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Introduction

Interpersonal physical interactions occur frequently in our everyday life and have been studied in the laboratory, be it to carry heavy objects [START_REF] Fumery | A biomechanical study of load carriage by two paired subjects in response to increased load mass[END_REF], dance with a partner [START_REF] Sawers | Small forces that differ with prior motor experience can communicate movement goals during human-human physical interaction[END_REF], stand-up (Sofianidis et al., 2012), or walk hand in hand with someone, it helps us coordinate and work together, but also sooth and comfort each other [START_REF] Cascio | Social touch and human development[END_REF][START_REF] Gallace | The science of interpersonal touch: An overview[END_REF]. Relying on both social cues (see [START_REF] Sailer | Meaning makes touch affective[END_REF] and mechanical modalities like forces amplitudes, vibration, or pressure, transmitted by somesthetic and kinesthetic receptors (see Lederman & Klatzy, 2009, for review), the haptic sense is involved in physical interactions as an important mode of communication, and it is known to enable humans to estimate features of their partner's behavior, like their movement goals [START_REF] Takagi | Physically interacting individuals estimate the partner's goal to enhance their movements[END_REF][START_REF] Takagi | Haptic communication between humans is tuned by the hard or soft mechanics of interaction[END_REF], their similarity [START_REF] Ganesh | Two is better than one: Physical interactions improve motor performance in humans[END_REF], or even to predict their partner's future actions [START_REF] Sabu | How does a partner's motor variability affect joint action?[END_REF][START_REF] Sebanz | Prediction in Joint Action : What, When, and Where[END_REF][START_REF] Knoblich | Action coordination in groups and individuals: Learning anticipatory control[END_REF]. It is proposed that such estimations are based upon the exchange of information mediated by the interaction forces, a process sometimes dubbed as an "haptic channel" (van der [START_REF] Van Der Wel | Let the force be with us: Dyads exploit haptic coupling for coordination[END_REF], resulting in role distribution [START_REF] Chackochan | Incomplete information about the partner affects the development of collaborative strategies in joint action[END_REF][START_REF] Curioni | Reciprocal information flow and role distribution support joint action coordination[END_REF][START_REF] Jarrassé | Slaves no longer: Review on role assignment for human-robot joint motor action[END_REF], and coordination between partners (Sylos-Labini et al., 2018). Deciphering how the haptic channel arises and what are its specific properties is an active research topic. In an earlier study (Colomer et al., in press), we found that task related information transfer between partners in a dyad is asymmetric depending on the roles in the task, and takes place at frequencies higher than the main frequency of the movement performed to achieve the task, in the range of [2.15-7] Hz. To do so we used the Granger-Geweke causality framework, that we will introduce in the following, to analyze forces in a dyadic interaction [START_REF] Geweke | Measurement of Linear Dependence and Feedback between Multiple Time Series[END_REF][START_REF] Granger | Investigating Causal Relations by Econometric Models and Cross-spectral Methods[END_REF].

The distribution of the influence across frequencies may have some connections to the recurrent assumption that the control the brain exerts is parceled out in distinct frequencies, which dates back to [START_REF] Woodworth | Accuracy of voluntary movement[END_REF]. It has been long suggested that movements are the aggregation of submovements to form a full goal directed kinematic trajectory [START_REF] Miall | Intermittency in Human Manual Tracking Tasks[END_REF]. Submovements have been previously related to an oscillatory activity in the motor cortex, phased locked with hand speed in the range of [START_REF] Brovelli | Beta oscillations in a large-scale sensorimotor cortical network : Directional influences revealed by Granger causality[END_REF][START_REF] Cascio | Social touch and human development[END_REF][START_REF] Chackochan | Incomplete information about the partner affects the development of collaborative strategies in joint action[END_REF][START_REF] Colomer | Interacting humans use forces in specific frequencies to exchange information by touch[END_REF] Hz [START_REF] Jerbi | Coherent neural representation of hand speed in humans revealed by MEG imaging[END_REF]. Oscillatory components of submovements have also been identified during visual dyadic imitation and synchronization, in the range of [START_REF] Brovelli | Beta oscillations in a large-scale sensorimotor cortical network : Directional influences revealed by Granger causality[END_REF][START_REF] Cascio | Social touch and human development[END_REF] Hz [START_REF] Noy | The mirror game as a paradigm for studying the dynamics of two people improvising motion together[END_REF][START_REF] Tomassini | Interpersonal synchronization of movement intermittency[END_REF].

Granger causality analysis uses the autoregressive modelling framework developed by

Norbert Wiener (see [START_REF] Bressler | Wiener-Granger Causality : A well established methodology[END_REF][START_REF] Granger | Investigating Causal Relations by Econometric Models and Cross-spectral Methods[END_REF]. Granger causality is a bivariate approach, which quantifies the influence of the past of a stochastic process A on the present and future of another stochastic process B, and vice versa. This asymmetric measure provides the quantitative estimation of two directions of influence. The underlying rationale is as follows: If the predictability of the independent system B is improved by the incorporation of information from independent system A, then it can be concluded that A influences B. In our previous study, we analyzed the time series of forces produced by the two partners during physical interaction. We used the Granger-Geweke causality (GGC) [START_REF] Geweke | Measurement of Linear Dependence and Feedback between Multiple Time Series[END_REF] for this, which allows deriving Granger causality in the frequency domain. Granger-Geweke causality affords a fine grain decomposition of the direction of exchange between partners as a function of frequency, which departs from previous attempts to identify asymmetry in haptic coupling [START_REF] Huys | Individual and dyadic rope turning as a window into social coordination[END_REF]. The method provided us with "Granger causality values" that we renamed "influence", and was shown to be a reliable signature of information exchange between them (Colomer et al., 2022).

Following our previous study (Colomer et al., In press), we used a task imposing a division of labor: Both partners were moving a unique mobile slider, to do so one partner had to synch with beats sequence while the other had to point at visual targets (See Fig. 1 and Experimental set-up). In the present study, we examined whether the information exchange is a fixed process which depends only on the general leader/ follower roles due to the labor division between partners, or if it is instead functionally modified to adapt to the difficulty of the task. We made the hypothesis that a more 'difficult' task would result in a higher quantity of information exchanged, and / or a change in the main direction of the influence. The difficulty of the task was modulated according to Fitts law by reducing the width of visual targets [START_REF] Fitts | The information capacity of the human motor system in controlling the amplitude of movement[END_REF].

Materials and Methods

Our study was carried out according to the principles expressed in the Declaration of Helsinki, and were approved by the EuroMov ethical committee (EuroMov IRB #1912A, University of Montpellier). All participants provided written informed consent to participate in the study. In addition, all participants gave informed consent for publication of identifying images (i.e., Fig. 1) in an online publication. Participants performed in dyads in our task. They sat on opposite sides of the table and held one handle with their right hand and made reciprocal aiming movement to left and right targets (visible to one participant only) while synchronizing as accurately as possible with a metronome provided to them using headphones (one participant only). A curtain along the axis of the slider prevented the participants from seeing their partner and their handle. The participants were provided with targets towards which they had to perform a reciprocal pointing task with a vertical pointer fixed on the device; they had to aim inside the target box, the middle line served as visual help for their positioning.

Experimental Design

Our experiment required participant dyads to move a one-degree of freedom passive mobile slider manipulandum with two handles, one for each participant (see Fig. 1).

Each handle was equipped with a force sensor allowing us to evaluate the force applied by each participant. A curtain along the axis of the manipulandum prevented the participants from seeing their partner and the partner's handle. The task the participants had to perform was a cooperative task where both members of the dyad had to move a mobile device (Fig. 1) based on two cues: visual targets and metronome beats. We recorded (at 500 Hz) the mobile slider's position using 2 Linear Position Transducer, and each participant's applied force with 2 compression and tension load cells. We used 2 A/D cards (NI USB 6229 16-bit Digital Acquisition Board) for force and position, and custom Matlab® programs. The auditory metronome was displayed using a custom Matlab® program and PC computer sound card (Intel®), duration = 80ms, sinewave, tone = 500 Hz. Beat events were recorded along all sensors, using an A/D card (NI USB 6002 16-bit Digital Acquisition Board). 20 participants (10 dyads, aged between 18 and 40, 11 females) participated in the experiment, in which they had to move a manipulandum weighting 16.5kg. Each participant was weighted at the end of the experiment and the de Leva table (de Leva, 1996) used to calculate their hand and forearm's mass. Expert musicians and dancers (10 years of regular practice) were excluded from this study, as well as people practicing rhythmic of interpersonal coordinative sports.

Inspired by a study of timing processes in single person (Craig & Lee, 2005), our task required the dyads to repeatedly move the mobile slider to reach two targets on the table located on opposite sides from the central position of the manipulandum, while synchronizing their movements with an audio metronome. In order to increase information exchange between participants, we divided the feedbacks available for each participant. In each dyad the 'Synch Participant' was given the metronome to be followed (using earphones) but was not provided with the target positions that defined the movement range. The other partner, the 'Target Participant', was provided with the target information, but not the metronome which defined the movement timings to be maintained. Both participants were instructed about the arrangement. They knew that they were required to make repeated movements to targets while following a metronome as best as possible while cooperating, and knew that each participant received only one feedback.

The participants worked in two conditions. The target width and rate of the metronome were different between the 2 conditions. In the 'small target condition', the target size was 1 cm on both ends of the pointing task. In the 'large target condition' the target width was set as 2 cm. The distance between the target's centers was fixed at 23cm.

Before each session we asked the Target Participants to perform solo trials for each target condition, with the instruction to move to the targets at the maximal speed they could reach without making mistakes. Metronome beat rates for each target condition then corresponded to the mean of this preferential frequency. For all dyads, the preferred time period was faster in the large target condition (0,8±0,2 seconds mean) than in the small target condition (0,9±0,2 seconds mean).

One trial lasted 20 beats (between ~12 and ~23 seconds depending on the target width condition) and each dyad had to do 9 trials per condition. Overall each dyad performed 18 trials where conditions were randomized.

At the beginning of each trial a random interval of a few seconds of silence was inserted before the beat metronome started, so the participants would not use the experimenter start instruction as first temporal cue.

Task difficulty

To modulate our task difficulty, we looked at Fitts' law [START_REF] Fitts | The information capacity of the human motor system in controlling the amplitude of movement[END_REF] and chose to use 2 different target sizes for the participants to reach, with the smaller one as our more difficult condition. Even if the difficulty change was in the spatial domain, that is Target Participants' task, Sync Participants will need to increase their attention as the frame in which they have to synchronize the mobile's change of direction will also reduce with the target's width.

To ensure that this condition was indeed more difficult we observed our participants movement speed and error indices during both conditions using one-sample t-tests. We made the hypothesis that the more difficult condition would have slower movements and higher error scores.

Data processing

Participant Forces and the mobile slider's position were both measured in Volts.

Positions were subsequently converted to centimeter and forces to Newtons, and both were low pass filtered (Butterworth filter, dual pass, cut off frequency 10 Hz).

From the time series of the beats, we detected each onset using the function findpeaks.m in Matlab®. To measure the frequency content of each participant's force time series, we used a local minima and maxima detection method, using the function findpeaks.m from Matlab®, to get the distribution of periods. This was then converted to frequency in Hz.

The participant forces were estimated from the sensors according to the model presented in Figure 2. ⃗⃗⃗⃗ the force applied by the two participants respectively. We consider the effects of friction as being negligible.

In Figure 2 ⃗⃗⃗ the force applied by the two participants respectively. We consider the effects of friction as being negligible.

Taking a movement toward the right as positive, we consider the free body diagram of mass 𝑚 2 to get:

𝐹 2 ⃗⃗⃗ = 𝑚 2 𝑎 ⃗⃗⃗⃗⃗⃗⃗⃗ + 𝑆 2 ⃗⃗⃗ (1) 
Considering the free body diagram of mass M:

𝑆 2 ⃗⃗⃗ -𝑆 1 ⃗⃗⃗ = 𝑀𝑎 (2) 
And considering the free body diagram of mass 𝑚 1 we get:

𝐹 1 ⃗⃗⃗ = 𝑚 1 𝑎 ⃗⃗⃗⃗⃗⃗⃗⃗ -𝑆 1 ⃗⃗⃗ (3) 
The mass M (which was fixed in each experiment) is known, as well as the hand + forearm mass of each participant (𝑚 1 and 𝑚 2 ) were estimated for each dyad by weighing each participant and using the de Leva table (de Leva, 1996). Substituting for 𝑎 from ( 2) in ( 1) and ( 3), we can calculate the force applied by each participant by considering the directions of movements appropriately at any instance.

Performance indices

The Position Error (PE) was calculated using the difference between the position at which our subjects changed direction and the edge of the target they had to reach. The result was expressed in centimeter. A change of direction occurring inside a target box was counted as an error of 0. The Synchronization Error (SE) was calculated as the difference between each period of movement between two targets and the period of the metronome for that trial. The Synchronization Error was then expressed in % of the metronome's period.

We calculated the mean value and variance of errors across the 20 beats of each trial.

The average of these values across trials was used to estimate overall mean and variable errors for each dyad per condition. In full generality, for steady behaviour, the variability estimated by variance or standard deviation is indicative of the (asymptotic) stability against intrinsic continuous stochastic perturbations [START_REF] Kelso | Dynamic Patterns: The Self-organization of Brain and Behavior[END_REF].

Granger-Geweke causality spectral estimation

Granger-Geweke causality (GGC) was estimated by using the parametric method [START_REF] Ding | Granger Causality : Basic Theory and Application to Neuroscience[END_REF]) from the forces' times series. The BSmart toolbox for the software Matlab® was used, specifically the functions designed for bivariate analysis by [START_REF] Cui | BSMART : A Matlab/C toolbox for analysis of multichannel neural time series[END_REF].

Prior to the Granger-Geweke estimation we down-sampled the forces time series to 25

Hz to address our frequency range of interest (0.1 to 10 Hz), approximating the higher bound as the Nyquist frequency of our down sampled signals. For each trial and each dyad, the force time series were segmented in 3 consecutive time windows of equal durations, providing 27 data epochs for each dyad, which were fed into the GGC analysis. This analysis method estimated the influence in the frequency domain from A to B and from B to A.

According to Geweke [START_REF] Geweke | Measurement of Linear Dependence and Feedback between Multiple Time Series[END_REF], the Granger causality spectrum from 𝑥 𝐵𝑡 to 𝑥 𝐴𝑡 is computed as follow: 

𝐼 𝐵→𝐴 (𝑓) = -

Frequency bands for GGC

Frequency bands of interest were defined in a previous study (Colomer et al., 2022), in which we had used the same experimental setup and division of roles between participants. In this previous study we demonstrated the existence of two time scales on our frequency analysis: A lower frequency band including the repetitive motion of our task, and a higher frequency band that encompasses the higher frequencies of intermittent movements, as mentioned in the submovements literature.

More practically, frequency bands of interest were defined after the observation that the majority of our dyads had two peaks in the Granger causality analysis, one at low frequency range, and a second at higher frequency range. To define two frequency bands of our interest, we first observed that the majority of our dyads had two peaks in the Granger values. We located the first peak for every participant, and calculated the To quantify the Granger causality within each band we integrated the GGC values over frequency in each direction of exchange using a trapezoidal numerical integration. It is noteworthy that the integral of GGC in the frequency domain is equivalent under general conditions to the Granger causality in the time domain [START_REF] Ding | Granger Causality : Basic Theory and Application to Neuroscience[END_REF][START_REF] Geweke | Measurement of Linear Dependence and Feedback between Multiple Time Series[END_REF].

Next, for each condition we calculated the difference of this integrated GGC between participants in a dyad, a variable we labelled the Δ influence, for each of the two frequency bands. We used a two-sample t-test to look at differences in both conditions in the [2.15-7] Hz frequency band and analyzed the integral GGC values, which we compared between small and large target conditions (Fig. 7) using a Wilcoxon signed rank test.

We also looked at the overall influence of each role in both conditions and frequency range using a Three-Way Mixed effect ANOVA. This method of analysis was chosen for we had both within-subject factors (2 Target sizes and 2 Frequency bands) and between subject factor separating our participants in 2 distinct groups (Roles). We used a Bonferroni correction on all post-hoc tests (see Supplementary figures for tables).

Main statistical analysis

We used a Shapiro Wilk Test to assess the normality of our data before executing any further statistical analysis, and two sampled t-test or Wilcoxon signed rank test were used accordingly.

To analyze the difference between the applied forces in each condition, we performed a Wilcoxon signed rank test on the mean of our forces put in absolute value, across dyads and conditions (Fig. 4A). We also analyzed the change in mean force for each role between conditions using one-sample t-tests (Fig. 4B).

Analyzing the frequency content of the forces, estimated from the periods obtained To measure the correlation between the mean force frequency and the movement time period for each participant, in each condition and for each trial, we used a Pearson correlation. We also used a Pearson correlation to measure the correlation between the difference of integral of GGC values over frequency (the Δ influence) and the performance indices in both conditions.

Results

Movement and difficulty

We used our performance indices to assess the difficulty of our two conditions, with the belief that a harder task would lead to more mistakes.

Overall, we found significantly higher mean Synchronization Error and mean Position

Error in the small target condition (SEm, T(9)=2.5, p<0.03 ; PEm, T(9)=5.8, p<0.001, one-sample t-test) than in the large target condition. No significant difference was found in the standard deviation of the Synchronization Error between conditions, but we did observe significantly higher standard deviation of Position Error in small target condition (PEsd, T(9)=5.6, p<0.001, one-sample t-test) compared to large target condition.

We found that our participants adopted significantly faster movement time period in the large target condition than in the small target condition (T(9)=4.6, p<0.001, onesample t-test). The mean movement time period across trials was faster in the large target condition for all dyads except one, and the mean movement time period across dyads was of 1.59 seconds for the large target condition, and 1.77 seconds for the small one.

Participant forces

Fig. 3 shows an example movement and recorded forces from a representative dyad in one condition. The forces' sign represented the direction at which participant applied their force (see Methods). We calculated that both participants applied forces in the same direction 70% of the time thorough our experiment. Absolute values were used for the rest of the results. The mean force by each participant across the 9 trials was significantly higher in the large target condition than in the small target condition (W=37, p<0.01, Wilcoxon signed rank test, Fig. 4A). When examined, we found that the Synch Participant's mean force did not significantly change between conditions (T(9)=1.4, p<0.2, onesample t-test) but the Target Participant's did (T(9)=3.3, p<0.01, one-sample t-test, Fig. 4B), with smaller force mean in the small target condition compared to the large target condition. No significant correlation was found between mean force and influence. Fig. 4) Box plot of the force mean for each participant, as estimated from our force sensors, for each condition. A) Box plot of the total force mean for each participant (both roles) for each condition. The total force mean was significantly more in the large target condition compared to the small target condition (W=37, p<0.01, Wilcoxon signed rank test). B) Box plot of the force mean for each Target Participant for each condition. The total force mean was significantly less in the small target condition compared to the large target condition (T(9)=3.3, p<0.01, one-sample t-test).

We also investigated the differences in frequency content of our participant's forces between the small target condition and the large target condition. Using an Empirical cumulative distribution function two-sample testing (ECDF, see Methods for more precisions) we've found a difference between the distribution of all participants' forces in small target condition and the distribution of all participant's forces in large target condition (p<0.008, d=0.021). To better understand this difference we looked more precisely at the frequency content histograms of each role's (Target/Synch Participants) forces in both conditions. We've found a difference of distributions for both roles between small and large target conditions (Target Participants, p<0.009, d=0.022, Fig. 3B; Synch Participants, p<0.012, d=0.026, Fig. 3C).

We hypothesized that this difference in forces frequency content's distribution between conditions could be attributed to the difference in movement time period between conditions, which was inherent to the task. We therefore analyzed the correlation between the mean force frequency and the movement time period across the participants. We found a significant correlation for the Target Participants (p<0.001, R value = 0.53, Pearson correlation) across conditions and trials, and the movement time was observed to increase force occurrences at low frequencies. We did not however find a correlation between the mean force frequency of the Synch Participants mean force frequency and movement time period (p<0.32, R value = 0.08, Pearson correlation).

Influence on partner

For each condition we analyzed the forces collected in the nine trials using GGC analyses to isolate patterns that were consistent (see Methods for details). Fig. 5A shows the 'GGC values', which provide a quantification over each frequency of the Synch Participants' forces' influence on the forces produced by the Target Participants (IS->T, red trace), and vice versa (IT->S, blue trace).

As already stated above, we chose the same frequency bands of interest as in our previous study (Colomer et al., in press), the [0-2.15] Hz and [2. Hz frequency bands (see Methods for more details). Within these bands we calculated the differences between the integral of GGC values IS->T and IT->S for each condition (Fig. 5B and Fig. 6B).

Our task being repetitive by nature, most of the participant force was generated at the end points of the back-and-forth motion, in order to decelerate the mobile while approaching one target and then accelerating in the opposite direction toward the next target. In both conditions the inter-personal influence (IS->T and/or IT->S) was not significantly different in the [0-2.15] Hz band (large target T(18)=1.22, p=0.24, twosample t-test, Fig. 5B ; small target T(18)=1.10, p>0.28, two-sample t-test, Fig. 6B), which corresponds to the main movement frequencies. On the other hand, we observed that IS->T was significantly larger than IT->S in the [2.15-7.0] Hz range, in both conditions (large target T(18) = 5.88, p<0.001, two-sample t-test, Fig. 5B ; small target T(18) = 5.89, p<0.001, two-sample t-test, Fig. 6B). These results are similar to that obtained in our previous study. Even though changes were applied to the targets' width (i.e. in the Target Participant tasks), the Synch Participant remains the most influential in both conditions.

We also hypothesized that if the influence we measured using GGC analysis had a relation to information exchange, its quantity would increase with the difficulty of the task. To address this issue, we looked at the overall quantitative influence, measured in a dyad by the sum of partners' integral of GGC values over frequency, and compared it between conditions. We observed that the overall quantitative influence was significantly higher in the small target condition than in the large target condition (W=185, p<0.003, Wilcoxon signed rank test, Fig. 7). To better understand this result we analyzed the overall influence (on the partner) by each of the Target and Synch Participants, and over the two frequency bands, using a

From the analysis of the interacting forces generated during the task using GGC, we found a significant higher influence from the Synch Participant over the Target Participant in the [2. Hz frequency band corroborating the findings from our previous experiment, under both conditions. The total influence (Fig. 7) increased in the small target condition when the difficulty of the task was increased by reaching to a smaller target. On the other hand, we found that the mean force by each participant was higher in the large target condition (Fig. 4A). This is not surprising given that it was the condition where movements were fastest, as predicted from Fitts law.

However it is interesting to highlight the fact that the change of total influence between conditions is due to an augmentation of the Synch Participant's influence on the Target Participant in the small target condition. We did not expect this result because the change of difficulty in our experiment occurred in the spatial dimension, that is, the Target Participant's task. We can however envision a possible explanation for this adaptation. As the width of the target decreases, so does the time spent in it. A finer control of the task is therefore required to ensure that the metronome beat will occur while the mobile slider is within the target. This control is performed by the Synch Participant, as the change in influence suggests. No change was observed in the magnitude of the force produced by the Synch Participant between conditions, but we found a significant difference in force's frequency content distributions between small and large target conditions for both Target and Synch Participants (Fig. 3B and3C).

Only the Target Participants' mean frequency content was correlated with the movement time period. Thus, we can argue that while the change in the frequency content in the Target Participants' forces was due to a change of time movement inherent to the task, the change in frequency content in the Synch Participants' forces relates to an increase of influence, through an increase of higher frequencies in their forces (Fig. 3C).

Granger causality represents the magnitude of causal influence [START_REF] Geweke | Measurement of Linear Dependence and Feedback between Multiple Time Series[END_REF][START_REF] Granger | Investigating Causal Relations by Econometric Models and Cross-spectral Methods[END_REF] between the partners in an interaction. In this study we expected and found results in line with our previous findings (Colomer et al., 2022). That is, a superior influence exerted by the Synch Participants' on the Targets Participants within the [2.15-7] Hz range. However, while we expected an increase in the GGC values in the more difficult condition using smaller targets [START_REF] Fitts | The information capacity of the human motor system in controlling the amplitude of movement[END_REF], we did not expect the influence to come from the Synch Participants. This pattern of cooperation was spontaneously and unanimously adopted by our dyads, within a short time 

Fig. 1 )

 1 Fig.1) Experimental setup. Our setup consists of a rigid passive slider manipulandum with two handles. The slider slides on two rails on roller bearings to reduce friction. A rack in the center of the manipulandum allows us to load the slider. Position encoders and two 1-dof force sensors (near each handle) allows us to record the participant movements and forces. Participants performed in dyads in our task. They sat on opposite sides of the table and held one handle with their right hand and made reciprocal aiming movement to left and right targets (visible to one participant only) while synchronizing as accurately as possible with a metronome provided to them using headphones (one participant only). A curtain along the axis of the slider prevented the participants from seeing their partner and their handle. The participants were provided with targets towards which they had to perform a reciprocal pointing task with a vertical pointer fixed on the device; they had to aim inside the target box, the middle line served as visual help for their positioning.

Fig. 2 )

 2 Fig. 2) Model used to estimate forces from the sensors. Where 𝑚 1 𝑎 ⃗⃗⃗⃗⃗⃗⃗⃗ and 𝑚 2 𝑎 ⃗⃗⃗⃗⃗⃗⃗⃗ represent the mass (hand + forearm) multiplied by the acceleration, 𝑀𝑎 ⃗⃗⃗⃗⃗⃗ the central mass of the mobile slider multiplied by acceleration, 𝑆 1 ⃗⃗⃗ and 𝑆 2 ⃗⃗⃗ are the sensor measured force, and 𝐹 1 ⃗⃗⃗ and 𝐹 2⃗⃗⃗⃗ the force applied by the two participants respectively. We consider the effects of friction as being negligible.

  mean and standard deviation across participants. The mean+3*STD across participants was calculated as 2.15 Hz. The first frequency band was thus set between 0.1 Hz and 2.15 Hz. Next, we considered the GGC values for the Synch Participants and noted that the mean +3*STD GGC value went below the bootstrap value at 7 Hz. The second frequency band was thus set between 2.15 Hz and 7 Hz. A bootstrap vector (99 th percentiles of null distribution using a bivariate permutation among dyads) was used to identify the baseline Granger values that were independent of interaction between participants (seeColomer et al., 2022).

  from local minima and maxima, we used an Empirical cumulative distribution function (ECDN) two-sample test statistic calculating the EMD distance between the distributions, and testing it against 1000 distributions obtained after random permutations[START_REF] Dowd | A New ECDF Two-Sample Test Statistic[END_REF][START_REF] Ramdas | On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests[END_REF].

Fig. 3 )

 3 Fig. 3) Forces time series and task behavior in a representative trial, and histograms of frequency content of the participant's forces' time series in each condition. A) Example of recorded displacement of the slider (top and middle) and forces (top and bottom) from a representative dyad in small target condition. Temporal cues heard by the Synch Participant are represented as vertical black lines, and target area as horizontal pale bands. Participants were required to synchronize their change of direction with the metronome, while aiming at each target as accurately as possible. B) Histogram of frequency content of the Target Participants' forces' time series in small target condition (orange) and large target condition (blue). An empirical cumulative distribution function (ECDF) two-sample test was used to confirm the difference between the two distributions (p<0.009, D=0.022) C) Histogram of frequency content of the Synch Participants' forces' time series in small target condition (orange) and large target condition (blue). We confirmed the difference between the two distributions by an ECDF two-sample test (p<0.012, D=0.026).

Fig. 5 )

 5 Fig. 5) Granger-Geweke causality (GGC) spectrum of forces in large target condition. A) Average curve and standard deviation of influence of the Synch Participant's forces on the Target Participant's (IS->T, red trace) and the Target Participant's forces on the Synch Participant's (IT->S, blue trace). The average curve and standard deviation were estimated from 20 individuals (10 dyads x 2 directions). B) Overall differences between inter partner influence (IS->T -IT->S) are presented for the two frequency bands of [0-2.15] Hz and [2.15-7] Hz; Δ influence is the difference between each dyad participant's GGC's integral, estimated in each frequency band of interest. Bars represent the mean difference; dots represent the difference for each dyad. The Synch Participant's influence on the Target Participant (IS>T) was similar to its counterpart in the [0-2.15] Hz frequency band (T(18)=1.22, p=0.24, twosample t-test) but significantly higher in the [2.15-7] Hz frequency band (T(18)=5.88, p<0.001, two-sample t-test).

Fig. 6 )

 6 Fig. 6) Granger-Geweke causality (GGC) spectrum of forces in small target condition. A) Average curve and standard deviation of influence of the Synch Participant's forces on the

Fig. 7 )

 7 Fig.7) Comparison of influence between conditions. Box plot of the total influence, estimated from the integral of GGC values of participants in a dyad across frequencies, for each condition. The total inter-personal influence was significantly less in the large target condition compared to the small target condition (W=185, p<0.003, Wilcoxon signed rank test).

  adaptation window and without verbal or facial communication. A clear task division was observable between our participants. The Target Participant took up more of the effort input required for the task, inputting larger forces of lower frequency. The Synch Participant on the other hand, applied forces of higher frequency that influenced the Target Participant more than the other way around. It is proposed that humans in physical interaction naturally assume different roles like 'leader' and 'follower' (Jarrassé et al., 2014, Melendez-Calderon et al., 2015, Reed and Peshkin 2008, Ueha et al., 2009) and it could be argued that in our study the Synch Participants, whose forces contributed the most to the total information exchanges, were leaders. While this phenomenon is not yet fully understood, we believe role and task division studies are a necessary step to better understand information exchange during haptic interaction (see Losey et al., 2018 for review) and that Granger-Geweke causality can be a useful tool in leadership estimation.

  

  𝛴 𝐴𝐵 𝐵 and 𝛴 𝐴𝐴 are elements of the covariance matrix Σ. 𝑆 𝐴𝐴 (𝑓) is the power spectrum of channel A at frequency 𝑓 and 𝐻(𝑓) is the transfer function of the system (see Appendix in[START_REF] Brovelli | Beta oscillations in a large-scale sensorimotor cortical network : Directional influences revealed by Granger causality[END_REF][START_REF] Ding | Granger Causality : Basic Theory and Application to Neuroscience[END_REF][START_REF] Dhamala | Estimating Granger Causality from Fourier and Wavelet Transforms of Time Series Data[END_REF][START_REF] Dhamala | Granger-Geweke causality : Estimation and interpretation[END_REF].
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Three-Way Mixed effect ANOVA. We found a significant main effect of target sizes on influence (F(1,18)=16.8, p<0.001), as well as frequency bands (F(1,18)=9.5, p<0.006). A significant main effect of roles in influence scores was also observed (F(1,18)=15.6, p<0.001). The results also showed a significant interaction between frequency bands and roles in terms of influence (F(1,18)=6.8, p<0.02). No other significant interaction was found.

To investigate our interactions, we used a Bonferroni post-hoc test (see Supplementary figures for tables). We observed that Sync Participants had a significant higher influence on their partners in both small and large target conditions (Small, T(9)=4.3, p<0.002 ; Large, T(9)=3.2, p<0.03). Sync Participants were also found to significantly influence more their partners in the [2. Hz frequency band (T(9)=4.7, p<0.001) and this in both conditions (Small, T(9)=5.2, p<0.001 ; Large, T(9)=3.6, p<0.025). No significant difference was found in the [0-2.15] Hz frequency band. Thus, the augmentation on the overall quantitative influence in the small target condition is overly due to an augmentation of the Synch Participant's influence.

Finally, we used a Pearson correlation to measure the correlation between the difference of integral of Δ influence over frequency and the performance indices in both conditions. In the [0-2.15] Hz frequency band, we found a significant positive correlation between the Δ influence and the Synchronization Error standard deviation (SEsd) in the large target condition (p<0.0013, r=0.86). We did not find any other significant correlation in any condition and in any frequency band.

Discussion

Interactive forces are a key element in physical interaction, not only as an energy provider but also as a fundamental feature of successful inter-personal coordination [START_REF] Takagi | Haptic communication between humans is tuned by the hard or soft mechanics of interaction[END_REF][START_REF] Takagi | Physically interacting individuals estimate the partner's goal to enhance their movements[END_REF][START_REF] Melendez-Calderon | Interpersonal strategies for disturbance attenuation during a rhythmic joint motor action[END_REF]. We were interested in understanding how these forces could help dyads to work together and exchange information through the haptic sense. For this we used a setup specially conceived so information exchange would be necessary to the completion of the task.

By dividing the information accessible by each partner, attributing them the roles of Synch and Target Participants, we enforced the need for them to engage in the task at all times and cooperate. We chose this method over others, like modulating the noise in the feedbacks available to the partners [START_REF] Takagi | Haptic communication between humans is tuned by the hard or soft mechanics of interaction[END_REF], or limiting their motor ability in the task (van der Wel et al., 2011), so as to ensure that none of the participants could complete the task alone and both felt compel to participate.

The choice to have two conditions of different difficulty was made so we could observe the way our participants would adapt, with the hypothesis that a higher difficulty would result in a higher quantity of information exchanged. We have previously shown that the information exchange between dyad participants can be quantified by using Granger-Geweke causality (GGC) (Colomer et al., 2022). Here we applied the same technique to evaluate how the information exchange changes with task difficulty.
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