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ABSTRACT
This paper introduces a novel theoretically sound approach for

the celebrated CMA-ES algorithm. Assuming the parameters of

the multi variate normal distribution for the minimum follow a

conjugate prior distribution, we derive their optimal update at

each iteration step. Not only provides this Bayesian framework a

justification for the update of the CMA-ES algorithm but it also gives

two new versions of CMA-ES either assuming normal-Wishart or

normal-Inverse Wishart priors, depending whether we parametrize

the likelihood by its covariance or precision matrix. We support

our theoretical findings by numerical experiments that show fast

convergence of these modified versions of CMA-ES.

CCS CONCEPTS
• Mathematics of computing → Probability and statistics;
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1 INTRODUCTION
The covariance matrix adaptation evolution strategy (CMA-ES) [12]

is arguably one of the most powerful real-valued derivative-free

optimization algorithms, finding many applications in machine

learning. It is a state-of-the-art optimizer for continuous black-box

functions as shown by the various benchmarks of the COmparing

Continuous Optimisers INRIA platform for ill-posed functions. It

has led to a large number of papers and articles and we refer the

interested reader to [1, 2, 4–6, 10–12, 15, 21] and [25] to cite a few.

It has has been successfully applied in many unbiased perfor-

mance comparisons and numerous real-world applications. In par-

ticular, in machine learning, it has been used for direct policy search

in reinforcement learning and hyper-parameter tuning in super-

vised learning ([13, 14, 16]), and references therein, as well as hy-

perparameter optimization of deep neural networks [18]
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In a nutshell, the (𝜇 / 𝜆) CMA-ES is an iterative black box opti-

mization algorithm, that, in each of its iterations, samples 𝜆 candi-

date solutions from a multivariate normal distribution, evaluates

these solutions (sequentially or in parallel) retains 𝜇 candidates

and adjusts the sampling distribution used for the next iteration

to give higher probability to good samples. Each iteration can be

individually seen as taking an initial guess or prior for the multi

variate parameters, namely the mean and the covariance, and after

making an experiment by evaluating these sample points with the

fit function updating the initial parameters accordingly.

Historically, the CMA-ES has been developed heuristically, mainly

by conducting experimental research and validating intuitions em-

pirically. Research was done without much focus on theoretical

foundations because of the apparent complexity of this algorithm.

It was only recently that [3, 8] and [21] made a breakthrough and

provided a theoretical justification of CMA-ES updates thanks to

information geometry. They proved that CMA-ES was performing

a natural gradient descent in the Fisher information metric. These

works provided nice explanation for the reasons of the performance

of the CMA-ES because of strong invariance properties, good search

directions, etc

There is however another way of explanation that has been

so far ignored and could also bring nice insights about CMA-ES.

It is Bayesian statistics theory. At the light of Bayesian statistics,

CMA-ES can be seen as an iterative prior posterior update. But

there is some real complexity due to tricky updates that may ex-

plain why this has always been ignored. First of all, in a regular

Bayesian approach, all sample points are taken. This is not the case

in the (𝜇/𝜆) CMA-ES as out of the 𝜆 generated paths, only the 𝜇

best are selected. The updating weights are also constant which is

not consistent with Bayesian updates. But more importantly, the

covariance matrix update is the core of the problem. It appeals

important remarks. The update is done according to a weighted

combination of a rank one matrix referred to 𝑝𝐶𝑝
𝑇
𝐶
with parameter

𝑐1 and a rank𝑚𝑖𝑛(𝜇, 𝑛) matrix with parameter 𝑐𝜇 , whose details

are given for instance in [9]. The two updates for the covariance

matrix makes the Bayesian update interpretation challenging as

these updates are done according to two paths: the isotropic and

anisotropic evolution path. All this may explain why a Bayesian

approach for interpreting and revisiting the CMA-ES algorithm

have seemed a daunting task and not tackled before.

This is precisely the objective of this paper. Section 2 recalls

various Bayesian concepts of updates for prior and posterior to

highlight the analogy of an iterative Bayesian update. Section 3

presents in greater details the Bayesian approach of CMA-ES, with

the corresponding family of derived algorithms, emphasizing the

various design choices that can conduct to multiple algorithms.

Section 4 provides numerical experiments and shows that Bayesian

2023-04-18 13:30. Page 1 of 1–11.
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adapted CMA-ES algorithms perform well on convex and non con-

vex functions. We finally conclude about some possible extensions

and further experiments.

However, the analogy with a successive Bayesian prior posterior

update has been so far missing in the landscape of CMA-ES for

multiple reasons. First of all, from a cultural point of view, the evolu-

tionary and Bayesian community have always been quite different

and not overlapping. Secondly, the CMA-ES was never formulated

in terms of a prior and posterior update making its connection with

Bayesian world non obvious. Thirdly, when looking in details at the

parameters updates, the weighted combination between the global

and local search makes the interpretation of a Bayesian posterior

update non trivial. We will explain in this paper that the global

search needs to be addressed with a special dilatation techniques

that is not common in Bayesian wold.

2 FRAMEWORK
CMA-ES computes at each step an update of the mean and co-

variance of the distribution of the minimum. From a very general

point of view this can be interpreted as a prior posterior update in

Bayesian statistics.

2.1 Bayesian vs Frequentist probability theory
The justification of the Bayesian approach is discussed in [23]. In

Bayesian probability theory, we assume a distribution on unknown

parameters of a statistical model that can be characterized as a

probabilization of uncertainty. This procedure leads to an axiomatic

reduction from the notion of unknown to the notion of randomness

but with probability. We do not know the value of the parameters

for sure but we know specific values that these parameters can take

with higher probabilities. This creates a prior distribution that is

updated as we make some experiments as shown in [7, 19, 23]. In

the Bayesian view, a probability is assigned to a hypothesis, whereas

under frequentist inference, a hypothesis is typically tested without

being assigned a probability. There are even some nice theoretical

justification for it as presented in [17].

Definition 2.1. (Infinite exchangeability). We say that (𝑥1, 𝑥2, ...)
is an infinitely exchangeable sequence of random variables if, for any
n, the joint probability 𝑝 (𝑥1, 𝑥2, ..., 𝑥𝑛) is invariant to permutation of
the indices. That is, for any permutation 𝜋 ,

𝑝 (𝑥1, 𝑥2, ..., 𝑥𝑛) = 𝑝 (𝑥𝜋1, 𝑥𝜋2, ..., 𝑥𝜋𝑛)
Equipped with this definition, the De Finetti’s theorem as pro-

vided below states that exchangeable observations are conditionally

independent relative to some latent variable.

Theorem 2.1. (De Finetti, 1930s). A sequence of random variables
(𝑥1, 𝑥2, ...) is infinitely exchangeable iff, for all n,

𝑝 (𝑥1, 𝑥2, ..., 𝑥𝑛) =
∫ 𝑛∏

𝑖=1

𝑝 (𝑥𝑖 |𝜃 )𝑃 (𝑑𝜃 ),

for some measure P on 𝜃 .

This representation theorem 2.1 justifies the use of priors on

parameters since for exchangeable data, there must exist a parame-

ter 𝜃 , a likelihood 𝑝 (𝑥 |𝜃 ) and a distribution 𝜋 on 𝜃 . A proof of De

Finetti theorem is for instance given in [24] (section 1.5).

Remark 2.1. The De Finetti is trivially satisfied in case of i.i.d.
sampling as the sequence is clearly exchangeable and that the joint
probability is clearly given by the product of all the marginal distri-
butions. However, the De Finetti goes far beyond as it proves that the
infinite exchangeability is enough to prove that the joint distribution

is the product of some marginal distribution for a given parameter 𝜃 .
The sequence may not be independent neither identically distributed,
which is a much stronger result!

2.2 Conjugate priors
In Bayesian statistical inference, the probability distribution that

expresses one’s (subjective) beliefs about the distribution param-

eters before any evidence is taken into account is called the prior
probability distribution, often simply called the prior. In CMA-ES, it

is the distribution of the mean and covariance. We can then update

our prior distribution with the data using Bayes’ theorem to obtain

a posterior distribution. The posterior distribution is a probability

distribution that represents your updated beliefs about the param-

eters after having seen the data. The Bayes’ theorem tells us the
fundamental rule of Bayesian statistics, that is

Posterior ∝ Prior × Likelihood

The proportional sign indicates that one should compute the dis-

tribution up to a renormalization constant that enforces the dis-

tribution sums to one. This rule is simply a direct consequence

of Baye’s theorem. Mathematically, let us say that for a random

variable 𝑋 , its distribution 𝑝 depends on a parameter 𝜃 that can be

multi-dimensional. To emphasize the dependency of the distribu-

tion on the parameters, let us write this distribution as 𝑝 (𝑥 |𝜃 ) and
let us assume we have access to a prior distribution 𝜋 (𝜃 ). Then the

joint distribution of (𝜃, 𝑥) writes simply as

𝜙 (𝜃, 𝑥) = 𝑝 (𝑥 |𝜃 )𝜋 (𝜃 )
The marginal distribution of 𝑥 is trivially given by marginalizing

the joint distribution by 𝜃 as follows:

𝑚(𝑥) =
∫

𝜙 (𝜃, 𝑥)𝑑𝜃 =

∫
𝑝 (𝑥 |𝜃 )𝜋 (𝜃 )𝑑𝜃

The posterior of 𝜃 is obtained by Bayes’s formula as

𝜋 (𝜃 |𝑥) = 𝑝 (𝑥 |𝜃 )𝜋 (𝜃 )∫
𝑝 (𝑥 |𝜃 )𝜋 (𝜃 )𝑑𝜃

∝ 𝑝 (𝑥 |𝜃 )𝜋 (𝜃 )

Computing a posterior is tricky and does not bring much value

in general. A key concept in Bayesian statistics is conjugate priors

that makes the computation really easy and is described at length

below.

Definition 2.2. A prior distribution 𝜋 (𝜃 ) is said to be a conjugate
prior if the posterior distribution

𝜋 (𝜃 |𝑥) ∝ 𝑝 (𝑥 |𝜃 )𝜋 (𝜃 ) (1)

remains in the same distribution family as the prior.

At this stage, it is relevant to introduce exponential family dis-

tributions as this higher level of abstraction that encompasses the

multi variate normal trivially solves the issue of founding conjugate

priors. This will be very helpful for inferring conjugate priors for

the multi variate Gaussian used in CMA-ES.

Definition 2.3. A distribution is said to belong to the exponential
family if it can be written (in its canonical form) as:

𝑝 (x|𝜂) = ℎ(x) exp(𝜂 ·𝑇 (x) −𝐴(𝜂)), (2)

where 𝜂 is the natural parameter, 𝑇 (x) is the sufficient statistic, 𝐴(𝜂)
is log-partition function and ℎ(x) is the base measure. 𝜂 and 𝑇 (x)
may be vector-valued. Here 𝑎 · 𝑏 denotes the inner product of 𝑎 and 𝑏.
The log-partition function is defined by the integral

𝐴(𝜂) ≜ log

∫
X
ℎ(x) exp(𝜂 ·𝑇 (x)) d𝑥 . (3)

2023-04-18 13:30. Page 2 of 1–11.
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Also, 𝜂 ∈ Ω = {𝜂 ∈ R𝑚 |𝐴(𝜃 ) < +∞} where Ω is the natural
parameter space. Moreover, Ω is a convex set and 𝐴(·) is a convex
function on Ω.

Remark 2.2. Not surprisingly, the normal distribution N(x; 𝜇, Σ)
with mean 𝜇 ∈ R𝑑 and covariance matrix Σ belongs to the exponential
family but with a different parametrisation. Its exponential family
form is given by:

𝜂 (𝜇, Σ) =
[

Σ−1𝜇
vec(Σ−1)

]
, 𝑇 (x) =

[
x

vec(− 1

2
xxT)

]
, (4a)

ℎ(x) = (2𝜋)−
𝑑
2 , 𝐴(𝜂 (𝜇, Σ)) = 1

2

𝜇TΣ−1𝜇 + 1

2

log |Σ|. (4b)

where in equations (4a), the notation vec(·) means we have vectorized
the matrix, stacking each column on top of each other and hence can
equivalently write for 𝑎 and 𝑏, two matrices, the trace result Tr(𝑎T𝑏)
as the scalar product of their vectorization vec(𝑎) · vec(𝑏). We can
remark the canonical parameters are very different from traditional
(also called moment) parameters. We can notice that changing slightly
the sufficient statistic 𝑇 (𝑥) leads to change the corresponding canoni-
cal parameters 𝜂.

For an exponential family distribution, it is particularly easy to

form conjugate prior.

Proposition 2.2. If the observations have a density of the exponen-

tial family form 𝑝 (𝑥 |𝜃, 𝜆) = ℎ(𝑥) exp
(
𝜂 (𝜃, 𝜆)𝑇𝑇 (𝑥) − 𝑛𝐴(𝜂 (𝜃, 𝜆))

)
,

with 𝜆 a set of hyper-parameters, then the prior with likelihood de-
fined by 𝜋 (𝜃 ) ∝ exp (𝜇1 · 𝜂 (𝜃, 𝜆) − 𝜇0𝐴(𝜂 (𝜃, 𝜆))) with 𝜇 ≜ (𝜇0, 𝜇1)
is a conjugate prior.

The proof is given in appendix subsection 6.1. As we can vary

the parameterisation of the likelihood, we can obtain multiple con-

jugate priors. Because of the conjugacy, if the initial parameters of

the multi variate Gaussian follows the prior, the posterior is the true

distribution given the information X and stay in the same family

making the update of the parameters really easy. Said differently,

with conjugate prior, we make the optimal update. And it is enlight-

ening to see that as we get some information about the likelihood,

our posterior distribution becomes more peak as shown in figure1.

Figure 1: As we get more and more information using the
likelihood, the posterior becomes more peak.

2.3 Optimal updates for NIW
The two natural conjugate priors for the Multi variate normal that

updates both the mean and the covariance are the normal-inverse-

Wishart if we want to update the mean and covariance of the Multi

variate normal or the normal-Wishart if we are interested in up-

dating the mean and the precision matrix (which is the inverse of

the covariance matrix). In this paper, we will stick to the normal-

inverse-Wishart to keep things simple. TheNormal-inverse-Wishart

distribution is parametrized by 𝝁
0
, 𝜆,𝚿, 𝜈 and its distribution is

given by

𝑓 (𝝁, 𝚺|𝝁
0
, 𝜆,𝚿, 𝜈) = N

(
𝝁
���𝝁

0
,
1

𝜆
𝚺

)
W−1 (𝚺|𝚿, 𝜈)

where W−1
denotes the inverse Wishart distribution. The key

theoretical guarantee of the BCMA-ES is to update the mean and

covariance of our CMA-ES optimally as follows.

Proposition 2.3. If our sampling density follows a 𝑑 dimensional
multivariate normal distribution ∼ N𝑑 (𝝁, 𝚺) with unknown mean
𝜇 and covariance Σ and if its parameters are distributed according
to a Normal-Inverse-Wishart (𝜇, Σ) ∼ NIW(𝜇0, 𝜅0, 𝑣0,𝜓 ) and if we
observe X = (𝑥1, .., 𝑥𝑛) samples, then the posterior is also a Normal-
Inverse-Wishart with different parametersNIW(𝜇★

0
, 𝜅★

0
, 𝑣★

0
,𝜓★) given

by

𝜇★
0
=
𝜅0𝜇0 + 𝑛𝑥
𝜅0 + 𝑛

,

𝜅★
0
= 𝜅0 + 𝑛,

𝑣★
0
= 𝑣0 + 𝑛

𝜓★ = 𝜓 +
𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥) (𝑥𝑖 − 𝑥)𝑇 + 𝜅0𝑛

𝜅0 + 𝑛
(𝑥 − 𝜇0) (𝑥 − 𝜇0)𝑇

(5)

with 𝑥 the sample mean.

Remark 2.3. This proposition is the cornerstone of the BCMA-ES. It
provides the theoretical guarantee that the updates of the parameters
in the algorithm are accurate and optimal under the assumption of
the prior. In particular, this implies that any other formula for the
update of the mean and variance and in particular the ones used in
the mainstream CMA-ES assumes a different prior.

Proof. A complete proof is given in the appendix section 6.2.

□

3 BAYESIAN CMA-ES
3.1 Main assumptions
Our main assumptions are the followings :

• the parameters of the multi-variate Gaussian follow a conju-

gate prior distribution.

• the minimum of our objective function 𝑓 follows a multi-

variate normal law.

3.2 Simulating the minimum
One of the main challenge is to simulate the likelihood to infer the

posterior. The key question is really to use the additional informa-

tion of the function value 𝑓 for candidate points. At step 𝑡 in our

algorithm, we suppose multi variate Gaussian parameters 𝜇 and Σ
follow a normal inverse Wishart denoted by 𝑁𝐼𝑊 (𝜇𝑡 , 𝜅𝑡 , 𝑣𝑡 ,𝜓𝑡 ).

In full generality, we need to do a Monte Carlo of Monte Carlo

as the parameters of our multi variate normal are themselves sto-

chastic. However, we can simplify the problem and take their mean

values. It is very effective in terms of computation and reduces

Monte Carlo noise. For the normal inverse Wishart distribution,

there exist closed form for these mean values given by:

E𝑡 [𝜇] = 𝜇𝑡 (6)

and

E𝑡 [Σ] =
𝜓𝑡

𝑣𝑡 − 𝑛 − 1

(7)

2023-04-18 13:30. Page 3 of 1–11.
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We simulate potential candidatesX = {𝑋𝑖 } ∼ N
(
E𝑡 [𝜇],E𝑡 [Σ]

)
and

evaluate them 𝑓 (𝑋𝑖 ). If the distribution of the minimum was accu-

rate, the minimum would concentrate around E𝑡 [𝜇] and be spread

with a variance of E𝑡 [Σ]. When evaluating potential candidates, as

our guess is not right, we do not get values centered around E𝑡 [𝜇]
and spread with a variance of E𝑡 [Σ]. This comes from three things:

• Our assumed minimum is not right. We need to shift our

normal to the right minimum!

• Our assumed variance is not right. We need to compute it

on real data taken into additional information given by 𝑓 .

• Last but not least, our Monte Carlo simulation adds some

random noise.

For the last issue, we can correct any of our estimator by the

Monte Carlo bias. This can be done using standard control variate

as the simulated mean and variance are given: E𝑡 [𝜇] and E𝑡 [Σ]
respectively and we can compute for each of them the bias explicitly.

The first two issues are more complex. Let us tackle each issue

one by one.

To recover the true minimum, we design two strategies.

• We design a strategy where we rebuild our normal distri-

bution but using sorted information of our 𝑋 ’s weighted by

their normal density to ensure this is a true normal corrected

from the Monte Carlo bias. We need to explicitly compute

the weights. For each simulated point 𝑋𝑖 , we compute it as-

sumed density denoted by 𝑑𝑖 = N(E𝑡 [𝜇],E𝑡 [Σ]) (𝑋𝑖 ) where
N(E𝑡 [𝜇],E𝑡 [Σ]) (.) denotes the p.d.f. of the multi-variate

Gaussian.

We divide these density by their sum to get weights (𝑤𝑖 )𝑖=1..𝑘
that are positive and sum to one as follows.𝑤 𝑗 = 𝑑 𝑗/

∑𝑘
𝑖=1 𝑑𝑖 .

Hence for 𝑘 simulated points, we get {𝑋𝑖 ,𝑤𝑖 }𝑖=1..𝑘 . We re-

order jointly the uplets (points and density) in terms of their

weights in decreasing order.

To insist we take sorted value in decreasing order with re-

spect to the weights (𝑤𝑖 )𝑖=1..𝑘 , we denote the order statistics
(𝑖),𝑤 ↓.
This first sorting leads to k newuplets {𝑋 (𝑖),𝑤↓,𝑤 (𝑖),𝑤↓}𝑖=1..𝑘 .
Using a stable sort (that keeps the order of the density), we
sort jointly the uplets (points and weights) according to their

objective function value (in increasing order this time) and

get a k new uplets {𝑋 (𝑖),𝑓 ↑,𝑤 (𝑖),𝑤↓}𝑖=1..𝑘 . We can now com-

pute the empirical mean 𝜇𝑡 as follows:

𝜇𝑡 =

𝑘∑
𝑖=1

𝑤 (𝑖),𝑤↓ · 𝑋 (𝑖),𝑓 ↑︸                   ︷︷                   ︸
MCmean for𝑋𝑓 ↑

−
(
𝑘∑
𝑖=1

𝑤𝑖𝑋𝑖 − 𝜇𝑡

)
︸              ︷︷              ︸

MCbias for𝑋

(8)

The intuition of equation (8) is to compute in the left term

the Monte Carlo mean using reordered points according to

their objective value and correct our initial computation by

the Monte Carlo bias computed as the right term, equal to

the initial Monte Carlo mean minus the real mean. We call

this strategy one.

• If we think for a minute about the strategy one, we get

the intuition that when starting the minimization, it may

not be optimal. This is because weights are proportional to

exp

{
1

2
(𝑋 − E𝑡 [𝜇])𝑇 (E𝑡 [Σ])−1 (𝑋 − E𝑡 [𝜇])

}
.

When we start the algorithm, we use a large search space,

hence a large covariance matrix Σ𝑡 which leads to have

weights which are quite similar. Hence even if we sort candi-

dates by their fit, ranking them according to the value of 𝑓 in

increasing order, we will move our theoretical multi variate

Gaussian little by little. A better solution is more to brutally

move the center of our multi variate Gaussian to the best

candidate seen so far, as follows:

𝜇𝑡 = argmin

𝑋 ∈X
𝑓 (𝑋 ) (9)

We call this strategy two. Intuitively, strategy two should be

best when starting the algorithm while strategy one would

be better once we are close to the solution.

To recover the true variance, we can adapt what we did in stratey

one as follows:

•

Σ𝑡 =
𝑘∑
𝑖=1

𝑤 (𝑖),𝑤↓ ·
(
𝑋 (𝑖),𝑓 ↑ − 𝑋 (.),𝑓 ↑

) (
𝑋 (𝑖),𝑓 ↑ − 𝑋 (.),𝑓 ↑

)𝑇
︸                                                                 ︷︷                                                                 ︸

MCcovariance for𝑋𝑓 ↑

−
(
𝑘∑
𝑖=1

𝑤𝑖 ·
(
𝑋𝑖 − 𝑋

) (
𝑋𝑖 − 𝑋

)𝑇
−Σ𝑡

)
︸                                       ︷︷                                       ︸

MCcovariance for simulated𝑋

(10)

where 𝑋 (.),𝑓 ↑ =
∑𝑘
𝑖=1𝑤 (𝑖),𝑤↓𝑋 (𝑖),𝑓 ↑ and 𝑋 =

∑𝑘
𝑖=1𝑤𝑖𝑋𝑖 are

respectively the mean of the sorted and non sorted points.

• Again, we could design another strategy that takes part of

the points but we leave this to further research.

Once we have the likelihoodmean and variance using (9) and (10)

or (8) and (10), we update the posterior law according to equation

(5). This gives us the iterative conjugate prior parameters updates:

𝜇𝑡+1 =
𝜅𝑡 𝜇𝑡 + 𝑛𝜇𝑡
𝜅𝑡 + 𝑛

,

𝜅𝑡+1 = 𝜅𝑡 + 𝑛,
𝑣𝑡+1 = 𝑣𝑡 + 𝑛,

𝜓𝑡+1 = 𝜓𝑡 +Σ𝑡 +
𝜅𝑡𝑛

𝜅𝑡 + 𝑛
(
𝜇𝑡 − 𝜇𝑡

) (
𝜇𝑡 − 𝜇𝑡

)𝑇 (11)

The resulting algorithm is summarized in Algo 1.

Proposition 3.1. Under the assumption of a NIW prior, the up-
dates of the BCMA-ES parameters for the expected mean and variance
write as a weighted combination of the prior expected mean and
variance and the empirical mean and variance as follows

E𝑡+1 [𝜇] = E𝑡 [𝜇] +𝑤𝜇
𝑡

(
𝜇𝑡 − E𝑡 [𝜇]

)
,

E𝑡+1 [Σ] = 𝑤
Σ,1
𝑡︸︷︷︸

discount factor

E𝑡 [Σ] +𝑤Σ,2
𝑡

(
𝜇𝑡 − E𝑡 [𝜇]

) (
𝜇𝑡 − E𝑡 [𝜇]

)𝑇︸                              ︷︷                              ︸
rank one matrix

+𝑤Σ,3
𝑡 Σ𝑡︸︷︷︸
rank (n-1) matrix

where 𝑤
𝜇
𝑡 =

𝑛

𝜅𝑡 + 𝑛
,

𝑤
Σ,1
𝑡 =

𝜅𝑡𝑛

(𝜅𝑡 + 𝑛) (𝑣𝑡 − 1)

𝑤
Σ,2
𝑡 =

𝑣𝑡 − 𝑛 − 1

𝑣𝑡 − 1

,

𝑤
Σ,3
𝑡 =

1

𝑣𝑡 − 1

(12)
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Remark 3.1. The proposition above is quite fundamental. It justi-
fies that under the assumption of NIW prior, the update is a weighted
sum of previous expected mean and covariance. It is striking that it
provides very similar formulae to the standard CMA ES update. Recall
that these updates given for the mean𝑚𝑡 and covariance 𝐶𝑡 can be
written as follows:

𝑚𝑡+1 =𝑚𝑡 +
𝜇∑
𝑖=1

𝑤𝑖 (𝑥𝑖:𝜆 −𝑚𝑡 )

𝐶𝑡+1 = (1 − 𝑐1 − 𝑐𝜇 + 𝑐𝑠 )︸                ︷︷                ︸
discount factor

𝐶𝑡 + 𝑐1 𝑝𝑐𝑝𝑇𝑐︸︷︷︸
rank one matrix

+ 𝑐𝜇

𝜇∑
𝑖=1

𝑤𝑖
𝑥𝑖:𝜆 −𝑚𝑘

𝜎𝑘

(
𝑥𝑖:𝜆 −𝑚𝑡

𝜎𝑡

)𝑇
︸                                  ︷︷                                  ︸

rank min(𝜇,𝑛−1) matrix

(13)

where the notations 𝑚𝑡 ,𝑤𝑖 , 𝑥𝑖:𝜆,𝐶𝑡 , 𝑐1, 𝑐𝜇 , 𝑐𝑠 , etc... are given for in-
stance in [26].

Proof. See 6.3 in the appendix section. □

Algorithm 1 Predict and Correct parameters at step t

1: Simulate candidate
2: Use mean values E𝑡 [𝜇] = 𝜇𝑡 and Σ𝑡 = E[Σ] = 𝜓𝑡/(𝑣𝑡 − 𝑛 − 1)
3: Simulate k points X = {𝑋𝑖 } = 1..𝑘 ∼ N(E𝑡 [𝜇], Σ𝑡 )
4: Compute densities (𝑑𝑖 )𝑖 ..𝑘 = (N (E𝑡 [𝜇], Σ𝑡 ) (𝑋𝑖 ))𝑖 ..𝑘 =

5: Sort in decreasing order with respect to 𝑑 to get

{𝑋 (𝑖),𝑑↓, 𝑑 (𝑖),𝑑↓}𝑖=1..𝑘
6: Stable Sort in increasing order order with respect to 𝑓 (𝑋𝑖 ) to

get {𝑋 (𝑖),𝑓 ↑, 𝑑 (𝑖),𝑑↓}𝑖=1..𝑘
7:

8: Correct E𝑡 [𝜇] and Σ𝑡
9: Either Update E𝑡 [𝜇] and Σ𝑡 using (9) and (10) (strategy two)
10: Or Update E𝑡 [𝜇] and Σ𝑡 using (8) and (10) (strategy one)
11: Update 𝜇𝑛+1, 𝜅𝑛+1, 𝑣𝑛+1,𝜓𝑛+1 using (11)

3.3 Particularities of Bayesian CMA-ES
There are some subtleties that need to be emphasized.

• Although we assume a prior, we do not need to simulate the

prior but can at each step use the expected value of the prior

which means that we do not consume additional simulation

compared to the standard CMA-ES.

• We need to tackle local minimum (we will give example of

this in the numerical section) to avoid being trapped in a

bowl! If we are in a local minimum, we need to inflate the

variance to increase our search space. We do this whenever

our algorithm does not manage to decrease. However, if after

a while we do not get better result, we assume that this is

indeed not a local minimum but rather a global minimum

and start deflating the variance. This mechanism of inflation

deflation ensures we can handle noisy functions like Rastri-

gin or Schwefel 1 or Schwefel 2 functions as defined in the

section 4.

3.4 Differences with standard CMA-ES
Since we use a rigorous derivation of the posterior, we have the

following features:

• the update of the covariance takes all points. This is different

from 𝜆/𝜇 CMA-ES that uses only a subset of the point.

• by design, the update is optimal as we compute at each step

the posterior.

• the contraction dilatation mechanism is an alternative to

global local search path in standard CMA-ES.

• weights varies across iterations which is also a major differ-

ence between main CMA ES and Bayesian CMA ES. Weights

are proportional to exp( 1
2
𝑋𝑇 Σ−1𝑋 ) sorted in decreasing or-

der. Initially, when the variance is large,

3.5 Full algorithm
The complete Bayesian CMA ES algorithm is summarized in 2. It

iterates until a stopping condition is met. We use multiple stop-

ping conditions. We stop if we have not increase our best result

for a given number of iterations. We stop if we have reached the

maximum of our iterations. We stop if our variance norm is small.

Additional stopping condition can be incorporated easily.

Algorithm 2 Bayesian update of CMA-ES parameters:

1: Initialization
2: Start with a prior distribution Π on 𝜇 and Σ
3: Set retrial to 0

4: Set 𝑓𝑚𝑖𝑛 to max float

5: while stop criteria not satisfied do
6: 𝑋 ∼ N(𝜇, Σ)
7: update the parameters of the Gaussian thanks to the posterior

law Π(𝜇, Σ|𝑋 ) following details given in algorithm 1

8: Handle dilatation contraction variance for local minima as

explained in algorithm 3

9: if DilateContractFunc(𝑋, Σ𝑡 , 𝑋𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛, Σ𝑡,𝑚𝑖𝑛) == 1 then
10: return best solution

11: end if
12: end while
13: return best solution

Last but not least, we have a dilatation contraction mechanism

for the variance to handle local minima with multiple level of con-

tractions and dilatation that is given in function 3. The overall

idea is first to dilate variance if we do not make any progress to

increase the search space so that we are not trapped in a local

minimum. Should this not succeed, it means that we are reaching

something that looks like the global minimum and we progres-

sively contract the variance. In our implemented algorithm, we take

𝐿1 = 5, 𝐿2 = 20, 𝐿3 = 30, 𝐿4 = 40, 𝐿5 = 50 and the dilatation, con-

traction parameters given by 𝑘1 = 1.5, 𝑘2 = 0.9, 𝑘3 = 0.7, 𝑘5 = 0.5

We have also a restart at previous minimum level 𝐿∗ = 𝐿2.

4 NUMERICAL RESULTS
4.1 Functions examined
We have examined four functions to stress test our algorithm. They

are listed in increasing order of complexity for our algorithm and

correspond to different type of functions. They are all generalized

function that can defined for any dimension 𝑛. For all, we present

the corresponding equation for a variable 𝑥 = (𝑥1, 𝑥2, .., 𝑥𝑛) of 𝑛
dimension. Code is provided in supplementary materials. We have

frozen seeds to have reproducible results.
2023-04-18 13:30. Page 5 of 1–11.
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Algorithm 3 Dilatation contraction variance for local minima:

1: Function DilateContractFunc(𝑋, Σ𝑡 , 𝑋𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛, Σ𝑡,𝑚𝑖𝑛)

2: if 𝑓 (𝑋 ) ≤ 𝑓𝑚𝑖𝑛 then
3: Set 𝑓𝑚𝑖𝑛 = 𝑓 (𝑋 )
4: Memorize current point and its variance:

5: • 𝑋𝑚𝑖𝑛 = 𝑋

6: • Σ𝑡,𝑚𝑖𝑛 = Σ𝑡
7: Set retrial = 0

8: else
9: Set retrial += 1

10: if retrial == 𝐿∗ then
11: Restart at previous best solution:

12: • 𝑋 = 𝑋𝑚𝑖𝑛

13: • Σ𝑡 = Σ𝑡,𝑚𝑖𝑛

14: end if
15: if 𝐿2 > retrial and retrial > 𝐿1 then
16: Dilate variance by 𝑘1
17: else if 𝐿3 > retrial and retrial ≥ 𝐿2 then
18: Contract variance by 𝑘2
19: else if 𝐿4 > retrial and retrial ≥ 𝐿3 then
20: Contract variance by 𝑘3
21: else if 𝐿5 > retrial and retrial ≥ 𝐿4 then
22: Contract variance by 𝑘4
23: else
24: return 1

25: end if
26: return 0

27: end if
28: End Function

4.1.1 Cone. The most simple function to optimize is the qua-

dratic cone whose equation is given by (14) and represented in

figure 2. It is also the standard Euclidean norm. It is obviously

convex and is a good test of the performance of an optimization

method.

𝑓 (𝑥) =
(
𝑛∑
𝑖=1

𝑥2𝑖

)
1/2

= ∥𝑥 ∥2 (14)

Figure 2: A simple convex function: the quadratic norm.
Minimum in 0

4.1.2 Schwefel 2 function. A slightly more complicated function

is the Schwefel 2 function whose equation is given by (15) and

represented in figure 3. It is a piecewise linear function and validates

the algorithm can cope with non convex function.

𝑓 (𝑥) =
𝑛∑
𝑖=1

| 𝑥𝑖 | +
𝑛∏
𝑖=1

| 𝑥𝑖 | (15)

Figure 3: Schwefel 2 function: a simple piecewise linear func-
tion

4.1.3 Rastrigin. The Rastrigin function, first proposed by [22]

and generalized by [20], is more difficult compared to the Cone and

the Schwefel 2 function. Its equation is given by (16) and represented

in figure 4. It is a non-convex function often used as a performance

test problem for optimization algorithms. It is a typical example of

non-linear multi modal function. Finding its minimum is considered

a good stress test for an optimization algorithm, due to its large

search space and its large number of local minima.

Figure 4: Rastrigin function: a non convex function multi-
modal and with a large number of local minima

𝑓 (𝑥) = 10 × 𝑛 +
𝑛∑
𝑖=1

[
𝑥2𝑖 − 10 cos(2𝜋𝑥𝑖 )

]
(16)

4.1.4 Schwefel 1 function. The last function we tested is the

Schwefel 1 function whose equation is given by (17) and repre-

sented in figure 5. It is sometimes only defined on [−500, 500]𝑛 .
The Schwefel 1 function shares similarities with the Rastrigin func-

tion. It is continuous, not convex, multi-modal and with a large

number of local minima. The extra difficulty compared to the Rast-

rigin function, the local minima are more pronounced local bowl

making the optimization even harder.

2023-04-18 13:30. Page 6 of 1–11.
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𝑓 (𝑥) = 418.9829 × 𝑛

−
𝑛∑
𝑖=1

[
𝑥𝑖 sin(

√
| 𝑥𝑖 |)1 |𝑥𝑖 |<500 + 500 sin(

√
500)1 |𝑥𝑖 | ≥500

]
(17)

Figure 5: Schwefel 1 function: a non convex function multi-
modal and with a large number of local pronounced bowls

4.2 Convergence
For each of the functions, we compared our method using strategy

one entitled B-CMA-ES S1: update 𝜇𝑡 and Σ𝑡 using (8) and (10)

plotted in orange, or strategy two B-CMA-ES S2: same update but

using (9) and (10), plotted in blue and standard CMA-ES as provided

by the opensource python package pycma plotted in green. We

clearly see that strategies one and two are quite similar to standard

CMA-ES. The convergence graphics that show the error compared

to the minimum are represented:

• for the cone function by figure 6 (case of a convex function),

with initial point (10, 10)
• for the Schwefel 2 function in figure 7 (case of piecewise

linear function), with initial point (10, 10)
• for the Rastrigin function in figure 8 (case of a non con-

vex function with multiple local minima), with initial point

(10, 10)
• and for the Schwefel 1 function in figure 9 (case of a non

convex functionwithmultiple large bowl local minima), with

initial point (400, 400)
The results are for one test run. In a forthcoming paper, we will

benchmark them with more runs to validate the interest of this new

method.

For the four functions, BCMAES achieves convergence similar

to standard CMA-ES. The intuition of this good convergence is that

shifting the multi variate mean by the best candidate seen so far

is a good guess to update it at the next run (standard CMA-ES or

B-CMA-ES S1).

5 CONCLUSION
In this paper, we have revisited the CMA-ES algorithm and provided

a Bayesian version of it. Taking conjugate priors, we can find opti-

mal update for the mean and covariance of the multi variate Normal.

We have provided the corresponding algorithm that is a new version

of CMA-ES. First numerical experiments show this new version is

competitive to standard CMA-ES on traditional functions such as

cone, Schwefel 1, Rastrigin and Schwefel 2. This faster convergence

can be explained on a theoretical side from an optimal update of

Figure 6: Convergence for the Cone function

Figure 7: Convergence for the Schwefel 2 function

Figure 8: Convergence for the Rastrigin function

the prior (thanks to Bayesian update) and the use of the best candi-

date seen at each simulation to shift the mean of the multi-variate

Gaussian likelihood. We envisage further works to benchmark our

algorithm to other standard evolutionary algorithms, in particular

to use the COCO platform to provide more meaningful tests and

confirm the theoretical intuition of good performance of this new

version of CMA-ES, and to test the importance of the prior choice.

6 APPENDIX
6.1 Conjugate priors

Proof. Consider 𝑛 independent and identically distributed (IID)

measurements X ≜ {x𝑗 ∈ R𝑑 |1 ≤ 𝑗 ≤ 𝑛} and assume that

these variables have an exponential family density. The likelihood

2023-04-18 13:30. Page 7 of 1–11.
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Figure 9: Convergence for the Schwefel 1 function

𝑝 (X|𝜃, 𝜆) writes simply as the product of each individual likelihood:

𝑝 (X|𝜃, 𝜆)=
( 𝑛∏
𝑗=1

ℎ(x𝑗 )
)
exp

(
𝜂 (𝜃, 𝜆)𝑇

𝑛∑
𝑗=1

𝑇 (𝑥 𝑗 ) − 𝑛𝐴(𝜂 (𝜃, 𝜆))
)
.

(18)

If we start with a prior 𝜋 (𝜃 ) of the form 𝜋 (𝜃 ) ∝ exp(F (𝜃 )) for
some function F (·), its posterior writes:
𝜋 (𝜃 |X) ∝ 𝑝 (X|𝜃 ) exp(F (𝜃 ))

∝ exp

©«𝜂 (𝜃, 𝜆) ·
𝑛∑
𝑗=1

𝑇 (𝑥 𝑗 ) − 𝑛𝐴(𝜂 (𝜃, 𝜆)) + F (𝜃 )ª®¬ . (19)

It is easy to check that the posterior (19) is in the same exponential

family as the prior iff F (·) is in the form:

F (𝜃 ) = 𝜇1 · 𝜂 (𝜃, 𝜆) − 𝜇0𝐴(𝜂 (𝜃, 𝜆)) (20)

for some 𝜇 ≜ (𝜇0, 𝜇1), such that:

𝑝 (X|𝜃, 𝜆) ∝exp
((
𝜇1 +

𝑛∑
𝑗=1

𝑇 (𝑥 𝑗 )
)𝑇
𝜂 (𝜃, 𝜆) − (𝑛 + 𝜇0)𝐴(𝜂 (𝜃, 𝜆))

)
.

(21)

Hence, the conjugate prior for the likelihood (18) is parametrized

by 𝜇 and given by:

𝑝 (X|𝜃, 𝜆) = 1

𝑍
exp (𝜇1 · 𝜂 (𝜃, 𝜆) − 𝜇0𝐴(𝜂 (𝜃, 𝜆))) , (22)

where 𝑍 =
∫
exp (𝜇1 · 𝜂 (𝜃, 𝜆) − 𝜇0𝐴(𝜂 (𝜃, 𝜆))) d𝑥 . □

6.2 Exact computation of the posterior update
for the Normal inverse Wishart

To make our proof simple, we first start by the one dimensional

case and show that in one dimension it is a normal inverse gamma.

We then generalize to the multi dimensional case.

Lemma 6.1. The probability density function of a Normal inverse
gamma (denoted by NIG) random variable can be expressed as the
product of a Normal and an Inverse gamma probability density func-
tions.

Proof. we suppose that 𝑥 |𝜇, 𝜎2 ∼ N(𝜇0, 𝜎2/𝑣). We recall the

following definition of conditional probability:

Definition 6.1. Suppose that events A,B and C are defined on the
same probability space, and the event B is such that P(𝐵) > 0. We
have the following expression:
P(𝐴 ∩ 𝐵 |𝐶) = P(𝐴|𝐵,𝐶)P(𝐵 |𝐶).

Applying 6.1, we have:

𝑝

(
𝜇, 𝜎2 |𝜇0, 𝑣, 𝛼, 𝛽

)
= 𝑝

(
𝜇 |𝜎2, 𝜇0, 𝑣, 𝛼, 𝛽

)
𝑝

(
𝜎2 |𝜇0, 𝑣, 𝛼, 𝛽

)
= 𝑝

(
𝜇 |𝜎2, 𝜇0, 𝑣

)
𝑝

(
𝜎2 |𝛼, 𝛽

)
. (23)

Using the definition of the Normal inverse gamma law, we end the

proof. □

Remark 6.1. If
(
𝑥, 𝜎2

)
∼ 𝑁𝐼𝐺 (𝜇, 𝜆, 𝛼, 𝛽), the probability density

function is the following:

𝑓 (𝑥, 𝜎2 |𝜇, 𝜆, 𝛼, 𝛽) =
√
𝜆

𝜎
√
2𝜋

𝛽𝛼

Γ(𝛼)

(
1

𝜎2

)𝛼+1
exp

{
−2𝛽 + 𝜆(𝑥 − 𝜇)2

2𝜎2

}
. (24)

Proposition 6.2. The Normal Inverse Gamma NIG (𝜇0, 𝑣, 𝛼, 𝛽)
distribution is a conjugate prior of a normal distributionwith unknown
mean and variance.

Proof. the posterior is proportional to the product of the prior

and likelihood, then:

𝑝

(
𝜇, 𝜎2 |𝑋

)
∝

√
𝑣

√
2𝜋

(
1

𝜎2

)
1/2

exp

{
−𝑣 (𝜇 − 𝜇0)2

2𝜎2

}
× 𝛽𝛼

Γ(𝛼)

(
1

𝜎2

)𝛼+1
exp

{
−𝛽
𝜎2

}
×

(
1

2𝜋𝜎2

)𝑛/2
exp

{
−

∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇)2

2𝜎2

}
. (25)

Defining the empirical mean and variance as 𝑥 = 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖 and

𝑠 = 1

𝑛

∑𝑛
𝑖=1 (𝑥𝑖 −𝑥)2, we obtain that

∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇)2 = 𝑛(𝑠 + (𝑥−𝜇)2).

So, the conditional density writes:

𝑝

(
𝜇, 𝜎2 |𝑋

)
∝
√
𝑣

(
1

𝜎2

)𝛼+𝑛/2+3/2
× exp

{
− 1

𝜎2

[
𝛽 + 1

2

(
𝑣 (𝜇 − 𝜇0)2 + 𝑛

(
𝑠 + (𝑥 − 𝜇)2

) )]}
. (26)

Besides,

𝑣 (𝜇 − 𝜇0)2 + 𝑛
(
𝑠 + (𝑥 − 𝜇)2

)
= 𝑣

(
𝜇2 − 2𝜇𝜇0 + 𝜇2𝑜

)
+ 𝑛𝑠 + 𝑛

(
𝑥2 − 2𝑥𝜇 + 𝜇2

)
= 𝜇2 (𝑣 + 𝑛) − 2𝜇 (𝑣𝜇0 + 𝑛𝑥) + 𝑣𝜇2𝑜 + 𝑛𝑠 + 𝑛𝑥2 . (27)
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Denoting 𝑎 = 𝑣 + 𝑛 and 𝑏 = 𝑣𝜇0 + 𝑛𝑥 , we have :

𝛽 + 1

2

(
𝑣 (𝜇 − 𝜇0)2 + 𝑛

(
𝑠 + (𝑥 − 𝜇)2

) )
= 𝛽 + 1

2

(
𝑎𝜇2 − 2𝑏𝜇 + 𝑣𝜇2𝑜 + 𝑛𝑠 + 𝑛𝑥2

)
= 𝛽 + 1

2

(
𝑎

(
𝜇2 − 2𝑏

𝑎
𝜇

)
+ 𝑣𝜇2𝑜 + 𝑛𝑠 + 𝑛𝑥2

)
= 𝛽 + 1

2

(
𝑎

(
𝜇 − 𝑏

𝑎

)
2

− 𝑏2

𝑎
+ 𝑣𝜇2𝑜 + 𝑛𝑠 + 𝑛𝑥2

)
. (28)

So we can express the proportional expression of the posterior :

𝑝

(
𝜇, 𝜎2 |𝑋

)
∝

(
1

𝜎2

)𝛼★+3/2
× exp

{
−
2𝛽★ + 𝜆★

(
𝜇 − 𝜇★

)
2

2𝜎2

}
,

with

• 𝛼★ = 𝛼 + 𝑛
2

• 𝛽★ = 𝛽 + 1

2

(∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥)2 + 𝑛𝑣

𝑛+𝑣
(𝑥−𝜇0)2

2

)
• 𝜇★ =

𝑣𝜇0+𝑛𝑥
𝑣+𝑛

• 𝜆★ = 𝑣 + 𝑛
We can identify the terms with the expression of the probability

density function given in 6.1 to conclude that the posterior follows

a NIG(𝜇★, 𝜆★, 𝛼★, 𝛽★). □

We are now ready to prove the following proposition:

Proposition 6.3. The Normal Inverse Wishart (denoted by NIW)
(𝜇0, 𝜅0, 𝑣0,𝜓 ) distribution is a conjugate prior of a multivariate nor-
mal distribution with unknown mean and covariance.

Proof. we use the fact that the probability density function

of a Normal inverse Wishart random variable can be expressed

as the product of a Normal and an Inverse Wishart probability

density functions (we use the same reasoning that in 6.1). Besides,

the posterior is proportional to the product of the prior and the

likelihood.

We first express the probability density function of the multivariate

Gaussian random variable in a proper way in order to use it when

we write the posterior density function.∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇)𝑇 Σ−1 (𝑥𝑖 − 𝜇)

= 𝑛 (𝑥 − 𝜇)𝑇 Σ−1 (𝑥 − 𝜇) + ∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥)𝑇 Σ−1 (𝑥𝑖 − 𝑥) . (29)

We can inject the previous result and use the properties of the trace

function to express the following probability density function of

the multivariate Gaussian random variable of parameters 𝜇 and Σ.
The density writes as:

|Σ |−𝑛/2√
(2𝜋 )𝑝𝑛

exp

{
− 𝑛

2
(𝑥 − 𝜇)𝑇 Σ−1 (𝑥 − 𝜇)

− 1

2
𝑡𝑟

(
Σ−1

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥) (𝑥𝑖 − 𝑥)𝑇

) }
. (30)

Hence, we can compute explicitly the posterior as follows:

𝑝

(
𝜇, 𝜎2 |𝑋

)
∝

√
𝜅0√

(2𝜋)𝑝 |Σ|
exp

{
−𝜅0

2

(
𝜇 − 𝜇0

)𝑇 Σ−1 (𝜇 − 𝜇0
)}

× |𝜓 |𝑣/2

2
𝑣𝑝/2Γ𝑝 (𝑣0/2)

|Σ|−
𝑣
0
+𝑝+1
2 𝑒𝑥𝑝

{
−1

2

𝑡𝑟

(
𝜓Σ−1

)}
× |Σ|−𝑛/2 exp

}
− 𝑛

2

(𝑥 − 𝜇)𝑇 Σ−1 (𝑥 − 𝜇)

− 1

2

𝑡𝑟

(
Σ−1

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥) (𝑥𝑖 − 𝑥)𝑇
) }

(31)

∝ |Σ|−
𝑣
0
+𝑝+2+𝑛
2 exp

{
− 𝜅0

2

(
𝜇 − 𝜇0

)𝑇 Σ−1 (𝜇 − 𝜇0
)

− 𝑛

2

(𝑥 − 𝜇)𝑇 Σ−1 (𝑥 − 𝜇)

− 1

2

𝑡𝑟

(
Σ−1

(
𝜓 +

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥) (𝑥𝑖 − 𝑥)𝑇
)) }

. (32)

We organize the terms and find the parameters of our Normal

Inverse Wishart random variable NIW(𝜇★
0
, 𝜅★

0
, 𝑣★

0
,𝜓★).

𝜇★
0
=
𝜅0𝜇0 + 𝑛𝑥
𝜅0 + 𝑛

, 𝜅★
0
= 𝜅0 + 𝑛, 𝑣★

0
= 𝑣0 + 𝑛

𝜓★ = 𝜓 +
𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥) (𝑥𝑖 − 𝑥)𝑇 + 𝜅0𝑛

𝜅0 + 𝑛
(𝑥 − 𝜇0) (𝑥 − 𝜇0)𝑇

(33)

which are exactly the equations provided in (5). □

6.3 Weighted combination for the BCMA ES
update

Proof.

E𝑡+1 [𝜇] = 𝜇𝑡+1

=
𝜅𝑡 𝜇𝑡 + 𝑛𝜇𝑡
𝜅𝑡 + 𝑛

= E𝑡 [𝜇] +𝑤𝜇
𝑡 (𝜇 − E𝑡 [𝜇])

(34)

E𝑡+1 [Σ] =
𝜓𝑡+1

𝑣𝑡+1 − 𝑛 − 1

=
1

𝑣𝑡 − 1

𝜓𝑡 +
1

𝑣𝑡 − 1

Σ𝑡

+ 𝜅𝑡𝑛

(𝜅𝑡 + 𝑛) (𝑣𝑡 − 1)
(
𝜇𝑡 − 𝜇𝑡

) (
𝜇𝑡 − 𝜇𝑡

)𝑇
= 𝑤

Σ,1
𝑡︸︷︷︸

discount factor

E𝑡 [Σ] +𝑤Σ,2
𝑡 (𝜇 − E𝑡 [𝜇]) (𝜇 − E𝑡 [𝜇])𝑇︸                           ︷︷                           ︸

rank one matrix

+𝑤Σ,3
𝑡 Σ𝑡︸︷︷︸
rank (n-1) matrix

where 𝑤
𝜇
𝑡 =

𝑛

𝜅𝑡 + 𝑛
,

𝑤
Σ,1
𝑡 =

𝑣𝑡 − 𝑛 − 1

𝑣𝑡 − 1

,

𝑤
Σ,2
𝑡 =

𝜅𝑡𝑛

(𝜅𝑡 + 𝑛) (𝑣𝑡 − 1)
(35)
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(𝜇 − E𝑡 [𝜇]) (𝜇 − E𝑡 [𝜇])𝑇 is of rank 1 as it is parametrized by the

vector 𝜇. □
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