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Abstract. Solving ill-posed inverse problems can be done accurately if
a regularizer well adapted to the nature of the data is available. Such
regularizer can be systematically linked with the distribution of the data
itself through the maximum a posteriori Bayesian framework. Recently,
regularizers designed with the help of deep neural networks (DNN) re-
ceived impressive success. Such regularizers are typically learned from
large datasets. To reduce the computational burden of this task, we pro-
pose to adapt the compressive learning framework to the learning of
regularizers parametrized by DNN. Our work shows the feasibility of
batchless learning of regularizers from a compressed dataset. In order to
achieve this, we propose an approximation of the compression operator
that can be calculated explicitly for the task of learning a regularizer
by DNN. We show that the proposed regularizer is capable of modeling
complex regularity prior and can be used for denoising.

Keywords: Regularization · Compressive learning · Denoising.

1 Introduction

We consider the denoising problem, i.e. finding an accurate estimate x̂ of the
original signal x ∈ Rd from the observed noisy signal y ∈ Rd:

y = x+ ε, (1)

where the noise ε (assumed to be additive white Gaussian noise of standard
deviation σ) is independent of x. Recovering x from its degraded version y is
an ill-posed problem and we needs to use additional (prior) information about
the unknown signal x to obtain meaningful solutions. Common strategies [2] for
solving inverse problems often define an estimator which minimizes

x̂ ∈ argmin
x

F (x) + λR(x), (2)

where F is the data fidelity term making the solution consistent with the obser-
vation y and R is the regularization term weighted by λ > 0 that incorporates
the prior information. The choice of R depends on the statistics of the signal of
interest which is not always available in real-life applications.
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The maximum a posteriori (MAP) Bayesian framework provides a useful tool
to interpret such methods. The MAP estimator is given by:

x̂MAP ∝ argmin
x

‖y − x‖22 − λlog(µ(x)) (3)

where µ denotes a prior probability law (of density µ(·)) of the unknown data
x. In this context, the regularizer is related to the prior distribution of the data,
i.e., R(x) = −log(µ(x)).

It is not an easy task to accurately estimate a prior model, especially in high-
dimensional spaces. Classical Bayesian approaches, e.g. in image processing, rely
on explicit priors such as total variation or Gaussian mixture models (GMM) [22]
trained on a database of image patches. Recently, researchers propose to use
DNN to design the regularizer. Methods such as the total deep variation [11],
adversarial regularizers [12,15], as well as the Plug & Play approach and its
extensions [21,9] deliver remarkably accurate results. However, such models are
typically learned from large datasets. Estimating their parameters from such a
large-scale dataset is a serious computational challenge.

Compressive learning One possibility to reduce the computational resources of
learning consists in using the compressive learning (CL) framework [4,5,7]. The
main idea of CL, coined as sketching, is to compress the whole data collection
into a fixed-size representation, a so-called sketch of data, such that enough in-
formation relevant to the considered learning task is captured. Then the learned
parameters are estimated by minimizing a non-linear least-square problem built
with the sketch. The size of sketch m is chosen proportional to the intrinsic
complexity of the learning task. Meanwhile, the cost of inferring the parameters
of interest from the sketch does not depend on the number of data in the initial
collection but on the number of parameters we want to estimate. Hence, it is
possible to exploit arbitrarily large datasets in the sketching framework without
demanding more computational resources.

During the sketching phase, a huge collection of n d-dimensional data vectors
X = {xi}ni=1 is summarized into a single m-dimensional (m� n) vector ẑ with:

ẑ =
1

n

n∑
i=1

Φ(xi) = S(µ̂n), (4)

where µ̂n := 1
n

∑n
i=1 δxi the empirical probability distribution of the data, δxi

is the Dirac measure at xi and the function Φ : Rd → Rm is called the feature
map (typically random Fourier moments). The operator S is a linear operator
on measures µ defined by Sµ := EX∼µΦ(X). An estimate of a distribution µ (or
of distributional parameters θ of interest) is computed by solving:

µ∗θ = argmin
µθ

‖ẑ − Sµθ‖22. (5)

In practice, this "sketch matching" problem can be solved by greedy compres-
sive learning Orthogonal Matching Pursuit (OMP) algorithm and its extension
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Compressive Learning-OMP with replacement [10]. When the distribution µ is
a GMM in high-dimension with flat tail covariances, the problem can also be
solved by the Low-Rank OMP algorithm (LR-OMP). It was shown that the prior
model learned with LR-OMP can be used to perform image denoising [20].

These greedy algorithms are suitable for any sketching operator S and any
distribution density µ, as long as the sketch Sµ and its gradient ∇θSµ with
respect to the distributional parameters θ of interest have a closed-form expres-
sion: the core of these OMP-based algorithms is computing the expression of Sµ
and ∇θSµ. However, real-life data needs to be modeled with more complex dis-
tributions. In this case, the sketching feature map may not have a closed form.
This limits the possible use of the sketching framework in practice.

In this paper, our goal is to recover a good approximation of the probability
distribution of any unknown data from its sketch (i.e. beyond GMM). As neural
networks (NN) have great expressive power [8,14], we propose to tackle the
problems by adapting the sketching to NN. More precisely, we propose to define
the regularizer Rθ parametrized by a DNN fθ (precisely a ReLU network) as

Rθ(·) = ‖fθ(·)‖22. (6)

Such a regularization corresponds to the parametric distribution density µθ ∝
e−‖fθ(·)‖

2
2 . Thus it can be viewed as a generalized Gaussian distribution, where

the bilinear form induced by the covariance matrix is replaced by a network.
Due to the fact that NN have good generalization properties, the proposed regu-
larization should be capable of encoding complex probability distributions. Un-
fortunately, a direct practical application of existing tools is not possible as
closed-form expressions of Sµ are not available for sketching operator S based
on random Fourier features.

Contributions and outline In this work, we show the feasibility of learning regu-
larizers parametrized by a DNN from a compressed database. Once the network
is trained, the regularizer can be used for denoising. To do so, we propose to ap-
proximate the sketching operator S by a discrete version Sd whose feature map
can be calculated with closed-form expressions, and such that the approximation
still permits to apply the sketch matching estimation method. The approxima-
tion is performed on a grid of the domain where the data is located.

To find an estimate of the distribution µθ, we adapt the sketch matching
problem with our approximate sketching operator in the following way:

θ∗ ∈ argmin
θ∈Θ

‖Sdµθ(p)− ẑ‖22 , (7)

where Θ is a set were the DNN inducing the regularizer Rθ(·) = ‖fθ(·)‖22 can
be parametrized (i.e. weights and bias). This problem can be solved practically
with gradient descent based methods.

As we do not need the original dataset during the training process, the train-
ing procedure does not need to build batches of data. As a consequence, each
gradient descent iteration in the training incorporates information from the whole



4 H. Shi et al.

original database. Once the empirical sketch has been computed (in a single pass,
possibly in parallel), the dataset can be removed from memory. This reduces the
memory complexity of the learning task. Moreover, the Jacobian ∇Sµθ can be
computed efficiently with back-propagation.

Our approach overcomes the limits of greedy learning algorithms of the orig-
inal sketching framework: regardless of the complexity of the data distribution,
the proposed sketching operator allows us to always have a closed-form expres-
sion of Sdµθ. Thus, the sketching is no longer limited to the distribution densities
for which the Fourier transform is explicit.

As a result, the learned regularizer can be used to solve inverse problems.
The effectiveness of the proposed scheme is tested on synthetic examples and real
dataset. Due to the limitation of our approximation of the sketching operator
(the dependence on training points), the feasibility is illustrated on 2-D and 3-D
data with possibly complex distributions. Our work thus opens the broader open
question of designing closed-form sketching operators in high dimension.

The rest of this article is organized as follows. We start by introducing the
sketching framework, ReLU networks and some related works in section 2. In
section 3, we describe the proposed framework: the adaptation of the compres-
sive learning framework to the learning of regularizers parameterized by ReLU
networks. Section 4 illustrates the performance of the proposed methods on both
synthetic data and real-life data. Finally, conclusions are drawn in section 5.

2 Background, related works

We suppose that data samples xi are modeled as independent and identically
distributed random vectors having an unknown probability distribution with
density µ ∈ D (D is the set of probability measures over Rd). We define the
linear sketching operator S that maps µ to the m-dimensional sketch vector z:

S : D → Cm

z = Sµ :=

∫
Rd
µ(x)Φ(X)dx.

(8)

When the transformation (sketching feature map) Φ(·) is built with random
frequencies of the Fourier transform, the l-th component of the sketch is

zl =

∫
Rd
e−j<ωl,x>µ(x)dx, for l = 1, . . . ,m, (9)

where {ωl}ml=1 ∈ Rd are frequencies drawn at random. Taking a statistical per-
spective, the components zl can be seen as samples of the characteristic function
of µX . Accordingly, given a dataset X = {xi}ni=1, the empirical sketch ẑ can be
computed from the samples of the database as

ẑl =
1

n

n∑
i=1

e−j<ωl,xi>, for l = 1, . . . ,m. (10)
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The compression ratio r ism/nd. It was shown [10,6,5] that when the probability
distribution µ has a low dimension structure, e.g. a GMM, one can recover it
(with high probability) from enough randomly chosen samples of its Fourier
transform. The required size of the sketch is typically of the order of the number
of parameters we need to estimate.

ReLU network A ReLU network, denoted by fθ, is defined as a fully connected,
feed-forward network (multi-layer perceptrons) with rectified linear unit (ReLU)
activations. This activation has grown in popularity in feed-forward networks
due to the success of first-order gradient based heuristic algorithms and the
improvement in convergence to the approximated function for training [13].

Related works The sketching framework has been successfully applied to para-
metric models including GMMs [10,5,20], K-means clustering [10,5] and clas-
sification [17]. These methods are limited to the models for which the sketch
function has a closed form. In our work, we apply the sketching to neural net-
works to encode more complex probability distributions. The sketching has been
used for neural networks once [18]. In their work, the authors combine the sketch-
ing with generative networks to generate data samples, while in our work, we
aim at learning a deep regularizer for solving the inverse problem. In addition,
the authors of [18] proposed to approximate the sketching map by Monte-Carlo
sampling. In our approach, we propose to do the approximation with a discrete
sketching operator. The sketching framework mentioned above focus on data-
independent approximation, i.e. the sketches are obtained by averaging random
features. In [1], the authors propose to perform the sketching based on a Nys-
tröm approximation, the latter is data-dependent and shows empirically better
performances for K-means clustering and Gaussian modeling.

3 Proposed method

In this Section, we explain how we adapt the sketching framework to esti-
mate regularizations by DNN. We start by explaining why there are no explicit
closed-form expressions of the sketching function available in the context of prior
parametrized by DNN. Intuitively, since ReLU networks define piecewise affine
functions, we can indeed express a ReLU network fθ as:

fθ(x) =

NR∑
γ=1

1Rγ (x)(Wγx+ bγ), (11)

where 1Rγ is the indicator function of each of the NR affine regions Rγ , with
parameters (Wγ , bγ).

Given a dataset X, we aim at learning, from only the sketch z, an approxima-
tion µθ for the probability distribution µ generating X. We consider a regularizer
of the form Rθ(·) = ‖fθ(·)‖22 which corresponds to parametric densities of the
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form µθ(·) ∝ e−Rθ(·). Ideally, with the definition in (9), the sketch would have
to be calculated as

zl =

∫
Rd
e−j<ω,x>e−‖fθ(x)‖

2
2dx

=

∫
xd

· · ·
∫
x1

e−j
∑d
p=1 ωpxpe−

∑d
p=1(

∑NR
i 1Ri (x)((Wix)p+bip))

2

dx1 · · · dxd.
(12)

However, to the best of our knowledge, there is no analytic expression of such
Fourier transform (Fourier transform on polygons). To tackle this issue, we con-
sider approximating the continuous Fourier transform on a set of discrete points.

To be specific, we define an approximation Sd : Rd → Cm of the sketching op-
erator S such that Sdµθ(ω) ≈ Sµ(ω) for a given frequency ω. The approximated
sketch z̃ then has components:

z̃l = |∆Ω|
∑
pi∈Ω

e−j<ωl,pi>e−‖fθ(pi)‖
2
2 , (13)

where pi is a point in the d-dimensional cell Ω with volume |∆Ω|. Of course,
the major pitfall of this approximation is the limitation for applications in high
dimension as the number of points is exponential with respect to the dimension d.
The required boundedness (or approximate boundedness such as in the Gaussian
case) of the data is a valid assumption in many practical applications in signal
and image processing.

As a consequence, given N points {pi}Ni=1 on the grid where the dataset X
lives and the empirical sketch defined as (4), we consider a ReLU network sketch
matching problem as finding the network parameters θ∗ in the set Θ of possible
parametrizations, such that

θ∗ = argmin
θ∈Θ

‖Sdµθ − ẑ‖22 . (14)

With the discretization, if µθ is differentiable at point pi, the gradient of Sdµθ
with respect to the parameters θ can be computed easily by using the automatic
differentiation. Note that the discretization is used only in the estimation of
the regularizer from the sketch. It thus only impacts the calculation time and
memory requirement of the estimation of the regularizer and not the size of the
compressed dataset itself.

Denoising with prior With the learned regularization term, we solve the varia-
tional problem (3) which yields the minimization of:

G(x) = ‖x− y‖22 + λ‖fθ(x)‖22. (15)

The optimization problem can be solved by gradient descent based methods.
Similarly, we can compute the gradient by using automatic differentiation. Also,
note that this denoising method can easily be extended to other linear inverse
problems, such as interpolation and deconvolution by including the correspond-
ing forward measurement operator.
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4 Experiments

Synthetic data We first test our framework with 2-D and 3-D synthetic data.
To illustrate the advantage of the compressive learning framework in terms of
(computational) learning times, the used training datasets are made of n = 106

samples which are generated from: a spiral with parameters: the radius of circular
curve R = 0.3 to 1, spiral length L = 2π; and a zero-mean GMM of 2 Gaussians.
The source code is available at [19] which contains parts of code taken from the
Python Compressive Learning toolbox [16]. To train the network, we use the
Adam optimizer with a learning rate of value 10−6. The number of points on the
grid is set to N = 20d where d denotes the data dimension. For comparison, we
propose to learn the regularizer on the non compressed dataset using the same
network with the following learning objective function:

θ′ = argmin
θ

N∑
i=1

∥∥‖fθ(pi)‖22 − disti∥∥22 , (16)

where disti = minj ‖xj−pi‖22 is the distance between the data xj and its nearest
grid point. This objective function imposes a regularizer that approximates the
function "distance to the model". Note that for non compressive learning, as
we do not go through a (implicit) model of the density, we explicitly give the
distance value, which is not necessary when using our proposed sketched method.

For the 2-D experiments, the network fθ is designed as a ReLU network with
3 fully connected hidden layers with 64, 128, and 256 neurons in each layer re-
spectively. Figure 1 shows the experimental results for 2-D synthetic data. The
first column shows the training spiral and GMM samples. The results shown in
the 2nd column are models learned from 4000-fold compressed dataset while pro-
ducing comparable results to those learned from a non-compressed dataset (3rd
column), indicating that our approach achieves its goal: efficiently learn prior
probability densites from compressed datasets (which will be evaluated when
used as a regularization on real audio data). In fact, we match the distribution
density of data directly in the compressive method which is not trivial for the
non-compressed method.

Table 1 shows the needed learning times (in hours) with respect to the
different sketch size m = 50, 100, 1000, 5000, i.e. with compression ratio r =
40000, 20000, 2000, 400 respectively. We see that training the same dataset, the
non compressed learning takes much longer (20 times) than the compressive
learning. Meanwhile, the proposed compressive learning approach is capable of
recovering good approximations of the probability distribution of sample data.

Denoising results The learned regularizers are evaluated on the denoising of
white Gaussian noise. The noisy dataset is made of 500 samples generated with
noise level σ2. We choose the optimal hyper-parameter values (the learning rate
η and the regularizer parameter λ) for each model. Figure 4 visually illustrates
the 2-D denoising results using regularizers learned from the compressed dataset
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Fig. 1. The distribution densities of sample data (left) learned from compressed dataset
with sketching (compression ratio r = 4000)(middle) and original dataset (right).

Table 1. Table of leaning times with respect to the compression ratio: sketch used for
training is r times smaller than the original dataset (results in bold).

sketching non
r 40000 20000 2000 400 compressed

Time Spiral 0.19h 0.23h 0.28h 0.72h 28.7h
GMM 0.23h 0.18h 0.24h 0.73h 28.5h

4000 times smaller (left) and the original dataset (right). Figure 3 shows the 3-D
denoising results with different noise levels.

We assess the effect compression ratio, i.e. the sketch size, in Table 2 and
use the signal-to-noise ratio (SNR) to evaluate the effectiveness of our method.
We generate 10 different noisy datasets of 500 samples for each data type with
noise level σ2 = 0.15. Table 2 shows the average gain in SNR with respect to the
priors learned with different compression ratios. It is shown that the proposed
approach is capable to learn distributions from databases with high compression
ratios, and that regularizers trained from the compressed datasets have similar
denoising performance compared to regularizers trained on their original non

a b c d
Fig. 2. Denoising results (σ2 = 0.15) with regularizers learned with the compressed
dataset with compression ratio r = 4000 (a, c) and the original dataset (b, d).
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Fig. 3. 3-D Denoising results (σ2 = 0.1 (left) and σ2 = 0.2 (right)) with densities
learned from the proposed method with a compression ratio r = 3000.

compressed datasets. When we reduce the sketch size, the denoising performance
drops slightly.

Table 2. Table of reconstruction loss with respect to the compression ratio: sketch
used for training is r times smaller than the original dataset.

sketching non
r 40000 20000 2000 400 compressed

SNR Gain Spiral 1.37 1.89 1.92 2.31 2.61
GMM 0.80 0.86 1.57 1.82 1.77

The number of frequencies used to compute sketches affects memory storage,
while the number of grid points used during training process affects the learning
time. The number of grid points should be chosen well if we want to control the
learning time well, since the number of grid points N grows exponentially with
respect to the dimension d. Experiments from figure 4 also show that overpa-
rameterized networks (with more layers or more neurons per layer) can achieve
better results while using less learning time and fewer necessary grid points.

Fig. 4. Regularizers learned via the proposed method with different learning parame-
ters. Using the same number of grid points, we have better result when the network has
more neurons. (Left) 3 hidden layers with 64, 128, 256 neurons in each layer. (Right)
3 hidden layers with 64, 128, 192 neurons in each layer.

Robustness to noise during training We train the regularizer on a compressed
dataset of data samples generated with noise level σ2

train = 0.15 using the same
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network and training procedure as described above. Figure 5 shows the learned
distribution density and the denoising result. The result shows that the regular-
izer trained with a compressed noisy dataset has good denoising performance.
This illustrates that our approach is robust to low noise level. This is easy to
understand due to the fact that adding Gaussian noise corresponds to a convo-
lution of the density with a Gaussian kernel, which does not change the shape
of the distribution if small enough. It is even possible to add a deconvolution
term to the distribution parameter estimation if the noise level in the training
dataset is known.

Fig. 5. Denoising result (right, σ2 = 0.2) with density (middle) learned from the com-
pressived noisy dataset (left, σ2

train = 0.15).

Application to audio denoising We perform experiments on recorded musical
notes (monophonic 16kHz audio snippets) from the NSynth dataset [3]. The
training data is an extracted 0.125s audio recorded from an acoustic guitar.
After filtering the normalized audio data s by two 4th-order Butterworth low-
pass filters h1 and h2 with a cutoff frequency of 1.5kHz and 3.75kHz, three
frequency responses are constructed with s1 = h1 ∗ s, s2 = h2 ∗ (s − s1), and
s3 = s − s1 − s2. Then the frequency responses are concatenated, hence the
training set is of dimension 2000 × 3; i.e. 2000 samples in dimension 3. The
regularizer is learned from a sketch of sizem = 200, i.e. the dataset is compressed
by a factor of 30. Once the regularizer is learned, it is used to denoise the audio
corrupted by Gaussian white noise of noise levels σ2 = 0.1 and σ2 = 0.2.

Figure 6 and 7 show the audio denoising results with different noise levels.
In the two cases, we gain more than 1dB on SNR in the case of small noise and
more than 2.5dB in case of large noise. Similar denoising results (gain of 1dB
in the small noise and 1.94dB in the case of large noise) are obtained from the
priors learned from the non compressed approach with 3 times slower training
time. The results show that, in addition to the original low-pass filtering effect,
denoising can be achieved in low dimensions even when temporal consistency
between individual samples is not guaranteed. These first feasibility results for
solving inverse problem using regularizers learned from sketch are promising,
especially if it is possible to extend this frramework to high dimension.

5 Conclusions

In this work, we illustrate the feasibility of adapting the compressive learning
framework to the learning of a regularizer parameterized by a DNN. We achieve
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Fig. 6. Audio denoising performances for different noise levels: (left) σ2 = 0.1, SNR
is 10.03 for noisy data and 11.39 for denoised data; (right) σ2 = 0.2, SNR is 4.01 for
noisy data and 6.64 for denoised data.

Fig. 7. Audio denoising performance for noise level σ2 = 0.2.

this by approximating the original sketching operator with a discrete one. With
the proposed approximated sketching operator, the "sketch matching" problem
can be solved with a gradient based algorithm. In addition, we define a new
parametrization of the regularizer to solve the inverse problem. The regular-
izer is defined as the squared `2-norm of a ReLU network and learned with a
compressive dataset instead of the original dataset. It gathers the advantages of
sketching which reduces the learning cost and of NN which have great expres-
sive power. Experiment results on 2-D/3-D synthetic data and audio data show
that our method accomplishes the objective of compressive learning, illustrating
the potential of sketched NN. However, our method relies on a discretization of
the domain on which the data resides, which limits its use in high-dimensional
domains (e.g., for image denoising). Future works will be needed to overcome
this limitation. We want to design a fast sketching operator that avoids such
discretization. This leads to a major open question: can we find a sketching op-
erator such that any distribution parametrized by a DNN can be estimated from
the sketch? Does such a sketching operator exist? A positive answer to these
questions could drastically change the way deep priors are trained.
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