
HAL Id: hal-03814966
https://hal.science/hal-03814966v1

Preprint submitted on 17 Oct 2022 (v1), last revised 5 May 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Computationally-efficient initialisation of GPs: The
generalised variogram method
Felipe Tobar, Elsa Cazelles, Taco de Wolff

To cite this version:
Felipe Tobar, Elsa Cazelles, Taco de Wolff. Computationally-efficient initialisation of GPs: The
generalised variogram method. 2022. �hal-03814966v1�

https://hal.science/hal-03814966v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Computationally-efficient initialisation of GPs:
The generalised variogram method

Felipe Tobar ftobar@uchile.cl
Initiative for Data & AI
Universidad de Chile

Elsa Cazelles elsa.cazelles@irit.fr
CNRS, IRIT
Université de Toulouse

Taco de Wolff taco.dewolff@inria.cl
Inria Chile

Abstract

We present a computationally-efficient strategy to find the hyperparameters of a Gaussian
process (GP) avoiding the computation of the likelihood function. The found hyperparam-
eters can then be used directly for regression or passed as initial conditions to maximum-
likelihood (ML) training. Motivated by the fact that training a GP via ML is equivalent
(on average) to minimising the KL-divergence between the true and learnt model, we set to
explore different metrics/divergences among GPs that are computationally inexpensive and
provide estimates close to those of ML. In particular, we identify the GP hyperparameters
by matching the empirical covariance to a parametric candidate, proposing and studying
various measures of discrepancy. Our proposal extends the Variogram method developed
by the geostatistics literature and thus is referred to as the Generalised Variogram method
(GVM). In addition to the theoretical presentation of GVM, we provide experimental vali-
dation in terms of accuracy, consistency with ML and computational complexity for different
kernels using synthetic and real-world data.

1 Introduction

Gaussian processes (GPs) are Bayesian nonparametric models for time series praised by their interpretability
and generality. Their implementation, however, is governed by two main challenges. First, the choice of the
covariance kernel, which is usually derived from first principles or expert knowledge and thus may result in
complex structures that hinder hyperparameter learning. Second, the cubic computational cost of standard,
ML-based, training which renders the exact GP unfeasible for more than a few thousands observations.
The GP community actively targets these issues, mainly by the development of robust and computationally
efficient training strategies, and multiple accelerated, cost-efficient, training routines. Though these advances
have facilitated the widespread use of GP models in realistic settings, its success heavily depends on the
initialisation of the hyperparameters.

In practice, initialisation either follows from expert knowledge or time-consuming stochastic search. This
is in sharp contrast with the main selling point of GPs, that is, being agnostic to the problem and able to
freely learn from data. To provide researchers and practitioners with an automated, application-agnostic
and cost-efficient initialisation methodology we propose to learn the hyperparameters by approximating the
empirical covariance by a parametric covariance using divergences between covariances that are inexpensive
to compute. This is certainly inspired by the common practice, such as when one computes some statistics
(e.g., mean, variance, discrete Fourier transform) and identifies the hyperparameters from them. In the
geostatistics literature, a method that follows this concept is the Variogram, however it is restricted to
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particular cases of kernels and divergences. Therefore, we refer to the proposed methodology as Generalised
Variogram Method (GMV) in the sense that it extends the application of the classic methodology to a
broader scenario that includes general stationary kernels and metrics, in particular Fourier-based metrics.

2 Preliminaries

2.1 Motivation

Let us consider y ∼ GP(0, K0) and its realisation y = [y1, . . . , yn] ∈ Rn at times t = [t1, . . . , tn] ∈ Rn. The
kernel K0 is usually learnt by choosing a family {Kθ}θ∈Θ and optimising the log-likelihood

l(θ) = −1
2 Tr K−1

θ yy⊤ − 1
2 log |Kθ| − n

2 log 2π, (1)

with respect to θ ∈ Θ, where we used the cyclic property of the trace, and defined Kθ
def= Kθ(t) according

to [Kθ]ij = Kθ(ti − tj), i, j ∈ {1, . . . , n}. Since Eyy⊤ = K0(t) def= K0, we note that

El(θ) = −1
2 Tr K−1

θ K0 − 1
2 log |Kθ| − n

2 log 2π. (2)

Observe that, up to terms independent of θ, equation 2 is equivalent to negative Kullback-Leibler divergence
(NKL) between the multivariate normal distributions N (0, K0) and N (0, Kθ) given by

DNKL(K0||Kθ) = −1
2

(
Tr K−1

θ K0 − n + log |Kθ|
|K0|

)
. (3)

The above observation reveals that learning a GP by maximising l(θ) in equation 1 can be understood
(in expectation) as minimising the KL between the t-marginalisations of the true process GP(0, K0) and a
candidate process GP(0, Kθ). This motivates the following remark.
Remark 1. Since maximum-likelihood learning of GPs has a cubic computational cost but it is (on average)
equivalent to minimising a KL divergence, what other divergences or distances, computationally cheaper than
the likelihood, can be considered for learning GPs?

2.2 Divergences over covariance functions

We consider zero-mean stationary GPs. The zero-mean restriction can be easily lifted by detrending the data
with respect to a nonlinear parametric regression model to learn the mean function (and then substract it
from the data). The stationary requirement allows us to i) aggregate observations in time when computing
the covariance, and ii) compare covariances in terms of their (Fourier) spectral content. Therefore, we
consider two types of distances over covariances: i) temporal ones, which operate directly to the covariances,
and ii) spectral ones, which operate over the power spectral density (PSD), i.e., the Fourier transform
of the covariances. Though we can use most metrics (e.g., L1, L2) on both domains, the advantage of
the spectral perspective is that allows for using density-specific divergences as it is customary in signal
processing (Basseville, 1989). Bregman divergences, which include the Euclidean, KL and Itakura-Saito
(IS) (Itakura, 1968), are vertical measures, i.e, they integrate the point-wise discrepancy between densities
across their support.

We also consider horizontal spectral measures, based on the minimal-cost to transport the mass from one
distribution—across the support space—onto another. This concept, known as optimal transport (OT) (Vil-
lani, 2009) has only recently been considered for comparing PSDs using, e.g., the 1- and 2-Wasserstein
distances, denoted W1 and W2 (Cazelles et al., 2021; Henderson & Solomon, 2019). See Appendix B for
definitions of vertical and horizontal divergences.

2.3 Related work

Currently, two methodologies for accelerating GP training can be identified. The first one focuses directly
on the optimisation procedure by, e.g., avoiding inverses (van der Wilk et al., 2020), or derivatives
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(Rios & Tobar, 2018), or even by parallelisation; combining these techniques has allowed to process even
a million datapoints (Wang et al., 2019). A second perspective is that of sparse GP approximations us-
ing pseudo-inputs (Quinonero-Candela & Rasmussen, 2005), with particular emphasis on variational meth-
ods (Titsias, 2009). This has allowed for fitting GPs to large datasets (Hensman et al., 2013), training
non-parametric kernels (Tobar et al., 2015), and implementing deep GPs (Damianou & Lawrence, 2013;
Salimbeni & Deisenroth, 2017).

The Wasserstein distance has been used to compare the laws of the GP (Masarotto et al., 2019; Mallasto
& Feragen, 2017), and applied to kernel design, in particular to define GPs (Bachoc et al., 2018) and deep
GPs (Popescu et al., 2020) over the space of probability distributions.

In geostatistics, the variogram function (Cressie, 1993; Chiles & Delfiner, 1999) is defined as the variance of
the difference of a process y at two locations t1 and t2, that is, γ(t) = var[y(t1) − y(t2)]. The variogram is
computed by choosing a parametric form for γ(t) and then fit it to a cloud of points (sample variogram) using
least squares. Common variogram functions in the literature include exponential and Gaussian ones, thus
drawing a natural connection with GP models. Furthermore, when the process y is stationary and isotropic
(or one-dimensional) as in the GP models considered here, the variogram and the covariance K(t) follow
the relationship γ(t) = K(0) − K(t), therefore, given a kernel function the corresponding variogram function
can be clearly identified (and vice versa). The way in which the variogram is fitted in the geostatistics
literature is what inspires our proposed methodology: we fit parametric forms of the covariance and the PSD
to their corresponding samples in order to find appropriate values for the kernel hyperparameters. Also,
as we explore different distances for the covariance and PSD beyond the Euclidean one (least squares) we
denote our method Generalised Variogram Method (GVM).

GVM complements the literature in a way that is orthogonal to the above developments. We find the
hyperparameters of a GPs in a likelihood-free manner by minimising a loss function operating directly on
the sample covariace or its Fourier transform. As we will see, GVM is robust to empirical approximations of
the covariance or PSDs, admits arbitrary distances and has a remarkably low computational complexity.

3 A likelihood-free covariance-matching strategy for training GPs

Let us consider the zero-mean stationary process y ∼ GP(0, Kθ) with covariance Kθ and hyperparameter
θ ∈ Θ. Recall that the following statistic is an estimator of Kθ.
Definition 1. Let y ∈ R be a zero mean stochastic process over R with observations y = [y1, . . . , yn] ∈ Rn

at times t = [t1, . . . , tn] ∈ Rn. The empirical covariance of y is given by

K̂n(t) =
n∑

i,j=1

yiyj1t=ti−tj

Card{t|t = ti − tj}
. (4)

We aim to find the hyperparameters of y by projecting K̂n(t) onto the parametrised family K = {Kθ|θ ∈ Θ}.
That is, by finding θ∗ such that Kθ(·) is as close as possible to K̂n(t) in equation 4, i.e.,

θ∗
n = arg min

θ∈Θ
D(K̂n, Kθ), (5)

where the function D(·, ·) is the chosen criterion for similarity given by any distance or divergence.

3.1 Fourier-based covariance divergences

If the covariance Kθ is integrable and stationary, Bochner’s Theorem (Bochner, 1959) states that Kθ and
the process’ power spectral density (PSD), denoted Sθ, are Fourier pairs, that is,

Sθ(ξ) = F {Kθ} def=
∫
R

Kθ(t)e−j2πξtdt, (6)

where j is the imaginary unit and F {·} denotes the Fourier transform operator.
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Remark 2. Since zero-mean stationary GPs are uniquely determined by their PSDs, any distance defined
on the space of PSDs can be “lifted” to the space covariances and then to that of GPs.

In the same fashion as we proposed to learn the hyperparameters of the GP by matching the covariance
solving the optimisation in equation 5, we can learn the hyperparameters by projecting now an estimator of
the PSD, denoted Ŝn onto a parametric family S = {Sθ, θ ∈ Θ}, that is,

θ∗
n = arg min

θ∈Θ
DF (Ŝn, Sθ), (7)

where DF (·, ·) is a divergence operating on the space of PSDs. However, since the map Kθ → Sθ is one-to-one,
equation 5 and equation 7 are equivalent when DF (·, ·) = D(F {·} , F {·}) and S = F {K}.

We will consider parametric families S with explicit inverse Fourier transform, since this way θ parametrises
both the kernel and the PSD and can be learnt in either domain. These families include the Dirac delta,
Cosine, Square Exponential (SE), Student’s t, Sinc, Rectangle, and their mixtures.

3.2 A particular case with explicit solution

Of particular relevance to our work is the 2-Wasserstein distance (W2) and location-scale PSDs.
Definition 2 (Location–scale). A family of one-dimensional integrable PSDs is said to be of location-scale
type if it is given by {

Sµ,σ(ξ) = 1
σ

S0,1

(
ξ − µ

σ

)
, µ ∈ R, σ ∈ R+

}
, (8)

where µ ∈ R is the location parameter, σ ∈ R+ is the scale parameter and S0,1 is the prototype of the family.

For arbitrary prototypes S0,1, location-scale families of PSDs are commonly found in the GP literature. For
instance, the SE, Dirac delta, Student’s t, Rectangular and Sinc PSDs, correspond to the Exp-cos, Cosine,
Laplace, Sinc, and Rectangular kernels respectively. Location-scale families do not, however, include kernel
mixtures, which are also relevant in our setting and will be dealt with separately. Though the prototype
S0,1 might also be parametrised (e.g., with a shape parameter), we consider those parameters to be fixed
and only focus on (µ, σ) for the rest of this section.
Remark 3. Let us consider a location-scale family of distributions with prototype S0,1 and an arbitrary
member Sµ,σ. Their quantile (i.e., inverse cumulative) functions, denoted Q0,1 and Qµ,σ respectively, obey

Qµ,σ(p) = µ + σQ0,1(p). (9)

The linear expression in equation 9 is pertinent in our setting and motivates the choice of the 2-Wasserstein
distance W2. This is because for one-dimensional distributions, W 2

2 (S, Sθ) can be expressed in terms of the
quantile functions of S and Sθ, denoted respectively Q and Qθ, given by

W 2
2 (S, Sθ) =

∫ 1

0
(Qθ(p) − Q(p))2dp. (10)

We are now in position to state the first main contribution of our work.
Theorem 1. If S is a location-scale family with prototype S0,1, the minimiser of W2(S, Sµ,σ) is unique and
given by

µ∗ =
∫ 1

0
Q(p)dp and σ∗ = 1∫ 1

0 Q2
0,1(p)dp

∫ 1

0
Q(p)Q0,1(p)dp (11)

where Q is the quantile function of S. The PSD S does not need to be location-scale.

Proof Sketch. The proof follows from the fact that W 2
2 (S, Sµ,σ) is convex both on µ and σ, which is shown by

noting that its Hessian is positive via Jensen’s inequality. Then, the first order conditions give the solutions
in equation 11. The details of the proof can be found in Appendix A.
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Remark 4. Although integrals of quantile functions are not usually available in closed-form, computing
equation 11 is straightforward. First, Q0,1(p) is known for a large class of prototypes including SE and
rectangles. Second, µ∗ = Ex∼S [x] and

∫ 1
0 Q2

0,1(p)dp = Ex∼S [x2], where x is a random variable with PDF S.
Third, both integrals are one-dimensional and supported on [0, 1], thus numerical integration is inexpensive
and precise, specially for S with compact support.

As pointed out by Cazelles et al. (2021), W 2
2 (S, Sθ) is in general non-convex, however, for the particular case

of the location-scale family of PSDs, convexity holds. Therefore, identifying the result in Theorem 1 with
the optimisation problem in equation 7, using the W2 metric in the Fourier domain allows us to approximate
the estimator Ŝn by replacing S by Ŝn in equation 11. Since this family includes usual kernel choices, the
convexity of W 2

2 (S, Sµ,σ) promises to be instrumental to learning GPs.

3.3 Learning from data

Our objective is to learn the ground truth kernel Kθ by matching an empirical (data-driven) estimate of
the kernel Kθ with a parametric form. We achieve this using metrics in the temporal domain, i.e., solving
equation 5, or in the spectral domain, i.e., solving equation 7. Learning the hyperparameters in this manner
is possible provided that the statistics K̂n and Ŝn converge to Kθ and Sθ respectively. We next provide
theoretical results on the convergence of the optimal minimiser θ∗

n. The first result, Proposition 1, focuses
on the particular case of the 2-Wasserstein distance and the location-scale family, presented in Section 3.2.
Proposition 1. For Sθ in a location-scale family, S the ground truth PSD and DF = W 2

2 , EW 2
2 (S, Ŝn) →

0 implies that the empirical minimiser θ∗
n in equation 7 converges to the true minimiser θ∗ =

arg minθ∈Θ DF (S, Sθ), meaning that E|θ∗
n − θ∗| → 0.

Proof Sketch. First, in the location-scale family we have θ = (µ, σ). Then, the solutions in Theorem 1 allow
us to compute upper bounds for |µ∗ −µ∗

n| and |σ∗ −σ∗
n| via Jensen’s and Hölder’s inequalities, both of which

converge to zero as EW 2
2 (S, Ŝn) → 0. The details of the proof can be found in Appendix A.

The second result, Proposition 2, deals with the more general setting of arbitrary parametric families, the
distances L1, L2, W1, W2 and either temporal and frequency based estimators. To cover both cases, we will
denote f̂n to refer to either K̂n or Ŝn. Let us also consider the parametric function fθ ∈ H := {fθ|θ ∈ Θ}
and the ground truth function f which denotes either the groud truth covariance or ground-truth PSD.
Proposition 2. For general parametric families H, the empirical solution θ∗

n converges a.s. to the true
solution θ∗ under the following sufficient and stronger conditions: (i) D = Wr or Lr, r = 1, 2, (ii)
D(f̂n, f) a.s.−−−−→

n→∞
0; (iii) θn −−−−→

n→∞
θ ⇐⇒ D(fθn

, fθ) → 0; and (iv) the parameter space Θ is compact.

Proof. This result follows as a particular case from Theorem 2.1 in Bernton et al. (2019), where the authors
study general r-Wasserstein distance estimators for parametric families of distributions for empirical mea-
sures, under the notion of Γ-convergence or, equivalently, epi-convergence. The proof for the Lr, r = 1, 2
case is similar to that of Wr.

With the above results, implementation of GVM only requires defining K̂n and Ŝn. In practice, we use
equation 4 for K̂n due to its known convergence properties. For Ŝn, the usual choice is the Periodogram
(ŜPer) (Schuster, 1900). Though ŜPer is asymptotically unbiased (∀ξ,EŜPer(ξ) → S(ξ)), it is inconsistent, i.e.,
its variance does not vanish when n → ∞ (Stoica & Moses, 2005)[Sec. 2.4.2], meaning that Props. 1 & 2 do
not guarantee θ∗

n → θ∗. Luckily, the variance of ŜPer(ξ) can be reduced via windowing and the Welch/Bartlett
techniques which produce (asymptotically) consistent and unbiased estimates of S(ξ), ∀ξ (Stoica & Moses,
2005).

4 Practical considerations

4.1 Solving the general case: beyond the location-scale family

Recall that the proposed method has a closed-form solution only when the parametric family for the PSD
is location-scale and we consider the W2 distance over the spectral domain. However, in the general case
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the corresponding minimisation is not convex in θ, therefore, iterative/numerical optimisation is needed. In
particular, for horizontal Fourier distances the derivative of the loss depends on the derivative of the quantile
function Qθ which might not even be known in closed form in general, specially for mixtures. However, in
most cases the lags of the empirical covariance or the frequencies of the Periodogram belong to a compact
space and thus numerical computations are precise and inexpensive. Therefore, approximate derivatives
can be considered (e.g., BFGS) though in our experiments the derivative-free Powell method also provide
satisfacotry results.

4.2 Linear computational complexity

First, for temporal divergences (operating on the covariance) we can modify the statistic in equation 4 using
binning, that is, by averaging values for which the lags are similar; this process is automatic in the case of
evenly-sampled data and widely used in discrete-time signal processing. This allows to reducing the amount
of summands in K̂n from n(n+1)

2 to an order n or even lower in the cases where the range of the data grows
beyond the length of the correlations of interests.

Second, for the exact case of the spectral divergences in Sec. 3.2 the cost of the 2-Wasserstein loss is
given by calculating i) the Periodogram Ŝn, ii) its corresponding quantile function, and iii) the integrals
in equation 11. The Periodogram has a complexity O(nk), where n is the number of observations and k
the amount of frequency bins; in the evenly-sampled case, one could set k = n and apply the fast Fourier
transform at a cost O(n log n). However, for applications where the amount of datapoints greatly exceeds the
required frequency resolution, k can be considered to be constant, which results in a cost O(n). The quantile
functions and their integrals also have a linear cost but only in the number of frequency bins O(k) since they
are frequency histograms, therefore, computing the overall solution has a linear cost in the data. Second,
for the general case using numerical optimisation methods, we need to calculate Ŝn or its quantile—which
are O(n)—only once, to then compute the chosen distance D, which is O(k) for discrete measures defined
on a k-point grid, as many times as the optimisation routine requires it. Therefore, for the general case the
cost is O(k) but with a constant that depends on the complexity of the parametric family {Sθ, θ ∈ Θ} and
the optimiser of choice.

4.3 Noise variance and relationship to maximum likelihood

Following the assumptions of the Fourier transform, the spectral divergences considered apply for Lebesgue-
integrable PSDs, which rules out the relevant case of noise-corrupted observations. This is because the
observation noise, represented by a Dirac delta covariance, implies a PSD that includes a constant, positive,
infinite-support, spectral floor that is non-integrable. These cases can be dealt with the temporal divergences,
which are well suited (theoretically and in practice) to handle noise.

The proposed hyperparameter-search method is intended both as a standalone likelihood-free GP learning
technique and also as a initialisation approach to fed initial conditions to a maximum likelihood (ML)
routine. In this sense, we identify a relationship between the ML estimator θ̂ML and the proposed estimator
θ∗, obtained from equation 7, for DF = L2. From equation 6 and Plancherel’s theorem, we have ∥S−Sθ∥L2 =
∥K − Kθ∥L2 . Then, by definition of the estimators and Lemma 2 in Hoffman & Ma (2020), we obtain the
following inequality

DKL(K0||Kθ̂ML
) ≤ DKL(K0||Kθ∗) ≤ 1

2∥K−1
0 ∥2∥K−1

θ∗ ∥2∥K − Kθ∗∥F , (12)

where ∥ · ∥F denotes the matrix Frobenius norm and recall that K0 is the kernel of the ground truth GP.
Denoting the ball centred at 0 with radius M by B(0, M), we present the following remark.
Remark 5. The inequality in equation 12 states that if the proposed estimator θ∗ is such that ∥S −Sθ∗∥L2 ∈
B(0, M), then DKL(K0||Kθ̂ML

) ∈ B(0, 1
2 ∥K−1

0 ∥2∥K−1
θ∗ ∥2M). Therefore, under the reasonable assumption

that the function θ 7→ Kθ only produces well-conditioned matrices, the factor ∥K−1
0 ∥2∥K−1

θ∗ ∥2 is bounded and
thus both balls have radius of the same order.
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5 Experiments

The following experiments (E) assess different aspects of the proposed GVM: ability for multi-input data (E1),
robustness to initialisation and observations (E2), sensibility to ways of computing Ŝn (E3), computation
time (E4), robustness to the chosen spectral metric (E5), and finding initial conditions for kernels with
several hyperparameters (E6). The benchmarks were implemented on MOGPTK (de Wolff et al., 2021), and
the Python codes (in Appendix C) will be released to the public.

5.1 E1: Learning an isotropic SE kernel (standard variogram, 5-dimensional inputs, L2)

In geostatistics, the standard variogram method learns a parametric representation of the sample covariance
and is thus a particular instance of our method. To replicate this setting, we sampled 1000 points from a
GP with SE kernel K(τ) = σ2 exp(− 1

2l2 ||τ ||2) + σ2
noiseδt, where τ ∈ R5 and σ2 = 5, l = 1 and σ2

noise = 1.
We chose the L2 distance to match this kernel and the result is presented in Fig. 1. The implementation of
GVM was executed in 0.8[s] and found hyperparameters σ2 = 5.85, l = 1.09, and σnoise = 1.02.

0 1 2 3 4 5
Lag magnitude

0

1

2

3

4

5
Variogram for a 5-dimensional isotropic SE kernel

Empirical variance
Learned kernel (GVM)

Figure 1: Empirical covariance and fitted covariance function. The data consisted of 1000 5-dimensional
datapoints.

5.2 E2: Stability with respect to initial conditions (SM kernel, L2, temporal)

This experiment assessed the stability of GVM with respect to random initial conditions and dif-
ferent realisations. We considered a GP with a 2-component spectral mixture kernel K(t) =∑2

i=1 σ2
i exp(−γiτ

2) cos(2πµiτ) + σ2
noiseδτ with hyperparameters σ1 = 2, γ1 = 10−4, µ1 = 2 · 10−2,

σ2 = 2,γ2 = 10−4, µ2 = 3 · 10−2, σnoise = 1. We produced 4000-point realisations from the GP and 50
random initial conditions {θr}50

r=1 according to [θr]i ∼ Uniform[ 1
2 θi,

3
2 θi], where θi is the i-th true hyperpa-

rameter.

We considered two settings: i) train from {θr}50
r=1 using ML, and ii) compute GVM from {θr}50

r=1 and
then perform ML. Each procedure was implemented using a single realisation (to test stability wrt θr) and
different realisations (to test stability wrt the data). Our estimates θ̂i were assesed in terms of the NLL and
the relative mean absolute error (RMAE) of the parameters

∑8
i=1 |θi − θ̂i|/|θi|.

Fig. 2 shows the NLL (left) and RMAE (right) versus computation time, for the cases of fixed (top) and
multiple (bottom) observations; all times start from t = 1 to use the logarithmic scale. First, in all cases the
GVM initialisation (in red) took about half a second and resulted in an NLL/RMAE virtually identical to
those achieved by ML initialised by GVM, this means that GVM provides reliable parameters and not just
initial conditions for ML. Second, for the fixed observations (top), the GVM was stable wrt θr unlike ML
which in some cases diverged. Third, for the multiple observations (bottom) GVM-initialised ML diverged
in two (out of 50) runs, which is far fewer than the times that random-initialised ML diverged.

5.3 E3: Sensibility of GVM wrt the Periodogram (exact case: W2, location-scale)

We then considered kernels with location-scale PSDs and the W2 metric over the PSDs. This case has a
unique solution but requires us to compute Ŝn in equation 7; this experiment evaluates different ways of
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Figure 2: GVM as initialisation for ML starting form 50 random initial conditions: proposed GVM (red),
standard ML (green) and ML starting from GVM (blue). The top plots consider a single dataset, while the
bottom plots consider different realisations for each initial condition. The L-BFGS-B optimizer was used
with the default gradient tolerance in order for the results to be comparable.

Table 1: Parameter identification for the Exp-cos and Sinc kernels under different sampling settings, Peri-
odogram methods and windows using GVM. NB: estimates are multiplied by 100 for ease of presentation.

Kernel Window Periodogram Bartlett Welch

Exp-cos
none 4.97±0.12/0.98±0.09 5.01±0.12/1.30±0.14 4.98±0.13/1.11±0.08
hann 4.97±0.19/0.94±0.13 4.95±0.15/1.12±0.09 4.96±0.14/1.01±0.08
hamm 4.97±0.18/0.94±0.12 4.95±0.15/1.10±0.09 4.96±0.14/1.00±0.08

Sinc
none 4.98±0.09/1.02±0.15 5.00±0.11/2.40±0.15 4.98±0.09/1.67±0.10
hann 4.98±0.11/0.90±0.16 4.98±0.09/2.13±0.05 4.98±0.09/1.41±0.08
hamm 4.98±0.11/0.90±0.15 4.88±0.09/1.99±0.05 4.98±0.09/1.73±0.09

doing so. We produced 2000 observations evenly-sampled in [0, 4000] from GPs with square exponential and
rectangular PSDs both with location µ = 0.05 and scale l = 0.01, they correspond to the single component
Exp-cos and Sinc kernels respectively. We computed Ŝ via the Periodogram, Welch and Bartlett methods
with different windows. Table 1 shows the learnt parameters (multiplied by 100 for ease of presentation) with
their standard deviation over 100 runs. The found estimates are consistent, in particular for the location
parameter, for both kernels. In general, all approximations methods and windows give accurate estimates
with the exception of the windowed version (Bartlett and Welch) for the Sinc kernel. This can be attributed
to the spectral energy spread in the frequency domain due to the windows considered, then, by using the
Wasserstein-2 metric, the scale parameter is overestimated. For both kernels, the case of the (windowless)
Periodogram is shown in Fig. 3 and the remaining cases are all shown in Appendix D. In the light of these
results, we considered the Periodogram (no window) for the following experiments.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
frequencies

0

50

100

150
Learnt parameters are loc: 0.0501, scale: 0.0089
Periodogram (w: None)
Learnt kernel
Ground truth Exp-cos kernel

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
frequencies

0

100

200

Learnt parameters are loc: 0.0506, scale: 0.0108
Periodogram (w: None)
Learnt kernel
Ground truth Sinc kernel

Figure 3: GVM estimates for Exp-cos (top) and Sinc (bottom) kernels shown in red against Ŝ (blue) and
true kernels (black). This case: Periodogram, no window.
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5.4 E4: Linear complexity (exact case)

We then evaluated the computation time for the exact case of GVM (W2 distance and location-scale family)
for an increasing amount of observations. We considered unevenly-sampled observations from an single
component SM kernel (µ = 0.05, σ = 0.01) in the range [0, 1000]. We compared GVM against i) the ML
estimate starting from the GVM value (full GP, 100 iterations), and ii) the sparse GP using 200 pseudo
inputs (Snelson & Ghahramani, 2006). Fig. 4 shows the computing times versus the number of observations,
and validated the claimed linear cost of GVM and its superiority wrt to the rest of the methods. The (solid
line) interpolation in the plot is of linear order for GVM, linear for sparse GP since the number of inducing
points is fixed, and cubic for the full GP.

Figure 4: Training times vs number of datapoints.

5.5 E5: Fitting a 20-component spectral mixture (different spectral metrics)

This experiment shows the effect of different spectral distances in the GVM estimates using a real-world
audio signal from the Free Spoken Digit Dataset1. We trained a 20-component SM kernel (Wilson & Adams,
2013), a kernel known to be difficult to train, and considered the distances L1, L2, W1 and W2 (spectral);
Itakura-Saito and KL were unstable and left our of the comparison. Fig. 5 shows the results of the GVM:
observe that under almost all metrics, the 20-component spectral mixture matches the Periodogram. The
exception is W2 which struggles to replicate the PSD peaks due to its objective of averaging mass horizontally.

0.00 0.02 0.04 0.06 0.08
frequencies

0

100

200

300
Spectral distance: L1

Periodogram (w: None)
Learnt 20-comp Spectral Mix.

0.00 0.02 0.04 0.06 0.08
frequencies

0

100

200

300
Spectral distance: L2

Periodogram (w: None)
Learnt 20-comp Spectral Mix.

0.00 0.02 0.04 0.06 0.08
frequencies

0

100

200

300
Spectral distance: W1

Periodogram (w: None)
Learnt 20-comp Spectral Mix.

0.00 0.02 0.04 0.06 0.08
frequencies

0

100

200

300
Spectral distance: W2

Periodogram (w: None)
Learnt 20-comp Spectral Mix.

Figure 5: GVM matching Periodogram with a 20-component SM under different spectral metrics.
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Figure 6: NLLs for the SE spectral mixtures (4,8,12 and 16 components) with different initialisation strate-
gies.

5.6 E6: Learning spectral mixtures and parameter initialisation (L2, multiple orders)

In this last experiment, GVM was implemented to find the initial conditions of a GP with SM kernel (4,
8, 12 and 16 components) to a real-world 1800-point heart-rate signal from the MIT-BIH database2. We
considered the L2 metric (spectral) minimised with Powell and then passed the hyperparameters to an
ML routine for 1500 iterations (using Adam with learning rate = 0.1). This methodology was compared
against the random initialisation and provided by MOGPTK based on Bayesian nonparametric spectral
estimation (BNSE) (Tobar, 2018). Fig. 7 first shows the GVM approximations to the heart-rate PSD using
16-component spectral mixtures, for both both kernels.

Table 2: Computation times (secs) for fitting SMs.
4-comp 8-comp 12-comp 16-comp

GVM init 2.6 7.6 10.9 23.9
BNSE init 74.6 68.9 72.0 74.1
ML 420.3 464.6 529.2 582.6

Fig. 6 shows NLL for the cases considered. Observe that: i) the non-initialised ML training becomes trapped
in local minima in all four cases, ii) the initialisation provided by GVM provides a dramatic reduction of
the NLL, even wrt to the BNSE initialisation, iii) the “elbow” at the beginning of the GVM-initialised case
suggests that the ML training could have run for a a few iterations (e.g., 100) and still reach a sound solution.
Table 2 shows the execution times and reveals the superiority of GVM also in computational time.
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Periodogram (w: None)
Learnt 16-comp Sinc Mix.

Figure 7: GVM approximations of the PSD of a 1800-sample heart-rate signal using 16-components SE (top)
and rectangular (bottom) mixtures. Training time shown above each plot.

6 Conclusions

By direct minimisation of the discrepancy among covariance functions and their Fourier transforms, we
have proposed a novel method for training Gaussian processes, which avoids computation of the (cubic cost)

1https://github.com/Jakobovski/free-spoken-digit-dataset
2http://ecg.mit.edu/time-series/
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likelihood function, and is thus well suited for stationary data. Our approach, termed Generalised Variogram
Method (GVM), represents a critical improvement in terms of computational complexity: we have shown,
both theoretically and empirically, that for the particular case of the 2-Wasserstein spectral distance and
location-scale PSDs, GVM is convex and its solution can be computed in a single step. In experimental
terms, we showed the following properties of GVM in the general case: i) applicability to multi-input data,
ii) stability wrt to different ways of computing the Periodogram, iii) consistency under different realisations
of the GP unlike ML, iv) computational efficiency wrt ML and sparse GPs, v) a realistic alternative to
compute initial conditions for ML resulting in considerable reduction of ML iterations, and lastly, vi) ability
to train kernels of large number of components that are challenging to train from random initial conditions
using ML.

We hope that our work paves the way for further research. In theoretical terms, we envision extensions
towards non-stationary data using, e.g., time-frequency representations or mini-batches. In practical terms,
our developed companion software (to be converted into a standalone toolbox) will help others make use of
this initialisation method.
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A Proofs

A.1 Convexity of spectral loss for W2 and location-scale family

Proof of Theorem 1. We recall that

W 2
2 (S, Sµ,σ) =

∫ 1

0
(Qµ,σ(p) − Q(p))dp. (13)
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From a direct application of the rule of differentiation under the integral sign, we get the gradient for the
location-scale family:

∇µ,σW 2
2 (S, Sµ,σ) = 2

∫ 1

0
(Qµ,σ(p) − Q(p))∇µ,σQµ,σ(p)dp (14)

= 2
∫ 1

0
(µ + σQ0,1(p) − Q(p))∇µ,σ(µ + σQ0,1(p))dp

= 2
∫ 1

0
(µ + σQ0,1(p) − Q(p))

(
1

Q0,1(p)

)
dp.

Hessian for the location-scale family:

Hµ,σW 2
2 (S, Sµ,σ) = 2

∫ 1

0

(
1 Q0,1(p)

Q0,1(p) Q0,1(p)2

)
dp. (15)

Determinant of the Hessian (via Jensen’s inequality):

|H|/2 =
∫ 1

0
Q0,1(p)2dp −

(∫ 1

0
Q0,1(p)dp

)2

>

∫ 1

0
Q0,1(p)2dp −

∫ 1

0
Q0,1(p)2dp = 0, (16)

where the inequality is strict due to the strict convexity of (·)2.

Therefore, the first order conditions are given by:

∫ 1

0
(µ + σQ0,1(p) − Q(p))dp = 0 ⇐⇒ µ =

∫ 1

0
(Q(p) − σQ0,1(p))dp =

∫ 1

0
Q(p)dp (17)

and
∫ 1

0
(µ + σQ0,1(p) − Q(p))Q0,1(p)dp = 0 (18)

⇐⇒ σ =
∫ 1

0 (Q(p) − µ)Q0,1(p)dp∫ 1
0 Q0,1(p)2dp

=
∫ 1

0 Q(p)Q0,1(p)dp∫ 1
0 Q2

0,1(p)dp
, (19)

where in the last expression we have used the fact that the location of the prototype S0,1 is zero and so is
its mean, meaning that if x ∼ S0,1 we can write

∫ 1
0 µQ0,1(p)dp = µEx∼S0,1 [x] = 0.

A.2 Learning from data (W2 distance and location-scale family)

Proof of Proposition 1. First, recall that in the location-scale family θ = (µ, σ). We denote by Q and Q̂n

the respective quantile functions of S and Ŝn. Then, following the solutions in Theorem 1 and Jensen’s
inequality we can compute the following upper bound for the location parameter µ∗:

(E|µ∗ − µ∗
n|)2 ≤ E|µ∗ − µ∗

n|2 = E
∣∣∣∣∫ 1

0
Q(p)dp −

∫ 1

0
Q̂n(p)dp

∣∣∣∣2

≤ E
[∫ 1

0
|Q(p) − Q̂n(p)|2dp

]
= E[W 2

2 (S, Ŝn)],

and by hypothesis EW 2
2 (S, Ŝn) → 0.
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In the same sense, now using Hölder’s inequality, we obtain the following bound for the scale parameter σ∗:

E|σ∗ − σ∗
n| = E

∣∣∣∣∫ 1

0
Q(p)Q0,1(p)dp −

∫ 1

0
Q̂n(p)Q0,1(p)dp

∣∣∣∣
≤ E

[∫ 1

0
|(Q(p) − Q̂n(p))Q0,1(p)|dp

]
≤ E

[(∫ 1

0
|Q(p) − Q̂n(p)|2dp

) 1
2
] (∫ 1

0
|Q0,1(p)|2dp

) 1
2

= E[W2(S, Ŝn)]
(∫ 1

0
|Q0,1(p)|2dp

) 1
2

,

which tends to 0 by again Jensen’s inequality, (E[W2(S, Ŝn)])2 ≤ E[W 2
2 (S, Ŝn)] → 0.

B Definition of the distances and divergences

For two functions f1 and f2, we have the following general distances

• 1-Euclidean : L1(f1, f2) =
∫
R |f1(ξ) − f2(ξ)|dξ

• 2-Euclidean : L2(f1, f2) =
∫
R(f1(ξ) − f2(ξ))2dξ

Furthermore, when f1 and f2 are densities with quantile functions Q1 and Q2 respectively, we have the
additional divergences.

• 1-Wasserstein (Villani, 2009; Peyré & Cuturi, 2019) :

W1(f1, f2) =
∫ 1

0
|Q1(p) − Q2(p)|dp

• 2-Wasserstein (Villani, 2009; Peyré & Cuturi, 2019) :

W2(f1, f2) =
∫ 1

0
(Q1(p) − Q2(p))2dp

• Kullback-Leibler : DKL(f1∥f2) =
∫
R log

(
f1(ξ)
f2(ξ)

)
f1(ξ)dξ

• Itakura-Saito (Itakura, 1968) :

DIS(f1∥f2) =
∫
R

(
f1(ξ)
f2(ξ) − log f1(ξ)

f2(ξ) − 1
)

dξ

• Bregman divergences (Amari, 2016) : for a function G : R → R that is differentiable and strictly
convex,

DG(f1, f2) = G(f1) − G(f2) − ⟨∇G(f2), f1 − f2⟩

Here, we have assumed that both f1 and f2 integrate unity, in the cases where this condition is not met, the
densities can be normalised before computing the distance.
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C Code

We have developed a short self-contained toolbox included in the attached Supplementary Material. The
purpose of the code is to facilitate the use of the proposed method by the community and in particular to
replicate all our results. The components included are as follows

• The files waflgp.py and gpinit.py defines the class, constructor and methods for the spectral and
temporal distances respectively.

• The file utils.py, which contains simple auxiliary functions

• The Jupyer Notebook Exp0_minimal_ex, a minimal working example of our toolbox

• Notebooks Exp1, Exp2, Exp3, Exp4, Exp5, Exp6 replicate the paper experiments.

• The data used for the experiments (heart-rate and audio)

For the reader’s conveniece, Jupyter Notebook Exp0_minimal_ex is attached here.

Minimal working example of provided code

Exp0 _minimal_ ex

June 3, 2021

[1]: #general imports
import numpy as np
import matplotlib.pyplot as plt
#our package
from waflgp import *
import utils

[2]: #load data
signal = np.loadtxt('Data/hr2.txt')

[3]: #instantiate model, sum of 16 Gaussians
q = 16
gp = waflgp(space_output=signal, aim = 'learning', kernel = 'qSM')#Spectral Mix
#set frequencies (optional)
freqs = np.linspace(0,0.02,2000)
gp.set_freqs(freqs)

[4]: #train with periodogram, L2 metric and q components
gp.train_WL(method = 'periodogram', metric = 'L2', order=q)
#plot Periodogram and best PSD fit
gp.plot_psd(title = f'Minimal example')

Optimization terminated successfully.
Current function value: 0.002876
Iterations: 33
Function evaluations: 21261

L2-ok
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D Additional figures for E3

Experiment E3 shows the sensibility of the choice of Periodogram method and window for two kernels. Here,
we provide all the figures corresponding to the estimates in Table 2 in the paper. The caption of each set of
figures explains the setting considered.
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Figure 8: Kernel: Exp-cos.
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Figure 9: Kernel: Sinc.
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