−ρtE[|αt|2]dt <∞},

and for α ∈ AT , the process X̃ := X̃α,x is solution of the following SDE:

dX̃t = (AX̃t+Bαt)dt+(CX̃t+Dαt)dWt+

∫
X

(F (e)X̃t+G(e)αt)π̃(de, dt), X̃0 = 0.

(4.65)

Thanks to the integrability condition for α ∈ AT , we have
∫ T

0
e−ρtE[|X̃α,x

t |2]dt < ∞,

and so the problems V T are well-defined for any T ∈ R+ ∪ {∞}. If T <∞, as already
recalled in the finite-horizon case, (H1

′
)-(H2

′
) imply that there exists a unique symmetric

solution (KT
t )t∈[0,T ] to Riccati equations:

d
dtK

T
t +Q −ρKT

t +KT
t A+A>KT

t + C>KT
t C +

∫
χ
F>(e)KT

t F (e)λ(de)

−
(
I +D>KT

t C +B>KT
t +

∫
χ
G>(e)KT

t F (e)λ(de)

)>
(
N +D>KT

t D +

∫
χ
G>(e)KT

t G(e)λ(de)

)−1

(
I +D>KT

t C +B>KT
t +

∫
χ
G>(e)KT

t F (e)λ(de)

)
= 0,

KT
T = 0,

(4.66)
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and that for every x ∈ Rd we have V T (x) = x>KT
0 x. It is easy to check from the

definition of V T that V T (x)→ V∞(x) as T goes to infinity, from which we deduce that

V∞(x) = lim
T→∞

x>KT
0 x = x

(
lim
T→∞

KT
0

)
x, for all x ∈ Rd.

This implies the existence of the limit K = limT→∞K
T
0 . By passing to the limit in T

in ODE (4.66) at t = 0, we obtain by standard arguments (see Lemma 2.8 in [?]), that K
satisfies (4.64). Moreover, K ∈ Sd and K ≥ 0.

• Given K, we consider the following equation of Λ:

Q̂K − ρΛ + ΛÂ+ Â>Λ− (ÎK + B̂>Λ)>(N̂K)−1(ÎK + B̂>Λ) = 0, (4.67)

where 

Q̂K := Q̂+ Ĉ>KĈ +

∫
χ
F̂>(e)KF̂ (e)λ(de),

ÎK := Î + D̂>KĈ +

∫
χ
Ĝ>(e)KF̂ (e)λ(de),

N̂K := N̂ + D̂>KD̂ +

∫
χ
Ĝ>(e)KĜ(e)λ(de).

Existence of a solution to (4.67) is obtained by the same arguments used for (4.64) under
(H2

′
).

• Given (K,Λ), we consider the following mean field BSDE with jumps on infinite hori-
zon:

dYt =
(
ct + (ρId + θ)>(Yt − E[Yt]) + (ρId + θ̂)>E[Yt] + ϑ>(ZYt − E[ZYt ]) + ϑ̂>E[ZYt ]

+

∫
χ
%>(e)(RYt (e)− E[RYt (e)])λ(de) +

∫
χ
%̂>(e)E[RYt (e)]λ(de)

)
dt

+ ZYt dWt +

∫
χ
RYt (e)π̃(de, dt), (4.68)

where the stochastic process c ∈ L2,ρ̂
F (Ω× [0,∞],Rd) is defined by:

ct :=−Mt −K (βt − β̄t)− Λ β̄t − C>K (γt − γ̄t)− Ĉ>K γ̄t

−
∫
χ
F>(e) K (δt(e)− δ̄t(e))λ(de)−

∫
χ
F̄>(e) K δ̄t(e)λ(de)

+ U>S−1

(
Ht − H̄t +D>K(γt − γ̄t) +

∫
χ
G(e)>K (δt(e)− δ̄t(e))λ(de)

)
+ V >Ŝ−1

(
H̄t + D̂>K γ̄t +

∫
χ
Ĝ>(e)Kδ̄t(e)λ(de)

)
,
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the coefficients θ, θ̂, ϑ, ϑ̂ are constant in Rd and are defined by:

θ := −A+B S−1U,

θ̂ := −Â+ B̂ Ŝ−1V,

ϑ := −C +D S−1U,

ϑ̂ := −Ĉ + D̂ Ŝ−1V,

and %, %̂ : χ −→ Rd are defined by:

%(e) := −F (e) +G(e)S−1U, ∀e ∈ χ,
%̂(e) := −F̂ (e) + Ĝ(e)Ŝ−1V, ∀e ∈ χ.

To simplify the notations let us denote:

− f(t, Yt, Zt, Rt,E[Yt],E[Zt],E[Rt]) = ct + (ρId + θ)>(Yt − E[Yt]) + (ρId + θ̂)>E[Yt]

+ ϑ>(Zt − E[Zt]) + ϑ̂>E[Zt] +

∫
χ
%>(e)(Rt(e)− E[Rt(e)])λ(de) +

∫
χ
%̂>(e)E[Rt(e)]λ(de).

We prove that the following linear BSDE with jumps defined by: for t ≥ 0,
dYt = −f(t, Yt, Zt, Rt,E[Yt],E[Zt],E[Rt])dt+ ZtdWt +

∫
χ
Rt(e)π̃(de, dt)

lim
t→∞

Yt = 0.

(4.69)

has a solution (Y, Z,R) inL2,ρ̂
F (Ω×R+,Rd)×L2,ρ̂

F (Ω×R+,Rd)×K2,ρ̂(Ω×R+×χ,Rd),
where ρ̂ is a positive constant which will be fixed later.
Existence: Let (Y n, Zn, Rn) be a solution on [0, n] of the following BSDE

Y n
t =

∫ n

t
fn(s, Y n

s , Z
n
s , R

n
s ,E[Y n

s ],E[Zns ],E[Rns ])ds−
∫ n

t
Zns dBs

−
∫ n

t

∫
χ
Rnt (e)π̃(de, ds), t ∈ [0, n],

where

fn(t, Y n
t , Z

n
t , R

n
t ,E[Y n

t ],E[Znt ],E[Rnt ]) = ct1[0,n](t) + (ρId + θ)>(Y n
t − E[Y n

t ])

+ (ρId + θ̂)>E[Y n
t ] + ϑ>(Znt − E[Znt ]) + ϑ̂>E[∆Znt ] +

∫
χ
%>(e)(Rnt (e)− E[Rnt (e)])λ(de)

+

∫
χ
%̂>(e)E[Rnt (e)]λ(de),
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and we take (Y n
t , Z

n
t , R

n
t ) = (0, 0, 0) on (n,∞).

We fix m > n. Applying Itô’s formula to eρ̂t|Y m
t − Y n

t |2, we get for all t ≥ 0,

eρ̂T |Y m
T − Y n

T |2 − eρ̂t|Y m
t − Y n

t |2

=

∫ T

t
eρ̂s
(
ρ̂|Y m

s − Y n
s |2 + |Zms − Zns |2 +

∫
χ
|(Rms −Rns )(e)|2λ(de)

)
ds

− 2

∫ T

t
eρ̂s(Y m

s − Y n
s )>∆n,mfsds

+ 2

∫ T

t
eρ̂s(Y m

s − Y n
s )>(Zms − Zns )dBs +

∫
χ
eρ̂s(Y m

s− − Y
n
s−)>(Rms −Rns )(e)π̃(de, ds),

where

∆n,mfs := fm(s, Y m
s , Zms , R

m
s ,E[Y m

s ],E[Zms ],E[Rms ])−fn(s, Y n
s , Z

n
s , R

n
s ,E[Y n

s ],E[Zns ],E[Rns ]).

We focus on the dependence in Y , we obtain:

eρ̂T |Y m
T − Y n

T |2 − eρ̂t|Y m
t − Y n

t |2

=

∫ T

t
eρ̂s
(
ρ̂|Y m

s − Y n
s |2 + |Zms − Zns |2 +

∫
χ
|(Rms −Rns )(e)|2λ(de)

)
ds

− 2

∫ T

t
eρ̂s((Y m

s − Y n
s )− E[Y m

s − Y n
s ])>(ρId + θ)(Y m

s − Y n
s )ds

− 2

∫ T

t
eρ̂sE[Y m

s − Y n
s ]>(ρId + θ̂)(Y m

s − Y n
s )ds− 2

∫ T

t
eρ̂s(Y m

s − Y n
s )>∆n,mf0

s ds

+ 2

∫ T

t
eρ̂s(Y m

s − Y n
s )>(Zms − Zns )dBs +

∫
χ
eρ̂s(Y m

s− − Y
n
s−)>(Rms −Rns )(e)π̃(de, ds).

where

∆n,mf0
s := fm(s, 0, Zms , R

m
s , 0,E[Zms ],E[Rms ])− fn(s, 0, Zns , R

n
s , 0,E[Zns ],E[Rns ]).

Taking the expectation, the contribution of the stochastic integrals vanishes. Using the
Young’s inequality 2ab ≤ εa2 + 1

ε b
2, where ε > 0, and Cauchy Schwarz’s inequality, we

obtain:

2E
[∫ T

t
eρ̂s((Y m

s − Y n
s )− E[Y m

s − Y n
s ])>(ρId + θ)(Y m

s − Y n
s )ds

]
+ 2E

[∫ T

t
eρ̂sE[Y m

s − Y n
s ]>(ρId + θ̂)(Y m

s − Y n
s )ds

]
≤ 2ρE

[∫ T

t
eρ̂s|Y m

s − Y n
s |2
]
ds+ 2

∫ T

t
eρ̂s|θ|E

[
|Y m
s − Y n

s |2
]
ds

+ 2

∫ T

t
eρ̂s|θ|E [|Y m

s − Y n
s |]

2 ds+ 2

∫ T

t
eρ̂s|θ̂|E [|Y m

s − Y n
s |]

2

≤ 2ρE
[∫ T

t
eρ̂s|Y m

s − Y n
s |2
]
ds+ 2

∫ T

t
eρ̂s(2|θ|+ |θ̂|)E

[
|Y m
s − Y n

s |2
]
ds.
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Similar calculus for the term
∫ T
t eρ̂s(Y m

s − Y n
s )>∆n,mf0

s ds, shows that:

E
[∫ T

0
eρ̂s
(
ρ̂|Y m

s − Y n
s |2 + |Zms − Zns |2 +

∫
χ
|(Rms −Rns )(e)|2λ(de)

)
ds

]
≤ E[ eρ̂T |Y m

T − Y n
T |2] + (δ +

1

ε
+ 2ρ+ C) E

[∫ T

0
eρ̂s|Y m

s − Y n
s |2ds

]
+ Cε

(
E
[∫ T

0
eρ̂s|Zms − Zns |2ds

]
+ E

[∫ T

0

∫
χ
eρ̂s|(Rms −Rns )(e)|2λ(de)ds

]
+

1

δ
E
[∫ T

0
eρ̂s|cs|21[n,m](s)ds

])
.

whereC := 2|θ|+|θ̂|+2|ϑ|+|ϑ̂|+2
∫
χ |%(e)|2λ(de)+

∫
χ |%̂(e)|2λ(de). Under (H1

′
)(iii),

C is finite. By choosing 0 < ε < 1
2C , ρ̂ and δ > 0 s.t. ρ̂ > δ + 1

ε + 2ρ + C + 1
2 , we

deduce:

E
[∫ T

0
eρ̂s
(
|Y m
s − Y n

s |2 + |Zms − Zns |2 +

∫
χ
|(Rms −Rns )(e)|2λ(de)

)
ds

]
≤ 2

δ
E
[∫ T

0
eρ̂s|cs|21[n,m](s)ds

]
.

Sending T to infinity, by the monotone convergence theorem, we obtain:

E
[∫ ∞

0
eρ̂s
(
|Y m
s − Y n

s |2 + |Zms − Zns |2 +

∫
χ
|(Rms −Rns )(e)|2λ(de)

)
ds

]
≤ 2

δ
E
[∫ ∞

0
eρ̂s|cs|21[n,m](s)ds

]
.

As c ∈ L2,ρ̂
F (Ω × [0,∞],Rd), then |cs|21[n,m](s) −→ 0, dt ⊗ dP a.e., s ≥ 0 when n

goes to infinity. By using the dominated convergence theorem for the right hand side, we
deduce that the sequence (Y n, Zn,Kn) is a Cauchy sequence in L2,ρ̂

F (Ω× [0,∞],Rd)×
L2,ρ̂
F (Ω×[0,∞],Rd)×K2,ρ̂(Ω×[0,∞]×χ,Rd) and that the limit (Y, Z,K) is a solution

of a MF BSDE with jumps (4.69).

• Given (K,Λ, Y, ZY , RY ), the linear ordinary differential equation for ϕ

dϕt = (ρϕt − E[Γ0
t ])dt. (4.70)

where Γ0
t = Γt − (εt − ε̄t)

>S−1
t (εt − ε̄t) − Θ>t Ŝ

−1
t Θt is defined in (2.26), admits a

unique explicit solution given by: ϕt =

∫ ∞
t

e−ρ(s−t)E[Γ0
s]ds.

Then, we proved the existence of solutions of the decoupled system (4.63).

The following theorem gives the structure of the optimal control for LQMF problem (4.57).
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Theorem 4.4. Under Assumptions (H1
′
)-(H2

′
), the optimal control for LQMF problem (4.57)

is given by

α∗t = −S−1U(X∗t− − X̄
∗
t−)− S−1(εt− − ε̄t−)− S−1(V X̄∗t− + Θt),

whereX∗ = Xα∗ is the state process where the α∗ is the optimal control and the deterministic
coefficients S, Ŝ, U and V and the stochastic coefficients εt and Θt are defined in Section 2.

5 Application to production of an exhaustible resource
In this section, we study a model of production of exhaustible resource with accumulating
or maintaining a level of reserves, inspired by a serie of works extented from the Hotelling’s
model [12]. In the classic Hotelling’s model, the dynamics market’s evolution is driven by
the use of existing reserves of an exhaustible reserves to produce energy without possibility
to exploration and/or discovery of new reserves. But many studies have made it possible to
ensure that there are still resources to be explored over time, that is to say that the reservation
rate can be increased. We can refer to the series of works extended from Prindyck’s model
[20], Deshmukh et al. [8], Arrow and Chang [3], and Keller et al. [11]. The increase in reserve
discoveries occurs stochastically via the Poisson process. It should be noted that this increase
is smaller, and it is the reason that the resources always remain exhaustible.

We consider an energy market with N producers (players). Each producer uses exhaustible
resources, such as oil, to produce energy. The quantity Xi

t represents the reserve’s level of
player i, at time t, i = 1, ..., N . It takes values in the set R+. The reserve level Xi

t decreases
at a controlled production rate αit ≥ 0 dt ⊗ dP a.e., and also has random discrete increment
due to exploration. We use N independent Poisson point process πi, i = 1...N to model the
new discoveries and we denote by λi(de)dt the associated compensator. We assume that the
dynamics of the reserve has a noise which is proportional to the current level of the reserve.
The reserve’s dynamics of each producer i is given by the following stochastic differential
equation: {

dXi
t = −αit dt+ σXi

t dW
i
t + η

∫
X Xi

t− π̃
i(de, dt),

Xi
0 = xi0,

(5.71)

where xi0 is the initial reserve’s level of player i, σ > 0, W i, i = 1...N are independent
standard Brownian motion and independent of πi, i = 1...N , and η > 0 is the rate of new
discoveries.
The cost functional for producer i is given by:

J i(α1, ..., αn) := E
(∫ ∞

0
e−ρ t

[
−αit Pt(αit) + Cp(α

i
t) + Cex(αit, X

i
t)
]
dt

)
, (5.72)

where
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• P it is the selling price for producer i. It follows a linear inverse demand rule, defined as:

P it := Pt(α
i
t) = P 0

t − δ αit − ε
∫ t

0

1

N

N∑
j=1

αjsds,

Here δ, ε are positive constants and P 0 is a determinist function. It will be the same
for all producers. The price P i of producer i is related to his production and also to the
production of all other producers.

• Cp is the cost functions of production, defined as:

Cp(α
i
t) := c1Var(αit).

• Cex is the cost functions of exploration defined as:

Cex(αit, X
i
t) := c2 α

i
t(
xi0 −Xi

t

xi0
).

The constants c1 and c2 are positive and represent respectively the cost of production and the
cost of extraction. They are the same for the all producers. From the theory of propagation
of chaos, the individual level of reserve Xi and the price process P i, i = 1, ..., N , become
independent and identically distributed, when N goes to infinity, with a common distribution
given by the law of the solution (X,P ) to the stochastic Mckean-Vlasov equation

dXt = −αt dt+ σXt dWt + η

∫
X
Xt− π̃(de, dt), X0 = x0, (5.73)

Pt = P 0
t − δ αt − ε

∫ t

0
αsds, (5.74)

where W is a Brownian motion , and αt = a(t,Xt) ,t ≥ 0, for some measurable function a
on R+ × R. We reduce the problem to a representative producer with initial reserve x0 > 0.
The state process is given X (see (5.73)). The control processes are given by (α, P ), where P
satisfies (5.74). The aim of the representative producer is to minimise the cost functional given
by:

J(α) := E
[∫ ∞

0
e−ρ tαt (−P 0

t + δ αt + ε

∫ t

0
ᾱsds) + c1Var(αt) + c2 αt(

x0 −Xt

x0
)dt

]
,

(5.75)

under the contraints that αt ≥ 0 and Xt ≥ 0 P a.s. for all t ≥ 0. As X̄t = x0 −
∫ t

0
ᾱsds, then

J(α) = E
[∫ ∞

0
e−ρ tαt (−P 0

t + δ αt + ε(x0 − X̄t)) + c1Var(αt) + c2 αt(
x0 −Xt

x0
)dt

]
,

32



and we are in the framework of Section 4 with d = m = 1 (one-dimensional state variable
and control), the coefficients of the state pocess and the cost functional are given by

B = −1, C = σ, F (e) = η, for all e ∈ χ

and

N + Ñ = δ, N = δ + c1, I + Ĩ = −c2 + εx0

2x0
, I = − c2

2x0
, Ht =

c2 + εx0 − P 0
t

2
,

where the other coefficient are equal to zero. We define λ(χ) :=
∫
χ λ(de). Notice that under

the assumption ρ > σ2 + λ(χ)η2, (H1
′
) and (H3

′
) are satisfied. By following the approach

developed in section 4, the optimal control is given explicitely. We have to solve the decoupled
system of Ricatti equations and BSDEs with jumps (4.63). The Riccati equations (4.64) for K
and Λ (4.67) are given by:(
K + c2

2x0

)2

δ + c1
+ (ρ− σ2 − λ(χ)η2)K = 0,

(
Λ + c2+εx0

2x0

)2

δ
+ ρΛ− (σ2 + λ(χ)η2)K = 0.

(5.76)

Let us also remark that the condition (H2
′
) is not satisfied, but we have the existence of a

solution (K,Λ) to (5) such that Kc1,c2 :=
K + c2

2x0

δ + c1
> 0 and Λε :=

Λ + c2+εx0
2x0

δ
> 0, and

given by:

Kc1,c2 =
−(ρ− σ2 − λ(χ)η2) +

√
(ρ− σ2 − λ(χ)η2)2 + 2c2

ρ−σ2−λ(χ)η2

x0(δ+c1)

2
> 0,

and

Λε =
−ρ+

√
ρ2 + 2ρ(c2+εx0)+2(σ2+λ(χ)η2)K

δx0

2
> 0.

Therefore, we can write the linear BSDE (4.69) with jumps as:

−dYt =

(
Λε
2

(c2 + εx0 − P 0
t )− (ρ+Kc1,c2)Yt + (Kc1,c2 − Λε)Ȳt (5.77)

−σZYt + η

∫
χ
RYt (e)λ(de)

)
dt− ZYt dWt −

∫
χ
RYt (e)π̃(de, dt).

One could check that a solution of the BSDE (5.77) is given by:

(Y,ZY , RY ) = (

∫ ∞
t

e−(ρ+Λε)(s−t)
(

Λε
c2 + εx0 − P 0

s

2

)
ds, 0, 0)0≤t≤T . (5.78)

In the remaining part of the paper, we assume that P 0
t = p0 for all t ≥ 0: p0 is interpreted

as a substitute price for the exhaustible resource. We study two cases. The first one, when

33



p0 = c2 + εx0 i.e. p0 coincides with c2 + εx0 which is the cost of extraction for the last unit
of resource. In ohther words, the Hotelling rent Hr := p0 − c2 − εx0 is equal to zero. The
second case when p0 < c2 + εx0 i.e. the Hotelling rent is negative. The next proposition gives
an explicit solution to the problem (5.75) when Hr = 0.

Proposition 5.1. We assume that p0 = c2 + εx0 for all t ≥ 0, x0 is large enough and 1 >
ρ2 + 2ε

δ . Then the solution of (5.75) is given by

α∗t = Kc1,c2X
∗
t− + (Λε −Kc1,c2)X̄∗t− .

Proof. Since (H1
′
) and (H3

′
) are satisfied and the Riccati equations have a solution, then, by

Theorem (4.4), the optimal control is then given by:

α∗t = Kc1,c2(X∗t− − X̄
∗
t−) + ΛεX̄

∗
t− −

1
2δ

(
c2 + εx0 − P 0

t − Yt
)
.

As P 0
t = p0 = c2 + εx0 for all t ≥ 0, then the solution of the BSDE (5.78) satisfies Yt = 0

for all t ≥ 0 which yields:

α∗t = Kc1,c2(X∗t− − X̄
∗
t−) + ΛεX̄

∗
t− .

It remains to show that the optimal strategy satifies the constraint α∗t ≥ 0 P a.s. for all t ≥ 0.
As x0 is large, by using Taylor’s formula, we have

2 (Λε −Kc1,c2) = −ρ+

√
ρ2 +

2ε

δ
(1 +

ρc2 + 2(σ2 + λ(χ)η2)K

δx0(ρ2 + 2ε
δ )

)− c2ρ

x0(δ + c1)
+ o(

1

x0
)

= −ρ+

√
ρ2 +

2ε

δ
+
c2ρ

x0
(

1

δ
√
ρ2 + 2ε

δ

− 1

δ + c1
) +

2(σ2 + λ(χ)η2)K

δx0

√
ρ2 + 2ε

δ

+ o(
1

x0
).

As 1 > ρ2 + 2ε
δ , then

Λε −Kc1,c2 ≥ 0. (5.79)

We define the stopping time τ∗ as follows:

τ∗ := inf{t ≥ 0 s.t. X∗t ≤ 0}.

Then on the set {t < τ∗}, from inequality (5.79), we have α∗t ≥ 0 P a.s. On the set {t = τ∗},
the state process X∗τ∗ = 0, which implies α∗τ∗ = 0. Since the drift, the diffusion and the jump
terms of the state process are equal to zero, then the process X∗ remains at the level 0 for all
t ≥ τ∗ and the optimal strategy α∗ is the null strategy for all t ≥ τ∗.

In the second case, we assume that p0 < c2 + εx0. It is not obvious to check the positivity
of the the state process and the optimal strategy. We study the stationary level of the reserve
and the optimal production rate in mean. From the definition of X∗, we have

X̄∗t = x0 −
∫ t

0
α∗sds = x0 −

∫ t

0
ΛεX̄

∗
sds

+

∫ t

0

1

2δ

(
c2 + εx0 − p0 −

∫ ∞
s

e(−(ρ+Λε)(u−s))
(

Λε
c2 + εx0 − p0

2

)
du

)
ds
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which implies

X̄∗t = x0 +
(2ρ+ Λε)(c2 + εx0)

2δ

1− e−Λεt

2Λε(ρ+ Λε)

− p0

2δ

∫ t

0
e−Λε(t−s)(1−

∫ ∞
s

Λε
2
e(ρ+Λε)(u−s)du)ds.

It yields that lim
t→∞

X̄∗t =
(2ρ+ Λε)(c2 + εx0 − p0)

4δΛε(ρ+ Λε)
. As the Hotelling rentHr := p0−c2−εx0

is negative, then lim
t→∞

X̄∗t exists and is positive. As lim
t→∞

X̄∗t = x0−
∫ ∞

0
ᾱ∗sds, then lim

t→∞
ᾱ∗t =

0. It means that when we switch to substitue good, there is a remaining ressource and we stop
the production of exhaustible ressource.
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