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Abstract

Sobol’ sensitivity index estimators for stochastic models are functions of nested
Monte Carlo estimators, which are estimators built from two nested Monte Carlo
loops. The outer loop explores the input space and, for each of the explorations,
the inner loop repeats model runs to estimate conditional expectations. Although
the optimal allocation between explorations and repetitions of one’s computational
budget is well-known for nested Monte Carlo estimators, it is less clear how to deal
with functions of nested Monte Carlo estimators, especially when those functions
have unbounded Hessian matrices, as it is the case for Sobol’ index estimators.
To address this problem, a regularization method is introduced to bound the mean
squared error of functions of nested Monte Carlo estimators. Based on a heuristic,
an allocation strategy that seeks to minimize a bias-variance trade-off is proposed.
The method is applied to Sobol’ index estimators for stochastic models. A practi-
cal algorithm that adapts to the level of intrinsic randomness in the models is given
and illustrated on numerical experiments.

Keywords: nested Monte Carlo, Sobol’ index, allocation, global sensitivity analy-
sis, stochastic model

1 Introduction

(Global) sensitivity analyses of stochastic models may be challenging. Indeed, stochas-
tic models include two sources of uncertainty: the parameters’ uncertainty and the
intrinsic randomness of the stochastic model. The latter can be seen as a hidden ad-
ditional random input, which may challenge the definition of meaningful sensitivity
indices and their efficient estimation.

Many methods have been introduced to deal with stochastic models. A first ap-
proach proposed by Hart et al. (2017) considers random Sobol’-Hoeffding decompo-
sitions of stochastic model outputs and defines sensitivity indices of such models as
expectations of the resulting random Sobol’ indices. A second approach, widely used
in applications (Courcoul et al., 2011), focuses on deterministic quantities of interest
(QoIs) such as conditional expectations or conditional variances. By conditioning with
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respect to the uncertain parameters, the aim is to smooth the intrinsic randomness out
and hence to deal with deterministic functions of the uncertain parameters only, so that
sensitivity analysis (SA) methods for deterministic models can be applied. A third ap-
proach includes recently developed methods (Fort et al., 2021; Gamboa et al., 2021;
da Veiga, 2021) that see stochastic models as deterministic functions with values in
probability distribution spaces. Various sensitivity indices are defined on such spaces
in order to measure the contributions of the uncertain parameters. A fourth approach
rests on meta-models (Castellan et al., 2020; Étoré et al., 2020; Jimenez et al., 2017;
Fort et al., 2013; Zhu and Sudret, 2021; Janon et al., 2014; Panin, 2021). As a remark,
let us note that that estimation of expectations of functions of conditional moments
can be performed with specific methods, such as semi-parametric (da Veiga and Gam-
boa, 2013; da Veiga et al., 2017) or multilevel Monte Carlo (Mycek and De Lozzo,
2019) methods. Estimation in high-dimensional deterministic models is considered
in de Castro and Janon (2015).

In the first three approaches described above, estimation relies on two nested Monte
Carlo loops. Indeed, not only should the model be evaluated at many points in the in-
put space (it is said that the input space is explored), but also the model should be run
several times (it is said that the model is “repeated”) at each of those explorations to
estimate conditional expectations. In the first approach, these repetitions are performed
when approximating the expectations of the random Sobol’ indices. In the second and
third approaches, model outputs are repeated when estimating the QoIs and the proba-
bility distributions, respectively. The larger the number of explorations and the number
of repetitions, the better the sensitivity index estimates. However, in practice, models
may be complex and computationally expensive. Therefore, getting a large number of
runs may be impossible, and, therefore, finding a compromise between explorations
and repetitions under the constraint of a computational cost or precision of estimates
is important. For instance, Mazo (2021) proposed a choice of the number of explo-
rations and the number of repetitions based on the minimization of some bound of the
so-called mean ranking error of the estimators. This error measures the gap between
the ranks of the theoretical indices and those of the estimators. However, a small mean
ranking error does not necessarily imply that estimations are close to their theoretical
values.

A nested Monte Carlo estimator is an estimator built from two nested Monte Carlo
loops for estimating an expectation of a function of a conditional expectation. The
compromise between the sizes of the outer and inner loops, coinciding, respectively,
with the number of explorations and repetitions in SA, is a bias-variance trade-off. This
question is sometimes refered to as the question of optimal allocation. Typically, the
mean-squared error (MSE) is approximated and minimized to find the “best” asymp-
totic trade-off (Rainforth et al., 2018; Giles and Haji-Ali, 2019; Giorgi et al., 2020;
Hong and Juneja, 2009). More precisely, if T denotes the number of model runs avail-
able to the practitioner, and n = T 1−η and m = T η, η ∈ [0, 1), denote the sizes of the
outer and inner loops, respectively, then it is desired to know which value of η would
lead to the optimal convergence rate of the MSE.

Sobol’ index estimators are functions of nested Monte Carlo estimators. It is, there-
fore, natural to ask whether the MSE of functions of nested Monte Carlo estimators can
be bounded, too. The answer will depend on the regularity of the function in question.
For instance, if the function is twice continuously differentiable with a bounded Hes-
sian matrix, then standard Taylor expansion techniques can be used. However, if the
Hessian is unbounded, as it is the case of Sobol’ index estimators, then the question is
more challenging and remains open, to the best of our knowledge.
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We note that the question of optimal allocation of available computational resources
is shared more globally by research fields interested in stochastic simulators (Chen and
Zhou, 2014, 2017; Binois et al., 2018, 2019).

In this paper, we introduce a regularized version of the nested Monte Carlo Sobol’
index estimator and bound its MSE. Based on a heuristic, the bound is simplified and
a minimization is carried out to balance the numbers of explorations and repetitions.
A practical algorithm that adapts to the model intrinsic randomness is proposed and
illustrated on numerical experiments.

This paper is organized as follows. Sobol’ indices for stochastic models and their
estimation based on nested Monte Carlo methods are presented in Section 2. The
regularization method, as well as the challenges of bounding the MSE of functions of
nested Monte Carlo estimators, are introduced in Section 3. Section 4 is an application
to Sobol’ index estimators. Practical algorithms are presented and illustrated in Section
5. A conclusion closes the paper.

2 Sensitivity analysis of stochastic models

A stochastic model with inputs X = (X1, . . . , Xp) ∈ R
p and output Y ∈ R is mod-

eled as a function f of X and some collection of random variables, denoted by Z ,
independent of X such that

Y = f (X, Z) . (1)

The stochasticity of the model originates from Z since the output of the model evalu-
ated at an input X = x is a random variable f(x, Z). The distribution of Z is generally
unknown.

In the context of SA, a way to deal with stochastic models consists in carrying out
SA for deterministic models given by deterministic QoIs. This allows to switch from a
stochastic model to some deterministic models for which many SA methods are studied
in the literature.

We consider QoIs of the form

Q(X) = E [ϕ(X, Z) | X] , (2)

where ϕ(X, Z) is a function of X and Z . For instance, if ϕ = f then Q(X) is the
conditional expectation of the model and if ϕ(X, Z) = (f(X, Z)− E [f(X, Z) | X])2

then Q(X) is the conditional variance, two common choices in practice.
If u is a subset of {1, . . . , p}, denote by Xu the group of inputs {Xi, i ∈ u} and

X∼u the group of inputs {Xi, i 6∈ u}. The Sobol’ and total indices of the input vector
Xu with respect to the function Q are defined as

Su =
Var (E [Q(X) | Xu])

Var (Q(X))
(3)

Tu = 1− Var (E [Q(X) | X∼u])

Var (Q(X))
= 1− S∼u. (4)

The Sobol’ index Su (and hence Tu) can be expressed in terms of a function g
linking the components of some parameter vector. Let X̃ be an independent copy of
X, independent of Z . Denote by X̃∼u the subvector of X̃ whose components are
those of X̃ not indexed by u. (For instance, if p = 4 and u = {1, 4} then X̃∼u =

3



(X̃2, X̃3).) If θ = (θ1, θ2, θ3) with θ1 = E(Q(X)2), θ2 = E(Q(X)) and θ3 =

E(E [Q(X) | Xu]
2
) = E(Q(X)Q(X̃∼u,Xu)) = E(Q(X∼u,Xu)Q(X̃∼u,Xu)) then

Su = g(θ) =
θ3 − θ22
θ1 − θ22

.

The construction of an estimator of Su boils down to the construction of estimators
of the three quantities θ1, θ2 and θ3. To do this, nested Monte Carlo sampling is widely-
used. Let {X(i); i = 1, . . . , n} and {X̃(i); i = 1, . . . , n} be independent Monte Carlo

samples from the law of X. For each i, denote by X
(i)
u the subvector of X(i) whose

components are those of X(i) indexed by u. Likewise, denote by X
(i)
∼u the subvector

of X(i) whose components are those of X(i) not indexed by u, and denote by X̃
(i)
∼u the

subvector of X̃(i) whose components are those of X̃(i) not indexed by u. An estimator
of Su is given by

Ŝu = g(θ̂) =
θ̂3 − θ̂22

θ̂1 − θ̂22
(5)

where
θ̂1 = 1

n

∑n
i=1 Q̂m(X(i))2

θ̂2 = 1
n

∑n
i=1 Q̂m(X(i))

θ̂3 = 1
n

∑n
i=1 Q̂m(X(i))Q̃m(X̃

(i)
∼u,X

(i)
u )





(6)

and

Q̂m(X(i)) =
1

m

m∑

k=1

ϕ
(
X

(i), Z(i,k)
)

Q̃m(X̃(i)
∼u,X

(i)
u ) =

1

m

m∑

k=1

ϕ(X̃(i)
∼u,X

(i)
u , Z̃(i,k));

here the objects {Z(i,k), Z̃(i,k); k = 1, · · · ,m; i = 1, · · · , n}, are independent and
identically distributed random variables, independent of {X(i), X̃(i); i = 1, . . . , n},
representing the randomness of the user’s model. If m is fixed and n→∞, then

√
n

(
Ŝu − Su

[
1− EVar(ϕ(X, Z)|X)

EVar(ϕ(X, Z)|X) +mVarE(ϕ(X, Z)|X)

])

converges to a centered normal distribution with some variance σ2
m depending on m.

If, moreover, m → ∞ such that
√
n/m → 0 then

√
n(Ŝu − Su) goes to a centered

normal distribution with variance limm→∞ σ2
m. For more details, see Mazo (2021). A

theoretically-guided choice for m and n that penalizes bad rankings of the sensitivity
index estimates Ŝ1, . . . , Ŝp was given in Mazo (2021).

3 Nested Monte Carlo estimation

We say that an estimator θ̂ is a nested Monte-Carlo estimator if

θ̂ =
1

n

n∑

i=1

φ1

(
1

m

m∑

k=1

ϕ1(ξ
(i), ζ(i,k))

)
· · ·φp

(
1

m

m∑

k=1

ϕp(ξ
(i), ζ(i,k))

)
, (7)
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where φ1, ϕ1, . . . , φp, ϕp are measurable functions and the sets of random vectors
{ξ(i), ζ(i,k), k = 1, . . . ,m}, i = 1, . . . , n, are independent and identically distributed.
The estimator (7) is called a nested Monte Carlo estimator because it is built from
two nested Monte Carlo loops: an outer loop is used to simulate the random vectors
ξ(1), . . . , ξ(n), and, for each ξ(i), an inner loop is used to simulate ζ(i,k), k = 1, . . . ,m.
The random vectors {ζ(i,k)} and {ξ(i)} are assumed to be independent. With this defi-
nition, each of the three estimators θ̂1, θ̂2, θ̂3 in (6) is a nested Monte Carlo estimator:
the outer loop simulates the “explorations” X(i), X̃(i), i = 1, . . . , n, and the inner loop
simulates the “repetitions” ϕ(X(i), Z(i,k)), ϕ(X̃

(i)
∼u,X

(i)
u , Z̃(i,k)), k = 1, . . . ,m.

If, for each i = 1, . . . , n and conditionally on ξ(i), the random variables ζ(i,k) are
independent and identically distributed, and if

θ := E

(
φ1

(
E

[
ϕ1(ξ

(1), ζ(1,1)) | ξ(1)
])
· · ·φp

(
E

[
ϕp(ξ

(1), ζ(1,1)) | ξ(1)
]))

, (8)

then we have

E ‖θ̂ − θ‖2 =
1

n
Trace (Σm) + ‖bm‖2, (9)

where Σm is the variance-covariance matrix of

φ1

(
1

m

m∑

k=1

ϕ1(ξ
(1), ζ(1,k))

)
· · ·φp

(
1

m

m∑

k=1

ϕp(ξ
(1), ζ(1,k))

)
.

The MSE in Equation (9) is a sum of two terms: a variance term which involves
the ratio 1/n and a bias term that is function of m only.

Assumption 1. bm → 0 and Σm → Σ as m→ +∞
Assumption 1 is fulfilled by Nested Monte Carlo estimators provided that the func-

tions φ1, . . . , φp in (7) have good properties such as boundedness, Lipschitz continuity
or boundedness of derivatives (Giorgi et al., 2017, 2020). In the context of global sensi-
tivity analysis for stochastic model, Mazo (2021) showed that Assumption 1 is satisfied
by θ̂1, θ̂2, θ̂3 (see Equation (6)) associated with Sobol’ index estimators.

If Assumption 1 is satisfied, it holds that limn,m→+∞ E ‖θ̂ − θ‖2 = 0 and thereby
θ̂ converges in quadratic mean to θ. If, moreover, the rate at which bm goes to zero is
known, then optimal rates for n = T 1−η and m = T η, η ∈ [0, 1), can be calculated in
terms of the total number of runs T . For instance, in the case p = 1 and φ1 is a smooth
function with uniformly bounded third derivative, Hong and Juneja (2009) showed that
bm = O(1/m) and thus E ‖θ̂ − θ‖2 = O(1/n + 1/m2), leading to O(T 2/3) reached
for n = O(T 2/3) and m = O(T 1/3). If φ1 is simply Lipschitz continuous, Rainforth
et al. (2018) rather found that E ‖θ̂− θ‖2 = O(1/n+1/m), leading to a MSE of order
O(T 1/2), ensured by the choice of n = O(T 1/2) and m = O(T 1/2).

3.1 Functions of nested Monte Carlo estimators

Let g : D → R be a continuous, non-constant function and let θ̂ be as in (6). Note
that the estimator g(θ̂) converges in probability to g(θ) but it does not necessarily hold
that its MSE E (g(θ̂) − g(θ))2 converges to 0. In fact, the MSE may even be infinite,
depending on the properties of g and the law of θ̂. Since the law of θ̂ is unknown, it is
important to find verifiable conditions on g under which the MSE is kept under control
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for all possible laws of θ̂. For instance, if g is Lipschitz continuous, then there exists
an constant L such that

E

(
g(θ̂)− g(θ)

)2
≤ L2

E ‖θ̂ − θ‖2.

This bound could be minimized as in Hong and Juneja (2009), see above. If g is
assumed to be a twice continuously differentiable such that its Hessian matrix denoted
∇2g is uniformly bounded, then, up to existence of some moments of θ̂, the combina-
tion of a Taylor-Lagrange expansion and convexity inequalities would yield

E

(
g(θ̂)− g(θ)

)2
≤ 4E

(
∇g(µm)⊤

(
θ̂ − µm

))2
+ 2 (g(µm)− g(θ))

2

+ L′2
(
E‖θ̂ − µm‖4

)
, (10)

with L′ > 0 such that supx∈D ‖∇2g(x)‖F ≤ L′ and ‖ · ‖F denotes the Frobe-
nius norm. From this upper bound, we could derive another bound by noticing that

E

(
‖θ̂ − µm‖4

)
= O(1/n2). This follows from the Marcinkiewicz–Zygmund in-

equality (Marcinkiewicz and Zygmund, 1937), provided that suitable moments exist.
It would then hold that:

E

(
g(θ̂)− g(θ)

)2
≤ 4E

(
∇g(µm)⊤

(
θ̂ − µm

))2
+ 2 (g(µm)− g(θ))

2
+O(1/n2).

(11)

Equation (11) highlights three terms in the right-hand side: the first term stands for a
variance term, the second term represents a squared bias term and the third term is a
negligible approximation error.

However, in practice, in many interesting applications, the function g does not have
good enough properties such as above. For instance, uniform boundedness of deriva-
tives of g is a very strong condition in general. In order to weaken such a condition,
consider the following one:

E

(
sup

λ∈[0,1]

‖∇2g
(
λθ̂ + (1− λ)µm

)
‖4F

)
= O(1) as n,m→∞. (12)

Under the condition (12), the decomposition (11) holds but asymptotically when
both n and m go to infinity. However, whether or not this condition is true depends on
the law of θ̂, and hence hard to check in practice. For instance, in the case of Sobol’
index estimators defined in Section 2, this comes down to require that E[(θ̂1 − θ̂22)

−α]

with α > 0 exists, whereas the probability distribution of θ̂1 − θ̂22 is unknown.
In the next section, we propose a condition, weaker than the one in Equation (12),

that does not put constraints on the distribution of θ̂.

3.2 A regularization method to address functions with unbounded

Hessian matrix

The idea is to introduce a "slight perturbation" gh (with h ∈ (0, 1)) of the function g
that approaches the true g as h → 0 and such that (12) is satisfied with gh in place
of g. Introducing gh can be thought as a way to "transport" the original estimator
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θ̂ to regions of D where control of moments of gh(θ̂) is possible without additional
conditions on the law of θ̂. The goal is to “get away” from certain regions of the
parameter space where the Hessian of g may explode. For this, consider a family of
functions {gh : D → R, h ∈ (0, 1)} such that for all h, gh is twice continuously
differentiable and for all x ∈ D, limh→0 gh(x) = g(x). Moreover, assume gh satisfies
the following assumption:

Assumption 2. There exists a constantC independent of h such that, for all h ∈ (0, 1):

lim sup
n,m→∞

E

(
sup

λ∈[0,1]

‖∇2gh(λθ̂ + (1− λ)µm)‖4F

)
≤ C.

Remark 1. Let us note that for some interesting classes of functions gh and estimators

θ̂, Assumption 2 can be checked without any knowledge of the law of θ̂ but the exis-

tence of a sufficiently large number of finite moments. Indeed, in view of the linearity

property of the expectation, this happens, for instance, if ‖gh(θ̂)‖2F is bounded by a

polynomial in θ̂ and θ̂ is an empirical average of data with finite moments. That the

Hessian be bounded in the Fröbenius norm is precisely what we would like to achieve

by regularization. In other words, the latter property may not hold for the function g
while it holds for the function gh.

The advantage of having such a family of functions is that E(gh(θ̂) − gh(θ))
2,

the “perturbed MSE”, could be bounded with an approximate upper bound in the
form of Equation (11) with g = gh. A direct implication of this is that for h fixed,

limn,m→∞ E

(
gh(θ̂)− gh(θ)

)2
= 0. Further, if the regularized estimator gh(θ̂) is

used for estimation of g(θ) instead of g(θ̂), the corresponding mean squared error is
bounded in Proposition 1.

Proposition 1. Under Assumptions 1 and 2, for every h ∈ (0, 1):

E

(
gh(θ̂)− g(θ)

)2
≤ 4 (1 + pn,m(h))

(
Vn,m(h) +Bm(h)2

)
, (13)

where lim supn,m→∞ pn,m(h) = 0 and Vn,m(h) := E(∇gh (µm)
⊤
(θ̂ − µm))2 and

Bm(h) := gh (µm)− g(θ).

Remark that Bm(h) = (gh(µm)− gh(θ)) + (gh(θ)− g(θ)) accounts for two types
of bias. The first term in the sum stands for the bias of the estimator θ̂; it vanishes as
soon as µm → θ. The second term is a regularization error that stems from the use of
gh instead of g. This term does not vanish asymptotically in general. However, it goes
to zero as h→ 0, yielding Corollary 1.

Corollary 1. We have limh→0 limn,m→∞ E

(
gh(θ̂)− g(θ)

)2
= 0.

Note that the limits in Corollary 1 cannot be interchanged. Additional conditions
on the gap E(g(θ̂) − gh(θ̂))

2 would be needed to get the convergence of the MSE of
g(θ̂).
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4 Application to Sobol’ index estimators

Let θ̂ = (θ̂1, θ̂2, θ̂3) be as in (6). Recall that θ1 = E(Q(X)2), θ2 = E(Q(X)), θ3 =

E(E [Q(X) | Xu]
2
) = E(Q(X)Q(X̃∼u,Xu)), so that µm = (µm1, µm2, µm3) =

(θ1+bm1, θ2+bm2, θ3+bm3) and bm = (bm1, bm2, bm3) = (EVar [ϕ(X, Z) | X] /m, 0, 0).
Recall that Ŝu = g(θ̂), where the function

g : (x1, x2, x3) 7→ (x3 − x2
2)/(x1 − x2

2) (14)

is a twice-continuously differentiable function over its definition domain. But unfor-
tunately, g is unbounded. The form of such a function makes the study of the MSE
of Ŝu difficult unless strong conditions are imposed on the output distribution of the
stochastic model. This could explain why, in spite of our efforts, it is difficult to find
in the literature material on the convergence in quadratic mean of such estimators. The
approach introduced in Section 3 allows to bypass the unboundedness issue. We shall
apply the results of Section 3 to bound the MSE of the regularized version of the Sobol’
index estimator and propose an allocation method.

Throughout this section, it is assumed that E
(
Q(X)16

)
< +∞. We consider the

family of function gh(x) := g(x+hu) with u = (1, 0, 0). In order to provide an upper
bound for E(gh(θ̂)− g(θ))2 as in Proposition 1, it is necessary to fulfill Assumption 1
and 2. Assumption 1 is obviously satisfied.

Theorem 1. With θ̂, gh and g as above, Assumption 2 holds. There is a constant C̄
independent of h such that, for every h ∈ (0, 1),

E

(
gh(θ̂)− g(θ)

)2
≤ C̄

(
1

n
+

(
E (Var [ϕ(X, Z) | X])

m

)2

+ h2

)
,

as n,m→∞.

Corollary 2. With θ̂, gh and g as above, we have limh→0 limn,m→∞ E(gh(θ̂)−g(θ))2 =
0.

As n,m → +∞, it occurs that the smaller h is, the smaller the MSE gets. There-
fore, in practice, parameter h should be taken in order to approximate the true g(θ).

To balance the trade-off between the number of repetitions and explorations, we
proceed with a heuristic. For h small enough, one could assume that h2 is negligible
with respect to the quantity BVT := 1/n + (E (Var [ϕ(X, Z) | X]) /m)2. This is,
therefore, the quantity we shall be interested in for optimizing the numbers of repeti-
tions and explorations. Let T = mn be the number of available samples to compute the
Sobol’ index estimator. From nested Monte Carlo theory (see beginning of Section 3),
we already know that m and n must be of order T 1/3 and T 2/3 respectively so as to
obtain optimal convergence rate.

However, an asymptotic order is not a specific value. We expect that the greater the
variance of intrinsic randomness, the larger the value of optimal m should be. Thus,
in this section, the goal consists in proposing a value of m that adapts to the intrinsic
randomness of the stochastic model.

Under the constraint nm = T , the optimal convergence rate of the BVT is obtained
when nopt is of order T 2/3 and mopt is of order T 1/3. Let mopt = κT 1/3 where κ > 0.
Then, nopt = κ−1T 2/3. Thus:

BVT = κT−2/3 +
(EVar [ϕ(X, Z) | X])2

κ2
T−2/3.
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Coefficient κ can be chosen such that κT−2/3+ (EVar[ϕ(X,Z)|X])2

κ2 T−2/3 is the smallest

over κ > 0. The minimum of such a quantity is reached at κopt =
(
2 (EVar [ϕ(X, Z) | X])2

)1/3
.

Therefore:

mopt(T ) =
(
2 (EVar [ϕ(X, Z) | X])2

)1/3
T 1/3. (15)

Therefore, the number of repetitions suggested above ensures first that the BVT con-
verges at optimal rate and second adapts to the model’s intrinsic randomness because
that mopt(T ) depends on EVar [ϕ(X, Z) | X], which quantifies the part of the total
variance Var (ϕ(X, Z)) that is not attributed to the inputs X; and so, that measures the
influence of the intrinsic noise of the stochastic model ϕ(X, Z). Finally, it also appears
that mopt(T ) depends on both T and the function ϕ. The dependence with respect to
T guarantees that mopt(T ) grows as T gets large. Besides, the dependence with re-
spect to ϕ means that even if mopt(T ) remains proportional to T 1/3, it also varies with
respect to the chosen QoI of the stochastic model f .

5 An algorithm of estimation of Sobol’ indices for stochas-

tic models

5.1 Algorithms

This section is devoted to the practical implementation of the bias-variance trade-off
strategy when performing SA for some QoI of a stochastic model. Recall that f is
a stochastic model as in (1) and we are interested in carrying out SA of a QoI under
the form (2), that is, Q(X) = E [ϕ (X, Z) | X] in order to measure the impact of l
groups of inputs ui ⊂ {1, . . . , p}, i = 1, . . . , l. In other words, we are interested in
estimating Su1

, . . . , Sul
. We shall use at most T × (l + 1) evaluations of ϕ(X, Z).

Under the constraint nm = T , the number of repetitions mopt found in (15) depends
on ρ := EVar [ϕ(X, Z) | X]. However, in practice, ρ is often unknown. So, before
sensitivity index estimation, ρ needs to be estimated. Notice that ρ can be rewritten
ρ = E(ϕ(X, Z)− ϕ(X, Z̃))2, which suggests the following estimation procedure.

Consider r0 i.i.d. samples of X, denoted by X
(1), · · · ,X(r0), and generate two

outputs at each sample X(i):
(
ϕ(X(1), Z(1,1)), ϕ(X(1), Z(1,2))

)
, · · · ,(

ϕ(X(r0), Z(r0,1)), ϕ(X(r0), Z(r0,2))
)
. Thus:

ρ̂ =
1

r0

r0∑

i=1

(
ϕ(X(i), Z(i,1))− ϕ(X(i), Z(i,2))

)2

is a consistent and unbiased estimator of ρ. It appears that the estimation of ρ requires
2r0 evaluations of the model ϕ(X, Z). However, the maximal number of evaluations
is T × (l + 1). So, for index estimation procedure, at most T × (l + 1) − 2r0 model
evaluations are allowed.

Therefore, our strategy consists in leveraging the model outputs used to estimate
ρ and then plugging and completing those outputs in order to compute sensitivity in-
dex estimates. This strategy relies on two algorithms: Algorithm 1 and Algorithm 2.
Algorithm 1 enables to generate complementary outputs in addition to outputs already
available after estimation of ρ. This allows to satisfy the constraint of the maximal
number of model evaluations T × (l + 1). This part helps to optimize the whole esti-
mation procedure by using the model outputs already generated. Regarding Algorithm
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2, it effectively estimates indices in three steps based on pick-freeze procedure. First,
it estimates ρ and thereby compute mopt and nopt = T/mopt. Then, in the second
step, by relying on Algorithm 1, complementary outputs required for estimations are
generated. In the final step, sensitivity index estimates are computed with respect to
inputs or groups of inputs specified by the user.

Algorithm 1 Completing model evaluations

Inputs: n,m, ϕ, l,
(
X

(1), · · · ,X(T )
)

Data:
(
ϕ
(
X

(1), Z(1,1)
)
, ϕ
(
X

(1), Z(1,2)
))

, · · · ,
(
ϕ
(
X

(r0), Z(r0,1)
)
, ϕ
(
X

(r0), Z(r0,2)
))

if n ≥ r0 then

if m ≥ 2 then

for i = 1, · · · , r0 do

for k = 3, · · · ,m do

Compute ϕ
(
X

(i), Z(i,k)
)

end for

end for

for i = r0 + 1, · · · , n do

for k = 1, · · · ,m do

Compute ϕ
(
X

(i), Z(i,k)
)

end for

end for

end if

if m = 1 then

for i = r0 + 1, · · · , n− r0 − ⌈r0/(l + 1)⌉ do

Compute ϕ
(
X

(i), Z(i,1)
)

end for

end if

end if

if n < r0 then

if m > 2 + 2⌈1/(l+ 1) ∗ (−1 + r0/n)⌉ then

for i = 1, · · · , n do

for k = 3, · · · ,m− 2⌈1/(l+ 1) ∗ (−1 + r0/n)⌉ do

Compute ϕ
(
X

(i), Z(i,k)
)

end for

end for

end if

if m ≤ 2 + 2⌈1/(l+ 1) ∗ (−1 + r0/n)⌉ then

Exit: Budget already consumed
end if

end if
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Algorithm 2 Estimation of Sobol’ indices

Inputs: h, r0, T, ϕ, w = {u1, · · · , ul},
(
X

(1), · · · ,X(T )
)
,
(
X̃

(1), · · · , X̃(T )
)

1: for i = 1, · · · , r0 do

2: for k = 1, 2 do

3: Compute ϕ
(
X

(i), Z(i,k)
)

4: end for

5: end for

6: Compute ρ̂← 1
r0

∑r0
s=1

(
ϕ
(
X

(i), Z(i,1)
)
− ϕ

(
X

(i), Z(i,2)
))2

7: Compute m̂opt according to Equation (15)
8: n̂opt ←

⌊
T/m̂opt

⌋

9: Run Algorithm 1 with m = m̂opt, n = n̂opt to complete samples
ϕ
(
X

(1), Z(1,1)
)
, · · · , ϕ

(
X

(r0), Z(r0,2)
)
.

10: for j = 1, · · · , l do

11: for i = 1, · · · , n̂opt do

12: for k = 1, · · · , m̂opt do

13: Compute ϕ
(
(X̃

(i)
∼uj ,X

(i)
uj ), Z̃

(i,k)
)

14: end for

15: end for

16: end for

17: Compute sensitivity index estimates or their regularized estimates

Algorithm 2 requires: h, r0, T, ϕ, w and input samples. The transformationϕ of the
stochastic model is supplied as well as w the set of inputs or groups of inputs whose
indices are estimated. In practice, r0, T and h must be chosen. We recommend to take
r0 small with respect to T so as not to waste too much of the budget in the first stage
of Algorithm 2. Indeed, the estimator ρ̂ is unbiased and consistent and often provides
good estimates even for small r0. Regarding T , it follows T should be taken as large as
possible depending on the computational cost of a run of both ϕ and the original model
f . Furthermore, to ensure that the MSE has a precision ε ∈ (0, 1) with h2 ≪ ε, T
must be roughly chosen larger than ε−3/2 since the MSE is O

(
T−2/3

)
. This provides

approximations for practical choice of T .

6 Illustrations

This section presents the performance of the estimators of first-order and total indices
computed by Algorithm 2 in the case of two toy stochastic models for which analytical
values of indices are known: a linear model f(X1, X2, Z) = 1 + X1 + 2X2 + σZ
with σ > 0 and a stochastic version of the Ishigami function f ′(X1, X2, X3, Z) =
sinX1 + a sin2 X2 + bX4

3 (sinX1)Z
2 with a, b > 0 (Ishigami and Homma (1990)).

For each value of T = nm, the estimators of Algorithm 2 are compared with two other
arbitrary choices, namely, (n,m) = (T/5, 5) and (n,m) = (T 1/2, T 1/2).

These two choices above represent two different situations. The choice (n,m) =
(T/5, 5) presents a case where the number of repetitions is constant and independent
of T . This illustrates the situation where the bias does not get reduced so that it disturbs
estimations no matter how large T is. Regarding (n,m) = (T 1/2, T 1/2), it shows that
the case where the variance is not sufficiently reduced.

For illustrations, the productT = mn is chosen in the set T ∈ {103, 104, · · · , 107}.
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For each choice of the couple (n,m), N = 100 replications of estimations are car-
ried out. The tuning parameter r0 is set to 10. Thus, 2r0 = 20 model evaluations
are used to get the estimates ρ̂, n̂opt, m̂opt in the first part of Algorithm 2, and then
T − 2r0 ∈ {103 − 20, 104 − 20, · · · , 107 − 20} model evaluations are used to get the
sensitivity index estimators with n = n̂opt and m = m̂opt. For both toy stochastic
models, the QoI considered is the conditional expectation so that ϕ = f or ϕ = f ′ de-
pending on the model. For each value of T , the boxplots of sensitivity index estimates
are plotted for each of the three choices.

Linear model

Let f(X1, X2, Z) = 1 +X1 + 2X2 + σZ where σ > 0 and X1, X2 and Z are i.i.d.
under the standard normal distribution. Such model includes two uncertain parameters
X1 and X2 with respective first-order Sobol’ indices S1 = 1/5 and S2 = 4/5. Two
values of σ are considered: σ = 1 and σ = 5.

Figure 1 shows that the estimations obtained with Algorithm 2 are more efficient
as T gets large because both bias and variance are efficiently reduced. Boxplots high-
light that the strategies m = 5 and m = T 1/2 suffer respectively from bias and vari-
ance. Notice that in the case of the linear model under study, E(Var(f(X1, X2, Z) |
(X1, X2))) = 2σ2; so the bias depends on σ. This explains why in the case σ = 5 (see
Figure 2), even for large value of T , estimations resulting of the choice m = 5 do not
converge to their true targets.
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Figure 1: Boxplots of sensitivity index estimates of X1 and X2 with respect to the
linear model and for different values of T . The standard deviation is σ = 1 and regu-
larization parameter h = 10−2. Three strategies of choice of m are compared: m = 5
(in red), m = mopt given by the trade-off strategy of Algorithm 2 (in green) and
m = T 1/2 (in blue). The red dashed lines showed the true sensitivity index values, in
particular, in this setting S1 = 0.2 and S2 = 0.8
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Figure 2: Boxplots of sensitivity index estimates of X1 and X2 with respect to the
linear model and for different values of T . The standard deviation and regularization
parameter are σ = 5 and h = 10−2. Three strategies of choice of m are compared:
m = 5 (in red), m = mopt given by the trade-off strategy of Algorithm 2 (in green)
and m = T 1/2 (in blue). The red dashed lines showed the true sensitivity index values,
in particular, in this setting S1 = 0.2 and S2 = 0.8

A stochastic Ishigami function

Let f ′(X1, X2, X3, Z) = sinX1+a sin2 X2+bX4
3(sinX1)Z

2 such that with a, b > 0,
X1, X2, X3 and Z are independent with X1, X2, X3 distributed under U ([−π, π]) and
Z ∼ N (0, 1). The model f ′ is a modified version of benchmark function known as the
Ishigami function in SA. For this model, first-order Sobol’ indices of inputs X1, X2,
and X3 for the QoI E(f ′(X1, X2, X3, Z) | X1, X2, X3) are respectively given by

S1 = 1
2

(

1+ bπ4

5

)

2

a2

8
+ bπ4

5
+ b2π8

18
+ 1

2

, S2 =
a2

8

a2

8
+ bπ4

5
+ b2π8

18
+ 1

2

and S3 = 0. Parameters a and b are

chosen with respect to Sobol’ and Levitan (1999): a = 7, b = 0.05 and Marrel et al.
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(2009): a = 7, b = 0.1.
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Figure 3: Boxplots of sensitivity index estimates of X1, X2 and X3 with respect to
the stochastic version of Ishigami function (with b = 0.05) for different values of T .
Three strategies of choice of m are compared: m = 5 (in red), m = mopt given by the
trade-off strategy of Algorithm 2 (in green) and m = T 1/2 (in blue). The red dashed
lines showed the true sensitivity index values.
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Figure 4: Boxplots of sensitivity index estimates of X1, X2 and X3 with respect to
the stochastic version of Ishigami function (with b = 0.1) for different values of T .
Three strategies of choice of m are compared: m = 5 (in red), m = mopt given by the
trade-off strategy of Algorithm 2 (in green) and m = T 1/2 (in blue). The red dashed
lines showed the true sensitivity index values.
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Figures 3 and 4 also reveal that estimations obtained by using Algorithm 2 are
more efficient for large T . Besides, remark that the term bX4

3 sinX1 that multiplies
the intrinsic noise term Z2 includes b so that |bX4

3 sinX1| ≤ bπ4. Then, b allows to
control the variance of the intrinsic noise term of the model. In both cases, the strategy
implemented in Algorithm 2 has better results.

Overall, it appears that the strategy of Algorithm 2 provides better estimations and
estimators it generates converge faster. In the particular case of m = 5, it is noticeable
that errors do not decrease when T gets larger but rather they are quite constant. This
is explained by the fact that the bias is constant since m is constant. This illustrates the
importance of varying the number of repetition when the total computational budget
grows. Regarding the case m = T 1/2, it turns out that estimators do not converge
with optimal rate compared to the case m = mopt due the variance part of the mean-
squared error. Indeed, with m = T 1/2, the variance converges to 0 at rate T 1/2 while
the squared-bias converges at rate T . Then, the global convergence rate of the MSEs
is T 1/2 that is slower than the rate T 2/3 of estimators built by Algorithm 2. These two
cases clearly illustrate the bias-variance trade-off problem in Sobol’ index estimation
for stochastic models and they allow to show that the strategy proposed in this paper
performs well.

7 Conclusion

To balance the tradeoff between repetitions and explorations in the estimation of Sobol’
indices for stochastic models, a regularized estimator was devised and its mean-squared
error bounded, approximated and minimized. A connection to functions of nested
Monte Carlo estimators was made, for which generic results were obtained, especially
useful when the Hessian matrix is unbounded. To estimate Sobol’ indices in practice,
an algorithm that adpats to the intrinsic randomness of the stochastic model was de-
signed and illustrated on simulations, where the importance of a good balance between
explorations and repetitions was observed. In the theoretical results, the regularization
parameter, though arbitrary, has to be fixed. In the future, it would be of primary inter-
est to let it vanish as the number of explorations and repetitions go to infinity, allowing
one to get a genuine convergence rate for the mean-squared error of the regularized
estimator. A further step would be to get a minimax low bound. Also, it would be
interesting to compare the results with multilevel Monte Carlo methods (Mycek and
De Lozzo (2019); Giles and Haji-Ali (2019)). Furthermore, it could be interesting to
couple the iterative estimation approach of Gilquin et al. (2021) to the algorithms im-
plemented in this study in order to build an adaptive version which could perform es-
timation with respect to a given precision. Another estimation approach worth consid-
ering is that based on Chatterjee’s empirical correlation coefficient (Chatterjee, 2021;
Gamboa et al., 2022).
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A Proof of Proposition 1

Using convexity inequality, for all h ∈ (0, 1) and m ≥ 1, it holds:

E

(
gh

(
θ̂
)
− g (θ)

)2
≤ 2E

(
gh(θ̂)− gh (µm)

)2
+ 2 (gh (µm)− g (θ))2 .

Applying a Taylor-Lagrange expansion to gh at points θ̂ and µm yields:

E

(
gh(θ̂)− gh(µm)

)2

= E

(
∇gh (µm)

⊤
(
θ̂ − µm

)
+

1

2

(
θ̂ − µm

)⊤
∇2gh

(
λθ̂ + (1 − λ)µm

)(
θ̂ − µm

))2

≤ 2E
(
∇gh (µm)

⊤
(
θ̂ − µm

))2
+

1

2
E

((
θ̂ − µm

)⊤
∇2gh

(
λθ̂ + (1− λ)µm

)(
θ̂ − µm

))2

,

for some λ ∈ (0, 1). Thus:

E

(
gh

(
θ̂
)
− gh (µm)

)2

E

(
∇gh (µm)⊤

(
θ̂ − µm

))2 ≤ 2 +
1

2

E

((
θ̂ − µm

)⊤
∇2gh

(
λθ̂ + (1− λ)µm

)(
θ̂ − µm

))2

E

(
∇gh (µm)⊤

(
θ̂ − µm

))2

Let

pn,m(h) := sup
λ∈[0,1]

E

((
θ̂ − µm

)⊤
∇2gh

(
λθ̂ + (1− λ)µm

)(
θ̂ − µm

))2

E

(
∇gh (µm)

⊤
(
θ̂ − µm

))2 , (16)

then

E

(
gh(θ̂)− gh(µm)

)2
≤ (2 +

1

2
pn,m(h))Vn,m(h) ≤ 2(1 + pn,m(h))Vn,m(h).

Now, let us show that pn,m(h)→ 0 as n,m→ ∞. Using Cauchy-Schwarz inequality
yields that:

pn,m(h) ≤
√

sup
λ∈[0,1]

E

(
‖∇2gh

(
λθ̂ + (1− λ)µm

)
‖4F
)
×

√
E

(
‖θ̂ − µm‖8

)

E

(
∇gh (µm)

⊤
(
θ̂ − µm

))2 .
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As n,m→∞, the first term of the product above is bounded by a constant independent
of h, uniformly in λ, by Assumption 2. The second term is given by:

√
E

(
‖θ̂ − µm‖8

)

E

(
∇g (µm + hu)

⊤
(
θ̂ − µm

))2 (17)

=

√
E

(
‖θ̂ − µm‖8

)

E

(
∇g (µm)⊤

(
θ̂ − µm

))2 ×
E

(
∇g (µm)

⊤
(
θ̂ − µm

))2

E

(
∇g (µm + hu)⊤

(
θ̂ − µm

))2

≤

√
E

(
‖θ̂ − µm‖8

)

E

(
∇g (µm)

⊤
(
θ̂ − µm

))2 × sup
h∈(0,1)

E

(
∇g (µm)

⊤
(
θ̂ − µm

))2

E

(
∇g (µm + hu)

⊤
(
θ̂ − µm

))2 . (18)

Lemma A.1. √
E

(
‖θ̂ − µm‖8

)

E

(
∇g (µm)

⊤
(
θ̂ − µm

))2 = o(1), (19)

as n,m→ +∞

The first factor in the right-hand side in (18) does not depend on h and is of or-
der o(1) as stated in Lemma A.1. Moreover, since ∇g is continuous in parameter h,
we have that the second factor in the right-hand side of (18) is O(1) as n,m → ∞.
Therefore, pn,m(h) = o(1), and hence

E

(
gh(θ̂)− g(θ)

)2
≤ 4 (1 + pn,m(h))

(
Vn,m(h) +Bm(h)2

)
,

where Bm(h) = gh(µ)− g(θ) and limn,m→+∞ pn,m(h) = 0.

Proof of Lemma A.1

First, let us bound the numerator of the ratio in Equation (19); we have

E

(
‖θ̂ − µm‖8

)
≤ 27

3∑

j=1

E

(
‖θ̂j − µmj‖8

)
,

where θ̂j and µmj denote the jth component of θ̂ and µm, respectively. By Marcinkiewicz
and Zygmund (1937) and Jensen inequalities, we have for every j that

E

(
‖θ̂j − µmj‖8

)
≤ B8

n4
E

(∣∣∣θ̂(1)mj − µmj

∣∣∣
8
)
,

where here B8 is a universal constant.
The case j = 2 is the simplest. Notice that µm2 does not depend on m, then the

expansion of E(|Q̂m(X(1))−µm2|8) through Newton formula yields terms of the form
µk
m2E(Q̂

8−k
m ), k = 0, . . . , 8. Using Lemma C.1 in Section C provides that those terms

are polynomial in m−1.
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Let us deal with the case j = 1. Expanding the power 8 through Newton’s formula
and bounding its terms yields

E

(∣∣∣Q̂m(X(1))2 − µm1

∣∣∣
8
)
≤ (µ8

m1 ∨ 1)

(
8

4

)(
E

(
Q̂m(X(1))16

)
+ 1
)
. (20)

Denoting ϕ(X(1), Z(1,k)) = Y (1,k), we have

E

(∣∣∣Q̂m(X(1))
∣∣∣
16
)

= E



∣∣∣∣∣
1

m

m∑

k=1

Y (1,k)

∣∣∣∣∣
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=
1

m16

m∑

k1,...,k16=1

E

(
Y (1,k1) · · ·Y (1,k16)

)
.

The expectation in the right-hand side is symmetric in k1, . . . , k16, and hence, from
Lemma C.1, the sum is a polynomial in m of degree 16. Therefore, the right-hand side
in (20) is bounded uniformly in m.

Let us deal with the case j = 3. Proceeding as in (20), we have

E

(∣∣∣Q̂m(X(1))Q̃m(X̃(1)
∼u,X

(1)
u )− µm3

∣∣∣
8
)

≤ (µ8
m3 ∨ 1)

(
8

4

)(
E

(∣∣∣Q̂m(X(1))Q̃m(X̃(1)
∼u,X

(1)
u )
∣∣∣
8
)
+ 1

)

≤ (µ8
m3 ∨ 1)

(
8

4

)(
E

(
1

2
Q̂m(X(1))16 +

1

2
Q̃m(X̃(1)

∼u,X
(1)
u )16

)
+ 1

)
,

and this is also bounded uniformly in m. (Again by Lemma C.1.)
We now deal with the root of the denominator of the ratio in Equation (19). We

have

E

(
∇g (µm)

T
(
θ̂ − µm

))2

=

3∑

j1,j2=1

∇g(µm)j1∇g(µm)j2E(θ̂ − µm)j1(θ̂ − µm)j2

=
1

n

3∑

j1,j2=1

∇g(µm)j1∇g(µm)j2

(
Eθ̂

(1)
mj1

θ̂
(1)
mj2
− µmj1µmj2

)
. (21)

The infimum of the sum in (21) is reached for some m and greater than zero. Therefore,
the numerator in Equation (19) is less than 1/n4 times a constant not depending on m
or n and the denominator is equal to 1/n2 times a quantity greater than zero. Therefore,
the supremum over m of the ratio in Equation (19) is of order O(n−2). The proof is
complete.

B Proof of Theorem 1

The following lemma will be needed:
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Lemma B.1. For all α > 0 and all h ∈ (0, 1),

lim
n,m→+∞

E


 1(

h+ θ̂1 − θ̂22

)α


 =

1

(h+Var (Q(X)))α
≤ Var (Q(X))

−α
. (22)

Note that the function g is infinitely differentiable over its domain D and then its
gradient is given by:

∇g (θ1, θ2, θ3) =
(
− θ3 − θ22
(θ1 − θ22)

2

2θ2(θ3 − θ1)

(θ1 − θ22)
2

,
1

θ1 − θ22

)⊤

.

Furthermore, the hessian matrix of g yields:

∇2g(θ1, θ2, θ3) =




2(θ3−θ2

2
)

(θ1−θ2

2
)3

2θ2(θ1−2θ3+θ2

2
)

(θ1−θ2

2
)3

−1
(θ1−θ2

2
)2

2θ2(θ1−2θ3+θ2

2
)

(θ1−θ2

2
)3

2(θ3−θ1)(θ1+3θ2

2
)

(θ1−θ2

2
)3

2θ2
(θ1−θ2

2
)2

−1
(θ1−θ2

2
)2

2θ2
(θ1−θ2

2
)2

0


 .

For any (θ1, θ2, θ3) ∈ D, the matrix∇2g(θ1, θ2, θ3) is under the form∇2g(θ1, θ2, θ3) =
B(θ1, θ2, θ3)/(θ1 − θ22)

3 where B(θ1, θ2, θ3) is the matrix:

B(θ1, θ2, θ3) =




2(θ3 − θ22) 2θ2(θ1 − 2θ3 + θ22) −(θ1 − θ22)
2θ2(θ1 − 2θ3 + θ22) 2(θ3 − θ1)(θ1 + 3θ22) 2θ2(θ1 − θ22)
−(θ1 − θ22) 2θ2(θ1 − θ22) 0


 .

Notice that B(θ1, θ2, θ3) includes only multivariate polynomials of variables θ1, θ2 and
θ3.

Let us check Assumption 2. Let λ ∈ [0, 1] and h ∈ (0, 1). We have

∇2g
(
λθ̂ + (1− λ)µm + hu

)
=

B
(
λθ̂ + (1 − λ)µm + hu

)

(
h+ λθ̂1 + (1− λ)µm1 −

(
λθ̂2 + (1− λ)µm2

)2)3 .
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Thus:

E

(
sup
λ
‖∇2g

(
λθ̂ + (1 − λ)µm + hu

)
‖4F
)

= E


sup

λ

‖B
(
λθ̂ + (1 − λ)µm + hu

)
‖4F

(
h+ λθ̂1 + (1− λ)µm1 −

(
λθ̂2 + (1− λ)µm2

)2)12




≤

√√√√√√√√
E


sup

λ

1
(
h+ λθ̂1 + (1− λ)µm1 −

(
λθ̂2 + (1− λ)µm2

)2)24




×
√
E

(
sup
λ
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

≤

√√√√√√E


sup

λ

1
(
h+ λ

(
θ̂1 − θ̂22

)
+ (1− λ)(µm1 − µ2

m1)
)24


 (by convexity inequality)

×
√
E

(
sup
λ
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

≤

√√√√√√E


sup

λ

λ
(
h+

(
θ̂1 − θ̂22

))24


+ sup

λ

1− λ

(h+ µm1 − µ2
m1)

24
(by convexity inequality)

×
√
E

(
sup
λ
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

≤

√√√√√√E




1
(
h+

(
θ̂1 − θ̂22

))24


+

1

(h+ µm1 − µ2
m1)

24

×
√
E

(
sup
λ
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

≤

√√√√√√E




1
(
h+

(
θ̂1 − θ̂22

))24


+ sup

h∈(0,1)

1

(h+ µm1 − µ2
m1)

24

×
√

sup
h∈(0,1)

E

(
sup
λ
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)
.

One should remark that suph∈(0,1)
1

(h+µm1−µ2

m1
)24
≤ 1

(Var(E[ϕ(X,Z)|X]))24 < +∞.

Moreover, the matrixB is composed with polynomials of three variables. SinceE
(
Q(X)16

)
<

+∞ then by using Lemma C.1 and by continuity of polynomial functions, it yields that
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suph∈(0,1) E

(
supλ∈[0,1] ‖B

(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

is bounded. Finally, by re-

lying on Lemma B.1, E(h + θ̂1 − θ̂22)
−24 is a bounded by 1

(Var(E[ϕ(X,Z)|X]))24 as
n,m→ +∞. Therefore, Assumption 2 is satisfied.

Proof of Lemma B.1

Let h ∈ (0, 1) be fixed. The function βh : x 7→ 1/(h + x)α is continuously differ-
entiable such that its first derivative is uniformly bounded on R+ by 1/hα+1 then it is
Lipschitz. Therefore:

E

(
βh(θ̂1 − θ̂22)− βh(θ1 − θ22)

)2
≤ 1

h2α+2
E

(
θ̂1 − θ̂22 − θ1 + θ22

)2

≤ 2

h2α+2

(
Var(θ̂1) + Var(θ̂22) +

(
E(θ̂22)− θ22

)2)
,

using convexity inequality. Based on Marcinkiewicz-Zygmund inequality (see Theo-
rem D.1) and Lemma C.1, it follows that

lim
n,m→∞

(
(Var(θ̂1) + Var(θ̂22) +

(
E(θ̂22)− θ22

)2)
= 0.

Straightforwardly:

lim
n,m→∞

E

(
1

(h+ (θ̂1 − θ̂22)
α

)
=

1

(h+ θ1 − θ22)
α
≤ 1

Var(Q(X))α
.

C A lemma

Lemma C.1. Let X(1), · · · ,X(n) be n i.i.d. copies of X and Z(1,1), · · · , Z(n,m) be

n × m i.i.d. copies of Z such that (X(1), · · · ,X(n)) and (Z(1,1), · · · , Z(n,m)) are

independent. Then, for all q ∈ N: m−q
E
(∑m

k=1 ϕ(X
(1), Z(1,k))

)q
is polynomial in

m−1 of degree q − 1 with constant E (E [ϕ(X, Z) | X])
q
.

It holds that:

E

(
1

m

m∑

k=1

ϕ(X(1), Z(1,k))

)q

=
1

mq
E




m∑

k1=1

· · ·
m∑

kq=1

ϕ(X(1), Z(1,k1)) · · ·ϕ(X(1), Z(1,kq))




=
1

mq

m∑

k1=1

· · ·
m∑

kq=1

E

(
ϕ(X(1), Z(1,k1)) · · ·ϕ(X(1), Z(1,kq))

)
.

Denote by λ : {1, . . . ,m}q → N the map which with each k := (k1, . . . , kq)
associates the number of distinct indices among k1, . . . , kq . If 1 ≤ l ≤ q then denote by
ρl : λ

−1(l)→ {1, . . . , q}l the map which with each k ∈ λ−1(l) associates (r1, . . . , rl),
where ri = |{j : kj = kji}| for every i = 1, . . . , l and kj1 , . . . , kjl are the distinct
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indices found among k1, . . . , kq . Obviously, r1 + · · ·+ rl = q. We have
m∑

k1=1

· · ·
m∑

kq=1

E

(
ϕ(X(1), Z(1,k1)) · · ·ϕ(X(1), Z(1,kq))

)

=

m∑

k1=1

· · ·
m∑

kq=1

f(k)

=

q∑

l=1


 ∑

(r1,...,rl)∈{1,...,q}l:r1+···+rl=q


 ∑

k∈λ−1(l):ρl(k)=(r1,...,rl)

f(k)




 . (23)

Now, since

E

(
ϕ(X(1), Z(1,k1)) · · ·ϕ(X(1), Z(1,kq))

)

= E

(
ϕ(X(1), Z(1,kj1

))r1 · · ·ϕ(X(1), Z(1,kjl
))rl
)

= E

(
l∏

s=1

E

[
ϕ(X(1), Z(1,kjs ))rs | X(1)

])

is symmetric in r1, . . . , rl, it holds that

∑

(r1,...,rl)∈{1,...,q}l:r1+···+rl=q


 ∑

k∈λ−1(l):ρl(k)=(r1,...,rl)

f(k)




= c(l, (r1, . . . , rl),m)E

(
l∏

s=1

E

[
ϕ(X(1), Z(1,kjs ))rs | X(1)

])

where

c(l, (r1, . . . , rl),m) =

(
q

r1

)(
q − r1
r2

)
· · ·
(
q − r1 − · · · − rl−1

rl

)

m(m− 1) · · · (m− l + 1). (24)

Notice that the expression in the right-hand side of (24) is invariant by permutation of
r1, . . . , rl. Therefore, the sum (23) is a polynomial in m of degree q with constant zero
and hence E

(
1
m

∑m
k=1 ϕ(X

(1), Z(1,k)
)q

is a polynomial in 1
m of degree q − 1 with

constant limm→+∞ E
(

1
m

∑m
k=1 ϕ(X

(1), Z(1,k)
)q

= E (E [ϕ(X, Z) | X])q .

D The Marcinkiewicz-Zygmund inequality

Theorem D.1 (Marcinkiewicz and Zygmund (1937)). Let U1, · · · , Un be i.i.d. random

variables such that E(U1) = 0 and E|U1|q < +∞, where 1 ≤ q < +∞. There exist

Aq and Bq depending only on q such that:

AqE



(

n∑

i=1

|Ui|2
) q

2


 ≤ E

(∣∣∣∣∣

n∑

i=1

Ui

∣∣∣∣∣

q)
≤ BqE



(

n∑

i=1

|Ui|2
) q

2




Furthermore, there exists Cq independent from n such that:

E

(∣∣∣∣∣
1

n

n∑

i=1

Ui

∣∣∣∣∣

q)
≤ Cq

n
q

2

. (25)
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