
HAL Id: hal-03814429
https://hal.science/hal-03814429

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Two-stage no-wait hybrid flow shop with inter-stage
flexibility for operating room scheduling

Mohamed-Naceur Azaiez, Anis Gharbi, Imed Kacem, Yosra Makhlouf, Malek
Masmoudi

To cite this version:
Mohamed-Naceur Azaiez, Anis Gharbi, Imed Kacem, Yosra Makhlouf, Malek Masmoudi. Two-stage
no-wait hybrid flow shop with inter-stage flexibility for operating room scheduling. Computers &
Industrial Engineering, 2022, 168, pp.108040. �10.1016/j.cie.2022.108040�. �hal-03814429�

https://hal.science/hal-03814429
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Title Page

Title:

Two-stage no-wait hybrid flow shop with inter-stage flexibility for operating room
scheduling

Author names and affiliations:

Mohamed Naceur AZAIEZ

Business Analytics and DEcision Making Laboratory (BADEM)

Tunis Business School, Université de Tunis

Tunis 2059, Tunisia

Anis GHARBI

Department of Industrial Engineering

King Saud University

Riyadh 11421, Saudi Arabia

Imed Kacem

Université de Lorraine, LCOMS

3, Rue Augustin Fresnel, Metz, France

imed.kacem@univ-lorraine.fr

Yosra Makhlouf (corresponding author)

Université de Lorraine, LCOMS

3, Rue Augustin Fresnel, Metz, France

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0360835222001103
Manuscript_19722ebc16c396763288ceec6471ba22

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0360835222001103
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0360835222001103

yosra.makhlouf@univ-lorraine.fr

Malek MASMOUDI

University of Sharjah, College of Engineering, United Arab Emirates

Université Jean Monnet Saint-Etienne, 42000 Saint Étienne, France

Declarations of interest: none

Two-stage no-wait hybrid flow shop with inter-stage flexibility for
operating room scheduling

Abstract

Operating rooms are amongst the most critical resources in hospitals. Appropriate schedules of surgical

interventions increase the surgeries’ success rates. Indeed, surgery outcomes strongly depend on the timing

of each step in the surgery process. Therefore, effective and efficient surgery schedules can ease patients’

suffering and even save their lives while making good use of limited hospital resources. This paper studies

the two-stage no-wait hybrid flow shop scheduling problem with inter-stage flexibility. The problem is

inspired from hospital operating room scheduling under limited healthcare resources. We propose a time-

indexed mixed integer linear programming formulation of the problem. We also introduce valid inequalities

along with four lower bounds and four heuristics to handle the large scale of the problem. The proposed

model is tested on randomly generated instances based on realistic data for operating room scheduling.

Experimental results on the performance of the model and comparisons among the lower bounds and

heuristics are reported for the different sizes of instance classes.

Keywords: hybrid flow shop, mixed integer programming, time-indexed formulation, lower bounds,

heuristics, valid inequalities

1. Introduction

Hybrid flow shop scheduling is a generalization and combination of parallel machines and classical flow

shops. In classical flow shop scheduling, machines are placed in a series configuration with one machine in

each stage. Jobs follow the same order of passage and have to be processed in a sequential fashion, one

stage after another. There is only one machine in each stage. In hybrid flow shops, however, at least one5

stage contains two or more parallel machines. In all cases, an operation of a job can only be processed

by a single machine at a time and at each stage. The problem is two-fold : machine assignment and job

sequencing. The machine assignment part consists in deciding, for each job at each stage, which machine

will process the operation. The sequencing part corresponds to determining the starting and ending times

of the operations on the assigned machines. Both decisions may be made simultaneously in an integrative10

manner or separately in a hierarchical (sequential) approach.

Hybrid flow shops are also known as flexible flow shops. The concept includes the feature of the

machine assignment flexibility introduced by such a configuration compared to a classical flow shop. Many

researchers studied the hybrid flow shop scheduling problem with and without additional constraints.

Preprint submitted to Computers & Industrial Engineering January 16, 2022

(a) In normal situations, recovery takes place immediately after

surgery in a recovery bed

(b) In case no recovery bed is available, recovery starts immediately

after surgery in the operating room

Figure 1: Illustration of recovery in operating rooms when no recovery beds are available

Interested readers are referred to the reviews in [1], [2], and [3], and more recently, the one in [4].15

1.1. The paper scope

In this paper, we focus on the hybrid flow-shop with no-wait variant of the problem. Specifically, we

investigate the general version of the two-stage no-wait hybrid flow shop with inter-stage flexibility. Indeed,

in the operating room scheduling context, a patient may be considered as a job requiring two operations;

namely, surgery, then recovery. A stage-1 machine represents an operating room, and a stage-2 machine20

corresponds to a recovery bed. Inter-stage flexibility refers to the fact that the second operation can take

place on a machine of either the first or the second stage. Actually, when no recovery beds are available,

recovery may take place at the operating room itself as modeled by [5] and illustrated in Figure 1. Thus,

our problem is closely related to the flow-shop scheduling problem with no-wait and multi-task flexibility.

1.2. Literature review25

In [6], the authors consider the problem of makespan minimization in a special case of a two-stage

no-wait hybrid flow shop (where the first stage operation is divided into a compulsory suboperation and

an optional suboperation with the latter only taking place if no second stage machine is available). The

work is motivated by the operating room scheduling problem first considered by [5] where patient recovery

after surgery is allowed to start in the operating room if no recovery bed is available. Indeed, immediately30

after surgery, the patient must fully recover from anesthesia and its lingering effects. The recovery unit,

also called Post-Anesthesia Care Unit, has a limited number of identical beds, where the patient’s recovery

normally occurs. The equipment needed for post-anesthesia recovery is also available in the operating

room. Thus, recovery can take place in the operating room if recovery beds are all occupied. This scenario

2

has also been discussed more recently in [7] and [8]. More generally, recent works on operating room35

scheduling can be found in [9], [10], and [11].

The work in [6] proves that the problem is strongly NP-hard. The solution method accounts for

developing constant factor approximation algorithms for the variants with only one machine in either

stage 1 or stage 2. The proposed algorithms are based on greedy list scheduling. The authors present

two approximation algorithms for the case where stage one has only one machine and stage two has40

m ≥ 2 machines with approximation ratios 3 − 2
m+1 and 2 − 1

m+1 , and a 2-approximation algorithm for

the problem with one machine at stage two and m ≥ 2 machines at stage one. The first algorithm is

a list scheduling algorithm modified to account for inter-stage flexibility. The second algorithm one is

similar, except that the jobs are sequenced according to the Longest Processing Time (LPT) rule. More

precisely, in non-increasing order of their second operations’ processing times. Only worst-case analyses45

are conducted without experimental testing. The variant with multiple machines in both stages is however

not investigated.

The work in [12] investigates the complexity of the no-wait shop scheduling problems and proves that

the no-wait two-stage hybrid flow shop problem with one machine on stage 1 and two parallel machines

on stage 2 is strongly NP-hard for makespan minimization. The work in [13] presents approximation50

algorithms for the two-stage no-wait hybrid flow shop with makespan criterion and performs worst-case

analyses for various cases of the problem. In [14], the authors study the problem of two-stage no-wait hybrid

flow shop scheduling with a single machine on the first stage and several identical parallel machines on the

second. They prove that the problem is strongly NP-hard and calculate lower bounds, dominance rules,

and suggest heuristics, which they feed to a branch-and-bound algorithm. They also offer a mixed integer55

programming formulation of the problem and perform experiments on three different randomly generated

problem classes. Comparison between MIP and branch-and-bound shows that performance varies from a

class of problems to another.

In [15], the authors address a two-machine flow shop problem with task flexibility, also called alternative

operations, where at least one of the two machines can perform both types of tasks. They prove the problem60

to be NP-hard and develop a branch-and bound technique to provide optimal solutions. In [16], the authors

also study a two-machine flow shop problem with task flexibility and focus on the case where the first task

can be processed by either the first or second machine. They present a fully-polynomial time approximation

scheme for the case with infinite buffer capacity, and optimal algorithms for the case with identical jobs

and finite buffer capacity, including when the buffer capacity is null. [7] investigates the general case of the65

no-wait two-stage flowshop with multi-task flexibility of the first machine and develop an approximation

algorithm with a worst-case performance of 13/8. However,the considered model reduces to the case of a

single machine on each stage in which the task that can be processed on either machine is the first task.

This situation can be seen as the mirror problem of a relaxed version of our problem.

Many methods for solving the hybrid flow shop problem and its extensions are presented in the literature.70

3

Solution approaches are classified into exact and approximate approaches. Many of these approaches such as

branch-and-bound and branch-and-cut require solving a mathematical model of the problem. To formulate

a mathematical model, mixed integer linear programming is commonly used in the scheduling literature.

In [17], the authors use mathematical programming for hybrid flow shop scheduling with a makespan

minimization criterion. They classify the solution representations existing in the literature into three groups75

and suggest a fourth class. They offer a mixed integer programming model for each representation. The

classification is based on two axes, namely job sequencing rules and machine assignment rules. Therefore,

the resulting four mixed integer linear programming do not necessarily yield optimal solutions. It is

noteworthy that all four modeling classes representing the most common approaches for hybrid flow shop

scheduling in the literature use continuous-time variables.80

To the best of our knowledge, using time-indexed variables in mathematical models is almost non-

existent in hybrid flow shop scheduling literature. The only exception constitutes the work in [18] where

the authors develop a time-indexed model and valid inequalities for a variant of the hybrid flow shop

scheduling problem with additional constraints. In [19], Bowman was the first to suggest a discrete time

model for a scheduling problem, namely the job shop scheduling problem. The author uses 0-1 decision85

variables to determine whether or not a job is being processed at a given time period. The formulation

was deemed inefficient as it requires a consequent number of variables and constraints. In [20], Pritsker,

Waiters and Wolfe (PWW) modify the model in the context of project scheduling. They suggest another

time-indexed formulation, where 0-1 decision variables indicate whether a job is completed in a specific

time period or not. Although more compact, PWW [20] formulation would be less practical than Bowman90

[19] formulation in the case of operation splitting, as pointed out in [21]. Always in the context of project

scheduling, [22] reuse [20]’s formulation and embed it in a minimum bounding algorithm. The algorithm

starts from a lower bound of the makespan then increments the lower bound by one at a time until

the time-indexed formulation proves feasible. We use a similar technique in our approach. [23] relies on

Bowman [19] formulation as a basis for the introduced simulation model for a job shop scheduling case with95

additional considerations. In [24], the formulation by [20] is extended in a goal programming approach for

job shop scheduling. In [25], yet another variable definition is attempted where the time-indexed variable

determines whether or not a job starts at a specific time period. Based on the latter decision variable

definition, [26] suggests a time-indexed formulation for single machine scheduling and proposes several

valid inequalities to strengthen it. [27] adds to Bowman [19] formulation a secondary decision variable to100

express whether or not a job is completed at a given time period. Other types of additional time-indexed

variables are presented in [28] as part of a mathematical model for production planning and scheduling

in general. Later on, discrete-time formulations are adapted to the batch scheduling problem in chemical

process engineering (e.g. the review in [29]). The Bowman [19] formulation is regarded as weak because it

requires a great number of variables, especially with real-size problems where the number of time periods105

can become consequent. However, [30] empirically shows that models involving a large number of binary

4

variables perform better than smaller ones in terms of the computational time required to yield an optimal

solution. In [31], the authors focus on mathematical modelling of flexible job-shop scheduling problems.

They present a mathematical model based on time-indexed four-dimensional variables.

1.3. Contributions110

This paper studies the generalized version of two-stage no-wait hybrid flow shop scheduling problem

with inter-stage flexibility. This problem is scarcely investigated in the literature except for the works in [6]

and in [32]. However, [32] investigated the variant where there is only one machine in each stage. In other

words, the environment is a classical flow shop and not a hybrid flow shop with multiple machines at each

stage. [6] treated the variants where there is only one machine in either the first or second stage. In this115

paper, we consider the general version where there are multiple machines on both stages. The fact that

there are multiple machines at each stage is a complicating factor when it comes to solving the problem.

Indeed, with only one machine per stage, the only decision that is required is the sequencing decision.

The solution representation can be given by the sequence of jobs on the only machine of the first stage.

Whereas in the case with multiple machines at each stage, assignment decisions are required in addition120

to the sequencing decisions in order to determine which machine processes which job. To the best of our

knowledge, this is the first attempt to investigate the general case of the problem variant with no-wait and

flexibility and with multiple machines in each stage.

Our approach includes the development of a mixed integer linear programming formulation as well

as heuristics. The proposed mixed integer programming model is the first mathematical formulation for125

this variant of the problem. Although there is a plethora of mathematical models for hybrid flow shop

scheduling in the literature, they are all continuous models with big-M constraints. Our approach uses

a time-indexed formulation in order to avoid the big-M method. We also develop valid inequalities to

strengthen the model. We propose heuristics to provide solutions for large instances. Further, we conduct

numerical testing on realistic data and provide related discussions.130

The remaining of the paper is organized as follows. In Section 2, we explain the methodology of our

solution technique. First, we provide a detailed description of the problem and formulate the mixed integer

linear model. Then, we propose lower bounds, valid inequalities, and heuristics. In Section 3, we report

experimental testing and results. In section 4, we offer a thorough discussion about our findings. Section

5 serves for final conclusions and a brief outline of future research.135

2. Mathematical Model

We start by providing a detailed problem statement. Then, we offer a corresponding formulation

through a mathematical programming model.

5

2.1. Problem description

There is a set J of n jobs to be processed in a two-stage hybrid flow-shop environment. Each job j ∈ J140

has two operations O1j and O2j . The hybrid flow shop has m1 parallel identical machines at stage 1 and

m2 parallel identical machines at stage 2.

Processing requirements are as follows.

The first operation of a job must be entirely processed for p1j time by exactly one machine at stage 1.

The second operation is processed for p2j time following one of three possible patterns.145

• Pattern 1 : Operation is entirely executed by exactly one machine on stage 2

• Pattern 2 : Operation is entirely executed by the same stage-1 machine which processed the first

operation of the same job.

• Pattern 3 : Execution starts on the same stage-1 machine which processed operation 1, then continues

on exactly one stage-2 machine.150

No part of operation 2 can be executed at stage 1 while a stage-2 machine is free.

No preemption is allowed at either stage. Waiting between stage 1 and stage 2 is not allowed either. In

other terms, once a job starts execution, no interruptions are permitted until the job exits the system.

In the second and third patterns, after finishing operation 1, the job stays on the stage-1 machine for

the processing of operation 2. In pattern 2, no stage-2 machine becomes available so the stage-1 machine155

completely finishes processing operation 2. Then, the job exits the system without passing on any stage-2

machine. In pattern 3, the stage-1 machine starts processing operation 2 until a stage-2 machine becomes

available, so the job is immediately transferred to that stage-2 machine to process the remaining part of

operation 2.

We suppose that transfer times are negligible.160

The objective is to minimize the maximum completion time; i.e., the makespan.

Using the tertiary notation, the problem is denoted by F2(Pm1, Pm2−miss)|no−wait, flex(1→ 2)|Cmax.

F2(Pm1
, Pm2

) refers to the scheduling environment as a two-stage flow shop with m1 and m2 parallel

identical machines on stage 1 and stage 2, respectively.

2.2. Notations165

J : set of jobs, indexed by j

I : set of stages, indexed by i

Mi : set of resources on stage i, indexed by k

T : set of time periods, indexed by t

pij : processing time of operation i for job j170

6

2.3. Integer Linear Model formulation

The planning horizon is subdivided into time slots or periods, which reduces complexity and facilitates

the modeling, making for a discrete-time model.

2.3.1. Decision variables

Ak
ij,t = 1 if machine k of stage i is active processing job j at time t, 0 otherwise175

B1kj,t = 1 if at time t machine k of stage 1 continues processing job j after p1j units have already been

processed, 0 otherwise.

Cmax = the makespan

2.3.2. Formulation

Minimize Cmax (1)

subject to

∑
j∈J

Ak
ij,t ≤ 1 (i ∈ I, t ∈ T, k ∈Mi) (2)

∑
k′∈Mi:k′ ̸=k

Ak′

ij,t′ ≤ 1−Ak
ij,t (i ∈ I, j ∈ J, t ∈ T, t′ ∈ T, k ∈Mi) (3)

∑
k∈M1

Ak
1j,t ≤ 1−

∑
l∈M2

Al
2j,t′ (j ∈ J, t ∈ T, t′ ∈ T : t′ ≤ t) (4)

∑
t∈T

∑
k∈M1

Ak
1j,t ≥ p1j (j ∈ J) (5)

∑
t∈T

∑
k∈M1

Ak
1j,t ≤ p1j + p2j (j ∈ J) (6)

∑
t∈T

(
∑
k∈M1

Ak
1j,t +

∑
l∈M2

Al
2j,t) = p1j + p2j (j ∈ J) (7)

B1kj,t ≥ Ak
1j,t +Ak

1j,t−p1j
− 1 (j ∈ J, t = p1j + 1, .., T, k ∈M1) (8)

B1kj,t ≤
1

2
(Ak

1j,t +Ak
1j,t−p1j

) (j ∈ J, t = p1j + 1, .., |T |, k ∈M1) (9)

∑
k∈M1

B1kj,t ≤
∑
j∈J

Al
2j,t (j ∈ J, t = p1j + 1, .., |T |, l ∈M2) (10)

∑
k∈M1

Ak
1j,t ≤ 1−

∑
i∈I

∑
ki∈Mi

Aki

ij,t′ (j ∈ J, t ∈ T, t′ ∈ T : t′ ≥ t+ p1j + p2j) (11)

7

Cmax ≥ t×
∑

ki∈Mi

Aki
ij,t (i ∈ I, j ∈ J, t ∈ T) (12)

Ak
ij,t ∈ {0, 1} (i ∈ I, j ∈ J, t ∈ T, k ∈Mi) (13)

B1kj,t ∈ {0, 1} (j ∈ J, k ∈M1, t = p1j + 1, .., |T |) (14)

• Constraints 2 ensure that a machine processes one job at a time. (Figure 2)

(a) At time t, machine k can be busy with one job j

(b) At time t, machine k can be idle

(c) At time t, machine k cannot be busy with two jobs j and j′

simultaneously

Figure 2: A machine processes one job at a time.

180

• Constraints 3 ensure that a job is processed by only one machine on each stage.(Figure 3)

• Constraints 4 prevent any piece of operation 2 from being processed before a piece of operation 1,

i.e., once a unit of job j is executed at stage 2, job j cannot be executed at stage 1 anymore.(Figure

4)

8

Figure 3: If a machine k processes job j at time t, no other machine k′ of the same stage can process the same job j at any

time t′

Figure 4: If a stage 1 machine k processes job j at time t′, no stage 2 machine l can process the same job j at time earlier

than t′. The red area specifies the time space where execution of job j on stage 2 is prohibited.

• The processing durations of job j are bounded in constraint groups 5-7 as follows. The job is executed185

at stage 1 for at least p1j and at most p1j + p2j units of time (Figure 5a). The total processing time

is exactly equal to the total time requirements on both stages (Figure 5b).

• In constraints 8-9, machine k of stage 1 is active processing job j while p1j units of job j have already

been processed on the same machine k if and only if machine k is active both at time t and at time

t− p1j (Figure 6)190

• Constraints 10 verify that once p1j units of job j have been processed on a stage 1 machine k, execution

at stage 1 cannot continue at time t if at least one stage 2 machine is free at time t. (Figure 7)

• Constraints 11 ensure contiguity and no-wait : if a stage 1 machine k processes a unit of job j at

9

(a)

(b)

Figure 5: Processing time requirements

Figure 6: For each job j, starting from time p1j+1, B1kj,t is activated if the corresponding Ak
1j,t is active. B1 gets deactivated

as soon as as Ak
1j,t becomes 0

Figure 7: At time t, stage 2 machine M2l1 is free. Therefore, execution of a unit of p2j of job j is not allowed to continue on

stage 1.

10

time t, no other units of the job can be executed after time t + p1j + p2j .(Figure 8) Since p1j + p2j

Figure 8

units must be executed, this constraint forces the units of the same job to be processed contiguously195

and without any interruptions.

• The makespan is calculated in constraints 12 as the latest time a machine is busy.

• Finally, 13-14 are the binary-variable constraints.

2.4. Lower bounds

2.4.1. Lower bound 1200

A first trivial lower bound is

LB1 = max
j∈J
{p1j + p2j} (15)

2.4.2. Lower bound 2

Another lower bound is given by

LB2 =

⌈
1

m1

∑
j∈J

p1j

⌉
(16)

2.4.3. Lower bound 3

We relax our problem as a parallel machine scheduling problem with m1+m2 parallel identical machines

and release dates.

We suppose w.l.o.g that the jobs are sorted in non-decreasing order of p1j , i.e. p11 ≤ p12 ≤ ... ≤ p1N . Then

the following is a lower bound.

LB3 =

⌈
1

m1 +m2
(

m2∑
j=1

p1j +
∑
j∈J

(p1j + p2j))

⌉
(17)

11

The proof is inspired from Carlier’s lower bound in [33] which is based on summing the times of inactivity

and the times of activity on a machine. In our case, the first m1 machines are active at earliest at time

0. For the remaining m2 machines, the first machine is necessarily idle from time 0 to time p11 since the205

operation must be executed on one of the first m1 machines during the interval [0, p11]. Similarly, the

second stage-2 machine is idle from time 0 to time p12, and the lth machine from time 0 to time p1l. Thus,

the periods of inactivity are at least equal to the m2 smallest p1j and the result follows.

2.4.4. Lower bound 4

Consider the problem Pm|pj , qj |Lmax, denoted (ΠL), where :

pj is the processing time of job j

qj is the delivery time (or tail) of job j, i.e. the time spanning from when job j is completed at time Cj

until when it exits the system.

Lmax = maxj∈J{Lj} is the maximum lateness, Lj = Cj + qj .

Suppose w.l.o.g that the jobs are sorted according to non-increasing order of their delivery times qj , i.e.

q1 ≥ q2 ≥ ... ≥ qN (Jackson’s rule). A lower bound to problem (ΠL) is given by :⌈
1

m
(
∑
j∈J

pj +

N−m+1∑
j=N

qj)

⌉
(18)

If we choose m = m1, pj = p1j and qj = p2j , the maximum lateness in (ΠL) is equal to the makespan in

our problem. Therefore, the lower bound is applicable.

LB4 =

⌈
1

m1
(
∑
j∈J

p1j +

N−m1+1∑
j=N

p2j)

⌉
(19)

2.5. Valid inequalities210

Two types of valid inequalities are added as cuts in an attempt to strengthen the model.

2.5.1. Valid inequality 1

A feasible solution for our problem, denoted by (P), is a feasible solution for the problem Pm|pmtn|
∑

Cj ,

denoted by (Π0), of preemptively scheduling n jobs on m = m1 + m2 machines, where each job j has a

processing time pj = p1j + p2j .

Denote by Cj the final completion time of job j.

∑
j∈J

Cj(P) ≥
∑
j∈J

C∗
j (Π0) (20)

[34] showed that preemption only worsens the mean average completion time. Thus, the optimal schedule

for Pm|rj ; pmtn|
∑

Cj is non-preemptive.

In particular, if rj = 0 ∀ j, the problem P ||
∑

Cj is polynomially solvable by applying the Shortest

12

Processing Time (SPT) rule and assigning the jobs according to the First Available Machine (FAM) rule.

([35]) ∑
j∈J

C∗
j (Π0) ≥

∑
j∈J

CSPT
j (Π0) (21)

where C∗
j (Π0) denotes the ending time of job j in the optimal solution of problem (Π0) and CSPT

j (Π0) is

the ending time of job j in the solution given by applying the SPT rule to problem (Π0).

Cj(P) = max
t∈T
{t×Ak

ij,t}(i ∈ I, j ∈ J, k ∈Mi) (22)

The following are valid inequalities. ∑
j∈J

Cj(P) ≥
∑
j∈J

CSPT
j (Π0) (23)

Cj(P) ≥ t×Ak
ij,t(i ∈ I, j ∈ J, k ∈Mi) (24)

Consider the numerical example in Table 1 for illustration.

n = 5; m1 = 2; m2 = 1; p1j = {1, 3, 4, 2, 5}; p2j = {5, 3, 2, 1, 4}; T = 15

Table 1: Small illustrative example

j 1 2 3 4 5

p1j 1 3 4 2 5

p2j 5 3 2 1 4

pj 6 6 6 3 9

SPT rank 2 3 4 1 5 sum

CSPT
j (Π0) 6 6 9 3 15 39

C∗
j (P) 6 12 6 9 10 43

2.5.2. Valid inequality 2215

Proposition.

pjCmax ≥
∑
t∈T

(t− 1

2
)× (

∑
k∈M1

Ak
1j,t +

∑
l∈M2

Al
2j,t) +

1

2
p2j (25)

where pj = p1j + p2j

Proof. The execution of a job j in the time-indexed model can be illustrated as follows, by a set of

contiguous unit-length chunks. The distance between the first and last chunks is pj = p1j + p2j .

Let Sj be the starting time of job j; the ending time is Cj = Sj + pj220

Denote X =
∑pj

t=1 Sj + t− 1
2 , as shows Figure 9

13

Figure 9: Proof illustration of valid inequality 2

X = pjSj +
pj(pj+1)

2 − pj

2

= pjSj +
p2
j

2

= pj(Sj +
pj

2)

= pj(Cj − pj +
pj

2)225

= pj(Cj − pj

2)

Thus pjCj =
p2
j

2 +X

Since X =
∑pj

t=1 Sj + t− 1
2 =

∑pj

t=1(Sj + t− 1
2)(

∑
k∈M1

Ak
1j,t +

∑
l∈M2

Al
2j,t)

=
∑

t∈T (t−
1
2)× (

∑
k∈M1

Ak
1j,t +

∑
l∈M2

Al
2j,t)

and Cmax ≥ Cj forall j230

2.6. Heuristics

We consider four simple heuristics to determine an upper bound on the number of time periods.

2.6.1. H0

Heuristic H0 is a list scheduling algorithm similar to the algorithm in [6].

2.6.2. Heuristic H1235

Heurictic H1 first sorts the jobs in non-increasing order of their processing times on stage 2 (p2j), then

executes H0.

2.6.3. Heuristic H2

Heurictic H2 sorts the jobs in non-increasing order of their processing times on stage 1 : p1j . Then, H0

is executed.240

14

2.6.4. Heuristic H3

In Heuristic H3, H2 is executed to obtain a machine assignment of the jobs. Then, the jobs assigned to

each stage 1 machine are sorted in non-increasing order of their stage 2 processing times : p2j . Schedule is

then rearranged based on the new sorted job sequences.

2.6.5. Illustrative example245

Consider the same example given in Table 1 with 5 jobs, 2 stage-1 machines and 1 stage-2 machine.

The solutions given by the four heuristics are illustrated in figure 10.

Figure 10: Schedules obtained by each heuristic

.

2.7. Binary Search

A binary search algorithm between the best lower bound LB and upper bound UB was implemented as250

detailed in the pseudo-code 1. TIM(LB, UB) refers to applying the Time-Indexed Model between LB and

UB. The idea is to divide the search space in half in a recursive manner and run the model starting by

the first half until a solution is found or the interval [LB,UB] reduces to one. In this way, if a solution

is found, it will be the smallest possible. When the model is run using the optimizer on a given search

interval, there are four possible outcomes : optimal status, feasible status, infeasible status, and timeout255

status. The algorithm details the course of action corresponding to each outcome.

We give two examples to illustrate the execution of the algorithm. In the first example presented in

Table 2, the initial search interval is [25,28]. The binary search procedure divides the interval and allows

15

Table 2: Sample execution of the binary search algorithm : example 1

Step LB0 UB0 UB1 Status Next step BestCmax

0 25 28 BinarySearch(25,28) 28

1 25 28 26 Infeasible BinarySearch(27,28) 28

2 27 28 27 Optimal; OPT=27 27

Table 3: Sample execution of the binary search algorithm : example 2

Step LB0 UB0 UB1 Status Next step BestCmax

0 24 29 BinarySearch(24,29) 29

1 24 29 26 Timeout BinarySearch(24,26) 29

2 24 26 25 Infeasible BinarySearch(26,29) 29

3 26 29 27 Timeout BinarySearch(26,27) 29

4 26 26 26 Timeout BinarySearch(27,29) 29

5 27 29 28 Feasible; Cmax=28 BinarySearch(27,28) 28

6 27 28 27 Timeout 28

the model to find the optimal solution after eliminating the infeasible values of 25 and 26.

260

The second example in Table 3 starts with a search interval between 24 and 29. First, the model is run

on the interval [24, 26]. The time limit is reached without finding a solution. Once the interval is reduced

to [24,25] however, the model exits with the infeasible status, which improves the lower bound to 26. The

new search interval is thus reduced to [26,29]. On one hand, a feasible solution is found with the makespan

value of 28. On the other hand, the optimal solution remains unknown because of the timeout status in265

steps 3 and 4. Moreover, the best makespan value is only improved from 29 to 28. Therefore, the binary

search method is not always effective.

If using the binary search algorithm does not yield a feasible solution, a minimum bounding search is

conducted by iterating step by step starting from the lower bound until reaching a feasible solution or the

upper bound, as shows algorithm 2.270

Preliminary tests revealed that the binary search algorithm fails to find feasible solutions for all tested

instances. Thus, the incremental minimum bounding strategy is adopted hereafter.

3. Experimental Results

Experiments are conducted on a machine with 32.0 GB RAM and Intel(R) Xeon(R) CPU E5-2620 v4

@ 2.10GHz, under Linux Operating System. Lower bounds and heuristics are implemented using Visual275

16

Algorithm 1: BinarySearch(LB,UB)

Data: LB,UB

BestCmax ← UB;

begin

UB′ ← ⌊LB+UB
2 ⌋;

TIM(LB,UB’);

switch Status do

case Optimal do

BestCmax ← OPT ;

end

case Feasible do

BestCmax ← Cmax;

if Cmax ̸= LB then

BinarySearch(LB,Cmax);

end

end

case Infeasible do

if LB = UB − 1 then

BestCmax = UB;

else

LB ← UB′ + 1;

BinarySearch(LB,BestCmax);

end

end

case Timeout do

if LB ̸= UB′ then

BinarySearch(LB,UB’);

else

LB ← UB′ + 1;

BinarySearch(LB,BestCmax);

end

end

end

end

17

Algorithm 2: MinimumBounding(LB,UB)

Data: LB,UB

begin

for c← LB to UB do

TIM(c,c);

switch Status do

case Optimal do

BestCmax ← OPT ;

break;

end

case Feasible do

if Cmax < BestCmax then

BestCmax ← Cmax;

UB ← Cmax;

end

end

end

end

end

18

C++ 2019. The mathematical model and valid inequalities are implemented using IBM ILOG CPLEX

12.8 Concert Technology.

3.1. Test instances

Test instances are generated based on the generation data provided in [5]. There are 6 classes of instances.

Each class contains 60 instances, grouped in 4 sub-classes. Every sub-class represents a combination280

N −m1 −m2 and contains 15 instances with different values of processing times p1j and p2j . Processing

times are generated following a uniform distribution. Table 4 provides data generation details. First results

Table 4: Test instances information

Class n m1 m2 p1j p2j

1 10 2,4 2,4 uniform[4,22] uniform[6,24]

3 15 2,4 2,4 uniform[4,22] uniform[6,24]

4 20 2,4 2,4 uniform[4,22] uniform[6,24]

5 30 2,6 2,6 uniform[4,22] uniform[6,24]

6 10 1,2 1,2 uniform[4,22] uniform[6,24]

7 10 2,4 2,4 uniform[18,24] uniform[18,24]

showed that the model could not find feasible solutions for class 1 with 10 jobs.

Smaller instances were generated by reducing processing times as detailed in table 5.

Table 5: Reduced instances information

Class n m1 m2 p1j p2j

CL1 10 2,4 2,4 uniform[2,11] uniform[3,12]

CL3 15 2,4 2,4 uniform[2,11] uniform[3,12]

CL4 20 2,4 2,4 uniform[2,11] uniform[3,12]

CL5 30 2,6 2,6 uniform[2,11] uniform[3,12]

CL6 10 1,2 1,2 uniform[2,11] uniform[3,12]

CL7 10 2,4 2,4 uniform[9,12] uniform[9,12]

Moreover, we generate another set of 6 larger instance classes in order to further evaluate the heuristics.285

We generate the large instances following the same rules adapted to the hospital context (Augusto, 2010).

The newly generated instances have up to 300 patients and up to 60 operating rooms and 60 recovery beds

as detailed in Table 6. It is possible to add another instance class with 500 patients although this number

is not realistic in the operating room context.

19

Table 6: Large instances information

Class n m1 m2 p1j p2j

L1 100 20,40 20,40 uniform[2,11] uniform[3,12]

L3 150 20,40 20,40 uniform[2,11] uniform[3,12]

L4 200 20,40 20,40 uniform[2,11] uniform[3,12]

L5 300 20,60 20,60 uniform[2,11] uniform[3,12]

L6 100 10,20 10,20 uniform[2,11] uniform[3,12]

L7 100 20,40 20,40 uniform[9,12] uniform[9,12]

3.2. Time-Indexed Model and valid inequalities290

An instance is labeled as solved if a feasible solution is found by the optimizer.

Note that all CPLEX parameters were set to default except the starting algorithm in the root node of

the branching tree. This parameter was set to the primal algorithm, which yielded better results than the

default CPLEX setting on all tested instances.

An instance is labeled as optimally solved if either LB∗ = UB or LB∗ = B∗. In such a case, we denote295

OPT the value of LB∗. B∗ denotes the best value found by the optimizer for the makespan. We also

denote BEST the best solution value found either by the optimizer or by the heuristics.

Generally speaking, LB∗ = LB. However, LB sometimes is proved infeasible by the optimizer. In such

cases, LB∗ takes the smallest value greater than LB that does not prove infeasible.

The majority of instances with 10 jobs is solved. However, the rate of instances solved optimally remains300

low.

The results seem to depend not only on instance sizes (numbers of machines) but also on shop configura-

tions.

We test different cut settings.

• B denotes the makespan value obtained by CPLEX default cut setting.305

• B1 denotes the makespan value obtained by applying cplex default cuts and valid inequality 1.

• B2 denotes the makespan value obtained by applying cplex default cuts and valid inequality 2.

• B12 denotes the makespan value obtained by applying cplex default cuts and valid inequalities 1 and

2.

• B-0 denotes the makespan value obtained by applying no cuts.310

• B1-0 denotes the makespan value obtained by applying valid inequality 1 only.

• B2-0 denotes the makespan value obtained by applying valid inequality 2 only.

20

• B12-0 denotes the makespan value obtained by applying valid inequalities 1 and 2 only.

To assess the performance of the valid inequalities, Table 7 reports the gaps between LB* and the value

obtained by a given cut setting. Results show that CPLEX default cut settings yield the lowest average gaps315

for classes CL1, CL3, CL6 and CL7. Average gaps vary between 5% and 18%. For the sub-class CL1 10 2 2,

valid inequality 2 yields the lowest average gap. For class CL4 with 20 jobs, CPLEX default cut settings

fail to find feasible solutions, whereas the valid inequalities are more effective. For sub-class CL4 20 2 2,

3 cut configurations with valid inequality 1 yield an average gap of 19%. For subclass CL4 20 4 4, all

configurations with valid inequalities 1 and/or 2 yield an average gap of 27%. Overall, the smallest average320

gap of 23% is achieved for class CL4 by configurations B12, B12-0, and B1-0.

3.3. Lower Bounds Comparison

We compare among the four lower bounds in terms of the relative average gap from the best solution

value found.

GapLBi =
BEST − LBi

BEST
(%)

Results reported in Table 8 and Figure 11 show that LB4 outperforms the other lower bounds on all

instances. The smallest gaps in each row are reported in bold.

LB3 performs equally as well as LB4 on all instances where the number of stage-1 machines exceeds the325

number of stage-2 machines, more specifically where m1 = 2 m2. We notice that LB3=LB4 for all instances

in this case.

LB3 yields a better gap than LB2 on average. However, LB2 outperforms LB3 in the subgroup where

m1 < m2. LB1 has the worst average performance, except for the subgroup CL1 10 4 4 for which LB1

yields the second best gap.330

3.4. Heuristics Comparison

3.4.1. Results for small instances

Heuristics results are reported in Table 9 and in Figure 12.

The relative average gaps from the best upper bound UB are calculated as follows.

GapHi =
UBi−BEST

BEST
(%)

where UBi denotes the upper bound obtained by heuristic Hi.

The gaps are the smallest within the second subgroup for all classes. Average gaps vary between 8% and

20%.335

No heuristic outperforms the others on all instances. However, heuristic H1 has the best average perfor-

mance for all instance classes.

Heuristic H3 performs better than Heuristic H2 on average.

21

Table 7: Gaps from LB* (%)

Class N M1 M2 B B12 B1 B2 B-0 B12-0 B1-0 B2-0

CL1

10 2 2 10 16 15 15 10 17 17 6

10 2 4 4 - 14 - 5 - - -

10 4 2 12 18 18 19 16 21 22 20

10 4 4 10 15 17 19 17 16 16 16

Average 10 17 17 18 14 19 19 17

CL3

15 2 2 18 20 20 20 18 20 20 20

15 2 4 - - - - - - - -

15 4 2 13 - - - 23 - - -

15 4 4 23 24 24 24 25 24 24 24

Average 18 22 22 22 24 22 22 22

CL4

20 2 2 - 19 - - - 19 19 -

20 2 4 - - - - - - - -

20 4 2 - - - - - - - -

20 4 4 - 27 27 27 - 27 27 27

Average - 23 - 27 - 23 23 27

CL6

10 1 1 6 9 10 10 7 11 - 8

10 1 2 2 9 9 4 4 - - 9

10 2 1 3 8 8 9 6 9 9 16

10 2 2 10 - - 21 13 - - 21

Average 5 8 9 11 8 10 9 13

CL7

10 2 2 - - - - - - - -

10 2 4 - - - - - - - -

10 4 2 15 - - - - - - -

10 4 4 - - - - - - - -

Average 15 - - - - - - -

3.4.2. Results for large instances340

Heuristics results for the large instances are reported in Table 10.

Once again, if we compare among the second sub-group, the smallest gaps are those of sub-class 2 for all

classes of instances. Average gaps vary from 15% for class L7 to 45% for class L1.

If we compare among the heuristics, heuristic H1 has the best average performance. Heuristic H2 performs

22

Table 8: Lower bounds relative average gaps

Class N M1 M2 GapLB1 GapLB2 GapLB3 GapLB4

CL1

10 2 2 50% 23% 12% 9%

10 2 4 46% 12% 31% 2%

10 4 2 29% 43% 11% 11%

10 4 4 12% 33% 21% 9%

Average 34% 28% 19% 8%

CL3

15 2 2 64% 13% 4% 3%

15 2 4 61% 7% 29% 0%

15 4 2 46% 34% 5% 5%

15 4 4 35% 23% 15% 9%

Average 51% 19% 13% 4%

CL4

20 2 2 71% 9% 3% 1%

20 2 4 68% 5% 31% 0%

20 4 2 55% 30% 0% 0%

20 4 4 43% 13% 3% 1%

Average 60% 14% 9% 1%

CL5

10 2 2 80% 7% 1% 0%

10 2 6 77% 3% 44% 0%

10 6 2 60% 39% 0% 0%

10 6 6 40% 12% 2% 0%

Average 64% 15% 12% 0%

CL6

10 1 1 74% 14% 8% 6%

10 1 2 69% 7% 27% 1%

10 2 1 59% 34% 5% 5%

10 2 2 51% 23% 11% 9%

Average 63% 19% 13% 5%

CL7

10 2 2 62% 15% 9% 0%

10 2 4 62% 15% 33% 0%

10 4 2 40% 33% 2% 2%

10 4 4 35% 27% 14% 0%

Average 50% 22% 14% 0%

23

Figure 11: Lower bounds values per instance

Figure 12: Upper bounds values per instance

slightly better than heuristic H3 on average. Heuristic H0 remains the weakest overall.345

24

Table 9: Upper bounds relative average gaps

Class N M1 M2 GapH0 GapH1 GapH2 GapH3

CL1

10 2 2 14% 10% 13% 10%

10 2 4 18% 7% 15% 5%

10 4 2 18% 11% 16% 16%

10 4 4 25% 13% 18% 23%

Average 19% 10% 15% 13%

CL3

15 2 2 19% 15% 17% 19%

15 2 4 15% 6% 13% 7%

15 4 2 22% 14% 20% 18%

15 4 4 22% 14% 17% 16%

Average 20% 12% 17% 15%

CL4

20 2 2 19% 17% 17% 17%

20 2 4 11% 5% 11% 6%

20 4 2 22% 19% 20% 20%

20 4 4 29% 25% 28% 26%

Average 20% 16% 19% 17%

CL5

10 2 2 17% 16% 16% 18%

10 2 6 7% 2% 7% 1%

10 6 2 20% 15% 17% 17%

10 6 6 35% 26% 32% 30%

Average 20% 15% 18% 17%

CL6

10 1 1 10% 7% 9% 7%

10 1 2 6% 4% 9% 4%

10 2 1 10% 11% 10% 12%

10 2 2 18% 9% 13% 13%

Average 11% 8% 10% 9%

CL7

10 2 2 8% 6% 6% 5%

10 2 4 5% 3% 4% 1%

10 4 2 14% 13% 14% 14%

10 4 4 20% 18% 18% 18%

Average 12% 10% 10% 10%

25

Table 10: Upper bounds relative average gaps for large instances

Class N M1 M2 GapH0 GapH1 GapH2 GapH3

100 20 20 44% 32% 38% 37%

100 20 40 35% 17% 26% 17%

100 40 20 56% 38% 43% 54%

100 40 40 45% 28% 34% 50%

L1

Average 45% 29% 35% 40%

150 20 20 33% 27% 27% 31%

150 20 40 24% 13% 19% 17%

150 40 20 38% 29% 31% 34%

150 40 40 54% 38% 43% 49%

L3

Average 37% 27% 30% 33%

200 20 20 28% 23% 23% 26%

200 20 40 19% 11% 16% 14%

200 40 20 30% 22% 25% 28%

200 40 40 48% 34% 38% 36%

L4

Average 31% 23% 25% 26%

300 20 20 21% 19% 18% 23%

300 20 60 13% 6% 10% 5%

300 60 20 26% 18% 20% 22%

300 60 60 49% 34% 39% 38%

L5

Average 27% 19% 22% 22%

100 10 10 26% 22% 22% 26%

100 10 20 17% 9% 15% 12%

100 20 10 27% 20% 22% 23%

100 20 20 43% 33% 35% 35%

L6

Average 28% 21% 24% 24%

100 20 20 14% 10% 10% 10%

100 20 40 12% 8% 6% 4%

100 40 20 25% 20% 20% 22%

100 40 40 27% 22% 23% 29%

L7

Average 19% 15% 15% 16%

26

Figure 13: Relative gaps between UB and LB for small instances (%)

3.5. Gaps between the best upper bounds and lower bounds

Figures 13 and 14 respectively present the gaps between the best upper and lower bounds for the small

and large instances respectively.

Sub-class 1 refers to the situation where the number of machines is at the same time the lowest and equal

in both stages. Sub-class 2 refers to the case where the number of machines in stage 1 is lower than that350

in stage 2 (m1 < m2). Sub-class 3 refers to the case where the number of machines in stage 1 is greater

than that in stage 1 (m1 > m2). Sub-class 4 refers to the case where the number of machines is the largest

and at the same time equal in both stages.

3.5.1. Results for small instances

The maximum average gap is 16 %.355

For each class, the gaps are the largest in sub-class 4 and the lowest in sub-class 2. For the same number

of machines and the same distribution parameters of processing times, the gaps slightly decrease with the

number of jobs (Classes CL1, CL3 and CL4). For the same number of jobs and the same distribution

parameters of processing times, gaps are lower in the class where the number of machines is lower (CL6)

compared to CL1. For the same number of jobs and the same number of machines, gaps are lower in the360

class where the processing times are distributed more tightly (CL7 compared to CL1).

27

Figure 14: Relative gaps between UB and LB for large instances (%)

3.5.2. Results for large instances

The average gaps vary between 14% and 28%. The lowest gaps are those of sub-class 2 for all classes.

The gaps of sub-class 1 and sub-class 3 are similar and close to the average gaps for all classes except for

L1 and L7. There is a difference of 7% and 10% respectively between the gaps of sub-class 1 and those365

of sub-class 3 for classes L1 and L7,respectively, whereas this difference does not exceed 3% for the other

classes.The highest gaps are those of sub-class 4 for all classes except L1.

For the same number of jobs and the same distribution of processing times (classes L1 and L6), average

gaps are lower for the class with a smaller number of machines (L1). For the classes L1 and L7, similarly

to the small classes, average gaps are lower in the class where the processing times are distributed more370

tightly (L7). For the same number of machines and the same processing times’ distribution (classes L1,

L3, L4, and L5), the higher the number of jobs, the lower the average gap.

3.6. Percentages of solved and optimally solved instances

Figure 15 details the percentages of solved instances by each cut setting. The ability of the model

to find feasible solutions decreases with the instance size. Class CL6 with 10 jobs and a maximum of 2375

machines per stage is solved to 95%. Class CL1 with 10 jobs and a maximum of 4 machines per stage

is solved to 87%. The percentage of solved instances drops significantly to 12% and 7% respectively for

classes CL3 and CL4 respectively.

Classes CL1 and CL7 have the same number of jobs and machines, but only differ by the distribution of

processing times. Higher processing times in class CL7 strongly affect the solution performances. Class380

28

Figure 15: Percentages of solved instances

CL7 with tighter processing times distribution remains practically unsolved.

Figure 16 reports the percentages of optimally solved instances that have been achieved either by the

model in each cut setting or by the lower and upper bounds. For classes CL1 and CL6 respectively, only 3%

and 10% respectively are solved optimally using the default cut settings. Rates are lower for the remaining

cut settings.385

We notice the contribution of the heuristics in proving the optimality of 7% of instances in classes CL4,

CL6, and CL7. It should be mentioned that all the instances that have been optimally solved by the

heuristics belong to the subgroup where m1 < m2.

4. Discussion

Lower bounds comparison postulates that LB4 may dominate the other lower bounds. One could390

attempt a proof of this result.

The case where the number of stage-1 machines exceeds the number of stage-2 machines is when inter-stage

flexibility is the most likely to occur. We could try to establish whether we have always LB3=LB4 when

m1 = 2 m2 and whether the result can be generalized to the case m1 > m2. Results on instances with

m1 = 3 and m2 = 2 show that there are cases where LB3 ̸= LB4, thus this generalization is not possible.395

Heuristic H0 has the lowest average performance, but there are instances where H0 outperforms all other

heuristics. Since the computational times of running the four heuristics are close to zero, it is better to

29

Figure 16: Percentages of optimally solved instances

determine the best heuristic on an instance basis.

H1 and H3 perform the best overall. Both heuristics involve sorting the jobs according to the LPT rule on

stage-2.400

5. Conclusions

In this paper, we studied a two-stage no-wait hybrid flow shop scheduling problem with inter-stage

flexibility for makespan minimization. We developed a time-indexed integer linear programming model for

the problem. We proposed four lower bounds, four heuristics as well as two valid inequalities to strengthen

the mathematical formulation.405

Results show that the model implemented with default CPLEX cut settings yields good solutions for small

to medium sized instances with up to 15 jobs and up to 4 machines in each stage. The proposed valid

inequalities perform better with the larger instances of up to 20 jobs and 4 machines per stage. For these

instances, various combinations of the valid inequalities provide solutions where CPLEX default cuts fail

to do so. The developed heuristics yield good results for the small as well as the large instances.410

Future research venues include other exact solution strategies as well as approximation algorithms for

the problem. Using the developed lower bounds and heuristics in a Branch & Bound algorithm seems

to be a promising perspective. Another possible direction is toward approximation algorithms with a

30

performance guarantee. The time-indexed mathematical model’s linear relaxation is a good basis to devise415

a primal-dual algorithm. Finally, developing another time-indexed model is a third possible venue. We

can compare mathematical formulations with different definitions of the decision variables, similar to the

work in [36] for flexible job shop scheduling.

References

[1] R. Ruiz, J. A. Vázquez-Rodriguez, The hybrid flow shop scheduling problem, European journal of420

operational research 205 (1) (2010) 1–18.

[2] I. Ribas, R. Leisten, J. M. Framiñan, Review and classification of hybrid flow shop scheduling problems

from a production system and a solutions procedure perspective, Computers & Operations Research

37 (8) (2010) 1439–1454.

[3] B. Naderi, S. Gohari, M. Yazdani, Hybrid flexible flowshop problems: Models and solution methods,425

Applied mathematical modelling 38 (24) (2014) 5767–5780.

[4] T. Lee, Y. Loong, A review of scheduling problem and resolution methods in flexible flow shop,

International Journal of Industrial Engineering Computations 10 (1) (2019) 67–88.

[5] V. Augusto, X. Xie, V. Perdomo, Operating theatre scheduling with patient recovery in both operating

rooms and recovery beds, Computers & Industrial Engineering 58 (2) (2010) 231–238.430

[6] W. Zhong, Y. Shi, Two-stage no-wait hybrid flowshop scheduling with inter-stage flexibility, Journal

of Combinatorial Optimization 35 (1) (2018) 108–125.

[7] J. Dong, H. Pan, C. Ye, W. Tong, J. Hu, No-wait two-stage flowshop problem with multi-task flexibility

of the first machine, Information Sciences 544 (2021) 25–38.

[8] D. Khorasanian, F. Dexter, E. Demeulemeester, G. Moslehi, Minimising the number of cancellations at435

the time of a severe lack of postanesthesia care unit beds or nurses, International Journal of Production

Research (2021) 1–14.

[9] M. Mazloumian, M. F. Baki, M. Ahmadi, A robust multiobjective integrated master surgery schedule

and surgical case assignment model at a publicly funded hospital, Computers & Industrial Engineering

163 (2022) 107826.440

[10] J. Zhang, M. Dridi, A. El Moudni, A two-phase optimization model combining markov decision process

and stochastic programming for advance surgery scheduling, Computers & Industrial Engineering 160

(2021) 107548.

[11] J. Park, B.-I. Kim, M. Eom, B. K. Choi, Operating room scheduling considering surgeons’ preferences

and cooperative operations, Computers & Industrial Engineering 157 (2021) 107306.445

31

[12] C. Sriskandarajah, P. Ladet, Some no-wait shops scheduling problems: complexity aspect, European

journal of operational research 24 (3) (1986) 424–438.

[13] C. Sriskandarajah, Performance of scheduling algorithms for no-wait flowshops with parallel machines,

European Journal of Operational Research 70 (3) (1993) 365–378.

[14] S. Wang, M. Liu, C. Chu, A branch-and-bound algorithm for two-stage no-wait hybrid flow-shop450

scheduling, International Journal of Production Research 53 (4) (2015) 1143–1167.

[15] C. Pan, J. Chen, Scheduling alternative operations in two-machine flow-shops, Journal of the Opera-

tional Research Society 48 (5) (1997) 533–540.

[16] Q. Wei, E. Shan, L. Kang, A fptas for a two-stage hybrid flow shop problem and optimal algorithms

for identical jobs, Theoretical Computer Science 524 (2014) 78–89.455

[17] V. Fernandez-Viagas, P. Perez-Gonzalez, J. M. Framinan, Efficiency of the solution representations for

the hybrid flow shop scheduling problem with makespan objective, Computers & Operations Research

109 (2019) 77–88.

[18] C. Gicquel, L. Hege, M. Minoux, W. Van Canneyt, A discrete time exact solution approach for a

complex hybrid flow-shop scheduling problem with limited-wait constraints, Computers & Operations460

Research 39 (3) (2012) 629–636.

[19] E. H. Bowman, The schedule-sequencing problem, Operations Research 7 (5) (1959) 621–624.

[20] A. A. B. Pritsker, L. J. Waiters, P. M. Wolfe, Multiproject scheduling with limited resources: A

zero-one programming approach, Management science 16 (1) (1969) 93–108.

[21] R. F. Deckro, J. E. Hebert, Resource constrained project crashing, Omega 17 (1) (1989) 69–79.465

[22] J. H. Patterson, W. D. Huber, A horizon-varying, zero-one approach to project scheduling, Manage-

ment Science 20 (6) (1974) 990–998.

[23] D. Das, W. Dowsland, A model to examine the effect of loading conditions on scheduling rules in a

job shop environment, THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 19 (5)

(1981) 577–587.470

[24] R. F. Deckro, J. E. Hebert, E. Winkofsky, Multiple criteria job-shop scheduling, Computers & Oper-

ations Research 9 (4) (1982) 279–285.

[25] G. L. Thompson, D. J. Zawack, A problem expanding parametric programming method for solving

the job shop scheduling problem, Annals of Operations Research 4 (1) (1985) 327–342.

32

[26] J. P. Sousa, L. A. Wolsey, A time indexed formulation of non-preemptive single machine scheduling475

problems, Mathematical programming 54 (1) (1992) 353–367.

[27] T. Morton, D. W. Pentico, Heuristic scheduling systems: with applications to production systems and

project management, Vol. 3, John Wiley & Sons, 1993.

[28] L. A. Wolsey, Mip modelling of changeovers in production planning and scheduling problems, European

Journal of Operational Research 99 (1) (1997) 154–165.480

[29] C. A. Floudas, X. Lin, Mixed integer linear programming in process scheduling: Modeling, algorithms,

and applications, Annals of Operations Research 139 (1) (2005) 131–162.

[30] E. Stafford, F. T. Tseng, J. N. Gupta, Comparative evaluation of milp flowshop models, Journal of

the Operational Research Society 56 (1) (2005) 88–101.

[31] Y. Demir, S. K. İşleyen, Evaluation of mathematical models for flexible job-shop scheduling problems,485

Applied Mathematical Modelling 37 (3) (2013) 977–988.

[32] D. Khorasanian, G. Moslehi, Two-machine flow shop scheduling problem with blocking, multi-task

flexibility of the first machine, and preemption, Computers & Operations Research 79 (2017) 94–108.

[33] J. Carlier, Scheduling jobs with release dates and tails on identical machines to minimize the makespan,

European Journal of Operational Research 29 (3) (1987) 298–306.490

[34] R. McNaughton, Scheduling with deadlines and loss functions, Management Science 6 (1) (1959) 1–12.

[35] V. T’kindt, J.-C. Billaut, Multicriteria scheduling: theory, models and algorithms, Springer Science

& Business Media, 2006.

[36] K. Thörnblad, On the optimization of schedules of a multitask production cell, Chalmers Tekniska

Hogskola (Sweden), 2011.495

33

