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Abstract

In global sensitivity analysis for stochastic models, the Sobol’ sensitivity index
is a ratio of polynomials in which each variable is an expectation of a function of
a conditional expectation. The estimator is then based on nested Monte Carlo
sampling where the sizes of the inner and outer loops correspond to the number
of repetitions and explorations, respectively. Under some conditions, it was shown
that the optimal rate of the mean squared error for estimating the expectation of a
function of a conditional expectation by nested Monte Carlo sampling is of order
the computational budget raised to the power -2/3. However, the control of the
mean squared error for ratios of polynomials is more challenging. We show the
convergence in quadratic mean of the Sobol’ index estimator. A bound is found
that allows us to propose an allocation strategy based on a bias-variance trade-off.
A practical algorithm that adapts to the model intrinsic randomness and exploits
the knowledge of the optimal allocation is proposed and illustrated on numerical
experiments.

Keywords: Stochastic model, global sensitivity analysis, Monte-Carlo method,
mean-squared error, quadratic convergence.

1 Introduction
Sensitivity analysis (SA) provides useful insight into mathematical models. However,
in SA, stochastic models are challenging. Indeed, such models include two sources
of uncertainty: parameter uncertainty and intrinsic randomness. This intrinsic random-
ness is a collection of hidden random variables that can make challenging the definition
of meaningful sensitivity indices and their efficient estimation.

Several methods have been introduced to deal with stochastic models. Apart from
metamodel-based approach (Étoré et al., 2020; Jimenez et al., 2017; Fort et al., 2013;
Zhu and Sudret, 2021), usual SA methods for stochastic models may be divided into
about three approaches. The first approach, proposed by Hart et al. (2017), considers
random Sobol’-Hoeffding decompositions (Sobol’, 1993) of stochastic model outputs
and defines sensitivity indices of such models as expectations of the resulting random
Sobol’ indices. The second approach focuses on deterministic quantities of interest
(QoIs) such as conditional expectations or conditional variances (Courcoul et al., 2011;
Mazo, 2021). By conditioning with respect to the uncertain parameters, the aim is to
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smooth the intrinsic randomness out and hence to deal with quantities under the form
of deterministic functions of the uncertain parameters only, so that SA methods for
deterministic models can be applied. The third approach includes recently developed
methods (Fort et al. (2021); Gamboa et al. (2021), da Veiga (2021)) that see stochastic
output models as deterministic function with values in probability distribution spaces.
Various sensitivity indices are defined on such spaces in order to measure contributions
of uncertain parameters.

For all these approaches, it appears that not only should the model be evaluated at
many points in the input space (it is said that the input space is explored), but also the
model should be repeated at each of those explorations to estimate conditional expec-
tations. In the first approach, these repetitions are performed when approximating the
expectations of the random Sobol’ indices. In the second and third approaches, model
outputs are repeated when estimating the QoIs and the probability distributions, respec-
tively. Therefore, the larger the number of explorations and the number of repetitions,
the more accurate the sensitivity index estimators. This leads to large numbers of runs
of the model. However, in practice, models could be complex and a run could have a
high computational cost so that computational issue could rise very quickly.

Therefore, the study of the choice of a number of explorations and a number of
repetitions under the constraint of a computational cost or that of the precision of es-
timations, takes more and more importance beyond the sensitivity analysis but more
globally in the fields which are interested in the stochastic simulators. It can be men-
tioned the works of Chen and Zhou (2014, 2017) which proposes various strategies of
sequential design based on the Integrative Mean Squared Error (IMSE) for stochastic
kriging. More recently still with metamodels based on Gaussian processes, Binois et al.
(2018, 2019) explored different methods for optimal design also using IMSE criteria.

In Mazo (2021), the author studied this problem for estimation of sensitivity indices
for stochastic models. In that paper, two QoIs were considered: the exact model output
and its conditional expectation with respect to the uncertain parameters. Depending on
the QoI, two types of Sobol’ indices were defined and the so-called pick-freeze esti-
mators (Gamboa et al. (2016)) were used. Those estimators are based on a double (or
nested) Monte-Carlo sampling scheme and require the choice of the number of explo-
rations, n, and the number of repetitions, m. Such procedure is the so-called Nested
Monte Carlo. To better estimate such indices without increasing the computation cost,
Mazo (2021) supposed that the total number of runs of the model is fixed and then pro-
posed under such constraint a choice of n and m based on the minimization of some
bound of the so-called mean ranking error (MRE) of the estimators. This error mea-
sures the gap between the ranks of the theoretical indices and those of the estimators.
However, a small MRE does not necessarily imply that estimations are close to their
theoretical values.

Accurate and efficient estimation of Sobol’ indices is a major concern in SA . This
is linked to the problem of accurately estimating expectation of functions of conditional
moments, which is a problem that arises in wider framework than SA. Many studies
have been conducted to address this issue. In global sensitivity analysis, da Veiga and
Gamboa (2013) addressed the problem with a semi-parametric estimation approach
(see also da Veiga et al. (2017)) in the case of deterministic models while Mycek and
De Lozzo (2019) proposed methods based on Multilevel Monte-Carlo. In the case of
metamodel based SA, Janon et al. (2014); Panin (2021) studied the risk of estimators
and provide error bounds. Regarding stochastic models, Castellan et al. (2020) dis-
cussed the accurate non-parametric estimation of first-order Sobol’ indices for bounded
stochastic models by relying on wavelet-based estimator approach. More generally, be-
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yond SA, Rainforth et al. (2018) studied the nested Monte Carlo and its computational
cost. Giles and Haji-Ali (2019); Giorgi et al. (2020) discussed efficiency and con-
vergence rates of Multilevel nested Monte-Carlo. Control of the mean squared error
(MSE) of Sobol index estimators in various frameworks was discussed in the litera-
ture (Solís, 2019; Castellan et al., 2020). However, the results appear to be incomplete,
since the conditions under which they may hold are not provided.

In this paper, we consider deterministic QoIs that are under the form of conditional
expectations of some transformations of the stochastic model output with respect to
the inputs. This class of QoIs includes the much used conditional expectation and
conditional variance of the stochastic model output with respect to the inputs. We
focus on variance-based indices such as first-order and total Sobol’ indices for inputs
or groups of inputs. The estimation of those indices is based on the pick-freeze method
by using n explorations of the input space andmmodel repetitions. We study MSEs of
sensitivity index estimators and propose tractable upper bounds that depend on both n
and m. Then, under the constraint that n = T 1−η and m = T η , η ∈ [0, 1), with T →
∞, the bias-variance trade-off is studied using those upper-bounds and the optimal
allocation parameter η is deduced.

The main interest of this work lies in three points. First, up to some mild assump-
tions on the model outputs, pick-freeze estimators of first-order and total Sobol’ indices
are shown to converge in quadratic means. (We note that a byproduct of this result is
the convergence in quadratic mean of the “usual” Sobol’ index estimators for deter-
ministic models.) Second, the scope of this study is large. It takes into account a large
class of QoIs of stochastic model outputs and it includes two widely-used sensitivity
indices. Finally, algorithms are provided for practical implementation of our results.
These algorithms are expected to give better estimations of Sobol’ indices.

This paper is organized as follows. Section 2 presents the general framework of
stochastic models and QoI-based sensitivity indices. In Section 3, the MSE of a general
class of estimators that contains our sensitivity indices is considered and its asymptotic
behavior presented. Section 4 is dedicated to studying the MSE of some variance-based
sensitivity indices. The bias-variance trade-off is discussed and the optimal allocation
for m and n is given here. A practical procedure is implemented through two algo-
rithms and illustrated on two toy models in Section 5. A conclusion closes the paper.

2 Sensitivity index estimators
A stochastic model with inputs X = (X1, . . . , Xp) ∈ Rp and output Y ∈ R is mod-
eled as a function f of X and some collection of random variables, denoted by Z,
independent of X such that

Y = f (X, Z) . (1)

The stochasticity of the model originates from Z since the output of the model evalu-
ated at an input X = x is a random variable f(x, Z). The distribution of Z is generally
unknown.

In the context of SA, a way to deal with stochastic models consists in carrying out
SA for deterministic models given by deterministic QoIs. This allows to switch from a
stochastic model to some deterministic models for which many SA methods are studied
in the literature.

We consider QoIs of the form

Q(X) = E [ϕ(X, Z) | X] , (2)
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where ϕ(X, Z) is a function of X and Z. For instance, if ϕ = f then Q(X) is the
conditional expectation of the model and if ϕ(X, Z) = (f(X, Z)− E [f(X, Z) | X])

2

then Q(X) is the conditional variance, two common choices in practice.
If u is a subset of {1, . . . , p}, denote by Xu the group of inputs {Xi, i ∈ u} and

X∼u the group of inputs {Xi, i 6∈ u}. The Sobol’ and total indices of the input vector
Xu with respect to the function Q are defined as

Su =
Var (E [Q(X) | Xu])

Var (Q(X))
(3)

Tu = 1− Var (E [Q(X) | X∼u])

Var (Q(X))
= 1− S∼u. (4)

The sensitivity index Su (and hence Tu) can be expressed in terms of a function
g linking the components of some parameter vector. Let X̃ be an independent copy
of X, independent of Z. Denote by X̃∼u the subvector of X̃ whose components are
those of X̃ not indexed by u. (For instance, if p = 4 and u = {1, 4} then X̃∼u =

(X̃2, X̃3).) If θ = (θ1, θ2, θ3) with θ1 = E(Q(X)2), θ2 = E(Q(X)) and θ3 =

E(E [Q(X) | Xu]
2
) = E(Q(X)Q(X̃∼u,Xu)) = E(Q(X∼u,Xu)Q(X̃∼u,Xu)) then

Su = g(θ) =
θ3 − θ22
θ1 − θ22

.

An estimator of Su is built by the method-of-moments (pick-freeze procedure). Let
{X(i); i = 1, . . . , n} and {X̃(i); i = 1, . . . , n} be independent Monte Carlo samples
from the law of X. For each i, denote by X

(i)
u the subvector of X(i) whose components

are those of X(i) indexed by u. Likewise, denote by X
(i)
∼u the subvector of X(i) whose

components are those of X(i) not indexed by u, and denote by X̃
(i)
∼u the subvector of

X̃(i) whose components are those of X̃(i) not indexed by u. An estimator of Su is
given by

Ŝu = g(θ̂) =
θ̂3 − θ̂22
θ̂1 − θ̂22

where
θ̂1 = 1

n

∑n
i=1 Q̂m(X(i))2

θ̂2 = 1
n

∑n
i=1 Q̂m(X(i))

θ̂3 = 1
n

∑n
i=1 Q̂m(X(i))Q̃m(X̃

(i)
∼u,X

(i)
u )

 (5)

and

Q̂m(X(i)) =
1

m

m∑
k=1

ϕ
(
X(i), Z(i,k)

)
Q̃m(X̃(i)

∼u,X
(i)
u ) =

1

m

m∑
k=1

ϕ(X̃(i)
∼u,X

(i)
u , Z̃(i,k));

here the objects {Z(i,k), Z̃(i,k); k = 1, · · · ,m; i = 1, · · · , n}, are independent and
identically distributed random variables, independent of {X(i), X̃(i); i = 1, . . . , n},
representing the randomness of the user’s model. For more details, see Mazo (2021).

The estimator Ŝu may be asymptotically biased , depending on the rate at which
m, the number of repetitions, increases with respect to n, the number of explorations.
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It was shown in Mazo (2021) that, if m is fixed, then

√
n

(
Ŝu − Su

[
1− E Var(ϕ(X, Z)|X)

E Var(ϕ(X, Z)|X) +mVar E(ϕ(X, Z)|X)

])
converges to a centered normal distribution with some variance σ2

m depending on m.
To get rid of the bias, it is needed that m → ∞ such that

√
n/m → 0, in which case√

n(Ŝu − Su) goes to a centered normal distribution with variance limm→∞ σ2
m.

The statistical performance of the estimator Ŝu goes hand in hand with the compu-
tation effort one is ready to spend. The computation of Ŝu requires a number of model
evaluations proportional to mn. Given a fixed number of evaluations—and hence mn
is fixed—it is of interest to find the couple (m,n) that most increases the estimator’s
performance. In Mazo (2021), a bound on an error that penalizes bad rankings of the
sensitivity indices S1, . . . , Sp was minimized, leading to a theoretically-guided choice
for m and n. However, it is more natural to consider the MSE E((Ŝu − Su)2) as the
quantity to be controlled.

3 Mean-squared error control of smooth functions
In this section, we study the MSEs of some estimators and give bounds and a rate of
convergence. The aim is to characterize a class of estimators that include variance-
based sensitivity index estimators and then to define conditions under which their
MSEs admit tractable upper bounds and convergence rates.

For sake of generality, let us consider a convex domain D ⊂ Rq with q ≥ 1. For
each m ∈ N∗, let θ̃(1)m , · · · θ̃(n)m be n i.i.d. random vectors whose common probability
distribution depends only on m. Denote µm = E(θ̃

(1)
m ) and

Σm = E
(

(θ̃
(1)
m − µm)(θ̃

(1)
m − µm)>

)
. Let θ ∈ D and assume

θ̂(n,m) =
1

n

n∑
i=1

θ̃(i)m (6)

is an estimator of θ. Let bm be the bias of θ̂(n,m). Thus: bm = µm − θ. For the sake of
simplicity, hereafter, θ̂(n,m) is denoted θ̂. If m is fixed then E(θ̂) = µm 6= θ as soon as
bm is non-null. In particular, estimator θ̂ belongs to the class of Nested Monte-Carlo
estimators if for i = 1, · · · , n, θ̃(i)m are under the form

θ̃(i)m = φ

(
1

m

m∑
k=1

η̃(i,k)

)
, (7)

where φ is some measurable function with values on D and {η̃(i,k); i = 1, · · · , n; k =
1, · · · ,m} is an array of identically distributed random vectors such that {η̃(i,k), k =
1, · · · ,m} and {η̃(j,k), k = 1, · · · ,m} are mutually independent as soon as i 6= j. The
MSE of θ̂ is given by E ‖θ̂ − θ‖2 and then, the variance bias decomposition yields:

E ‖θ̂ − θ‖2 =
1

n
Trace (Σm) + ‖bm‖2. (8)

Make the following assumption:
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Assumption 1. bm → 0 and Σm → Σ as m→ +∞.

Under Assumption 1, it holds that limn,m→+∞ E ‖θ̂ − θ‖2 = 0 and thereby θ̂
converges in quadratic means to θ. Mazo (2021) showed that Assumption 1 is satisfied
by Sobol’ index estimators introduced in Section 2. More generally, this assumption is
fulfilled in the case Nested Monte Carlo estimators provided that θ = Eφ(η̃), with η̃ the
limit (provided it exists) of

∑m
k=1 η̃

(1,k)/m, and that the function φ in Equation (7) has
good properties such as boundedness and smoothness (Giorgi et al., 2017; Rainforth
et al., 2018).

The form of the MSE in Equation (8) allows to control this error through the choice
of n and m. Indeed, this enables to show convergence, to obtain convergence rates
and to study optimal convergence strategies. For instance, in the framework of Nested
Monte Carlo estimators, Hong and Juneja (2009) showed that for a real-valued func-
tion φ (introduced in (7)) at least third differentiable such that the third derivative is
uniformly bounded, the MSE defined in (8) is of order O(1/n + 1/m2) and they de-
duced that the optimal convergence rate is O(T−2/3) if T = mn denotes the compu-
tational effort. Thus, it is useful to have either the mean-squared error or at least an
upper bound of this error under the form in (8).

Now, given a non-constant function g : D → R, assume that θ̂ is mapped to g(θ̂) so
that g(θ̂) converges in probability to g(θ) as n,m → ∞. Therefore, the main concern
is to know if, as θ̂, the MSE of g(θ̂), i.e. E (g(θ̂)−g(θ))2 converges to 0, or if it admits
an upper bound under the form in (8) that converges to 0 as n,m → ∞. Introducing
g makes the study of the related MSE more challenging than the usual cases one could
deal with, especially in the Nested Monte Carlo estimator framework (Giles, 2018;
Giorgi et al., 2020). The obstacles to obtaining such upper bound for E (g(θ̂)− g(θ))2

are multiple and involve both θ̂ and g: issues related to boundedness or smoothness
of g, or to the probability distribution of θ̂ and its support, etc. Hence, responses to
the main concern depend generally on both θ̂ and g. For instance, assume g is linear
or more generally g is Lipschitz continuous, then there exists an constant L such that
|g(x′)− g(x)| ≤ L‖x′ − x‖. Thus:

E
(
g(θ̂)− g(θ)

)2
≤ L2E ‖θ̂ − θ‖2,

and thereby such MSE admits upper bound of the form in (8).
However, it can be difficult to get an exact upper bound in this form. Very often, in

practice, the function g does not have good enough properties to obtain an exact bound.
In this case, one could look for an approximate bound of the form (8), i.e. which is
the sum of a quantity of the form (8) and a certain quantity negligible when n,m go to
infinity. For example, let g be a twice continuously differentiable such that its Hessian
matrix denoted ∇2g is uniformly bounded. Then, up to existence of some moments of
θ̂, and combining Taylor-Lagrange expansion and convexity inequality yields:

E
(
g(θ̂)− g(θ)

)2
≤ 2E

(
∇g(µm)>

(
θ̂ − µm

))2
+ 2 (g(µm)− g(θ))

2

+O
(
E‖θ̂ − µm‖4

)
.

Thus, the MSE of g(θ̂) admits an upper bound. In addition, assume that the follow-
ing condition is satisfied:
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Assumption 2. As n,m→∞, it holds that:

E
(
‖θ̂ − µm‖8

)
(
E
(
∇g (µm)

>
(
θ̂ − µm

))2)2 = o(1).

Under Assumption 2, it appears that:

E
(
g(θ̂)− g(θ)

)2
≤ 2(1 + o(1))E

(
∇g(µm)>

(
θ̂ − µm

))2
+ 2 (g(µm)− g(θ))

2

(9)

and therefore the E (g(θ̂) − g(θ))2 has approximately the form in (8) as n,m → ∞.
Though, the uniform boundedness of∇2g is a very strong condition. A way to weaken
such a condition consists in having:

sup
λ∈(0,1)

E
(
‖∇2g

(
λθ̂ + (1− λ)µm

)
‖4F
)

= O(1) as n,m→∞, (10)

where ‖ ·‖F denotes the Frobenius norm. Under condition in (10), the approximate de-
composition (9) of the MSE into a sum of variance and squared bias holds. Therefore,
the bias-variance tradeoff problem can be likely addressed more easily since the terms
of the upper bound are more tractable. Also, a well-informed choice for the (n,m) can
be likely found to reduce the MSE.

Relying on Rosenthal inequality (Yuan and Li, 2015) and Marcinkiewicz–Zygmund
inequality (Marcinkiewicz and Zygmund, 1937), Assumption 2 can be satisfied up to
existence of moments of θ̂. However, once again, even the condition provided in Equa-
tion (10) is still strong in general since this could impose a strong constraint on the
probability distribution of θ̂ which is generally unknown. For instance, in the case of
Sobol’ index estimators defined in Section 2, condition (10) comes down to provide
upper bounds for quantities under the form E[(θ̂1 − θ̂22)−α] with α > 0 whereas the
probability distribution of θ̂1− θ̂22 is unknown and even the existence of such quantities
is not guaranteed.

Faced with this issue, we propose a weaker condition than the one in Equation
(10), which relaxes a little more the constraint on θ̂. The idea is to introduce a "slight
perturbation" gh of the function g so that the condition of Equation (10) holds with
g = gh and limh→0 gh(x) = g(x) pointwise. The advantage of having such a family
of functions is that E(gh(θ̂)−gh(θ))2, the “perturbed MSE”, could be bounded with an
approximate upper bound in the form of Equation (9) with g = gh. But the counterpart
is that to control the “true” MSE, we also need to control ∆n,m(h) := E(g(θ̂)−gh(θ̂))2

which measures the distance between the “true” estimator g(θ̂) and its modified version
gh(θ̂). Thus, the difficulty is to find such a family for which this gap ∆n,m(h) can also
be controlled.

Let us fix u ∈ Rq such that ‖u‖ = 1 and for all x ∈ D, x + hu ∈ D for any
h ∈ (0, 1). Henceforth, we shall focus on the family defined by functions gh(x) =
g(x+ hu) which enables to control ∆n,m(h) under Assumption 3 as n,m→∞.

Assumption 3. There exists a constantC independent of h such that, for all h ∈ (0, 1):

lim sup
n,m→∞

sup
λ∈[0,1]

E
(
‖∇2g(λθ̂ + (1− λ)µm + hu)‖4F

)
≤ C.
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Introducing translations x 7→ x + hu can be thought as a way to "transport" the
original estimator θ̂ to regions of D where control of moments of g(θ̂) is possible
without additional conditions on θ̂. Concretely, the goal of Assumption 3 is to “get
away” from certain regions of the parameter space where the Hessian of g may explode.
Notice that the supremum over λ is taken over the closed interval [0, 1]. The choice
of h affects the approximation for the bound, as shown in Theorem 1. Recall that

∆n,m(h) := E
(
g(θ̂)− g(θ̂ + hu)

)2
and let Vn,m(h) := E(∇g (µm + hu)

>
(θ̂ −

µm))2 and Bm(h) := g (µm + hu)− g(θ).

Theorem 1. Under Assumptions 1, 2 and 3, there exists C̃ > 0 independent of h such
that for every h ∈ (0, 1):

E
(
g(θ̂)− g(θ)

)2
≤ 3 (1 + pn,m(h))

(
∆n,m(h) + Vn,m(h) +Bm(h)2

)
, (11)

where lim supn,m→∞ pn,m(h) = 0 and

∆n,m(h) ≤ p̃n,m(h)h2, (12)

where lim supn,m→∞ p̃n,m(h) ≤ C̃.

Theorem 1 is the analog of (9), except that a term ∆n,m(h) has appeared to control
the gap between g(θ̂ + hu) and g(θ̂). The quantity Vn,m(h) + Bm(h)2 can be rewrit-
ten to make the bias-variance trade-off appear. Indeed, Vn,m(h) = n−1∇g(µm +
hu)>Σm∇g(µm + hu), which is of order O(n−1) as n,m → ∞, regardless of h.
Moreover, we have Bm(h)2 = ((bm + hu)>∇g(θn,m))2 for some θn,m lying be-
tween θ and θ + bm + hu, and hence Bm(h)2 is bounded by (‖bm‖+ h2) times some
universal constant. Therefore, up to a universal multiplicative constant, it holds that
∆n,m(h)+Vn,m(h)+Bm(h)2 is bounded by h2(p̃n,m(h)+1)+1/n+‖bm‖2, where
1/n+ ‖bm‖2 represents the bias-variance tradeoff, which is similar to (8).

Letting n,m → ∞ and then h → 0 in (11), the convergence of the MSE can be
shown, as stated in Corollary 1.

Corollary 1. Under the conditions of Theorem 1, it holds that:

lim
n,m→∞

E
(
g(θ̂)− g(θ)

)2
= 0.

4 Application to sensitivity index estimators
This section aims at studying the MSE of estimators of Sobol’ indices introduced in
Section 2. Let θ̂ = (θ̂1, θ̂2, θ̂3) be as in (5) and (6), where θ̂(i)m = (θ̂

(i)
m1, θ̂

(i)
m2, θ̂

(i)
m3) =

(Q̂m(X(i))2, Q̂m(X(i)), Q̂m(X(i))Q̃m(X̃
(i)
∼u,X

(i)
u ). Recall that θ1 = E(Q(X)2), θ2 =

E(Q(X)), θ3 = E(E [Q(X) | Xu]
2
) = E(Q(X)Q(X̃∼u,Xu)), so that

µm = (µm1, µm2, µm3) = (θ1+bm1, θ2+bm2, θ3+bm3) and bm = (bm1, bm2, bm3) =
(EVar [ϕ(X, Z) | X] /m, 0, 0). Recall that the function

g : (x1, x2, x3) 7→ (x3 − x22)/(x1 − x22) (13)

is a twice-continuously differentiable function over its definition domain. But unfortu-
nately, g is unbounded. The form of such a function makes the study of the MSE of
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Monte Carlo based Sobol index estimators almost impossible unless strong conditions
are imposed on the output distribution of the model. This could explain why until now,
to our knowledge, there is almost no study of the quadratic convergence of such esti-
mators. The approach introduced in Section 3 allows to bypass the unbounded issue
and thus, to establish the quadratic convergence of these estimators and to provide an
approximate bound from which a strategy for optimizing convergence rate of the MSE
is developed. Throughout this section, it is assumed that E

(
Q(X)16

)
< +∞.

4.1 Control of the MSE
In order to provide an upper bound for E(g(θ̂)−g(θ))2 as in Theorem 1, it is necessary
to fulfill Assumption 1, 2 and 3. Assumption 1 is trivially satisfied. Since the estimator
θ̂ is an empirical mean of i.i.d. random vectors, we can show that Assumption 2 is
satisfied—see Theorem 2.

Theorem 2. In the context of Section 4 with g given by (13), Assumption 2 is satisfied.

To check Assumption 3, we need to find a direction u that satisfies the required
properties.

Theorem 3. If u = (1, 0, 0), then, under the conditions of Theorem 1, Assumption 3
holds. Therefore, there is a constant C̄ independent of h such that, for every h ∈ (0, 1),

E
(
g(θ̂)− g(θ)

)2
≤ p̄n,m(h)

((
1

n
+

(
E (Var [ϕ(X, Z) | X])

m

)2
)

+ h2p̄′n,m(h)

)
,

where the supremum limits of p̄n,m(h) and p̄′n,m(h) as n,m→∞ are less than C̄.

Theorem 3 provides a bound for the MSE of the pick-freeze estimator g(θ̂) of
Sobol’ indices. This result is also valid in the deterministic framework, in which
E (Var [ϕ(X, Z) | X]) = 0. To the best of our knowledge, the convergence in quadratic
mean of Sobol index estimators was not obtained in the literature yet, in both the de-
terministic and stochastic frameworks. This result is given in Corollary 2.

Corollary 2. Under the conditions of Theorem 2, we have limn,m→∞ E(g(θ̂)−g(θ))2 =
0.

Corollary 2 immediately follows from Corollary 1, Theorem 2 and Theorem 3.

4.2 Asymptotically optimal bias-variance tradeoff between repeti-
tions and explorations

The Monte-Carlo estimation of sensitivity indices based on pick-freeze method re-
quires a total number of model evaluations under the form: nm× (Cp + 1) where Cp
is a constant that depends on p and the function ϕ only. Let T ∈ N∗ and η ∈ [0, 1]
such that m = T η and n = T 1−η and hence T = mn. So η allows to control the ratio
between the number of exploration n and the number of repetitions m. It was shown
in Corollary 2 and Theorem 3 that the MSE converges to zero as n,m → ∞ and that
the bias-variance tradeoff (BVT), i.e., 1

n + (E (Var [ϕ(X, Z) | X]) /m)2, is of order
T η−1 + T−2η .

Proposition 1. As T → ∞, the BVT convergence rate toward zero is optimal for
η = 1/3.

9



Thus, choosing m of order T 1/3 and n of order T 2/3 ensures that the BVT con-
verges at a rate at least T 2/3 when T →∞.

Let us notice that the MSE cannot vanish at a faster rate than T 2/3 in general, as
Proposition 2 shows.

Proposition 2. If m is of order T 1/3 and n is of order T 2/3 then, under the con-
straint mn = T , there exist a random vector X and a stochastic model f such that
limT 2/3E(g(θ̂)− g(θ))2 > 0 as T →∞.

5 Practical algorithms
In Section 4, it turned out that the number of repetitions m should be of order T 1/3

under the constraint nm = T in order to guarantee that the BVT converges at optimal
rate.

However, an asymptotic order is not a specific value. To guide the choice of m in
practice, notice that m should be linked to the intrinsic randomness of ϕ(X, Z), since
the probability distribution of Q(X) depends on that of Z. Therefore, we expect that
the greater the intrinsic noise is, the larger m should be. Thus, in this section, the
goal consists in proposing a value of m that takes into account the importance of the
intrinsic randomness.

Under the constraint nm = T , the optimal convergence rate of the BVT is obtained
when nopt is of order T 2/3 andmopt is of order T 1/3. Letmopt = κT 1/3 where κ > 0.
Then, nopt = κ−1T 2/3. Thus:

BVT = O

(
κT−2/3 +

EVar(ϕ(X, Z))2

κ2
T−2/3

)
.

Coefficient κ can be chosen such that κT−2/3 + EVar(ϕ(X,Z))2

κ2 T−2/3 is the smallest

over κ > 0. The minimum of such a quantity is reached at κopt =
(
2 EVar(ϕ(X, Z))2

)1/3
.

Therefore:

mopt =
(

2 E (Var [ϕ(X, Z) | X])
2
)1/3

T 1/3 (14)

=

(
1√
2
E
([
ϕ (X, Z)− ϕ

(
X, Z̃

)]2))2/3

T 1/3.

Therefore, the number of repetitions suggested above ensures that the BVT converges
at optimal rate and then it provides a good variance-bias trade-off so as not to have
an imbalance in the rate of convergence of the variance and the bias that would re-
duce the global rate. Furthermore, it is noticeable that mopt depends on E(ϕ(X, Z)−
ϕ(X, Z̃))2. Relying on the law of total variance:

Var (ϕ(X, Z)) = Var (E [ϕ(X, Z) | X]) + E (Var [ϕ(X, Z) | X]) ,

it follows that E(ϕ(X, Z)−ϕ(X, Z̃))2 quantifies the part of the total variance Var (ϕ(X, Z))
that is not attributed to the inputs X; and so, that measures the influence of the intrinsic
noise of the stochastic model ϕ(X, Z). Thus, mopt(T ) takes into account the intensity
of the intrinsic noise of the stochastic model so that the higher the intrinsic noise im-
pact, the higher the number of repetitions should be, and therefore sufficient repetitions
of the model are provided in order to reduce the bias bm.

10



Finally, it also appears that mopt(T ) depends on both T and the function ϕ. The
dependence with respect to T guarantees that mopt(T ) grows as T gets large. Besides,
the dependence with respect to ϕ means that even if mopt(T ) remains proportional to
T 1/3, it also varies with respect to the chosen QoI of the stochastic model f .

5.1 Algorithms
This section is devoted to the practical implementation of the bias-variance trade-off
strategy when performing SA for some QoI of a stochastic model. Recall that f is a
stochastic model as in (1) and we are interested in carrying out SA of a QoI under the
form (2), that is, Q(X) = E [ϕ (X, Z) | X] in order to measure the impact of some
groups of inputs ui ⊂ {1, . . . , p}, i = 1, . . . , l. In other words, we are interested in
estimating Su1

, . . . , Sul . We shall use at most T × (l + 1) evaluations of ϕ(X, Z).
Under the constraint nm = T , the number of repetitions mopt found in 14 depends on
ρ := E(ϕ(X, Z) − ϕ(X, Z̃))2. However, in practice, C is often unknown. So, before
sensitivity index estimation, C needs to be estimated.

Consider r0 i.i.d. samples of X, denoted by X(1), · · · ,X(r0), and generate two
outputs at each sample X(i):

(
ϕ(X(1), Z(1,1)), ϕ(X(1), Z(1,2))

)
, · · · ,(

ϕ(X(r0), Z(r0,1)), ϕ(X(r0), Z(r0,2))
)
. Thus:

ρ̂ =
1

r0

r0∑
i=1

(
ϕ(X(i), Z(i,1))− ϕ(X(i), Z(i,2))

)2
is a consistent and unbiased estimator of ρ. It appears that the estimation of C requires
2r0 evaluations of the model ϕ(X, Z). However, the maximal number of evaluations
is T × (l + 1). So, for index estimation procedure, at most T × (l + 1) − 2r0 model
evaluations are allowed.

Therefore, our strategy consists in leveraging the model outputs used to estimate
ρ and then plugging and completing those outputs in order to compute sensitivity in-
dex estimates. This strategy relies on two algorithms: Algorithm 1 and Algorithm 2.
Algorithm 1 enables to generate complementary outputs in addition to outputs already
available after estimation of ρ. This allows to satisfy the constraint of the maximal
number of model evaluations T × (l + 1). This part helps to optimize the whole esti-
mation procedure by using the model outputs already generated. Regarding Algorithm
2, it effectively estimates indices in three steps based on pick-freeze procedure. First,
it estimates ρ and thereby compute mopt and nopt = T/mopt. Then, in the second
step, by relying on Algorithm 1, complementary outputs required for estimations are
generated. In the final step, sensitivity index estimates are computed with respect to
inputs or groups of inputs specified by the user.

11



Algorithm 1 Completing model evaluations

Inputs: n,m,ϕ, l,
(
X(1), · · · ,X(T )

)
Data:

(
ϕ
(
X(1), Z(1,1)

)
, ϕ
(
X(1), Z(1,2)

))
, · · · ,

(
ϕ
(
X(r0), Z(r0,1)

)
, ϕ
(
X(r0), Z(r0,2)

))
if n ≥ r0 then

if m ≥ 2 then
for i = 1, · · · , r0 do

for k = 3, · · · ,m do
Compute ϕ

(
X(i), Z(i,k)

)
end for

end for
for i = r0 + 1, · · · , n do

for k = 1, · · · ,m do
Compute ϕ

(
X(i), Z(i,k)

)
end for

end for
end if
if m = 1 then

for i = r0 + 1, · · · , n− r0 − dr0/(l + 1)e do
Compute ϕ

(
X(i), Z(i,1)

)
end for

end if
end if
if n < r0 then

if m > 2 + 2d1/(l + 1) ∗ (−1 + r0/n)e then
for i = 1, · · · , n do

for k = 3, · · · ,m− 2d1/(l + 1) ∗ (−1 + r0/n)e do
Compute ϕ

(
X(i), Z(i,k)

)
end for

end for
end if
if m ≤ 2 + 2d1/(l + 1) ∗ (−1 + r0/n)e then

Exit: Budget already consumed
end if

end if

12



Algorithm 2 Estimation of Sobol’ indices

Inputs: r0, T, ϕ,w = {u1, · · · , ul},
(
X(1), · · · ,X(T )

)
,
(
X̃(1), · · · , X̃(T )

)
1: for i = 1, · · · , r0 do
2: for k = 1, 2 do
3: Compute ϕ

(
X(i), Z(i,k)

)
4: end for
5: end for
6: Compute ρ̂← 1

r0

∑r0
s=1

(
ϕ
(
X(i), Z(i,1)

)
− ϕ

(
X(i), Z(i,2)

))2
7: Compute m̂opt according to Equation (14)
8: n̂opt ←

⌊
T/m̂opt

⌋
9: Run Algorithm 1 with m = m̂opt, n = n̂opt to complete samples
ϕ
(
X(1), Z(1,1)

)
, · · · , ϕ

(
X(r0), Z(r0,2)

)
.

10: for j = 1, · · · , l do
11: for i = 1, · · · , n̂opt do
12: for k = 1, · · · , m̂opt do
13: Compute ϕ

(
(X̃

(i)
∼uj ,X

(i)
uj ), Z̃(i,k)

)
14: end for
15: end for
16: end for
17: Compute sensitivity index estimates

Algorithm 2 requires: r0, T, ϕ,w and input samples. The transformation ϕ of the
stochastic model is supplied as well as w the set of inputs or groups of inputs whose
indices are estimated. In practice, r0, T and c must be chosen. We recommend to
take r0 with respect to T so as not to waste a large part of the budget only in the first
stage of Algorithm 2. Indeed, the estimator ρ̂ has enough good statistical properties
for efficient estimation of ρ with not too large value of r0. Regarding T , it follows T
should be taken as large as possible depending on the computational cost of a run of
both ϕ and the original model f . Furthermore, to ensure that the MSE has a precision
ε ∈ (0, 1) with h2 � ε, T must be roughly chosen larger than ε−3/2 since the MSE is
O
(
T−2/3

)
. This provides approximations for practical choice of T .

5.2 Illustrations
This subsection presents the performance of the estimators of first-order and total in-
dices computed by Algorithm 2 in the case of two toy stochastic models for which ana-
lytical values of indices are known: a linear model f(X1, X2, Z) = 1+X1+2X2+σZ
with σ > 0 and a stochastic version of the Ishigami function f ′(X1, X2, X3, Z) =
sinX1 + a sin2X2 + bX4

3 sinX1Z
2 with a, b > 0 (Ishigami and Homma (1990)). For

each value of T = nm, the estimators of Algorithm 2 are compared with two other
arbitrary choices, namely, (n,m) = (T/5, 5) and (n,m) = (T 1/2, T 1/2). For each
choice of the couple (n,m), N = 100 replications of estimations are carried out so
that the global MSE

∑p
j=1 E(g(θ̂j,n,m)− g(θj))

2 is estimated by using samples

p∑
j=1

(
g(θ̂

(l)
j,n,m)− g(θj)

)2
, l = 1, · · · , 100 (15)
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where g(θ̂
(l)
j,n,m) is the lth replication of estimator g(θ̂j,n,m) of the jth input sensitivity

index g(θj) and p is the number of inputs.
The two additional choices above represent two different situations. The choice

(n,m) = (T/5, 5) presents a case where the number of repetitions is constant and
independent of T . This illustrates the situation where the bias does not get reduced so
that it disturbs estimations no matter how large T is. Regarding (n,m) = (T 1/2, T 1/2),
it shows that the case where the variance is not sufficiently reduced since there are
not enough input samples. So, both choices enable to highlight the trade-off strategy
implemented in Algorithm 2 and to confirm its performance regarding accuracy.

For illustrations, the product T = mn is chosen in the set T ∈ {103, 104, · · · , 107}.
The tuning parameter r0 is set to 10. Thus, 2r0 = 20 model evaluations are used to
get the estimates Ĉ, n̂opt, m̂opt in the first part of Algorithm 2, and then T − 2r0 ∈
{103 − 20, 104 − 20, · · · , 107 − 20} model evaluations are used to get the sensitivity
index estimators with n = n̂opt and m = m̂opt. For both toy stochastic models, the
QoI considered is the conditional expectation so that ϕ = f or ϕ = f ′ depending on
the model. For each value of T , the boxplots of the global MSE samples given by (15)
for each of the three choices are plotted.

Linear model

Let f(X1, X2, Z) = 1 + X1 + 2X2 + σZ where σ > 0 and X1, X2 and Z are i.i.d.
under the standard normal distribution. Such model includes two uncertain parameters
X1 and X2 with respective first-order Sobol’ indices S1 = 1/5 and S2 = 4/5. Two
values of σ are considered: σ = 1 and σ = 5.

Figure 1 shows that the estimations obtained with Algorithm 2 are more accurate
as T gets large because both bias and variance are efficiently reduced. Boxplots high-
light that the strategies m = 5 and m = T 1/2 suffer respectively from bias and vari-
ance. Notice that in the case of the linear model under study, E(Var(f(X1, X2, Z) |
(X1, X2))) = 2σ2; so the bias depends on σ. This explains why in the case σ = 5 (Fig-
ure 1), even for large value of T , estimations resulting of the choice m = 5 seem not to
decrease but are rather concentrated around about 0.18 which is very large compared
to what is obtained in the two other strategies. Focusing on strategies m = mopt and
m = T 1/2, a zoom of the plot of Figure 1 for the case σ = 5, given in Figure S1 in Ap-
pendix A, enables to compare them and then to confirm that the strategy implemented
in Algorithm 2 provide more accurate estimations as T increases.
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Figure 1: Boxplots of MSE estimates for the linear model for different values of T and
σ. Three strategies of choice of m are compared: m = 5 (in red), m = mopt given by
the trade-off strategy of Algorithm 2 (in green) and m = T 1/2 (in blue).

A stochastic Ishigami function

Let f ′(X1, X2, X3, Z) = sinX1 +a sin2X2 + bX4
3 sinX1Z

2 such that with a, b > 0,
X1, X2, X3 and Z are independent with X1, X2, X3 distributed under U ([−π, π]) and
Z ∼ N (0, 1). The model f ′ is a modified version of benchmark function known as the
Ishigami function in SA. For this model, first-order Sobol’ indices of inputs X1, X2,
and X3 for the QoI E(f ′(X1, X2, X3, Z) | X1, X2, X3) are respectively given by

S1 = 1
2

(
1+ bπ4

5

)2

a2

8 + bπ4

5 + b2π8

18 + 1
2

, S2 =
a2

8
a2

8 + bπ4

5 + b2π8

18 + 1
2

and S3 = 0. Parameters a and b are

chosen with respect to Sobol’ and Levitan (1999): a = 7, b = 0.05 and Marrel et al.
(2009): a = 7, b = 0.1.
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Figure 2: Boxplots of MSE estimates for the stochastic version of Ishigami function for
different values of T and b. Three strategies of choice of m are compared: m = 5 (in
red),m = mopt given by the trade-off strategy of Algorithm 2 (in green) andm = T 1/2

(in blue).

Figure 2 also reveals that estimations obtained by using Algorithm 2 are more accu-
rate for large T . Besides, remark that the term bX4

3 sinX1 that multiplies the intrinsic
noise term Z2 includes b so that |bX4

3 sinX1| ≤ bπ4. Then, b allows to control the
magnitude of the intrinsic noise term of the model. This explains why estimations
in the case b = 0.1 present much more variability compared to the case b = 0.05.
Nonetheless, in both cases the strategy implemented in Algorithm 2 has better results.

Overall, Figures 1 and 2 lead to the same conclusion: the strategy of Algorithm
2 provides better estimations and its MSE estimates decrease faster and are generally
smaller compared to those of the two other estimators. In the particular case of m = 5,
it is noticeable that errors do not decrease when T gets larger but rather they are quite

16



constant. This is explained by the fact that the bias is constant since m is constant.
This illustrates the importance of varying the number of repetition when the total com-
putational budget grows. Regarding the case m = T 1/2, it turns out that MSEs are not
minimal compared to the case m = mopt due the variance part of those errors. Indeed,
with m = T 1/2, the variance part of the BVT converges to 0 at rate T 1/2 while the
squared-bias part converges at rate T . Then, the global convergence rate of the BVT is
T 1/2 that is slower than the rate T 2/3 of estimators built by Algorithm 2. These two
cases clearly illustrate the bias-variance trade-off problem in Sobol’ index estimation
for stochastic models and they allow to show that the strategy proposed in this paper
performs well.

6 Conclusion
This paper focuses on variance-based SA of stochastic models relying on the approach
that consists in performing SA on some deterministic QoIs. Specifically, it deals with
QoIs under the form of conditional expectations with respect to the uncertain param-
eters of some transformation of the original stochastic model output. For such deter-
ministic quantities, estimation of Sobol’ indices through Monte-Carlo methods (pick-
freeze procedure) requires not only to sample the input space but also to estimate con-
ditional expectations by making repetitions. Therefore, the resulting estimators depend
on both the number of explorations n and the number of repetitions m. This study
pointed out that the MSE of such estimators can be bounded by tractable quantities
that depend on both n and m. This had two implications. First, the bounds enable to
ensure that the MSE converges to zero when both n,m→ +∞. Straightforwardly, this
establishes that the estimators of Sobol’ indices converge in quadratic mean. Secondly,
A strategy can be developed for controlling the bias-variance trade-off that arises when
the product nm is fixed. Indeed, the bias and the variance decrease respectively when
m → +∞ and n → +∞. Under the constraint nm = T and T → +∞, the numbers
m and n should be chosen such that both the variance and the bias vanish at the fastest
rate possible. This problem is discussed and this study showed that taking m of order
T 1/3 and n of order T 2/3 guarantees that quantity BVT representing the bias-variance
tradeoff in the MSE converges at rate at least T 2/3. Furthermore, the minimization of
some upper bounds of the MSE under the constraint nm = T provides a choice of m
and n that adapts to the intrinsic randomness of the stochastic model. This strategy
is implemented through two algorithms dedicated to Sobol’ index estimation based on
the pick-freeze procedure. The comparison of this strategy to two others was carried
out using two toy stochastic models. It turned out that the strategy proposed in this
paper performs well.

For further works, it could be interesting to couple the iterative estimation approach
of Gilquin et al. (2021) to the algorithms implemented in this study in order to build
an adaptive version which could perform estimation with respect to a given precision.
Furthermore, it would be interesting to compare the optimal BVT convergence rate of
sensitivity index estimators based on basic Monte Carlo sampling with the rates one
could get with other approaches, such as multilevel Monte Carlo methods (Mycek and
De Lozzo (2019); Giles and Haji-Ali (2019)). Finally, although a convergence rate for
the BVT has been found, that of the whole MSE remains an open problem.
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Figure S1: Zoom of boxplots of Figure 1 .

B Proof of Theorem 1
Using convexity inequality, for all h ∈ (0, 1) and m ≥ 1, it holds:

E
(
g
(
θ̂
)
− g (θ)

)2
≤ 3E

(
g
(
θ̂
)
− g

(
θ̂ + hu

))2
+ 3E

(
g
(
θ̂ + hu

)
− g (µm + hu)

)2
+

3 (g (µm + hu)− g (θ))
2
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Applying a Taylor-Lagrange expansion to g at points θ̂ + hu and µm + hu yields:

E
(
g
(
θ̂ + hu

)
− g (µm + hu)

)2
= E

(
∇g (µm + hu)

>
(
θ̂ − µm

)
+

1

2

(
θ̂ − µm

)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

≤ E
(
∇g (µm + hu)

>
(
θ̂ − µm

))2
+

1

4
E
((

θ̂ − µm
)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

+

√
E
(
∇g (µm + hu)

>
(
θ̂ − µm

))2√
E
((

θ̂ − µm
)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

for some λ ∈ (0, 1). Thus:

E
(
g
(
θ̂ + hu

)
− g (µm + hu)

)2
E
(
∇g (µm + hu)

>
(
θ̂ − µm

))2

≤ 1 +
1

4

E
((

θ̂ − µm
)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

E
(
∇g (µm + hu)

>
(
θ̂ − µm

))2

+

√√√√√√√E
((

θ̂ − µm
)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

E
(
∇g (µm + hu)

>
(
θ̂ − µm

))2 .

Let φ : x 7→ x/4 +
√
x and

pn,m(h) := φ

 sup
λ∈[0,1]

E
((

θ̂ − µm
)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

E
(
∇g (µm + hu)

>
(
θ̂ − µm

))2
 .

(16)

then the ratio E
(
g
(
θ̂ + hu

)
− g (µm + hu)

)2
/E
(
∇g (µm + hu)

>
(
θ̂ − µm

))2
is

bounded by 1 + pn,m(h). Therefore:

E
(
g
(
θ̂ + hu

)
− g (µm + hu)

)2
=

E
(
g
(
θ̂ + hu

)
− g (µm + hu)

)2
E
(
∇g (µm + hu)

>
(
θ̂ − µm

))2 × E
(
∇g (µm + hu)

>
(
θ̂ − µm

))2
≤ (1 + pn,m(h))Vn,m(h).

Now, let us show that pn,m(h) → 0 as n,m → ∞. For this purpose, it is suf-

ficient to have that supλ∈[0,1]
E
(
(θ̂−µm)

>∇2g(λθ̂+(1−λ)µm+hu)(θ̂−µm)
)2

E(∇g(µm+hu)>(θ̂−µm))
2 = o(1) as
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n,m→ +∞. A first use of Cauchy-Schwarz inequality yields that:((
θ̂ − µm

)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

≤ ‖∇2g
(
λθ̂ + (1− λ)µm + hu

)
‖2F×‖θ̂−µm‖4.

By a second use of Cauchy-Schwarz inequality, the argument of φ in Equation (16) is
bounded by

√
sup
λ∈[0,1]

E
(
‖∇2g

(
λθ̂ + (1− λ)µm + hu

)
‖4F
)
×

√
E
(
‖θ̂ − µm‖8

)
E
(
∇g (µm + hu)

>
(
θ̂ − µm

))2 .
As n,m→∞, the first term of the product above is bounded by a constant independent
of h, uniformly in λ, by Assumption 3. The second term is given by:√

E
(
‖θ̂ − µm‖8

)
E
(
∇g (µm + hu)

>
(
θ̂ − µm

))2 =

√
E
(
‖θ̂ − µm‖8

)
E
(
∇g (µm)

>
(
θ̂ − µm

))2 × E
(
∇g (µm)

>
(
θ̂ − µm

))2
E
(
∇g (µm + hu)

>
(
θ̂ − µm

))2

≤

√
E
(
‖θ̂ − µm‖8

)
E
(
∇g (µm)

>
(
θ̂ − µm

))2 × sup
h∈(0,1)

E
(
∇g (µm)

>
(
θ̂ − µm

))2
E
(
∇g (µm + hu)

>
(
θ̂ − µm

))2 .
(17)

The first term in the right-hand side in (17) is of order o(1) by Assumption 2 and does

not depend on h. Moreover, since∇g is continuous, we have suph∈(0,1)
E(∇g(µm)>(θ̂−µm))

2

E(∇g(µm+hu)>(θ̂−µm))
2 =

O(1) as n,m → ∞. Therefore, the quantity in (16) is of order φ(o(1)) = o(1), and
hence

E
(
g
(
θ̂
)
− g (θ)

)2
≤ 3 (1 + pn,m(h))

(
∆n,m(h) + Vn,m(h) +Bm(h)2

)
,

where limn,m→+∞ pn,m(h) = 0.

Let us focus on ∆n,m(h) = E
(
g(θ̂)− g(θ̂ + hu)

)2
. For this purpose, let h ∈

(0, 1). Using convexity inequality, the Taylor-Lagrange expansion provides that:

g(θ̂)− g(θ̂ + hu) = h∇g(θ̂ + hu)>u +
1

2
h2u>∇2g(θ̂ + hλu)u,

E
(
g(θ̂)− g(θ̂ + hu)

)2
≤ 2h2

(
E
(
∇g(θ̂ + hu)>u

)2
+
h2

4
E
(
u>∇2g(θ̂ + hλu)u

)2)
,

for some λ ∈ (0, 1). It appears that:

E
(
u>∇2g(θ̂ + hλu)u

)2
≤ ‖u‖4E

(
‖∇2g(θ̂ + hλu)‖2F

)
.

Since hλ ∈ (0, 1), the right-hand side is bounded by a constant independent of h and

λ, as n,m → ∞ (by Assumption 3). Regarding E
(
∇g(θ̂ + hu)>u

)2
, an additional
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Taylor-Lagrange expansion of ∇g(θ̂ + hu)>u yields:

∇g(θ̂ + hu)>u = ∇g(µm + hu)>u +
(
θ̂ − µm

)>
∇2g(λθ̂ + (1− λ)µm + hu)u

E
(
∇g(θ̂ + hu)>u

)2
≤
(
∇g(µm + hu)>u

)2
+ ‖u‖2

√
E
(
‖θ̂ − µm‖4

)
×√

sup
λ∈[0,1]

E
(
‖∇2g(λθ̂ + (1− λ)µm + hu)‖4F

)
Then:

E
(
g(θ̂)− g(θ̂ + hu)

)2
≤ p̃n,m(h)h2,

where:

p̃n,m(h) = 2

(√
sup
λ∈[0,1]

E
(
‖∇2g(λθ̂ + (1− λ)µm + hu)‖4F

)
+
(
∇g(µm + hu)>u

)2
+

√
E
(
‖θ̂ − µm‖4

)
×

√
sup
λ∈[0,1]

E
(
‖∇2g(λθ̂ + (1− λ)µm + hu)‖4F

))
.

Note that:

lim sup
n,m→∞

p̃n,m(h) ≤ 2

(
√
C + sup

h∈(0,1)
‖∇g(θ + hu)‖2

)
=: C̃ < +∞.

C Proof of Theorem 2
To prove Theorem 2, the following result is required.

Lemma C.1. Let X(1), · · · ,X(n) be n i.i.d. copies of X and Z(1,1), · · · , Z(n,m) be
n × m i.i.d. copies of Z such that (X(1), · · · ,X(n)) and (Z(1,1), · · · , Z(n,m)) are
independent. Then, for all q ∈ N: m−qE

(∑m
k=1 ϕ(X(1), Z(1,k))

)q
is polynomial in

m−1 of degree q − 1 with constant E (E [ϕ(X, Z) | X])
q .

First, let us bound the numerator of the ratio in Assumption 2; we have

E
(
‖θ̂ − µm‖8

)
≤ 27

3∑
j=1

E
(
‖θ̂j − µmj‖8

)
,

where θ̂j and µmj denote the jth component of θ̂ and µm, respectively. By Marcinkiewicz
and Zygmund (1937) and Jensen inequalities, we have for every j that

E
(
‖θ̂j − µmj‖8

)
≤ B8

n4
E
(∣∣∣θ̂(1)mj − µmj∣∣∣8) ,

where here B8 is a universal constant.
The case j = 2 is the simplest. Notice that µm2 does not depend on m, then

the expansion of E(|Q̂m(X(1))− µm2|8) through Newton formula yields terms of the
form µkm2E(Q̂8−k

m ), k = 0, . . . , 8. Using Lemma C.1 provides that those terms are
polynomial in m−1.
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Let us deal with the case j = 1. Expanding the power 8 through Newton’s formula
and bounding its terms yields

E
(∣∣∣Q̂m(X(1))2 − µm1

∣∣∣8) ≤ (µ8
m1 ∨ 1)

(
8

4

)(
E
(
Q̂m(X(1))16

)
+ 1
)
. (18)

Denoting ϕ(X(1), Z(1,k)) = Y (1,k), we have

E
(∣∣∣Q̂m(X(1))

∣∣∣16) = E

∣∣∣∣∣ 1

m

m∑
k=1

Y (1,k)

∣∣∣∣∣
16


=
1

m16

m∑
k1,...,k16=1

E
(
Y (1,k1) · · ·Y (1,k16)

)
.

The expectation in the right-hand side is symmetric in k1, . . . , k16, and hence, from
Lemma C.1, the sum is a polynomial in m of degree 16. Therefore, the right-hand side
in (18) is bounded uniformly in m.

Let us deal with the case j = 3. Proceeding as in (18), we have

E
(∣∣∣Q̂m(X(1))Q̃m(X̃(1)

∼u,X
(1)
u )− µm3

∣∣∣8)
≤ (µ8

m3 ∨ 1)

(
8

4

)(
E
(∣∣∣Q̂m(X(1))Q̃m(X̃(1)

∼u,X
(1)
u )
∣∣∣8)+ 1

)
≤ (µ8

m3 ∨ 1)

(
8

4

)(
E
(

1

2
Q̂m(X(1))16 +

1

2
Q̃m(X̃(1)

∼u,X
(1)
u )16

)
+ 1

)
,

and this is also bounded uniformly in m. (Again by Lemma C.1.)
We now deal with the root of the denominator of the ratio in Assumption 2. We

have

E
(
∇g (µm)

T
(
θ̂ − µm

))2
=

3∑
j1,j2=1

∇g(µm)j1∇g(µm)j2E(θ̂ − µm)j1(θ̂ − µm)j2

=
1

n

3∑
j1,j2=1

∇g(µm)j1∇g(µm)j2

(
Eθ̂(1)mj1 θ̂

(1)
mj2
− µmj1µmj2

)
. (19)

The infimum of the sum in (19) is reached for somem and greater than zero. Therefore,
the numerator in Assumption 2 is less than 1/n4 times a constant not depending on m
or n and the denominator is equal to 1/n2 times a quantity greater than zero. Therefore,
the supremum over m of the ratio in Assumption 2 is of order O(n−2). The proof is
complete.
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Proof of Lemma C.1
It holds that:

E

(
1

m

m∑
k=1

ϕ(X(1), Z(1,k))

)q
=

1

mq
E

 m∑
k1=1

· · ·
m∑

kq=1

ϕ(X(1), Z(1,k1)) · · ·ϕ(X(1), Z(1,kq))


=

1

mq

m∑
k1=1

· · ·
m∑

kq=1

E
(
ϕ(X(1), Z(1,k1)) · · ·ϕ(X(1), Z(1,kq))

)
.

Denote by λ : {1, . . . ,m}q → N the map which with each k := (k1, . . . , kq)
associates the number of distinct indices among k1, . . . , kq . If 1 ≤ l ≤ q then denote by
ρl : λ−1(l)→ {1, . . . , q}l the map which with each k ∈ λ−1(l) associates (r1, . . . , rl),
where ri = |{j : kj = kji}| for every i = 1, . . . , l and kj1 , . . . , kjl are the distinct
indices found among k1, . . . , kq . Obviously, r1 + · · ·+ rl = q. We have

m∑
k1=1

· · ·
m∑

kq=1

E
(
ϕ(X(1), Z(1,k1)) · · ·ϕ(X(1), Z(1,kq))

)
=

m∑
k1=1

· · ·
m∑

kq=1

f(k)

=

q∑
l=1

 ∑
(r1,...,rl)∈{1,...,q}l:r1+···+rl=q

 ∑
k∈λ−1(l):ρl(k)=(r1,...,rl)

f(k)

 . (20)

Now, since

E
(
ϕ(X(1), Z(1,k1)) · · ·ϕ(X(1), Z(1,kq))

)
= E

(
ϕ(X(1), Z(1,kj1 ))r1 · · ·ϕ(X(1), Z(1,kjl ))rl

)
= E

(
l∏

s=1

E
[
ϕ(X(1), Z(1,kjs ))rs | X(1)

])
is symmetric in r1, . . . , rl, it holds that

∑
(r1,...,rl)∈{1,...,q}l:r1+···+rl=q

 ∑
k∈λ−1(l):ρl(k)=(r1,...,rl)

f(k)


= c(l, (r1, . . . , rl),m)E

(
l∏

s=1

E
[
ϕ(X(1), Z(1,kjs ))rs | X(1)

])
where

c(l, (r1, . . . , rl),m) =

(
q

r1

)(
q − r1
r2

)
· · ·
(
q − r1 − · · · − rl−1

rl

)
m(m− 1) · · · (m− l + 1). (21)

Notice that the expression in the right-hand side of (21) is invariant by permutation of
r1, . . . , rl. Therefore, the sum (20) is a polynomial in m of degree q with constant zero
and hence E

(
1
m

∑m
k=1 ϕ(X(1), Z(1,k)

)q
is a polynomial in 1

m of degree q − 1 with
constant limm→+∞ E

(
1
m

∑m
k=1 ϕ(X(1), Z(1,k)

)q
= E (E [ϕ(X, Z) | X])

q .
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D Proof of Theorem 3
The following lemma will be needed:

Lemma D.1. For all α > 0 and all h ∈ (0, 1),

lim
n,m→+∞

E

 1(
h+ θ̂1 − θ̂22

)α
 =

1

(h+ Var (Q(X)))
α ≤ Var (Q(X))

−α
. (22)

Note that the function g is infinitely differentiable over its domain D and then its
gradient is given by:

∇g (θ1, θ2, θ3) =

(
− θ3 − θ22

(θ1 − θ22)2
2θ2(θ3 − θ1)

(θ1 − θ22)2
,

1

θ1 − θ22

)>
.

Furthermore, the hessian matrix of g yields:

∇2g(θ1, θ2, θ3) =


2(θ3−θ22)
(θ1−θ22)3

2θ2(θ1−2θ3+θ22)
(θ1−θ22)3

−1
(θ1−θ22)2

2θ2(θ1−2θ3+θ22)
(θ1−θ22)3

2(θ3−θ1)(θ1+3θ22)

(θ1−θ22)3
2θ2

(θ1−θ22)2
−1

(θ1−θ22)2
2θ2

(θ1−θ22)2
0

 .

For any (θ1, θ2, θ3) ∈ D, the matrix∇2g(θ1, θ2, θ3) is under the form∇2g(θ1, θ2, θ3) =
B(θ1, θ2, θ3)/(θ1 − θ22)3 where B(θ1, θ2, θ3) is the matrix:

B(θ1, θ2, θ3) =

 2(θ3 − θ22) 2θ2(θ1 − 2θ3 + θ22) −(θ1 − θ22)
2θ2(θ1 − 2θ3 + θ22) 2(θ3 − θ1)(θ1 + 3θ22) 2θ2(θ1 − θ22)
−(θ1 − θ22) 2θ2(θ1 − θ22) 0

 .

Notice thatB(θ1, θ2, θ3) includes only multivariate polynomials of variables θ1, θ2 and
θ3.

Let us check Assumption 3. Let λ ∈ [0, 1] and h ∈ (0, 1). We have

∇2g
(
λθ̂ + (1− λ)µm + hu

)
=

B
(
λθ̂ + (1− λ)µm + hu

)
(
h+ λθ̂1 + (1− λ)µm1 −

(
λθ̂2 + (1− λ)µm2

)2)3 .

Thus:

E
(
‖∇2g

(
λθ̂ + (1− λ)µm + hu

)
‖4F
)

= E

 ‖B
(
λθ̂ + (1− λ)µm + hu

)
‖4F(

h+ λθ̂1 + (1− λ)µm1 −
(
λθ̂2 + (1− λ)µm2

)2)12



≤

√√√√√√√√E

 1(
h+ λθ̂1 + (1− λ)µm1 −

(
λθ̂2 + (1− λ)µm2

)2)24


×
√
E
(
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

24



≤

√√√√√√E

 1(
h+ λ

(
θ̂1 − θ̂22

)
+ (1− λ)(µm1 − µ2

m1)
)24
 (by convexity inequality)

×
√
E
(
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

≤

√√√√√√E

 λ(
h+

(
θ̂1 − θ̂22

))24
+

1− λ
(h+ µm1 − µ2

m1)24
(by convexity inequality)

×
√

E
(
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

≤

√√√√√√E

 1(
h+

(
θ̂1 − θ̂22

))24
+

1

(h+ µm1 − µ2
m1)24

×
√

sup
λ∈[0,1]

E
(
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

≤

√√√√√√E

 1(
h+

(
θ̂1 − θ̂22

))24
+ sup

h∈(0,1)

1

(h+ µm1 − µ2
m1)24

×
√

sup
h∈(0,1)

sup
λ∈[0,1]

E
(
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)
.

One should remark that suph∈(0,1)
1

(h+µm1−µ2
m1)

24 ≤ 1
(Var(E[ϕ(X,Z)|X]))24 < +∞.

Moreover, the matrixB is composed with polynomials of three variables. Since E
(
Q(X)16

)
<

+∞ then by using Lemma C.1 and by continuity of polynomial functions, it yields
that suph∈(0,1) supλ∈[0,1] E

(
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

is bounded. Finally,

by relying on Lemma D.1, E(h + θ̂1 − θ̂22)−24 is a bounded by 1
(Var(E[ϕ(X,Z)|X]))24 as

n,m→ +∞. Therefore, Assumption 3 is satisfied.

Proof of Lemma D.1
Let h ∈ (0, 1) be fixed. The function βh : x 7→ 1/(h + x)α is continuously differ-
entiable such that its first derivative is uniformly bounded on R+ by 1/hα+1 then it is
Lipschitz. Therefore:

E
(
βh(θ̂1 − θ̂22)− βh(θ1 − θ22)

)2
≤ 1

h2α+2
E
(
θ̂1 − θ̂22 − θ1 + θ22

)2
≤ 2

h2α+2

(
Var(θ̂1) + Var(θ̂22) +

(
E(θ̂22)− θ22

)2)
,
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using convexity inequality. Based on Marcinkiewicz-Zygmund inequality (see Theo-
rem H.1) and Lemma C.1, it follows that

lim
n,m→∞

(
(Var(θ̂1) + Var(θ̂22) +

(
E(θ̂22)− θ22

)2)
= 0.

Straightforwardly:

lim
n,m→∞

E

(
1

(h+ (θ̂1 − θ̂22)α

)
=

1

(h+ θ1 − θ22)α
≤ 1

Var(Q(X))α
.

E Proof of Corollary 1
Relying on Theorem 1 , it holds that:

lim sup
n,m→∞

E
(
g(θ̂)− g(θ)

)2
≤ 3 lim sup

n,m→∞
(1 + pn,m(h))

(
∆n,m(h) + Vn,m(h) +Bm(h)2

)
≤ 3

(
C̃h2 + (g(θ + hu)− g(θ))

2
)
.

Notice that the MSE is independent of h. Moreover, C̃ is also independent of h. Thus,
relying on the continuity of g and taking the limit as h→ 0 yields that:

lim sup
n,m→∞

E
(
g(θ̂)− g(θ)

)2
= 0.

Hence limn,m→∞ E
(
g(θ̂)− g(θ)

)2
= 0.

F Proof of Proposition 1

The problem of optimal rate comes down to find βmax = max{β ≥ 0 | T βE(g(θ̂) −
g(θ))2 = O(1)}. Using E(g(θ̂)− g(θ))2 = O(T η−1) +O(T−2η) yields T βE(g(θ̂)−
g(θ))2 = O(T β+η−1) + O(T β−2η). Thus, to obtain condition T βE(g(θ̂) − g(θ))2 =
O(1), it suffices that: {

β + η − 1 ≤ 0

β − 2η ≤ 0
(23)

The maximal value of β that satisfies the system (23) is βmax = 2/3. This maximal
value corresponds to to η = 1/3. Therefore, m and n are respectively of order T 1/3

and T 2/3.

G Proof of Proposition 2
Choose f , ϕ and a law for X such that ϕ(X, Z) ∈ (a, b) almost surely, where 0 < a <

b. Thus, there exists C > 0 such that θ̂1 − θ̂22 ≤ 1
C . Hence:

E
(
g(θ̂)− g(θ)

)2
≥ C E

(
θ̂3 − θ̂22 − g(θ)(θ̂1 − θ̂22

)2
(24)
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Let: 
ε̂1 = θ̂1 − θ1
ε̂2 = θ̂22 − θ22
ε̂3 = θ̂3 − θ3

Using the definition of g, Equation (24) leads to:

E
(
g(θ̂)− g(θ)

)2
≥ C E (−g(θ)ε̂1 − (1− g(θ))ε̂2 + ε̂3)

2
. (25)

Tedious but standard calculations show that

E (ε̂1)
2

=
P1( 1

m )

n
+

(
cste

m

)2

E (ε̂2ε̂1) =
P

(1)
2 ( 1

m )

n2
+
P

(2)
2 ( 1

m )

n

E (ε̂3ε̂1) =
P3( 1

m )

n

E ((1− g(θ))ε̂2 − ε̂3)
2

=
P

(1)
4 ( 1

m )

n2
+
P

(2)
4 ( 1

m )

n

where P (j)
i ( 1

m ), i = 1, . . . , 4, j = 1, 2, are polynomials in 1
m of degree at most 3.

Hence, letting R( 1
m ) be a polynomial in 1

m of degree at most 3, the MSE satisfies:

E
(
g(θ̂)− g(θ)

)2
≥
R( 1

m )

n
+

(
cste

m

)2

+O(n−2).

Since the lower bound has rate T 2/3 with m = T 1/3 and n = T 2/3, it follows that,
under the constraint nm = T and for T →∞, the rate of the MSE is at least T 2/3.

H The Marcinkiewicz-Zygmund inequality
Theorem H.1 (Marcinkiewicz and Zygmund (1937)). LetU1, · · · , Un be i.i.d. random
variables such that E(U1) = 0 and E|U1|q < +∞, where 1 ≤ q < +∞. There exist
Aq and Bq depending only on q such that:

AqE

( n∑
i=1

|Ui|2
) q

2

 ≤ E

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣
q)
≤ BqE

( n∑
i=1

|Ui|2
) q

2


Furthermore, there exists Cq independent from n such that:

E

(∣∣∣∣∣ 1n
n∑
i=1

Ui

∣∣∣∣∣
q)
≤ Cq

n
q
2

. (26)

References
Mickaël Binois, Robert B. Gramacy, and Mike Ludkovski. Practical het-

eroscedastic gaussian process modeling for large simulation experiments. Jour-
nal of Computational and Graphical Statistics, 27(4):808–821, 2018. doi:
10.1080/10618600.2018.1458625.

27



Mickaël Binois, Jiangeng Huang, Robert B. Gramacy, and Mike Ludkovski. Replica-
tion or exploration? sequential design for stochastic simulation experiments. Tech-
nometrics, 61(1):7–23, 2019. doi: 10.1080/00401706.2018.1469433.

G. Castellan, A. Cousien, and V.C. Tran. Non-parametric adaptive estimation of order 1
Sobol indices in stochastic models, with an application to Epidemiology. Electronic
Journal of Statistics, 14(1):50 – 81, 2020. doi: 10.1214/19-EJS1627.

Xi Chen and Qiang Zhou. Sequential experimental designs for stochastic kriging. In
Proceedings of the Winter Simulation Conference 2014, pages 3821–3832, 2014.
doi: 10.1109/WSC.2014.7020209.

Xi Chen and Qiang Zhou. Sequential design strategies for mean response surface
metamodeling via stochastic kriging with adaptive exploration and exploitation. Eu-
ropean Journal of Operational Research, 262(2):575–585, 2017. ISSN 0377-2217.
doi: https://doi.org/10.1016/j.ejor.2017.03.042.

A. Courcoul, H. Monod, M. Nielen, D. Klinkenberg, L. Hogerwerf, F. Beaudeau, and
E. Vergu. Modelling the effect of heterogeneity of shedding on the within herd
coxiella burnetii spread and identification of key parameters by sensitivity analy-
sis. Journal of Theoretical Biology, 284(1):130–141, 2011. ISSN 0022-5193. doi:
https://doi.org/10.1016/j.jtbi.2011.06.017.

S. da Veiga. Kernel-based anova decomposition and shapley effects – application to
global sensitivity analysis, 2021. arXiv:2101.05487.

S. da Veiga and F Gamboa. Efficient estimation of sensitivity indices. Journal of Non-
parametric Statistics, 25(3):573–595, 2013. doi: 10.1080/10485252.2013.784762.

S. da Veiga, J-M Loubes, and M. Solís. Efficient estimation of conditional covari-
ance matrices for dimension reduction. Communications in Statistics - Theory and
Methods, 46(9):4403–4424, 2017. doi: 10.1080/03610926.2015.1083109.

P. Étoré, C. Prieur, D. K. Pham, and L. Li. Global Sensitivity Analysis for Models
Described by Stochastic Differential Equations. Methodology and Computing in
Applied Probability, 22(2):803–831, June 2020. ISSN 1387-5841, 1573-7713. doi:
10.1007/s11009-019-09732-6.

J-C. Fort, T. Klein, A. Lagnoux, and B. Laurent. Estimation of the sobol in-
dices in a linear functional multidimensional model. Journal of Statistical
Planning and Inference, 143(9):1590–1605, 2013. ISSN 0378-3758. doi:
https://doi.org/10.1016/j.jspi.2013.04.007.

J-C. Fort, T. Klein, and A. Lagnoux. Global sensitivity analysis and wasserstein
spaces. SIAM/ASA Journal on Uncertainty Quantification, 9(2):880–921, 2021. doi:
10.1137/20M1354957.

F. Gamboa, A. Janon, T. Klein, A. Lagnoux, and C. Prieur. Statistical inference
for sobol pick-freeze monte carlo method. Statistics, 50(4):881–902, 2016. doi:
10.1080/02331888.2015.1105803.

F. Gamboa, T. Klein, A. Lagnoux, and L. Moreno. Sensitivity analysis in general metric
spaces. Reliability Engineering & System Safety, 212:107611, 2021.

28



M. B. Giles and A.-L. Haji-Ali. Multilevel nested simulation for efficient risk estima-
tion. SIAM/ASA Journal on Uncertainty Quantification, 7(2):497–525, 2019.

Michael B. Giles. MLMC for Nested Expectations, pages 425–442. Springer Interna-
tional Publishing, Cham, 2018. ISBN 978-3-319-72456-0. doi: 10.1007/978-3-319-
72456-0-20.

L. Gilquin, C. Prieur, E. Arnaud, and H. Monod. Iterative estimation of Sobol’ indices
based on replicated designs. Computational and Applied Mathematics, 40(1):18,
January 2021. ISSN 1807-0302. doi: 10.1007/s40314-020-01402-5.

D. Giorgi, V. Lemaire, and G. Pagès. Limit theorems for weighted and regular multi-
level estimators. Monte Carlo Methods and Applications, 23(1):43–70, 2017. doi:
doi:10.1515/mcma-2017-0102.

D. Giorgi, V. Lemaire, and G. Pagès. Weak Error for Nested Multilevel Monte Carlo.
Methodology and Computing in Applied Probability, 22(3):1325–1348, September
2020. ISSN 1573-7713. doi: 10.1007/s11009-019-09751-3.

J. L. Hart, A. Alexanderian, and P. A. Gremaud. Efficient computation of sobol’ indices
for stochastic models. SIAM Journal on Scientific Computing, 39(4):A1514–A1530,
2017. doi: 10.1137/16M106193X.

L. J. Hong and S. Juneja. Estimating the mean of a non-linear function of conditional
expectation. In Proceedings of the 2009 Winter Simulation Conference (WSC), pages
1223–1236, 2009. doi: 10.1109/WSC.2009.5429428.

T. Ishigami and T. Homma. An importance quantification technique in uncertainty
analysis for computer models. [1990] Proceedings. First International Symposium
on Uncertainty Modeling and Analysis, pages 398–403, 1990.

Alexandre Janon, Thierry Klein, Agnes Lagnoux-Renaudie, Maëlle Nodet, and Clé-
mentine Prieur. Asymptotic normality and efficiency of two Sobol index esti-
mators. ESAIM: Probability and Statistics, 18:342–364, October 2014. doi:
10.1051/ps/2013040.

M. Navarro Jimenez, O. P. Le Maître, and O. M. Knio. Nonintrusive polyno-
mial chaos expansions for sensitivity analysis in stochastic differential equations.
SIAM/ASA Journal on Uncertainty Quantification, 5(1):378–402, 2017. doi:
10.1137/16M1061989.

J. Marcinkiewicz and A. Zygmund. Sur les fonctions indépendantes. Fundamenta
Mathematicae, 29(1):60–90, 1937.

A. Marrel, B. Iooss, B. Laurent, and O. Roustant. Calculations of sobol indices for
the gaussian process metamodel. Reliability Engineering & System Safety, 94(3):
742–751, 2009. ISSN 0951-8320. doi: https://doi.org/10.1016/j.ress.2008.07.008.

G. Mazo. A trade-off between explorations and repetitions for estimators of two
global sensitivity indices in stochastic models induced by probability measures.
SIAM/ASA Journal on Uncertainty Quantification, 9(4):1673–1713, 2021. doi:
10.1137/19M1272706.

29



P. Mycek and M. De Lozzo. Multilevel monte carlo covariance estimation for the
computation of sobol’ indices. SIAM/ASA Journal on Uncertainty Quantification, 7
(4):1323–1348, 2019. doi: 10.1137/18M1216389.

I. Panin. Risk of estimators for Sobol’ sensitivity indices based on metamodels. Elec-
tronic Journal of Statistics, 15(1):235 – 281, 2021. doi: 10.1214/20-EJS1793.

T. Rainforth, R. Cornish, H. Yang, A. Warrington, and F. Wood. On nesting Monte
Carlo estimators. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 4267–4276. PMLR, 10–15 Jul 2018.

I. M. Sobol’. Sensitivity analysis for non-linear mathematical models. Mathematical
Modelling and Computational Experiment, 1:407–414, 1993.

I.M. Sobol’ and Yu.L. Levitan. On the use of variance reducing multipliers in monte
carlo computations of a global sensitivity index. Computer Physics Communica-
tions, 117(1):52–61, 1999. ISSN 0010-4655. doi: https://doi.org/10.1016/S0010-
4655(98)00156-8.

Maikol Solís. Non-parametric estimation of the first-order sobol indices with bootstrap
bandwidth. Communications in Statistics - Simulation and Computation, 0(0):1–16,
2019. doi: 10.1080/03610918.2019.1655575.

D. Yuan and S. Li. From conditional independence to conditionally negative associa-
tion: Some preliminary results. Communications in Statistics - Theory and Methods,
44(18):3942–3966, 2015. doi: 10.1080/03610926.2013.813049.

X. Zhu and B. Sudret. Global sensitivity analysis for stochastic simulators based on
generalized lambda surrogate models. Reliability Engineering & System Safety, 214:
107815, 2021. ISSN 0951-8320. doi: https://doi.org/10.1016/j.ress.2021.107815.

30


