Bayesian CMA-ES: a new approach - Archive ouverte HAL
Conference Papers Year : 2020

Bayesian CMA-ES: a new approach

Abstract

This paper introduces a novel theoretically sound approach for the celebrated CMA-ES algorithm. Assuming the parameters of the multi variate normal distribution for the minimum follow a conjugate prior distribution, we can derive the optimal update at each iteration step thanks to Bayesian statistics. Update formulae are very similar to the vanilla (μ/λ) CMA-ES. We also use variance contraction and dilatation to accommodate for local and global search. As a result, this Bayesian framework provides a justification for the update of the CMA-ES algorithm and gives a new version of CMA-ES assuming normal-Inverse Wishart prior that has similar convergence speed and efficiency as the vanilla (μ/λ) CMA-ES on test functions ranging from cone, Rastrigin to Schwefel 1 and 2 functions.
Fichier principal
Vignette du fichier
main_hal.pdf (822.11 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03814858 , version 1 (18-04-2023)

Identifiers

Cite

Eric Benhamou, David Saltiel, Sébastien Verel, Fabien Teytaud. Bayesian CMA-ES: a new approach. GECCO '20: Genetic and Evolutionary Computation Conference, Jul 2020, Cancún, Mexico. pp.203-204, ⟨10.1145/3377929.3389913⟩. ⟨hal-03814858⟩
67 View
88 Download

Altmetric

Share

More