
HAL Id: hal-03814753
https://hal.science/hal-03814753

Submitted on 14 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A comparative study of linearization methods for
Ordered Weighted Average

Thi Quynh Trang Vo, Mourad Baiou, Viet Hung Nguyen, Paul Weng

To cite this version:
Thi Quynh Trang Vo, Mourad Baiou, Viet Hung Nguyen, Paul Weng. A comparative study of
linearization methods for Ordered Weighted Average. International Workshop on Resilient Networks
Design and Modeling, Sep 2022, Compiegne, France. �hal-03814753�

https://hal.science/hal-03814753
https://hal.archives-ouvertes.fr

A comparative study of linearization methods for
Ordered Weighted Average

Thi Quynh Trang Vo∗, Mourad Baiou∗, Viet Hung Nguyen∗‡, Paul Weng†
∗ INP Clermont Auvergne, Univ Clermont Auvergne, Mines Saint-Etienne,

CNRS, UMR 6158 LIMOS, Aubiere Cedex, France
† Shanghai Jiao Tong University, Shanghai, China

UM-SJTU Joint Institute, Shanghai, China
‡ Corresponding author

Email: thi quynh trang.vo@uca.fr, mourad.baiou@uca.fr, viet hung.nguyen@uca.fr, paul.weng@sjtu.edu.cn

Abstract—We consider a fair version of combinatorial op-
timization, which aims for both Pareto-efficiency and fairness
of a solution. A possible approach to achieve the objectives
simultaneously is to use the Ordered Weighted Average (OWA)
aggregating function, which can be formulated into mix-integer
programming (MIP) formulations. In this paper, we study two
MIP formulations proposed in the literature for the OWA in the
context of fair combinatorial optimization. On the one hand, we
prove that both MIP formulations are equivalent in terms of
linear relaxations. On the other hand, we estimate the quality
with regard to the OWA value of an optimal solution of original
combinatorial optimization. An experimental evaluation of the
MIP formulations in tackling OWA Traveling Salesman Problem
is also presented.

Index Terms—Fair Optimization, Ordered Weighted Averag-
ing, Subgradient Method

I. INTRODUCTION

Fair combinatorial optimization is a class of combinato-
rial optimization where one seeks a solution of the form
(v1, . . . , vn) satisfying some constraints to optimize an objec-
tive function f(v) =

∑
i∈[n] vi as well as to balance all the

components vi, i = 1, . . . , n (in the sense that they are close to
each other). It arises naturally in many practical applications.
In fact, one can view fair combinatorial optimization as an
equitable version of combinatorial optimization where the
optimality of the objective function f and the balance of the
solution (v1, . . . , vn) are equally desired.

To illustrate one idea for fair combinatorial optimization,
we take OWA Travelling Salesman Problem (TSP) as an
example: given a weighted graph, OWA TSP focuses on
simultaneously minimizing (respectively maximizing) the total
cost (respectively the total quality) of a tour as well as making
vi, i = 1, . . . , n balanced (vi is the cost/quality of an edge
in the tour). Such a scenario is realized, for example, in
a telecommunications network where each node denotes a
server, and each edge denotes a possible direct link between
two servers with some quality represented by the weight of
the corresponding edge. The aim is to find a ring (i.e., a
Hamiltonian cycle) of direct links connecting the servers.
Any pair of servers can communicate via one of the two
paths connecting them in the ring, and the connection quality
depends on the edge of minimum quality in the paths. Hence,

the ring structure allows having a secured connection when one
of the direct links fails. Moreover, one may want to guarantee
some balance in the connection quality between all the pairs
of servers. In this situation, the maximum version of OWA
TSP can offer a good solution: it maximizes the total quality
of the tour, and at the same time, it guarantees some balance
in the quality of the connections between any pair of servers.
For the sake of clarity, in this paper, we focus on minimization
combinatorial optimization problems since the maximization
counterparts can be handled similarly.

One approach for controlling solutions’ efficiency and fair-
ness is to use the Ordered Weighted Average (OWA) function
[3]. The OWA function encodes the solution’s efficiency by
Pareto optimality that is not improvable on all components
simultaneously. On the other hand, the OWA function implic-
itly imposes the solution’s fairness by Pigou-Dalton transfer
principle, which claims that a transfer from a richer resource
to a poorer one results in a fairer distribution. We call OWA-
combinatorial optimization an equitable version of combina-
torial optimization, which uses the OWA objective function
instead of the sum function.

Although the OWA function is non-linear, it can be lin-
earized by two methods: one proposed by Ogryczak et al.
[4] using the cumulative ordered achievement vector and the
other given by Chassein et al. [1] employing the permutahe-
dron. The results of these linearization methods are two MIP
formulations for OWA-combinatorial optimization. From now
on, let us denote O-MIP, the MIP resulted from the method in
[4] and C-MIP, the MIP resulted from the method in [1]. In
this paper, we consider C-MIP, the more recent formulation,
as O-MIP has been studied in [3]. Furthermore, we provide
a comparative study of the two MIP formulations for OWA-
combinatorial optimization. In detail, while C-MIP has fewer
variables and is reported to be more efficient than O-MIP
for some problems like OWA simplified portfolio optimization
[1], we prove that O-MIP and C-MIP are equivalent in terms
of linear relaxations. In addition, for OWA TSP, O-MIP can
be solved faster than C-MIP despite its disadvantage in the
number of variables.

To summary, the contributions of this paper are:
1) We prove that the MIP formulations for OWA-

combinatorial optimization are equivalent in terms of
linear relaxations.

2) We estimate the optimal solution’s quality of original
combinatorial optimization in terms of OWA value.

3) We experimentally compare O-MIP, C-MIP, and primal-
dual heuristics [3] in the context of OWA TSP.

The paper is organized as follows. In Section II, we de-
fine formally OWA-combinatorial optimization and two MIP
formulations to linearize it. Section III provides a theoretical
analysis of the relation between the MIP formulations and
a quality evaluation of the optimal solution of the original
combinatorial optimization. Section IV presents a generic
method based on the primal-dual algorithm in [3] as a faster
alternative to deal with large-sized instances. Experimental
results to evaluate the methods are shown in Section V. Finally,
our conclusions are discussed in Section VI.

II. MODELS

Let us begin with some notations. For a positive integer
n, [n] stands for the set {1, . . . , n}. Vectors and matrices are
denoted in bold (e.g., x or z) and their components are denoted
with indices (e.g., xi or zij).

A. OWA-combinatorial optimization

We consider a combinatorial optimization problem which
has the following form:

(Min− P)

min
∑
i∈[n]

vi

s.t v = Cx

Ax ≤ b

x ∈ {0, 1}m

(1a)

(1b)
(1c)
(1d)

where v ∈ Rn is the vector whose components are needed to
be balanced, C ∈ Rn×m, A ∈ RK×m, b ∈ RK and K,m, n
are positive integers.

Note that (Min − P) does not necessarily search for the
balance of v since it only optimizes

∑
i∈[n] vi. To obtain the

balance, we introduce the notion of Ordered Weighted Average
(OWA) value of v, which is defined as:

OWAw(v) =
∑
k∈[n]

wkθk(v)

where w = (w1, . . . wn) such as w1 > · · · > wn > 0,
θ(v) = (θ1(v), . . . , θn(v)) is a vector obtained by arranging
v’s components in the descending order. By choosing weight
w positive and strictly decreasing, the OWA function can
encode both the efficiency and fairness of vector v. The
notion of efficiency is defined through the increase of the
OWA function with respect to Pareto-dominance. In detail,
if y ∈ Rn Pareto-dominates y′ ∈ Rn (yi ≥ y′i ∀i ∈ [n],
∃j ∈ [n], yj > y′j) then OWAw(y) > OWAw(y′). The OWA
function can also represent the concept of fairness built on
Pigou-Dalton principle. Formally, for y ∈ Rn where yi > yj ,
for all ϵ ∈ (0, yi − yj), OWAw((y1, ..., yi, ..., yj , ..., yn)) >
OWAw((y1, ..., yi − ϵ, ..., yj + ϵ, ..., yn)).

An OWA-combinatorial optimization problem is defined as
follows:

(Fair − P)

min OWAw(v)

s.t v = Cx

Ax ≤ b

x ∈ {0, 1}m

(2a)
(2b)
(2c)
(2d)

For illustration, we now present the concept of the OWA
function in the context of TSP.

Example 1: Given a complete graph G = (V,E) where V =
[n], E = [m] and a cost vector c ∈ Rm

+ associated with E, TSP
seeks n edges that form a Hamiltonian cycle (a tour) in G and
have the smallest total cost. In other words, TSP minimizes∑

i∈[n] vi where v = (v1, . . . , vn) is the cost vector of n edges
in a tour. To represent v, we consider a directed version Gd =
(V,Ed) of G, namely that each edge e = (i, j) ∈ G becomes
two arcs (i, j) and (j, i) whose costs are both ce, i.e., cij =
cji = ce. For each arc (i, j), let xij be a binary variable to
represent the occurrence of (i, j) in a directed tour of Gd. By
the fact that there is only one incoming arc incident to vertex
k in a directed tour, i.e.,

∑
i∈[n] xik = 1,∀k ∈ [n], v can be

represented as (
∑

i∈[n] ci1xi1, . . . ,
∑

i∈[n] cinxin).
Instead of minimizing the sum objective function, OWA

TSP optimizes the OWA objective function
∑

i∈[n] wiθi(v)
which can encode both the efficiency and fairness of v. A MIP
formulation for OWA TSP based on the subtour polytope [2]
can be written as follows:

min
∑
k∈[n]

wkθk(v) (3a)

s.t vk =
∑
i∈[n]

cikxik ∀k ∈ [n] (3b)

∑
i∈[n]

xik = 1 ∀k ∈ [n] (3c)

∑
i∈[n]

xki = 1 ∀k ∈ [n] (3d)

∑
i,j∈Q,i̸=j

xij ≤ |Q| − 1 ∀Q ⊂ V (3e)

xik ∈ {0, 1} ∀i, k ∈ [n] (3f)

In (3), constraints (3b) correspond to constraint v = Cx and
constraints (3c), (3d) and (3e) represent explicitly constraint
Ax ≤ b in (Fair − P). OWA TSP is NP-hard since it is
reduced from the finding a Hamiltonian cycle problem.

Because of the objective function, OWA-combinatorial opti-
mization is non-linear. More precisely, the ordering operator θ
in the OWA function causes OWA-combinatorial optimization
to become non-linear even if original constraints are linear.
Thankfully, the OWA function can be linearized by two
methods studied in [4] and [1], which are presented now.

B. Formulation O-MIP [4]

In [4], Ogryczak et al. proposed a method to linearize the
OWA function using the cumulative vector of θ(v). Denote
θ(v) the cumulative ordered vector of v, i.e., θk(v) =

∑
i∈[k] θi(v). Obviously, θk(v) is the sum of k largest com-

ponents of v. When fixing v, θk(v) can be computed as a
solution of a knapsack problem:

θk(v) = max

{
k∑

i=1

viaki | ak ∈ [0, 1]n,

k∑
i=1

aki = k

}
(4)

To integrate into a LP where v is also variable, we take a dual
of (4), which is

θk(v) =min krk +

n∑
i=1

dki

s.t rk + dki ≥ vi ∀i ∈ [n]

dki ≥ 0 ∀i ∈ [n].

(5)

Moreover, by setting w′
i = wi − wi+1 for i ∈ [n − 1]

and w′
n = wn, the objective function of (Fair − P) can be

rewritten as min
∑

k∈[n] w
′
kθk(v). Combining with (5), we

get a MIP formulation for (Fair − P), called O-MIP:

(O-MIP)

min
∑
k∈[n]

w′
k(krk +

∑
i∈[n]

dki)

s.t rk + dki ≥ vi ∀k, i ∈ [n]

dki ≥ 0 ∀k, i ∈ [n]

v = Cx

Ax ≤ b

x ∈ {0, 1}m

(6a)

(6b)
(6c)
(6d)
(6e)
(6f)

Before presenting another formulation, we exploit O-MIP’s
structure to get useful information for later analysis. We
consider a dual of O-MIP’s continuous relaxation (denoted
as (DO)) which has the following form:

(DO)

max − uT b−
∑
k∈[m]

tk

s.t.
∑
i∈[n]

yki = kw′
k ∀k ∈ [n]

yki ≤ w′
k ∀k, i ∈ [n]∑

k∈[n]

yki + zi = 0 ∀k ∈ [n]

(uA)k − (zC)k + tk ≥ 0 ∀k ∈ [m]

yki ≥ 0 ∀k, i ∈ [n]

tk ≥ 0 ∀k ∈ [m]

uk ≥ 0 ∀k ∈ [K].

(7a)

(7b)

(7c)

(7d)

(7e)
(7f)
(7g)
(7h)

Interestingly, if we fix y and take a dual of (DO), we obtain
a continuous relaxation of (Min−P) with modified costs, i.e.

(RPy)

min
∑
i∈[n]

(
∑
k∈[n]

yik)vi

s.t. v = Cx

Ax ≤ b

x ∈ [0, 1]m

(8a)

(8b)
(8c)
(8d)

As a consequence, a solution (x,v) for the formulation
(RPy) with integrality conditions xi ∈ {0, 1} is also feasible
for O-MIP (in the sense that one can also find (r,d) such
that (r,d,x,v) is feasible for O-MIP and its corresponding
objective function is equal to OWAw(v)). We denote (Py) the
discrete version of (RPy) where x ∈ {0, 1}m.

C. Formulation C-MIP [1]

An alternative approach to linearize OWAw(v), studied in
[1], starts from the observation that if we permute w and
take the inner product with v, OWAw(v) is the maximum
value of this inner product considering all permutations of
w. Formally, OWAw(v) = maxwτ∈Π w⊤

τ v where Π is the
set of all permutations (of the coefficients) of the vector w.
Thus, with v fixed, the OWA function can be computed by
the following LP problem:

max
∑
i∈[n]

∑
k∈[n]

pikwivk (9a)

s.t
∑
i∈[n]

pik = 1 ∀k ∈ [n] (9b)

∑
k∈[n]

pik = 1 ∀i ∈ [n] (9c)

pik ≥ 0 ∀i, k ∈ [n]. (9d)

Take a dual of (9) and integrate it into (Fair − P), we get
the second MIP formulation for (Fair − P), called C-MIP:

(C-MIP)

min
∑
i∈[n]

(αi + βi)

s.t αi + βk ≥ wivk ∀i, k ∈ [n]

v = Cx

Ax ≤ b

x ∈ {0, 1}m

(10a)

(10b)
(10c)
(10d)
(10e)

We also consider a dual of C-MIP’s continuous relaxation
(denoted as (DC)) as the previous section.

(DC)

max − uT b−
∑
k∈[m]

tk

s.t.
∑
i∈[n]

pikwi + zk = 0 ∀k ∈ [n]

(uA)k − (zC)k + tk ≥ 0 ∀k ∈ [m]∑
i∈[n]

pik = 1 ∀k ∈ [n]

∑
k∈[n]

pik = 1 ∀i ∈ [n]

pik ≥ 0 ∀i, k ∈ [n]

tk ≥ 0 ∀k ∈ [m]

uk ≥ 0 ∀k ∈ [K].

(11a)

(11b)

(11c)

(11d)

(11e)

(11f)
(11g)
(11h)

Then a dual of the above formulation with p fixed is:

(RPp)

min
∑
i∈[n]

∑
k∈[n]

wkpik

 vi

s.t. v = Cx

Ax ≤ b

x ∈ [0, 1]m

(12a)

(12b)
(12c)
(12d)

We denote (Pp) the integer version of (RPp) over x (i.e., the
constraint (12d) is replaced by x ∈ {0, 1}m). Similar to O-
MIP, solving (RPp) with x discrete yields a feasible solution
for C-MIP.

In comparison, C-MIP’s size is smaller than O-MIP’s
because of the number of extra variables. More precisely,
although both formulations use the same number of additional
constraints (i.e., n2), C-MIP utilizes only 2n new variables
instead of n2 + n as in O-MIP. The formulations were com-
pared experimentally for continuous optimization [1]. In this
paper, we provide a theoretical analysis (Section III) in order
to understand these formulations better, and we experimentally
evaluate them for combinatorial optimization (Section V).

III. THEORETICAL ANALYSIS

In this section, we show that the formulations are equivalent
in terms of linear relaxations. Then, we give an estimation of
the OWA value corresponding to optimal solutions of (Min−
P) based on that of (Fair − P).

A. Relation Between The Formulations

We first introduce two notations. Let Y be the set of points
that satisfy (7b) and (7c), and P be the set of points that satisfy
(11d), (11e) and (11f).

The following theorem relates the problems (Py) and (Pp).
Theorem 1: There exists a one-to-one correspondence ϕ :

P → Y such that ∀p ∈ P, Problems (Pp) and (Pϕ(p)) have
the same solutions.
This theorem directly follows from the following two lemmas,
which show that the set of feasible solutions of (Pp) for p ∈ P
and that for (Py) for y ∈ Y coincide.

Lemma 1: ∀p∗ ∈ P , ∃y∗ ∈ Y such that ∀i ∈
[n],

∑
k∈[n] wkp

∗
ik =

∑
k∈[n] y

∗
ik.

Proof: It is sufficient to prove the result for the extreme
points of polytope P . As any other point p′ is a convex combi-
nation of some extreme solutions p1, . . . , pk, its counterpart
y′ can be obtained by the same convex combination of the
counterparts y1, . . . , yk of p1, . . . , pk.

Recall that the set of extreme points of P is exactly the set
of permutations on set [n]. Let p∗ be an extreme point of P .
Therefore, all the components of p∗ are null except for some
n components p∗i11 = p∗i22 = . . . = p∗inn = 1. The counterpart
y∗ of p∗ can be built as follows:

y∗
i11 = w′

1 y∗
i12 = w′

2 y∗
i1n = w′

n

y∗
i21 = 0 y∗

i22 = w′
2 y∗i2n = w′

n

.
y∗
ik1

= 0 y∗
ik2

= 0 . . . y∗
ikk

= w′
k . . . y∗

ikn
= w′

n

. y∗
inn = w′

n



By considering any column k ∈ [n], one can check: y∗ ∈
Y , i.e.,

∑
j∈[n] y

∗
ijk

= kw′
k and y∗ijk ≤ w′

k. Moreover, by
summing any row ij for j ∈ [n], one can check:

∑
k∈[n] y

∗
ijk

=
wj =

∑
k∈[n] wkp

∗
ijk

.

Lemma 2: ∀y∗ ∈ Y , ∃p∗ ∈ P such that ∀i ∈
[n],

∑
k∈[n] wkp

∗
ik =

∑
k∈[n] y

∗
ik.

Proof: Similarly to Lemma 1, it suffices to show the result
for any extreme solution y in Y . Let us consider the following
transportation problem (TP) where the set of the supply nodes
and the set of demand nodes are both [n]. For any i, j ∈ [n],
the supply at supply node i is equal to

∑
k∈[n] y

∗
ik and the

demand of demand node j is equal to wj . Note that the total
supply is equal to the total demand, because

∑
i∈[n] y

∗
ik =

kw′
k,

∑
k∈[n]

∑
i∈[n] y

∗
ik =

∑
k∈[n] kw

′
k =

∑
i∈[n] wi. For any

feasible solution of TP, Φ =
(
Φik

)
i,k∈[n]

where Φik is the
value of the commodity transported from supply node i to
demand node k, we can define a vector p as follows: pik = Φik

wk

for all i, k ∈ [n], which by definition satisfies:∑
i∈[n]

pik =
∑
i∈[n]

Φik

wk
=

∑
i∈[n] Φik

wk
= 1, (13)

and ∑
k∈[n]

y∗ik =
∑
k∈[n]

Φik =
∑
k∈[n]

wkpik. (14)

If p does not satisfy (*)
∑

k∈[n] pik = 1 for all i ∈ [n], we
will construct a sequence Φt and its associated pt such that
||
∑

k∈[n] p
t
·k − 1||1 =

∑
i∈[n] |

∑
k∈[n] p

t
ik − 1| tends to zero,

where 1 denotes the vector in Rn whose components are all
equal to 1.

We first show that if p does not satisfy (*), then ∃i, j, h, l ∈
[n] such that h < l and Φil > 0 and Φjh > 0. Let P1 = {i ∈
[n] |

∑
k∈[n] p

∗
ik ≥ 1} and P2 = {i ∈ [n] |

∑
k∈[n] p

∗
ik < 1}

be a partition of [n]. By assumption, P2 ̸= ∅. Let p1 = |P1|,
p2 = |P2|, W1 = [p1], and W2 = {p1 + 1, p1 + 2, . . . , n}.
Among the following four cases, only one is possible:

• There exist both strictly positive flows from supply nodes
in P1 to demand nodes in W2 and strictly positive flows
from supply nodes in P2 to demand nodes in W1. Thus,
there are some i ∈ P1, j ∈ P2, h ∈W1 and l ∈W2 such
that Φ∗

il > 0 and Φ∗
jh > 0.

• There exist strictly positive flows from supply nodes in
P1 to demand nodes in W2 but no strictly positive flows
from supply nodes in P2 to demand nodes in W1. Observe
that the p1 greatest values that

∑
k∈[n] y

∗
ik for i ∈ [n] can

take are w′
1+w′

2+. . .+w′
n−1+w′

n = w1, w′
2+w′

3+. . .+
w′

n = w2, . . . , w′
p1

+ w′
p1+1 + . . . + w′

n = wp1
. Hence∑

i∈P1

∑
k∈[n] y

∗
ik ≤

∑
i∈[p1]

wi, i.e., the total supply in
P1 is less than or equal to the total demand in W1. Thus,
it is impossible that W1 only receive flows from P1 and
P1 can still send positive flows to W2.

• There exist strictly positive flows from supply nodes in P2

to demand nodes in W1 but no strictly positive flows from
supply nodes in P1 to demand nodes in W2. Thus, strictly

positive flows to W2 come uniquely from P2. Hence, we
can observe that∑
i∈P2,k∈W2

p∗ik =
∑

i∈[n],k∈W2

Φ∗
ik

wk
=

∑
k∈W2

wk

wk
= |W2| = p2

But as
∑

k∈[n] p
∗
ik < 1 for all i ∈ P2,

∑
i∈P2,k∈[n] p

∗
ik <

|P2| = p2, we have then

p2 =
∑

i∈P2,k∈W2

p∗ik ≤
∑

i∈P2,k∈[n]

p∗ik < p2,

which is contradictory.
• There is no strictly positive flows from supply nodes in

P2 to demand nodes in W1 and no strictly positive flows
from supply nodes in P1 to demand nodes in W2. This
case is impossible due to the same reason as the previous
one.

Let Φ0 be a feasible solution of TP and p0 its associated
vector. For any t ∈ N, two cases can occur: (1) if pt satisfies
(*), Φt+1 = Φt and pt+1 = pt; otherwise (2) Φt+1 and
pt+1 can defined according to the following procedure. As
(*) is not satisfied, there exist i, j, h, l ∈ [n] such that h < l
and Φt

il > 0 and Φt
jh > 0. We then define Φt+1 = Φt

except for the following terms: Φt+1
ih = Φt

ih + ϵ, Φt+1
il =

Φt
il − ϵ, Φt+1

jh = Φt
jh − ϵ and Φt+1

jl = Φt
jl + ϵ, where

ϵ = min(Φt
il,Φ

t
jh,

(
∑

k∈[n] p
t
ik−1)wlwh

wh−wl
,
(1−

∑
k∈[n] p

t
jk)wlwh

wh−wl
).

Note that ϵ > 0 since wh > wl.
Consequently, pt+1 satisfies: pt+1

ih = ptih + ϵ
wh

, pt+1
il =

ptil − ϵ
wl

, pt+1
jh = ptjh − ϵ

wh
and pt+1

jk = ptjl +
ϵ
wl

. By
construction, Φt+1 and pt+1 verify (13) and (14). Moreover,∑

k∈[n] p
t+1
ik is decreased by ϵ(wl−wh)

whwl
and the sum

∑
k∈[n] p

∗
jk

is increased by the same quantity. Hence, ||
∑

k∈[n] p
t
·k −

1||1 > ||
∑

k∈[n] p
t+1
·k −1||1. Clearly, sequence (pt) converges

to a vector in P , which proves this lemma.

B. Quality estimation for the optimal solution of (Min− P)

Due to the size of the formulations, MIP solvers can only
solve small-sized instances within a reasonable amount of
time. Thus, if the optimal solution of (Min − P) is “good
enough” for (Fair−P), solving exactly large-sized instances
is needless. The following theorem provides an estimation to
evaluate the quality of (Min− P)’s optimal solution.

Theorem 2: Assume that there exists an approximation ratio
r between (Min− P) and its continuous relaxation (Min−
RP). Let (x,v) be the optimal solution of (Min − P) and
C = rmin

(
nw1∑n
i=1 wi

, nθ1(v)∑
i∈[n] vi

)
, we have:

OWAw(v) ≤ C × OWAw(v∗) (15)

where (x∗,v∗) is the optimal solution of (Fair − P).
Proof: In this proof, we will use OPT (A) to denote

the optimal objective value of problem A (for example,
OPT (DO) is the optimal objective value of (DO)). From the
assumption, we have:

OPT (Min− P) ≤ rOPT (Min−RP) (16)

To establish the result (15), we only need to prove that:

OWAw(v) ≤ rCi × OWAw(v∗), ∀i = 1, 2

where C1 =
nw1∑n
i=1 wi

, C2 =
nθ1(v)∑
i∈[n] vi

.

The bound with C1 results from C-MIP while that of C2

comes from O-MIP.

1) Proof of OWAw(v) ≤ rC1×OWAw(v∗): Let p ∈ Rn×n

subject to pik = 1/n for i, k ∈ [n]. Obviously, p satisfies
constraints (11d) - (11f) of (DC). The objective value
of (RPp) is:

∑
i∈[n]

∑
j∈[n]

wjpij

 vi =

∑
j∈[n] wj

n

∑
i∈[n]

vi (17)

Therefore, OPT (Pp) =
∑

j∈[n] wj

n OPT (Min − P)
and OPT (RPp) =

∑
j∈[n] wj

n OPT (Min − RP). This
observation leads to:

OWAw(v) =
∑
i∈[n]

wiθi(v)

=
∑
i∈[n]

nwi∑
j∈[n] wj

∑
j∈[n] wj

n
θi(v)

≤ nw1∑
j∈[n] wj

∑
i∈[n]

∑
j∈[n] wj

n
θi(v)


= C1

∑
j∈[n] wj

n

∑
i∈[n]

vi

= C1

∑
j∈[n] wj

n
OPT (Min− P)

(18)

Using the relation between OPT (Min − P) and
OPT (Min−RP), we get:∑

j∈[n] wj

n
OPT (Min− P)

≤ r

∑
j∈[n] wj

n
OPT (Min−RP)

= rOPT (RPp)

(a)

≤ rOPT (DC)

(b)

≤ rOPT (C −MIP)

= rOWAw(v∗)

(19)

where (a) : when fixing p = p, we have OPT (DC) =
OPT (RPp) (strong duality) and both are smaller than
OPT (DC) without fixing p = p; (b): since (DC) is a
dual of C-MIP’s continuous relaxation.
We obtain the proof by combining (18) and (19).

2) Proof of OWAw(v) ≤ rC2 × OWAw(v∗): Recall that
w′

i = wi − wi+1 for i ∈ [n − 1] and w′
n = wn. From

O-MIP, we have:

OWAw(v) =
∑
k∈[n]

∑
i∈[k]

θi(v)

w′
k

=
∑
k∈[n]

n
∑

i∈[k] θi(v)

k
∑

i∈[n] vi

k

n

∑
i∈[n]

vi

w′
k

≤ nθ1(v)∑
i∈[n] vi

∑
k∈[n]

k

n

∑
i∈[n]

vi

w′
k

= C2

∑
k∈[n]

k

n
w′

k

 ∑
i∈[n]

vi

= C2

∑
j∈[n] wj

n

∑
i∈[n]

vi

= C2

∑
j∈[n] wj

n
OPT (Min− P)

(20)
The desired result follows by the application of (19) and
(20).

Remark 1: Compared to the ratio established in [3], Theo-
rem 2 generally has an additional factor r. This factor depends
on the actual problem. For instance, if one considers the
metric TSP where edge weights satisfy triangle inequalities,
this factor will be 3/2 [6].

Theorem 2 provides a way to choose the weight w for
(Fair − P). Here are several typical choices of w and their
corresponding C1:

1) wi = (n− i+ 1)/n: C1 = 2n/(n+ 1) < 1/2.
2) wi = 1/i: C1 = O(n/ log n) (since

∑
i∈[n] 1/i ≈

log n).
3) wi = 1/i2: C1 = O(n) (since 1 ≤

∑
i∈[n] 1/i

2 ≤ π2/6)

In the last case where we choose wi = 1/i2 for i ∈ [n],
solving (Fair − P) is necessary since the ratio C1 is large.

IV. A PRIMAL-DUAL HEURISTIC

As presented in Section II, the MIP formulations are only
efficient for small-sized instances. A primal-dual heuristic
based on O-MIP is proposed in [3] to deal with larger-sized
instances. In this section, we generalize this method for both
formulations, sketched in Algorithm 1.

The algorithm starts from an initialization of y(0) (resp.
p(0)) satisfying conditions (7b), (7c), and (7f) (resp. (11d)
- (11f)). For example, we can choose y(0) (resp. p(0)) as
proposed in Section III. Then y(t) (resp. p(t)) is updated
iteratively based on the improvement of lower bounds obtained
from the Lagrangian relaxation corresponding to O-MIP (resp.
C-MIP). For space reason, we focus on C-MIP. In detail, the

Algorithm 1

1: t← 0
2: initialize y(0) (resp. p(0))
3: repeat
4: t← t+ 1
5: solve (Py(t−1)) (resp. (Pp(t−1))) to obtain a feasible

solution (v(t),x(t))
6: update y(t) (resp. p(t)) based on y(t−1) (resp. p(t−1))

and (v(t),x(t))
7: until max iteration has been reached or change on y(t)

(resp. p(t)) is small
8: return (v(t),x(t)) with smallest OWA value

Lagrangian relaxation of C-MIP with respect to constraint
(10b) can be defined as follows

L(λ) = min
∑
i∈[n]

(1−
∑
j∈[n]

λij)αi +
∑
j∈[n]

(1−
∑
i∈[n]

λij)βi

+
∑
i∈[n]

∑
k∈[n]

λikwivk

s.t. v = Cx (21a)
Ax ≤ b (21b)
x ∈ {0, 1}m (21c)

where λ = (λik)i∈[n],k∈[n] is a Lagrangian multiplier.
Solving (21) obtains a lower bound for C-MIP. The La-

grangian multiplier λ has to belong to set L = {λ ∈
Rn×n

+ |
∑

i∈[n] λik = 1 ∀k ∈ [n] ,
∑

k∈[n] λik = 1 ∀i ∈ [n]}
to get a meaningful bound. Interestingly, if we decompose
formulation (21) into two subproblems (S1), (S2) where (S1)
over (α,β) and (S2) over (v,x), the subproblem (S2) is
exactly formulation (Pp). Thus, updating p is equivalent to
updating a projected sub-gradient step, i.e:

λ′
ij ← λij − γ(αi + βj − wivj) ∀i ∈ [n], k ∈ [n] (22a)

λ← argmin
λ∈L
||λ′ − λ|| (22b)

where γ is learning rate. Since the constraints of L involve
with both rows and columns of λ ∈ Rn×n, the projection on
L cannot be solved by the capped simplex projection as in
[3]. Hence, we perform the projection on L by minimizing a
convex quadratic function over linear constraints.

V. NUMERICAL RESULTS

In this section, we provide experimental results of two MIP
formulations and Algorithm 1 for a specific combinatorial
optimization problem, e.g., OWA TSP. We tested on several
instances of TSPLIB [5] with the number of nodes in the
range of 14 to 100. The weight w is defined as wk = 1/k2

for k ∈ [n]. We limited the solving time for each instance
to three hours (10800s). All experiments are implemented in
C++ programming language and conducted on a computer
with 3GHz Intel Core i5 CPU and 16GB of RAM. We used

TABLE I
NUMERICAL RESULTS FOR OWA TSP.

Instance O-MIP C-MIP (HO) (HC)

CPU1(s) CPU2(s) CPU1(s) CPU2 (s) CPU(s) Gap(%)/Obj CPU(s) Gap(%)/Obj
burma14 0.83 0.27 0.45 0.20 1.50 0.23% 1.62 0.06%
gr21 1.46 1.40 1.08 1.04 1.82 0.02% 2.25 0%
fri26 21.01 9.35 49.97 9.08 5.74 0% 4.12 0.02%
bays29 37.89 7.44 57.85 21.06 9.92 0.86% 11.10 1.19%
gr48 863.02 334.84 2419.39 354.91 57.17 2.86% 56.19 1.75%
hk48 1943.39 440.99 719.89 443.49 32.21 0.03% 31.14 0.48%
brazil58 TL 180.27 TL 664.29 21.85 (4770.24) 21.88 (4772.03)
st70 TL TL TL TL 207.48 (35.89) 169.53 (35.97)
kroA100 TL TL TL TL 1202.54 (811.42) 1657.44 (790.76)

ILOG CPLEX version 12.10.0 with default parameters and
one thread to solve LP and MIP problems.

For simplicity, let HO, HC be Algorithm 1 utilizing O-
MIP and C-MIP, respectively. We initialized y

(0)
ik = k

nw
′
k

and p
(0)
ik = 1

n for i, k ∈ [n]. At time step t, the learning
rate γ(t) is computed as γ(t) = OPT (P)−OWAw(v′)

||λ(t−1)||2
where

OPT (P) is the objective value of (Py(t−1)) (resp. (Pp(t−1))),
v′ is the best feasible solution of O-MIP (resp. C-MIP) so
far. Since all formulations for OWA TSP have an exponential
number of subtour elimination constraints, we solve them
by the branch-and-cut algorithm. In detail, when a feasible
solution x∗ is found, we construct a graph G∗ = (V,E∗)
where E∗ = {ij ∈ Ed|x∗

ij = 1}. Then a strongly connected
component that does not contain all nodes of G∗ corresponds
to a subtour elimination constraint violated by x∗. Violated
constraints (if any) are added to the formulations.

In Table I, the number in the instance’s name is the number
of nodes. Columns “O-MIP” and “C-MIP” regroup results of
O-MIP and C-MIP, where subcolumn “CPU1” reports the time
in seconds that CPLEX spent to obtain the optimal solution
and subcolumn “CPU2” reports the time to obtain a feasible
solution as small as the solution of HO (resp. HC). Results
of instances that can not be solved within the time limit (i.e.,
10800s) are set to “TL” (stand for Time Limit). Columns “HO”
and ‘HC” report respectively results of HO and HC , where
subcolumn “CPU” is the runtime and “Gap/Obj” provides the
gap in percentage between the solutions of O-MIP (resp. C-
MIP) and Algorithm 1. In the case that MIP formulations can
not be solved within the time limit, we provide instead the
objective value (numbers in parentheses, without the percent
sign) corresponding to a solution found by HO (resp. HC).

Numerical results confirm that MIP formulations can only
handle small-sized instances. The running time spent to solve
these formulations increases rapidly with instances’ size and
can reach up to around three hours. For example, instances
with more than 50 vertices can not be solved within three
hours. Interestingly, although C-MIP was shown to be bet-
ter than O-MIP for OWA simplified portfolio optimization
problem [1], its performance is worse than O-MIP’s one
when applying for OWA TSP. In contrast, HO and HC solve
instance quickly, especially large-sized instances. The time
spent by Algorithm 1 increases acceptably with instance size.

Furthermore, their solutions are high-quality, namely that their
optimality gap is at most 3%.

VI. CONCLUSION

In this paper, we study OWA-combinatorial optimization,
a fair variant of combinatorial optimization which uses the
OWA objective function. Our result extends the previous one
to deal with OWA-combinatorial optimization. Our theoretical
results show that two proposed schemes of OWA linearization
in the literature are equivalent in terms of linear relaxations
in the context of OWA-combinatorial optimization. These
linearizations can also be exploited to compare the OWA
values of optimal solutions of the original and fair version of
a combinatorial optimization problem. Numerical results show
that O-MIP can be solved faster, despite using more variables
than C-MIP for OWA TSP. Our future work will focus on
deriving more efficient heuristics and developing theoretical
guarantees for those heuristics.

REFERENCES

[1] André Chassein and Marc Goerigk. Alternative for-
mulations for the ordered weighted averaging objective.
Information Processing Letters, 115(6-8):604–608, 2015.

[2] George Dantzig, Ray Fulkerson, and Selmer Johnson. So-
lution of a large-scale traveling-salesman problem. Journal
of the operations research society of America, 2(4):393–
410, 1954.

[3] Viet Hung Nguyen and Paul Weng. An efficient primal-
dual algorithm for fair combinatorial optimization prob-
lems. In International Conference on Combinatorial
Optimization and Applications, pages 324–339. Springer,
2017.

[4] Włodzimierz Ogryczak and Tomasz Śliwiński. On solving
linear programs with the ordered weighted averaging
objective. European Journal of Operational Research,
148(1):80–91, 2003.

[5] Gerhard Reinelt. Tsplib—a traveling salesman problem
library. ORSA journal on computing, 3(4):376–384, 1991.

[6] David B Shmoys and David P Williamson. Analyzing
the held-karp tsp bound: A monotonicity property with
application. Information Processing Letters, 35(6):281–
285, 1990.

