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Context
Autonomous Underwater Vehicle (AUV)

• Autonomy
Long distance and long period
travel
No human intervention underwa-
ter
Internal spatial positioning
Wireless communication

• Applications
Oceanography (bathymetry, map-
ping)
Commercial (research mission,
videos)
Military (mine detection, sonar)

Figure 1 – Generic AUV plan
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Context
Application example: The search for AF447 - Rio Paris 2009

After 2 years of research in four phases and several marine vehicles em-
ployed, the AUV REMUS 6000 locates the wreckage of the plane at 4000m
depth.

Figure 2 – REMUS 6000, 3.84m of
length

Figure 3 – Detection of debris by
acoustic imaging

Figures from BEA report
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State of art
Underwater communications

• Electromagnetic radio
" High bandwidth at very low range
$ Large antenna and high power for

longer range
• Optical
" Ultra high bandwidth at low range
$ Ambient light and turbidity affects

data rate
$ Line of sight required

• Acoustics
" Long range, moderate bandwidth
" Low power even at great range
$ Noise / channel dependent
$ Latency (' 1500 m/s)

Figure 4 – Theorical underwater
communications data rates (log scale)
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State of art
Doppler shift on acoustic communication

• The AUV movement imply a
Doppler shift

• This shift has to be estimated and
compensated to decode the commu-
nication

• Multiple delayed and distorted ver-
sions of the transmitted signal is re-
ceived

Figure 5 – Doppler shift impact on
frequency
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State of art
Positioning systems

No Global Navigation Satellite Systems (GNSS) available after few meters
depth underwater !

• Proprioceptives sensors
Inertial Navigation System (INS):
Low bias inertial sensors measure-
ments filtered to an attitude esti-
mator to get speed and position.
Doppler Velocity Log (DVL):
Acoustic sensor that estimates ve-
locity relative to the sea bottom.
INS + DVL: Adding the speed
from the DVL, this system can
limit the INS speed error.

Figure 6 – Inertial Measurement
Unit (IMU)
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State of art
Positioning systems

No Global Navigation Satellite Systems (GNSS) available after few meters
depth underwater !

• Exteroceptives systems
Ultrashort Baseline
(USBL)
Range-only single beacon
(ROSB)
GPS Intelligent Buoy
(GIB) and Long Baseline
(LBL)
Short Baseline (SBL) Figure 7 – Acoustic baseline positioning

systems

It is common practice to use INS/DVL system with occasionnal acoustic
alignment.
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State of art
Positioning systems

Existing systems are perfect for precise mapping and bathymetry, when
spacial knowledge is critical

" Great navigation accuracy for
a long time

$ Costly
$ High operational time

Figure 8 – INS/DVL LBL architecture
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Positioning innovation
System

We are using single beacon exchanging communications with an AUV ar-
chitecture. Light and low complexity.

Figure 9 – Simulation architecture

Figure 10 – Grid pattern trajectory mostly
used in industry
from Hegrenæs et. Al "Model-Aided Inertial
Navigation for Underwater Vehicles"
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System objective

The goal is not to compete with INS/DVL Baseline system but to provide
time efficient navigation system for AUV.

• Acoustic communication
• Cost-efficient Micro-Electro-

Mechanical System (MEMS)
IMU

• GNSS sensor
• Pressure sensor for 3 dimen-

sional solution Figure 11 – Fiber Optical Gyroscope IMU
and MEMS IMU comparison
from Advanced Navigation
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Positioning innovation
What’s the innovation ?

Using Doppler-shift from acoustic communication compensation to do po-
sitioning.

Figure 12 – Binary Phase Shift Keying
(BPSK)

• Np pilots symbols used for synchro-
nization and channel estimation.

• Nd data PSK symbols carrying use-
ful information

• Ng guard symbols to reduce reflec-
tions

Figure 13 – PSD showing pure-tone
at 20 kHz and center frequency
f0=28 kHz
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Acoustic communication decoding

Underwater acoustic communication
provide two crucial values when
decoding the signal :

• Range between the station and the
AUV

• Relative speed of the AUV
Includes water current speed, AUV
speed and beacon speed
Can be converted to total speed of
the AUV if its heading is known

Figure 14 – Receiver demodulator
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Positioning innovation
Estimation filters

Having these measurements estimation, the last important part of our
algorithm is the estimator

There’s few possibility. Here are the
more relevant to our system :
• Classical Kalman Filter and its ex-

tended version
• Unscented Kalman Filter
• Particle Filter
• Maximum A Posteriori Filter Figure 15 – Concept of Kalman filter
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Simulation results
Parameters

• Grid-pattern trajectory during 22 minutes
• Distance traveled : Around 1200 meters
• AUV speed between 2 and 4 knots
• Filter used : Unscented Kalman Filter (UKF)
• 200 iterations
• No GNSS fix but 2 meters noise at initial state
• Observation equation : y =

(
vr dest θheading

)T

• Communication frequency : 0.25 Hz
• IMU measurement frequency : 4 Hz
• Noises :

Distance estimation noise : Normal distribution between -6 and 6
meters
Relative speed noise : Normal distribution between -0.4 and 0.4 meters
per second
Heading noise from the IMU : Normal distribution between -10 and
10 degrees
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Simulation results
Results - 2D position estimation with Unscented Kalman Filter

Figure 16 – Fixed beacon located at the same direction of straight lines
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Simulation results
Analysis

Figure 17 – RMSE, image of
the confidence

Figure 18 – Position error at each time

Mean position error : 5.02m
Percentage of the traveled distance error : 0.417%
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Conclusion
About the results

Convincing positioning error results in simulation using realistic noises
• PHINS/DVL LBL position error is around 0.03% of the traveled dis-

tance
• USBL position error is from 1% for its simpliest configuration to 0.06%

of the traveled distance when in full configuration
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Conclusion
Future works

In July 2022, a sea experimentation with the same parameters as the
simulation has been made
• Post-processing and algorithm fitting to real world
• Current estimation
• Navigation with control correction
• Using straight lines to enhance estimation
In the future we can totally imagine multiple AUV positioning
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Do you have any questions?

ISEN Yncréa Ouest raphael.garin@isen-ouest.yncrea.fr
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